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Abstract

This paper presents a partial scan method for testing control sections of macromodule based 
self-timed circuits for stuck-at faults. In comparison with other proposed test methods for 
self-timed circuits, this technique offers better fault coverage than methods using self-checking 
techniques, and requires fewer storage elements to be made scannable than full scan ap
proaches with similar fault coverage. A new method is proposed to test the sequential net
work in this partial scan environment. Experimental data is presented to show that high fault 
coverage is possible using this method with only a subset of storage elements being made 
scannable.
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Abstract

This paper presents a partial scan method for test
ing control sections of macromodule based self-timed 
circuits for stuck-at faults. In comparison with other 
proposed test methods for self-timed circuits, this 
technique offers better fault coverage than methods 
using self-checking techniques, and requires fewer stor
age elements to be made scannable than full scan ap
proaches with similar fault coverage. A new method 
is proposed to test the sequential network in this par
tial scan environment. Experimental data is presented 
to show that high fault coverage is possible using this 
method with only a subset of storage elements being 
made scannable.

1 Introduction

Asynchronous and self-timed circuits have recently 
been receiving renewed interest by circuit designers 
as an alternative to globally synchronous system or
ganization. As the size and speed of systems grow, 
so do the problems related to the global clock signal. 
Asynchronous and self-timed circuits that avoid tim
ing problems by enforcing simple communication pro
tocols between parts of the circuit can help avoid these 
problems. These types of systems can also allow sim
pler system composition, show increased robustness in 
the face of process and environmental variation, can 
exhibit much lower power consumption, and can even 
show increased performance when compared to glob
ally synchronous systems in some cases.

Testing asynchronous circuits, however, is a rela
tively new area. Despite the growing number of recent 
efforts in the specification and design of asynchronous 
circuits, testing these circuits has not been explored to 
any great degree. Traditionally, testing asynchronous 
circuits has been considered a difficult problem, es
pecially when compared to the synchronous circuits, 
where significant advances have been made. Unfor

tunately, methods used to test synchronous circuits 
are not directly applicable to asynchronous circuits. 
This is due, in large part, to the absence of the global 
clock signal in the asynchronous circuits. New meth
ods are required to adapt the rich knowledge about 
testing synchronous circuits to test asynchronous cir
cuits. This is precisely the subject of this work: to 
adapt scan path technology to a class of asynchronous 
circuits.

Asynchronous style control circuits can be classi
fied broadly into two categories: centralized and dis
tributed. In the centralized style the control is de
signed like conventional state machines, where a single 
state machine controls the sequencing in the circuits. 
These machines are typically designed with restric
tions on input and outputs and need proper adjust
ment of delays to handle and asynchronous environ
ment. Many approaches have been proposed to design 
control circuits in this style [13, 23, 34, 36].

In the distributed style of design the control 
unit consists of an interconnection of many smaller 
state machines (macromodules). These macromod
ules are typically designed to follow certain protocols 
at their interfaces that obey delay-insensitive or speed- 
independent properties to make their composition sim
pler [4, 21, 24, 31]. Self-timed macromodular control 
circuits have been used an a wide variety of academic 
research efforts [5, 22, 26], as well as in industrial re
search settings [2, 30], and it is this style of distributed 
self-timed control that we focus on in this work. Us
ing these modules, distributed self-timed control can 
be built easily by connecting the modules directly into 
a control network. These modules also allow simple 
syntax-directed translation from language descriptions 
into control networks [4, 21, 24]. In particular, the set 
of macromodules used by Brunvand [4, 6] and Suther
land [31] are the modules used to build the circuits 
which are the target of this paper. The particular set 
of macromodules used is, however, not critical as the 
techniques we present could be applied to any similar 
set of control circuits.



In this paper a partial scan method is proposed to 
test the control portion of macromodule based self
timed circuits for stuck-at faults. This method pro
vides better fault coverage than methods using the 
self-checking property [16] of self-timed circuits which 
assumes that the circuit halts in response to faults. 
It also requires fewer storage elements to be made 
scannable than full scan methods while ofTering ac
ceptable fault coverage.

