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Abstract. We find lower and upper bounds on the complexity, comp(deg), of computing 

the topological degree of functions defined on the n-dimensional unit cube en, f : en -+ 

Rn, n ~ 2, which satisfy a Lipschitz condition with constant K and whose infinity norm 

at each point on the boundary of en is at least d, d > 0, and such that ~ ~ 1. 

A lower bound, comPlow ~ 2n(~)n-l (c + n) is obtained for comp(deg), assuming that 

each function evaluation costs c and elementary arithmetic operations and comparisons 

cost unity. 

We prove that the topological degree can be computed using A = (l~ + IJ + I)n -

(l ~ + 1 J - I)n function evaluations. It can be done by an algorithm cp* due to Kearfott, 
2 

with cost given by comp(<p*) ~ A(c + ~ (n - 1)1). Thus for small n, say n ~ 5, and small 

~, say ~ ~ 9, the degree can be computed in time at most 105 (c + 300). For large n 

and/or large ~ the problem is intractable. 
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1. INTRODUCTION. 

The problem of computing the topological degree of a function has been studied in many 

recent papers, see Kearfott (1977,1979), Stenger (1975), and Stynes (1979a,1979b,1981). 

From the topological degree one may ascertain whether there exists a zero of a function 

inside a domain. Namely, Kronecker's theorem, see Ortega and Rheinboldt (1970), states 

that if the degree is not zero, then there exists at least one zero of a function inside 

the domain. By computing a sequence of domains with nonzero degrees and decreasing 

diameters one can obtain a region with arbitrarily small diameter which contains at least 

one zero of the function, see Kearfott (1977,1979) and Stynes (1981). Algorithms proposed 

in these papers were tested by their authors on relatively easy examples. They concluded 

that the degree of an arbitrary continuous function could be computed. It was observed, 

however, see Kearfott (1977,1979) and Stynes (1981), that the algorithms may require an 

unbounded number of function evaluations. 

In this paper we restrict the class of functions, which enables us to compute the degree 

for every element in the restricted class using an a priori bounded number of function 

evaluations. We consider the class F of Lipschitz functions with constant K, defined on 

the unit cube en c Rn, /: en --+ Rn, such that 11/(x)lIoo ~ d > 0, for every x EBen, 

the boundary of en, and ~ > 1. Note that if ~ < 1 then the functions in F do not 

have zeros and therefore the degree is zero for every / E F. The case 1 ~ fi < 4 is open. 

The information on /, Nm(J), consists of m values of / on Ben which may be computed 

adaptively. This form of information is assumed since the topological degree is defined 

by the values of / on Ben, see Ortega and Rheinboldt (1970). The topological degree is 

compuled by means of an algorithm cp which is a mapping depending on the information, 

cp: Nm(F) --+ I, where I denotes the set of all integers. 

In this paper we solve the following problems: 

(1.1) We exhibit information N;" which uniquely determines the degree of / for every / E F. 
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This information consists of 

function evaluations, see Sect. 3. 

(1.2) We exhibit an algorithm rp* due to Kearfott (1979) which uses N;" to compute the 

degree, see Sect. 4. 

(1.3) We find a lower bound m*, roughly equal to 2n(l~J )"-1, on the number of func­

tion evaluations necessary to find the degree of f for every f in F using arbitrary 

information Nm , see Sect. 5. 

We remark that information N:n, is parallel (nonadaptive), i.e., the evaluation points are 

given a priori. Thus N:n, can be efficiently computed in parallel yielding an almost optimal 

speed-up, see Traub and Wozniakowski (1984) for further discussion. 

Assuming that each function evaluation costs c and elementary operations cost unity, 

(1.1) yields a lower bound comPlow on the complexity, comp(deg), of the problem 

(K)"-1 
comPlow :::::= 2n 8d (c + n) • 

If ~ is large and/or n is large then the lower bound is so huge that the problem is 

intractable. For example take ~ = 103 and n = 10 then the complow :::::= 2· 1028 (c + 10). 

The cost of algorithm <p* is roughly A(c + ~2 (n - 1)1). Thus for small n, say n < 5 and 

small ~, say ~ < 10, rp* computes the degree in time at most roughly 105 . (c + 300). 

We_remark that in Boult and Sikorski (1985a) (see also Boult (1986)) we find the com­

plexity comP2(deg) for the two dimensional case, 

(1.4) comp2(deg) = 4l ~J (c + a) - 1 

where a E [2,24]. 

