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Abstract 

In this paper we describe the use of Voronoi diagrams to generate offsets for planar 
regions bounded by circular arcs and line segments, and then use the generated offsets as 
tool paths for NC machining. Two methods are presented, each producing a different type 
of offset. One of them generates the offsets of the region; the other divides the region into 
subpockets first, then offsets of the subpockets boundaries are used for tool paths. We show 
that a set of m offsets can be computed in O( C1 n log n + c2mn) time, where n is the number 
of sides of the region, using either method. 

1 Introduction 

Pocketing in milling can be defined as the removal of the material within a pocket, a planar 
region whose boundary definition is permitted to have both arcs and line segments. The num
ber of the arcs and line segments is denoted as n. The region can be multiply connected, 
i.e., loops are allowed within the outermost boundary. The loops are called islands. The ca
pability of automatic tool path generation for pocketing is important, since it is not only a 
frequently occurring operation for producing two-dimensional shapes, but also a primitive step 
used repetitively in the roughcutting of three-dimensional parts [1,2J. 

Traditionally, raster-cuts and spiral-cuts are used in pocketing [3,4,5]. In the raster-cut ap
proach, a zig-zag tool path along a family of parallel lines is used. In the spiral-cut approach, 
a sequence of offsets to the pocket boundary is taken as the tool path. The tool is directed to 
shrink the uncut portions of the pocket in a step-wise fashion starting from the boundary or, 
in a reverse order, to expand the cut portion of the pocket starting from the innermost points. 
Essentially, the computation of an offset is required for every move toward or away from the 
boundary. If shrinking strategy is taken, in pockets with concave boundaries, the uncleaned 
area may break into several disconnected regions after the tool moves through a number of 
offsets. This implies that a single offset curve for the tool path may contain disjoint loops. On 
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the other hand, disconnected regions may need to be merged at some points, if an expanding 
strategy is taken. This implies that disjoint loops in a single offset may merge together in the 
subsequent expanding offsets. 

It is indicated in [1] that each offset requires O(n2) time to compute if the method which 
computes the intersection of consecutive boundary elements is used. In this paper, spiral-cuts 
are used in pocketing. It will be shown that, with Voronoi diagrams, a sequence of offsets 
to a pocket can be found with O( n log n) preprocessing time and O( n) time for each offset, a 
complexity which is independent of the shape of the pocket and the existence of islands. 

2 Voronoi Diagrams 

Practical applications of Voronoi diagrams arise in diverse fields [6,7]. In particular, Voronoi 
diagrams have been used extensively in motion planning in robotics [8,9]. The Voronoi diagram 
for a set of elements can be depicted as the partition of a domain into regions, each of which 
contains points closer to one element than the others [6]. The regions so partitioned are called 
Voronoi polygons. The element to which a Voronoi polygon is closest is called the owner element 
of the Voronoi polygon. In our case, the set of elements is the boundary of the pocket: line 
segments, circular arcs, and end points of the line segments and circular arcs. 

For a point p in a Voronoi polygon R, the distance between p and the owner element of R 
is called the clearance of p. The graph of the Voronoi diagram, or simply called the Voronoi 
diagram, is the set of edges and vertices of the Voronoi polygons. Every point on an edge is 
at a minimum distance to two elements. The minimum distance is the clearance of the point, 
and the two elements are called the forming element of the edge. If all points on an edge have 
the same clearance, the edge is called a constant clearance edge. The forming elements of a 
vertex are the forming elements of the edges incident to the vertex. For a set of circular arcs, 
line segments, and points, the edges are portions of conics [10]. An important property of 
the Voronoi diagram is that the numbers of edges, vertices, and Voronoi polygons are linearly 
proportional to the number of elements that define the Voronoi diagram. 

",then restricted to the interior of a polygon, the Voronoi diagram is known as the internal 
skeleton, or simply the skeleton, of the polygon [11]. For a simple polygon, the internal skeleton 
is also called the medial axis. The problem of constructing the skeleton of a polygon is linearly 
reducible to that of constructing the Voronoi diagram of the polygon [12]. The construction of 
the Voronoi diagram has been studied by a number of researchers [6,9,10,12,13]. It is possible 
to construct the Voronoi diagram in O( n log n) time. In the following we assume the skeleton 
of the pocket is already obtained. This can be done in O( n log n) time as mentioned above. 
Figure 1 shows the skeleton of a pocket with an island. 