The paper is organized as follows. In the next sec
tion, self-timed circuits and the overall design method
ology will be described briefly. Section 3 discusses the 
testability of individual macromodules to asses the re
quirements for getting good fault coverage and to show 
the limitations of methods which use self-checking 
properties. Section 4 reviews related work. Section 5 
presents the proposed partial-scan method including 
the the overall architecture, and modifications to the 
various modules, and the procedures used to test se
quential logic consisting of XOR and C-elements. Sec
tion 6 presents experimental results obtained on four 
examples. Finally, Section 7 offers some conclusions.

2 Self-T im ed M acrom odule Circuits

Self-timed circuits are a subset of a broad class of 
asynchronous circuits which do not use a global clock 
for synchronization. Specifically, self-timed circuits 
are asynchronous circuits that generate completion 
signals to indicate that they are finished with their 
processing [29]. A signalling protocol used with the 
completion signalling allows self-timed systems to be 
composed of circuits which communicate using self
timed protocols. Self-timed protocols are often defined 
in terms of a pair of signals, one to request or initiate 
an action, and another to acknowledge that the re
quested action has been completed. One module, the 
sender, sends a request event (Req) to another mod
ule, the receiver. Once the receiver has completed the 
requested action, it sends an acknowledge event (Ack) 
back to the sender to complete the transaction.

Although self-timed circuits can be designed to im
plement their communication protocols in a variety of 
ways, the circuits used in our library use two-phase 
transition signaling for control and a bundled proto
col for data paths. Two-phase transition signaling [29] 
uses transitions on signal wires to communicate the 
Req and Ack events described previously. Only the 
transitions are meaningful; a transition from low to 
high is the same as a transition from high to low and 
the particular state, high or low, of each wire is not
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Figure 1: Bundled Data Path Connection
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Figure 2: Control Modules for Self-Timed Designs

important.
A bundled data path uses a single set of control 

wires to indicate the validity of a bundle of data 
wires [31]. This requires that the data bundle and the 
control wires be constructed such that the value on the 
data bundle is stable at the receiver before a signal ap
pears on the control wire and remains valid until Ack 
is received. This condition is similar to, but weaker 
than, the equipotential constraint [29]. Two modules 
connected with a bundled data path are shown in Fig
ure 1.

Our design method builds control circuits using 
a variety of modules which communicate using two- 
phase transition signals. These modules, described in 
more detail elsewhere [3,6,31], are shown symbolically 
in Figure 2. Other modules in the library, such as 
transition-controlled latches, and completion-sensing 
adders, are used to build self-timed data paths. The 
functionality of the main control modules is as follows:

X O R : An XOR behaves as an OR for transition sig
nals. When a transition occurs on any of its in
puts, the XOR generates a transition at its out
put.

C-Elem ent: A C-element is used as an AND function 
for transitions. A transition occurs at the output 
only when there have been transitions at both of 
its inputs. Note that the C-element must start in 
a state where both inputs are at the same value 
to behave in this way. A global clear signal to the 
control modules ensures this condition on system
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reset.

Select: A two-way transition Select module, in re
sponse to an input transition, causes a transition 
on one of two outputs depending on the value of 
its select signal. The sel signal should be valid be
fore the input transition arrives and must remain 
valid until after an output transition is generated 
at one of the outputs. In other words, sel is bun
dled with respect to the input transition.

Toggle: A Toggle module causes, in response to an 
input transition, an output transition alternately 
on its two outputs. After initialization, the first 
input transition causes a transition on outO and 
subsequent input transitions cause transitions on 
alternate outputs.

Call: A Call module acts as a hardware subrou
tine call allowing multiple requesters to access a 
shared resource. The Call module routes the Req 
signal from a client (for example, either R1 or R2  
in a two-way Call) to the subroutine circuit, and 
after the subroutine acknowledges, routes the Ack 
back to the appropriate client. The requests must 
be mutually exclusive.

One way this module library is used is with an OC
CAM based automatic circuit compilation system [4, 8]. 
The software constructs of OCCAM have been imple
mented using these library components and allow pro
grams written in OCCAM to be translated automati
cally into self-timed circuits. An example of transla
tion of a W HILE construct is shown in Figure 3. The 
OCCAM compiler has been used to build a number of 
systems ranging from a memory controller for stan
dard DRAMs used in a self-timed environment [4], to a 
simple wormhole router designed for a mesh-connected 
multiprocessor array [7]. This library has also been 
used to build large circuits by hand, including a self
timed microprocessor [5], using commercial schematic 
capture software from Viewlogic .