In Boult and Sikorski (1985a) we exhibit an algorithm with cost as (1.4) with a=24. 

This algorithm (n = 2) as well as the n-dimensional algorithm <p* (for small n, n ~ 3) 

exhibited here are implemented in Boult and Sikorski (1985b), see also Boult (1986). 
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2. BASIC DEFINITIONS 

Let en = [0, 1)n be the. unit cube in Rn, n ~ 2, I the set of all integers, II . II = II . 1100 

the infinity norm in R n and fJ = (0, ... ,0) E Rn. For a given positive d and K define 

(2.1) 
F = {I: en ~ Rn, 1= (fl, ... ,In), II/(x) - l(y)11 $ Kllx - yll, 

K 
,Vx, Y E en and 11/(x)l1 ~ d, Vx E Ben, and 8d ~ 1}. 

Our problem is to find the topological degree, deg(f, en, fJ) of I relative to en at fJ, see 

Ortega and Rheinboldt (1970), for every I in F. To solve this problem we use information 

Nm and an algorithm !p using Nm . These are defined as in Traub and Wozniakowski 

(1980): Let IE F and 

(2.2) Nm(f) = [/(x,}, ... , I(xm)] 

where XI E Ben is given a priori, Xj = Xi (f(XI ), ... ,/(xi-d) and xi is a transformation 

xi : Rn'(j-I) ~ Ben, j = 2, ... , m. If xi are constant, i.e. all xi are given a priori, then the 

information is called parallel (nonadaptive), otherwise it is called sequential (adaptive). 

By minimal cardinality number mmin we mean the minimal m for which there exists 

information Nm which uniquely determines the degree of any I in F, i.e. 

Nm(f) = Nm(f/) => deg(f/, en, fJ) = deg(f, en, fJ), VI, I' E F. 

Knowing Nm we approximate deg(f, en, fJ) by an algorithm !p, which is an arbitrary map-

pmg 

(2.3) cp: Nm{F) ~ I. 

We exhibit an algorithm cp., using information N:;"( mentioned in the Introduction), which 

was developed by Kearfott (1979) and is based on his parity theorem. 
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3. INFORMATION NA 

In this section we prove that the computation of function values on a uniform grid with 

diameter less than 2; uniquely determines the degree. 

Namely let M = l~ + 1 J and R = 11M. Subdivide each (n - 1) face of en into Mn-l 

equal cubes of diameter R, by subdividing each edge into M equal intervals of length R. 

In this way we obtain a subdivision of Bon into 2nMn-l cubes Oi of diameter R: 

(3.1) 
2nM"-1 

Ben = U Oi. 
i=l 

Let X = {Xl, ... , X A} be the set of all vertices of cubes OJ. Observe that 

Then define the information operator 

NA = [/(xd,·.·, I(XA)), VI E F. 

We show 

LEMMA 3.1. The information N'A uniquely determines the degree for every I in F, i.e. 

NA (f) = NA (g) implies deg(f, en, 0) = deg(g, en, 0), VI, 9 E F. 

• 
PROO F: To prove Lemma 3.1 we use the Poincare-Bohl Theorem, see Ortega and Rhein-

boldt (1970). Namely let h(t, z) = tl(z) + (1 - t)g(z), "It E [0,1] and Vz E Ben. To 

conclude that deg(f, en, 0) = deg(g, en, 0), VI, 9 E F such that NA (f) = NA (g), it 

is enough to show that the homotopy h(t, z) is non zero for every t E [0,1] and every 

z EBen. To show this take an arbitrary z EBen. Then there exists an Xi such that 
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/lxi - z/l ::;: R/2 < t. Since Xj E [Jon and IE F we get II/(xj)1I = IJi(xj)1 ~ d for some 

i,1 ::;: i ::;: n. Then we have I/i(Z) - li(Xj)1 ::;: 11/(z) - I(xj)ll ::;: Kllz - xjll < d. This 

implies that li(Z) ~ 0 and signJi(z) = sign/i(xj). Since I(xj) = g(Xj) and 9 E F, then 

gi(Z) ~ 0 and sign gi(Z) = sign li(Z). Therefore for every t E [0,1] we have 

which completes our proof. 