For simplicity and clarity in describing the algorithms, we restrict ourselves to pockets whose 
skeletons are without constant clearance edges. Later we show why this is necessary and will 
suggest a way to handle them in cases that they do exist. Note that a constant clearance edge 
occurs when the forming elements of the edge are parallel line segments or concentric arcs. 
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Figure 1: Skeleton of a pocket. 

3 Using the Skeleton to Find Offsets 

3.1 Properties and Definitions 

The basic idea of the algorithm is that it is easy to find the set of points in a Voronoi polygon 
that are at a constant distance from the owner element of the Voronoi polygon. If such a set is 
denoted as lV, the offset of a pocket consists of all the W s from all the Voronoi polygons of the 
pocket. Note that for a given offset distance, a Voronoi polygon may not contain points with 
that distance away from the owner element. In this case the set W is empty, and the algorithm 
really does not need to examine such a Voronoi polygon. Also, the offset produced by the 
algorithm should consist of closed curves. To achieve these, a special walk through the Voronoi 
polygons is used by the algorithm. In order to facilitate the description of the algorithm, some 
additional terminologies and properties are introduced below. 

Definition 3.1 

1. A mountain point x is a point in a skeleton with the maximum clearance among 
those points in the neighborhood of x. 

2. A valley point x is a point in the skeleton with the minimum clearance among 
those points in the skeleton in the neighborhood of x, when x is not a point on 
the boundary of the pocket. 

Since edges of constant clearance are excluded, mountain and valley points in a skeleton are 
disjoint. Mountain points represent points in the pocket that have local maximum clearance. 
However, since all the points on a constant clearance edge may have the same maximum (or 
minimum) clearance, the above definitions for mountain and valley points are not suitable for 
our purposes when constant clearance edges are present. In our discussion, we assume that 
there are no constant clearance edges in the skeleton, although special care could be taken to 
incorporate those edges in our discussion. For example, when all points on a constant edge 
have the same maximum clearance, a middle point on the edge could be taken as the mountain 
point, and all the subsequent discussion would have to take thls special case into consideration. 

Property 3.2 A mountain/valley point of a skeleton is either at a vertex of the 
skeleton, or at the apex of the conic of an edge. A valley point also can occur on a 
linear edge with two points or circular arcs as forming elements. 
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Figure 2: Trees for the skeleton in figure 1. 

By property 3.2, all the mountain and valley points in a skeleton can be obtained in linear 
time since we only have to examine each of the edges and the vertices in the skeleton once. In 
Figure 1, the mountain points are circled, and the valley points are crossed. We modify the 
skeleton by adding a vertex into the skeleton at each of the mountain (valley) points that do not 
coincide with a vertex. A vertex on the skeleton which is a mountain (valley) point is called an 
m-vertex (v-vertex). Next, we attach the clearance value to each of the vertices in the skeleton. 
By adding the m-vertices and v-vertices, we have the following. 

Property 3.3 All the edges in the skeleton have monotonic clearance. 

Property 3.4 The skeleton is a planar embedding of a forest with vertices and 
edges of the skeleton as the nodes of the forest. The roots of the trees in the forest 
are the m-vertices. The leaves are either v-vertices or vertices at the boundary of 
the pocket. 

Property 3.5 The clearance of the points on a branch of a tree in the skeleton is 
in a decreasing order from the root to the leaf. 

Figure 2 shows the trees for the skeleton in Figure 1. The roots are circled. The leaves are 
dotted. Note that two branches (vertices) of the trees may correspond to one edge (vertex) in 
the skeleton. 

To initiate computing offsets, we search for the starting point of an offset from a list of special 
vertices from the skeleton, called control vertices. Associated with each of the control vertices 
is a branch of the trees from the skeleton, called a key branch. The list of control vertices and 
the key branches are defined as: 

1. All the mountain vertices are the control vertices. The key branch associated with a 
mountain vertex is the branch of the tree from the mountain vertex to the leave of the 
tree which has the minimum clearance. If more than one leaf of the tree has the same 
minimum clearance, an arbitrary one is chosen. 

2. For each of the boundaries of the islands and the outmost boundary of the pocket, choose 
an arbitrary vertex on the boundary. Start from this vertex, and walk up the tree con
taining the vertex until either a vertex in a found key branch or the root of the tree is 
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reached. The vertex at which we stop is defined to be a control vertex and is added into 
the list. The edges and vertices along the path constitute the key branch of that control 
vertex. 