3 Testability of M acrom odule based  
Self-T im ed Circuits

Some of the problems associated with testing asyn
chronous circuits in general and self-timed circuits in 
particular include:

• Asynchronous and self-timed circuits are more 
sensitive to races and hazards than synchronous 
circuits. This puts an additional requirement on 
the test methodology that test application must 
also be hazard and race free otherwise the test 
may be invalidated. In particular, races and haz
ards create two main types of problems in test
ing asynchronous circuits: the existence of a race 
or hazard can invalidate a test, and techniques 
for avoiding races and hazards in asynchronous 
circuits usually require the addition of redundant 
logic which may not be testable by any functional 
test.

• Self-Timed circuits operate in autonomous way, 
in the sense that once the control is passed from 
environment to the circuit, the operation is to
tally determined by the circuit. This is differ
ent than synchronous circuit where external clock 
dictates the operation of the circuit. This creates 
problems if one attempts to use an iterative array 
model for testing because the number of frames 
is not controllable.

• Using our library module approach, control is dis
tributed throughout the system and is not cen
tralized in a single controller with a convenient 
state register for the scan path. Each self-timed 
module is in fact a tiny state machine in itself. 
This increases the complexity of testing if func
tional testing of the entire circuit is desired.

• In a synchronous system, it is possible to slow 
down the operation of the entire system simply by 
decreasing the clock speed to reason about noise 
related problems (which might interfere with test
ing). Self-timed circuits react to local handshake 
signals and there is no analogous technique for 
slowing system operation without modifying the 
circuit in other ways.

3.1 Functional Testability of Individual 
M odules

In this section we discuss the testability of indi
vidual modules described in the previous section and



Figure 4: Gate Level Model of C element

Figure 5: Basic Call Module

the effect of the environment in which these modules 
are used. This in turn will indicate the limitation of 
testing methods which use the functional behavior of 
circuits to generate tests [19].

3 .1 .1  C -e le m e n t

A gate level model of the C-element is shown in Fig
ure 4. This gate level circuit is a model of the actual 
circuit which is described in terms of transistors else
where [32, 4], As described in the previous section, 
a C-element acts as an AND gate for transitions. It 
is usually used in self-timed circuits to implement a 
join operation for two forking processes. In this con
text during the circuit operation both inputs receive 
the same signal value at any time in the steady state. 
The state where the the two inputs are different rep
resents the time when one fork has completed and the 
other has not yet finished, and is therefore transient. 
The transient state can not be used to test the C ele
ments reliably as the effect of a fault in this transient 
state is a correct transition to the final state, but one 
that happens prematurely. In order to test for faults 
activated in this way, inputs that are normally tran
sient must be applied for a sufficient time to detect the 
faults. The fault coverage in the steady state when 
the two inputs are same will be the coverage obtained 
by tests 00 and 11. Functional tests of a C-element will 
not cover all possible faults inside the C-element. The 
fault coverages for these tests are shown in Table 1.

3 .1 .2  C a ll E le m e n t

As for the C-elements described above, the C-elements 
in the Call module shown in Figure 5 also have the 
same behavior of both the inputs being same in the 
steady state. Faults inside the C-elements described 
above will again not be detected by any functional 
test. In addition the faults on lines e and /  in Figure 5 
are also not detectable by functional tests as described 
below.

We will only describe faults on the wire labeled /  in 
Figure 5 as the case of wire e is similar. Assume there 
is a stuck-at-1 (s-a-1) fault on line / .  Also assume that 
the delay between an event on RS and the following 
j45 event is dl, and that the delay from R l  to the 
corresponding C-element input is d2. In all practical 
circuits dl >  d2. Now when a rising event occurs on 
input R l,  in the faulty case an event on A1 is pro
duced immediately without waiting for AS  to arrive. 
Note that this event on A1  is the correct event, how
ever it appears earlier than desired. This happens be
cause the s-a-1 fault on /  prematurely puts a 1 at the 
corresponding input of the C-element. The following 
event on AS  does not cause any event on the output 
of the C-element as a C-element requires changes on 
both inputs before it fires. In fact this later transition 
on the AS  wire causes the firing of the next premature 
transition as the Call module is continued to be used.