In Figure 2, the heavy lines indicate a set of key branches. Note that a vertex may appear more 
than once in the list. 

Given an edge e of the skeleton, we will need to distinguish between the two Voronoi polygons 
which share the edge. By property 3.3, one of the end vertices of e will have larger clearance 
than the other. We define the polygon Vinc( e) as the Voronoi polygon which is to the right of 
e, when e is traversed from the end vertex with the smaller clearance to the one with the larger 
clearance. 

H a value d is within the range delimited by the clearance of the end vertices of an edge, we say 
the edge spans over d. A control vertex spans over a value d, if d falls between the maximum 
and minimum clearance of the points on the key branch of the vertex. 

3.2 The Offset Algorithm 

Now, we are ready to describe the offset algorithm. Since the offsets will be used for toolpaths, 
we impose additional constraints. One requirement of an offset for tool paths is that the offset 
should consist of closed curves. Also, to minimize the number of tool retractions, the set of 
offsets that centers around an m-vertex should be grouped together. We will incorporate these 
requirements into the offset algorithm. 

Algorithm 3.6 (Offset) 

1. Generate the list of control vertices described previously, and denote it as as 
the m-list. 

2. Sort the m-list by the clearance of the vertices into a nonincreasing order 
(largest clearance first). 

9. For a given offset distance d, create a new list, the a-list, which contains 
vertices from the m-list spanning over d. The vertices in the a-list should 
have the same order as they had in the m-list. 

4. For each vertex v in the a-list, according to its order, until the a-list is empty: 

(a) Search along the key branch of v for a starting edge which spans over d. 
Call it e •. 

(b) Set the current edge ec to be e •. 
(c) If ec is on a key branch, k, remove the control vertex of k from the a-list. 

(d) Troverse clockwise through the edges of Voronoi polygon Vinc(e c} starting 
from the edge following ec until an edge that spans over d is found. 

(e) Output the segment connecting ec and the new edge. 

(!) If the new edge is not e., denote the new edge as ec and return to 4c. 

(g) If the new edge is e., we have completed a loop in the offset and return to 
4; 



Computing Offsets and Tool Paths J. Chou and E. Cohen 6 

Figure 3: Offsets and toolpaths for figure 1. 

Step 4c can be done efficiently if we tag the edges in a key branch with pointers to their 
corresponding control vertex. The output segment in 4e is a line segment if the owner element 
of Vinc(ec ) is a line segment and an arc if the owner element is a point or an arc. Potentially, 
the number of control vertices is proportional to n, hence step 2 requires O(nlogn) time. The 
rest of the steps can be done in linear time. For a sequence of offsets steps 1 and 2 are execu ted 
only once and can be considered as preprocessing. Now the main result of this section can be 
stated: 

Theorem 3.7 (Offset) : A sequence of m offsets of a pocket with n sides can be 
found in cln logn + C2mn time: O(n log n) for preprocessing, and O(n) time for 
each offset. 

In Figure 3, a set of offsets is shown in heavy solid lines. 

4 Tool Path Generation With Offsets 

It is necessary to know offset distances in order to generate offsets for a tool path. Offsets 
with distances less than the tool radius are not allowed since the center of the tool will follow 
the offset and we want to generate noninvasive toolpaths. The largest offset distance needed 
is dependent on the maximum clearance of the pocket. Since the point with the maximum 
clearance in a pocket is an m-vertex, the maximum clearance is the clearance of the vertex at 
the head of the m-list in step 2 of the offset algorithm and can be found easily. The distance 
between two consecutive offsets cannot exceed the tool radius. Otherwise, at sharp corners, 
regions between the offsets may be left uncut. Other than this constraint, the distance is quite 
arbitrary and should be chosen to gain efficiency and to meet the mechanical constraints of the 
tool, the machine and the stock material. 

The simple tool path generation algorithm that generates tool paths to move through the loops 
in an offset one by one may require a large number of tool retractions, since an offset of a pocket 
with h different m-vertices may have h loops. Therefore, h - 1 retractions will be needed, in 
general, to move the tool between these loops in an offset. For a set of m offsets, O( mh) 
retractions are needed. To reduce the number of retractions, we need to group the loops in the 
offsets together so that we can move through the sequence of loops in the same group without 
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retractions. This can be done by carefully arranging the output from the offset algorithm. In 
the following tool path generation algorithm we achieve the grouping by associating a loop list 
L with each control vertex. 

Algorithm 4.1 (Tool Path Generation I) 

1. Follow steps 1 and 2 in Algorithm 9.6 and obtain the maximum clearance of 
the pocket. 

2. Create an ordered list of nondecretl8ing offset distances, the d-list. 

9. For each distance d in the d-list perform steps 9 and 4 of Algorithm 9.6, using 
the following modified version of step 4g: 

(-Ig) If the new edge is e., we have completed a loop in the offset. Add this 
loop to the end of the loop list of v and return to 4i 

4. For each control vertex v with a nonempty loop list L, 

(a) Retract the tool and move to the m-vertex, m(v), at the root of the tree 
which contains v. 

(b) For each loop I in L starting from the loop with the largest d, 
i. Move the tool along the side-step direction, discussed below, until it 

encounters I. 
ii. Move the tool through I. 

\Vhen we "side-step" the tool in step 4(b )i, we move the tool toward a forming element e of 
the m-vertex, m( v). The side-step direction is chosen to be the direction from m( v) to the 
projection of m( v) onto e. The maximum number of retractions needed in the algorithm is the 
number of control vertices. Figure 3 shows a tool path. The dash lines are the path connecting 
offsets. 

The maximum scallop size from a tool path generated by this algorithm can be calculated 
automatically. This allows us to select a tool with maximum size to satisfy a given tolerance 
automatically. This automatic selection is important when there are narrow passages between 
regions in a pocket. Sometimes a border with a certain distance q from the boundary of the 
pocket is required in NC machining. This can be done easily with the above algorithm, by 
setting the last offset value in the d-list to q + r, for a tool with radius r. 

5 Subpocket Decomposition 

In this section we discuss a method to decompose a pocket into simpler shapes whose offsets 
are easier to compute. In [4], Ferstenberg et al. tried to generate tool paths for a pocket with 
linear boundary by first decomposing the pocket into convex polygons. Then they generated 
tool paths for the convex polygons. The motivation behind their decomposition is that the 
topology of the tool path for a convex polygon is much simpler than that for a nonconvex one. 
There are two drawbacks with the approach. First, algorithms for good convex decompositions 
are both complex and computationally expensive. Second, a large number of convex regions 
will be required in the decomposition of complex pockets. 

The term "subpocket" is used for the regions resulting from our decomposition method. The 
definition of a subpocket is given below. 
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Figure 4: Subpockets for the same original pocket. 

Definition 5.1 A subpocket is a simplrrconnected two-dimensional region that con
tains only one point or one set of connected points with the maximum clearance. 

8 

The boundary of the subpocket defined above can contain line segments and circular arcs. Note 
that a convex polygon is a subpocket. Also there may be a lot of components in a pocket's 
convex decomposition but only a few in its subJ>ocket decomposition. We now describe the 
decomposition method 

To develop the decomposition, we first augment the skeleton. This is done by performing the 
following steps for the forming elements of each 17-vertex, v, in the skeleton. 

1. If the projection from v to the forming element coincides with an existing vertex, add an 
edge between the vertex and v if such an edge does not exist. 

2. If the projection does not coincide with an vertex, then a new vertex is created at the 
projection, and an edge is added between the new vertex and v. 

The edge between a v-vertex and its projection is called a critical edge. 

At the same time we modify the definition of the trees in the skeleton. For each of the trees 
in the original skeleton, we attach to each t1-vertex, v, in the tree the added critical edges 
connected to v and the vertices at the end of the critical edges. The vertices so attached are 
taken as the children of v in the tree. Note that & tree may have two leaves at the same vertex. 
Such situations can be detected and should be tagged for later reference. We also require the 
branches on a tree to be arranged so that in the course of a tree traversal the descendent vertices 
of a vertex, h, are visited in counter-clockwise order around h. 
To produce the list of ordered points defining the boundary of a subpocket, we only need to 
perform a tree traversal through the tree whoeeroot is the maximum clearance point of the 
subpocket and report the nonredundant points at the leaf nodes. The reported points define 
the subpocket. The redundancy can be found easily through the tags mentioned above. It is 
clear that each of the region obtained from t~ above tree traversal has only one maximum 
clearance, the clearance at the root of the tree. To obtain the decomposition of a pocket it 
is necessary only to perform a tree traversal for Each of the trees in the skeleton. Upon each 
traversal, a subpocket is produced. The above steps spell out the subpocket decomposition 
algorithm. Figure 4 shows the four subpockets (in heavy lines) from the decomposition. To 
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traverse through all the trees, we only need to examine all the edges and vertices in the skeleton 
a fixed number of times. Hence we obtain the complexity of the algorithm. 