Now assume that /  is s-a-0. To activate this fault 
the value of input R2 has to be 1. Assume R l starts 
at 0 and then rises to 1. This scenario implies that 
the value of AS  is 1 before the transition on R l  ar
rives. The transition on the input of the C-element 
corresponding to this input transition has arrived be
fore the corresponding transition on /IS and hence the 
C-element will again fire prematurely. Again the value 
of A 1 will be the desired one except that it will occur 
too early. The case of e is similar. Thus the faults on 
e and /  result in premature transitions rather than in
correct transitions and are therefore not testable. The 
only way to see the effect of these faults is in the data 
path where data may be latched at the wrong time, 
but this requires very strict timing control on the value 
in the data path which is very difficult or may even be 
impossible depending on where the control element is 
in the circuit.

3 .1 .3  S e le c t  E le m e n t

A schematic of a Select module is shown in Figure 6. 
Faults on all nets except the feedback lines e, /  and the 
latch gating signals are testable using the self-checking 
property. The behavior of a Select module under faults
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on feedback lines and latch gate signals is described 
below.

Faults on the feedback lines e and /  result in cor
rect, but premature transitions. A stuck-at-1 fault 
results in a premature transition in the initial state 
on O U TT  or OUTF  during functional test depend
ing on the initial value of the SEL line. Both of these 
faults can be tested only if the SEL line is control
lable. Stuck-at-0 faults on these lines can be activated 
only in state O U T T ,OUTF  =  1,1. Thus testing of 
these faults will require a state justification process in 
the functional test. Assuming the justification is pos
sible it may still be the case that these faults are not 
observable. Assume that the fault effect appears on

_n_n_n_n_n_

line OU TT  and there is a path from this line to a C- 
element elsewhere in the circuit as shown in Figure 7. 
In this case the the fault effect will be masked if the 
other input of the C-element arrives before the pre
mature transition is nullified. In that case a correct 
transition will be produced at the C-element output 
in spite of the fault.

A fault on the SEL line results in one of the 
latches being permanently off and other permanently 
on. Thus one of the branches of the Select is always 
taken, and the other never is. This effect can be ob
served on the output if and only if the branch is in
dividually observable. The reason for this lies in the 
way a Select is usually used to perform conditional 
execution of different circuits based on the Boolean 
SEL signal. The two branches of the Select are typ
ically combined through a Merge (XOR) element to 
produce a single acknowledgement of the conditional 
block. It is not possible to distinguish which branch 
was taken if only the output of the block is observed. 
The only effects that might be seen are in the data 
path, which will be difficult to control, especially in 
asynchronous circuits where the operation of circuits 
is autonomous.

A fault on the signals controlling the latch gates 
which results in latch being permanently closed is 
testable as it results in the circuit halting. Faults 
which result in the latch being being permanently 
open however, cause oscillations in certain states 
where both the latches get enabled simulatneously in 
faulty case. These oscillations can be detected only if 
there is a path from any of these Select outputs to the 
circuit output without encountering any C-elements. 
A C-element acts as perfect filter for such oscillations 
as shown Figure 8.

3.1.4 Toggle Element

All the faults except those on latch gating lines are 
testable using functional tests. Faults on gating sig
nals which result in one of the latches being perma
nently off are also testable. Faults which cause a latch 
to be permanently enabled cause oscillations in cer
tain states as in the Select elements described above. 
In these states both of the latches are enabled thus 
forming a loop with odd number of inversions.

4 R elated W ork

Figure 8: Filtering of Oscillations Through C Element
Testing asynchronous circuits is a relatively new 

area. Very few attempts have been made to date.



Module Fault Coverage
C element 60.0%
Call2 60.2%
Select 71.5%
Toggle 90.0%

Table 1: Fault Coverage of Modules using Self
Checking Functional Test

For testing macromodule based self-timed circuits only 
two approaches have been reported in the literature 
that we know of. In [19] a functional approach is used 
for testing self-timed rnacromodule circuits using Self
checking property mentioned earlier. In this approach 
SEL lines of the Select modules are made controllable 
thereby influencing the flow of control in the circuit. 
After selecting a particular path the input to that path 
is changed from low to high and then back. The ob
servation mechanism consists of outputs also changing 
after waiting for sufficient amount of time. This ap
proach targets faults only on module’s input and out
put. this approach has the following drawbacks when 
the faults inside the modules are also considered.

• In their approach modules are considered atomic: 
faults inside the modules are not targeted. Since 
the faults on the input and output of the module 
form a small percentage of the total faults in the 
control circuits the fault coverage offered by this 
method is low when faults inside the modules are 
also considered, as shown in Table 1.