Theorem 5.2 (Subpocket Decomposition) A subpocket decomposition of a pocket 
with n sides can be found in O(nlogn) time. 

6 Tool Path Generation With Subpocket Decomposition 

The sub pocket decomposition algorithm allows us to divide a pocket into subpockets. A sub
pocket has the following nice properties. 

Property 6.1 An offset of a Bubpocket contains a single loop. 

Property 6.2 The regions enclosed by all the offsets of a subpocket share one com
mon point, the m-vertex in the subpocket. 

Properties 6.1 and 6.2 allow us to generate the tool path for a subpocket without retractions 
by starting at the m-vertex, side-stepping toward the boundary of the subpocket along a fixed 
direction, moving through the encountered offset loop, and repeating the process until all the 
offset loops are finished. The tool path thus generated is capable of covering every reachable 
point in the subpocket as long as the distance between two offsets is less than the tool radius 
But there are two drawbacks that occur when the tool paths for all subpockets are put together 
and used to cut the entire pocket. The first drawback is demonstrated in Figure 4. The figure 
shows that fillets at the corners where two subpockets meet will be left uncut. To remove these 
fillets requires both extra retractions and extra tool moves. The second drawback is that if a 
border is desirable, the tool path for the entire pocket cannot be generated by simply putting 
together the tool paths for each subpocket generated with border, since this will result in uncut 
regions between two adjacent subpockets. 

We modify our tool path generation strategy slightly to overcome these drawbacks by requiring 
the tool to move to and along the critical edges on each offset loop when we reach the regions 
where two su bpockets join together. Hence the loop should contain the appropriate critical 
edges. Given an offset distance d and a tree T, the following loop generation algorithm produces 
such a loop for the subpocket containing T by a traversal of T. 

Algorithm 6.S (Algorithm Loop Generation) 

1. Collect edges into a list L by performing a modified depth-first traversal of T 
as follows. 

(a) If we are at a node h whose vertex has clearance> d, visit the children of 
h. 

(b) If we are at a node h whose vertex has clearance ~ d, add the edge which 
joins h and its parent into L and do not traverse further down on this 
branch. 

2. For each pair of consecutive edges in L, compute the point with clearance d 
on each of the edges and output a segment connecting these two points. The 
segment is either 
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Figure 5: Loops and Tool Path. 

(a) a line segment iJ both oj the consecutive edges are critical edges or 
(b) a portion oj the d-offset oj the common Jorming element oj the two edges. 

A segment produced in step 2b is either a circular arc, if the common forming element is a 
point or an arc, or a line segment, if the element is a line segment. Figure 5 shows a set of 
loops. Note that the loop thus constructed is neither an offset of the subpocket nor an offset of 
the entire pocket. 

The tool path generation algorithm can be formulated easily once we can construct a loop. 
Given a pocket, we can generate a tool path to move through its subpockets sequentially by 
the following algorithm. 

Algorithm 6.4 (Algorithm Tool Path Generation II) 

1. Generate the skeleton mentioned above. 

2. Choose an ordered list oj nondecreasing offset distances, the d-list. 

3. For each m-vertex, m, in the skeleton, 

(a) Retract the tool and move the tool to m. 
(b) For each value d in the d-list, 

I. Move the tool along the side-step direction until we are at a point with 
clearance value equal to d. 

If. Generate the loop with offset distance d by the loop generation algo
rithm and move the tool through the loop. 

The side-step direction can be selected the same as in algorithm 4.1. Algorithm 6.4 has prop
erties and complexity analysis similar to that of Algorithm 4.1. Figure 5 shows a set of tool 
paths. The dash lines are the path connecting loops and subpockets. 

7 Conclusion 

For general free form curves, the topology of their offset curves is complex and difficult to 
determine. Here, with the help of Voronoi diagrams, we have demonstrated efficient ways to do 
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so for curves composed of line segments and arcs. The offset and the subpocket decomposition 
algorithms can be used not only for tool path generation but also for situations in which offsets 
or a subpocket decomposition is necessary. The ability of handling islands is important since 
they happen frequently in practical situations. All the algorithms presented handle islands 
uniformly. 
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