• The only observation mechanism is observing the 
output. This is not sufficient because a great deal 
of fault masking may occur inside the circuit as 
described in the previous section.

• Functional testing may result in high complex
ity when faults inside the modules are also con
sidered. This is because certain faults inside 
the modules require state justification to activate 
them, which is not necessary for faults on the 
module input/output considered in [19]. State 
justification may be computationally complex in 
the type of circuits considered in this paper, 
which contain a lot of state distributed through
out the circuit.

• Loop structures can not be tested without adding 
extra observability to the circuit. Select modules 
are often used to build looping structures in the 
circuit as shown in Figure 3. When faults keep 
the circuit in the configuration which executes the 
loop body, the control stays in that loop and there 
is no way out.

Other researchers [15, 17, 28] have also proposed 
methods based on the self-checking property for cir
cuits similar to ours. However all these approaches 
will suffer the same disadvantages described in previ
ous section. Hazewindus [15], for example, proposed 
adding control/observation points for each untestable 
fault. Clearly this is impractical in this type of circuit 
as the number of such faults is large.

In [18] the authors propose a full scan approach 
where the scan path is instantiated on the req/ack 
lines of each of the control modules. Faults inside the 
modules were also considered. This method provides 
excellent fault coverage, but has high overhead. The 
overhead of our full scan approach is what initiated 
the partial scan work reported in this paper.

Other efforts reported in literature do not directly 
deal with self-timed macromodular circuits, however 
some of them are still relevant. In [35] a full scan ap
proach was proposed for circuits generated using cir
cuits generated from Signal Transition Graph (STG) 
descriptions. These circuits are essentially Huffman 
type asynchronous state machines. In their approach 
each storage element (C-element) is replaced by an 
SRL latch. This approach is not practical for macro- 
modular circuits as the ratio of logic gates to latches 
is very low and thus it will result in high scan latch 
overheads. Even with a full scan path it may not 
be possible to test for all faults due to reconvergent 
fanout, which is very common in self-timed macro- 
modular circuits. This will be explained in the next 
section. Full scan also implies longer scan chains, re
sulting in longer test application times, however this 
should be compared against the number of extra vec
tors in the partial scan where sequential testing may 
be required.

5 Partial Scan Solution

As described in the previous section, if the gate 
to latch ratio of the circuits is low, the overhead of 
full scan will be high. Also due to the structure of 
circuits it may not be possible to test the circuits for 
100% fault coverage even with full scan. A partial scan 
solution which requires less overhead but still offers 
acceptable fault coverage is described in this section.

5.1 Selection o f  Scan Latches

Present approaches for selection of scan latches are 
based upon testability analysis, test pattern gener
ation, or structural analysis [10, 11, 14, 20]. In
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our method a combined approach involving testabil
ity analysis and structural analysis has been followed 
for scan latch selection. This process involves three 
stages:

1. As described in Section 3.1, faults inside the Se
lect and Toggle modules are difficult to test us
ing functional test methods, so all the Select and 
Toggle elements are added to the scan path. This 
partitions the circuit into networks of XORs and 
C-elements (Call elements can be considered to 
be a network of XORs and C-elements). The 
C-elements are special sequential elements with 
only two states. These elements have been modi
fied such that they can be tested in combinational 
way. This will be described in Section 5.3.

2. In the second stage, the Call elements are ana
lyzed to see if it is possible to justify values of 
the AS  line independent from the values of Rl 
and R 2 . This is required to test the faults which 
were described in Section 3.1 to be untestable us
ing functional test on Call elements. If this is not 
possible then extra transparent scannable latches 
are added to the circuit. These latches are added 
in such a way that delay incurred can be hidden. 
This will be explained in Section 5.2.

3. The last stage involves analysis of the circuit for 
loops not having any scannable latch in them. 
In such cases a C-element in the loop is made 
scannable. A software has been developed to de
tect these conditions and to suggest which C- 
element to be made scannable such that many 
loops can be broken simultaneously.

TEST2

Figure 10: Modified Latch

Figure 11: Modified C-element

5.2 M odification s to  C ircu it E lem ents

Each of the circuit modules in the library requires 
some modification to fit into the partial scan environ
ment.

5 .2 .1  S e le c t  M o d u le

The modified Select element is shown in Figure 9. 
The first modification involves the latches inside the 
Select module. Originally these latches were single 
stage gated latches. These latches have been modified 
to become master-slave latches. This is done to re
duce correlation between successive stages of the scan 
path which could restrict certain vectors from being 
scanned in. The CLR has also been removed from the 
latches as these latches can be reset using the scan 
path by putting the scan path in transparent mode 
from scan path input to output. The modified latch 
is shown in Figure 10.

The second modification is made to the SEL line 
of the module. The SEL line is disabled during scan 
mode so that both latches receive input from the scan 
path rather than from their normal input. After the 
scanning is over and the circuit has stabilized the SEL 
line is enabled. This causes one of the latches to be 
enabled depending on value of SEL line which allows 
the ouput of the network under test to be captured 
into the the master latch.



Figure 12: Register and Functional Block Modelling 
in the Circuits

5 .2 .2  C -e le m e n t

The C-elements are in general not included in the scan 
path as describe above. Instead they have been modi
fied to be testable in a combinational way. This mod
ification is based on the observation that a C-element 
acts as an AND gate if its internal state is 0 and as 
an OR gate if its internal state is 1. The state of 
a C-elements is the state of feedback wire, so if we 
could control the state of feedback wire we can make 
it act like an AND gate or an OR gate. One way to 
do this could be to add a MUX in the feedback wire 
controlled by a mode signal such that in test mode the 
value of feedback wire is determined by the other in
put of the MUX. This approach was proposed in [33] 
however this method leaves the normal feedback input 
to the MUX untested and also adds one extra control 
signal. In our method an OR gate is introduced in 
the feedback line so only a 1 value can be controlled 
on the feedback line. For controlling a 0 value we use 
the system clear signal, which is already present in the 
original C-element design. This allows a fault on the 
feedback line to also be tested and requires one fewer 
control signal. The modified C-element is shown in 
Figure 11. The procedure to test C elements will be 
described in Section 5.3.

5 .2 .3  M o d if ic a t io n s  t o  R e g is te r s  a n d  F u n c
t io n a l b lo c k s

In a Call element it is sometimes not possible to con
trol the value of the AS  line independent of values of 
R1 and R2, which is required to test for certain faults 
as described in Section 3.1. This typically happens 
when the Call module is used to share a register or a 
functional module. The way registers and functional 
modules are used is shown in Figure 12. In this case 
the RS line directly feeds the AS  line through a delay 
element and then, due to reconvergent fanout, faults 
mentioned in Section 3.1 are not testable. In such a 
case the delay elements are converted into transpar

ent latches during scan mode, so that the A S  line is 
independently controllable. This allows us to hide the 
delay introduced by the extra storage elements.

5.3 Test Procedure

Once the scan path is introduced, the test proce
dure uses this scan path to test the remaining parts 
of the control path which consists of XOR and C- 
elements. This section will first describe the scan path 
operation and then describe the procedures to used to 
test networks of XOR and C elements.

5.4  Scan Path Operation

The circuit is put into scan mode by asserting Testl 
and Test2 control signals (shown in Figure 9 and Fig
ure 10). PI and P2 signals provide two phase non
overlapping clocks to the scan register to provide a 
race free operation.

Once the circuit has settled based on the scan path 
inputs, its output is captured by deasserting the Testl 
signal which enables the SEL signal to the latches. En
abling the SEL causes one of the latches to be enabled 
depending on the value of SEL line which is input to 
the control part. The circuit output is now captured 
through the normal input of the latch. The circuit is 
then returned to scan mode and the output is scanned 
out. The faults on the SEL line get tested during the 
capture process by appropriately controlling its value.

5 .4 .1  T e s t in g  X O R / C  N e tw o rk s

The network of XOR and C-elements is tested in three 
steps:

1. In the first step the C-elements are put into 
OR-mode by asserting the test signal to the C- 
elements. Thus in this step the network of XOR  
and C elements reduces to a network of XOR and 
OR gates. The tests for this network can be gen
erated using any conventional test pattern gener
ation software.

2. While the first testing step covers most of the 
faults in the interconnection of XOR and C- 
elements, about 40% of the faults inside the C- 
elements remain untested. These faults require 
the C-element to be put into AND-mode. The 
C-elements are put into AND mode by asserting 
the global clear signal, CLR. This signal is kept 
asserted during the scan-in operation. This is re
quired because otherwise during the scan-in op
eration different inputs will appear at the input



Design Fault Coverage No. of Latches Scanned
Self Partial ALScan Partial

checking Scan Scan
Router 65.7% 98.2% 34 17
IFstage 66.1% 97.4% 26 13
GCD 74.6% 95.5% 11 7
Division 67.5% 100.0% 7 6

Table 2: Comparison of Fault Coverage and No.of 
scannable Latches

of the C-elements and the state of the C-elements 
at the end of the scan-in operation will be in
determinate. Once the scanning is over, CLR is 
deasserted and the signal values are allowed to 
flow through the network of XOR and C-elements. 
This operation does, however, raise the issue of 
races and hazards since the signal changes at the 
input to the network propogate through the net
work in parallel. This puts additional require
ments on the test generation for this test step that 
the tests should be hazard free. There are two al
ternatives. One is to generate the tests and then 
validate that the tests are hazard free. Second is 
to generate only hazard free tests, which will re
quire a new test pattern generator. Presently the 
first approach is used to generate the tests.

3. After the first two test steps all the faults in the 
C-elements are tested except for the s-a-0 fault on 
the feedback line /  to the OR gate in Figure 11. 
In order to test for these faults the C-elements 
are put into OR mode and a 01 or 10 input is 
justified at the inputs of the C-element which is 
under test. The test input feeding the OR gate 
is then deasserted. Now in a fault free case the 
output of the C-element will remain 1 while in 
faulty case the output will change to 0. This fault 
behavior can be propagated to the output of the 
network. The conditions for propagation are the 
same as in the first step where the C-elements are 
also put into OR mode.

6 E x p e r im e n ta l R e su lts

The method described in this paper was applied 
to four example self-timed macromodular control cir
cuits. The results are listed in Table 2. The router 
circuit is a torus-connected wormhole routing chip for 
message routing in a multiprocessor [7, 12], The cir
cuit called IFstage is the instruction fetch unit of the 
NSR, a self-timed pipelined RISC processor [5]. GCD

is an implementation of Euclid’s algorithm and Di
vision is a serial divider circuit. The self-checking 
column in the Fault Coverage section refers the fault 
coverage obtained by the functional test method de
scribed in [19] which relys on the self-checking prop
erty that the circuit will halt in response to a class of 
faults. This coverage assumes that some additional 
observability mechanisms have been used to detect 
faults inside the loop body as mentioned in Section
4. The Partial Scan column refers to the fault 
coverage obtained by the method described in this 
paper. In the No. of Latches section, the ALScan 
column reports the number of latches that would have 
been made scannable if the full scan method proposed 
in [35] were adopted. The Partial Scan column gives 
the number of latches that were made scannable using 
our method, which includes latches inside select and 
toggles and also any extra latches added to the circuits 
as mentioned in the previous sections.

The table clearly shows that our method provides 
better fault coverage compared to the self-checking 
method of [19] for all the examples. It also shows 
that number of latches that need to made scannable is 
much smaller than the full scan approach of [35]. To 
make fair comparison with ALScan one should also 
consider that overhead due to the changes made to 
the C-elements in our circuits. However the circuit 
overhead added to the C-element in our method is 
also much smaller than that needed to make it fully 
scannable. The scannable C-element design reported 
for ALScan uses about 55 transistors whereas we use 
20 in our design. Fewer scan latches also implies a 
smaller test application time.

7 C o n c lu s io n s

We have described a partial scan methodology to 
test self-timed macromodule-based circuits. The pro
posed method provides good fault coverage using a 
stuck-at model while requiring that only a subset of 
the latches in the circuit be made scannable. This is 
a substantial improvement over full scan techniques. 
The fault coverage is also much better than function- 
based testing that relys on the self-checking property 
of self-timed circuits.

The technique requires minor modifications to 
those control modules that contain internal state such 
as Select and Toggle modules, and provides for a novel 
method for testing the resulting XOR and C-element 
networks that make up the bulk of the remaining con
trol circuitry. Although the scanning of tests is done



using a test clock, the asynchronous nature of the cir
cuit is unchanged in normal operation.

The current technique is targeted specifically at the 
control portion of self-timed systems. We are currently 
working on extending the techniques to test the data 
path, and the timing-sensitive bundling delays that 
are included in the data path.
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