Ilh(t, z)11 ~ Itldz) + (1 - t)gi(z)l 

= tIJi(z)1 + (1 - t)lgdz)1 

~ min(IJi(z)l, Igi(z)l) > 0 

4. ALGORITHM USING INFORMATION N~ 

• 

We exhibit here an algorithm 'P*, due to Kearfott (1979), using the information N~ to 

compute the degree. The algorithm 'P* and information N~ are implemented in a Fortran 

subroutine in Boult and Sikorski (1985b), where a number of numerical tests are also 

reported. Fortran Code can be found in the appendices of Boult(1986). 

First we show that the evaluation points Xi, i = 1, ... , A, yield an impartial refinement 

of BG relative to the sign of I, for every I in F. 

Impartial refinement, see Stynes (1979a), is defined as follows: 

Definition 4.1: If n = 1 then [J[O, 1] = {O} U {I} is impartially refined relative to sign of 

I iff 1(0) ·/(1) < O. 

If n > 1 then [JGn is impartially refined relative to the sign of I iff Bon may be written 

as a union of a finite number of (n - 1) regions fll' ... ,flq (by an (n - 1) region we mean 

a union of a finite number of (n - I) dimensional simplices) in such a way that: 

(4.1) the (n - l)dimensional interiors of the regions (/3:s) are pairwise disjoint; 

(4.2) Vi E [1, ... , q], 3ri E [1, ... , n] : Jri is of constant sign on /3i; 
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\.. 

(4.3) 

if Si is an (n - 1) simplex in Pi such thatSi has an (n - 2)face in api 
(4.4) ---

then this face is also an (n - 2) face of some (n - 1) simplex Sj in Pj, i "1= j. 

• 
Now consider the subdivision (3.1) of aCn into 2nMn-l (n -1) dimensional cubes Ci , 

and subdivide each Ci into (n -1) 1 (n -1) dimensional simplices (hereafter we shall use the 

term (n-l) simplices) as described in Jeppson (1972). This forms a simplicial subdivision 

of acn, see Allgower et. al. (1971) and Jeppson (1972), into 2nMn-l(n - 1)1 (n - 1)-

simplices: 

(4.5) 
L 

aC" = E tjSj, tj = ±1, L = 2n Mn- 1 (n - 1)1, 
j=i 

where Sj are oriented (n-l)-simplices, see Kearfott (1979), and Stynes (1979a,1979b,1981). 

Note that the vertices of Sj are uniquely determined by this subdivision and the evaluation 

points Xi. The explicit formulas for the vertices of S;'s are given by Allgower et. aI. (1971) 

Jeppson (1972) and Fortran code generating them can be found in Boult and Sikorski 

(1985h)and Boult (1986). 

We are now ready to prove: 

LEMMA 4.1. The subdivision (4.5) yields an impartial refinement of acn relative to the 

sign of I, for every I in F. • 
PROOF: We construct the regions Pi from Definition 4.1. For an arbitrary I in F and 

for each cube Ci in the subdivision (3.1) choose a component Ij, of I which is of constant 

sign on Ci. Such a component exists since for some Ji, Ih,(Zi)1 > d where Zi is the center 
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of Ci. Thus Iii is of constant sign on Ci since the radius of Ci is less than ;. and f 

is in F, i.e. Ihi(z) - lii(Zi)1 ::; II/(z) - I(zdll ::; Kllz - zill < d for liz - zill < ~, 

which yields sgn(Jii(z)) = sgn(Jii(Zi)). Then group the cubes Cj to form connected 

regions f3i,I,"" f3i,kj such that Ii is of constant sign on each f3i,l, 1 = 1, ... , ki' and 

f3i,ll n f3i,I'l = 0, 11 # 12 . In this way we obtain a decomposition of acn 

n k j 

(4.6) acn = U U {3i,l, 
i=11=1 

which satisfies (4.1)-(4.3) of Def. 4.4. Since each cube in every f3i,t is subdivided into 

(n -1) simplices forming a simplicial subdivision of ac then (4.4) of defintion (4.1) is also 

met. This completes the proof. • 
Remark 4.1: Since the impartial refinement of acn is also a sufficient refinement (see 

Kearfott (1979) and Stynes (1979a, 1979b, 1981) for the definitiOMldfsufficient refinement, 

and Stynes (1979a, Th. 3.3) for the above result) then we can use Kearfott's Parity 

theorem, see Kearfott (1979), to compute the degree. • 
Let S = [SI,"" Snl be an (n - 1) simplex in Rn with vertices Si, i = 1, ... , n. The 

range matrix R(S, f) associated with S and IE F is an n x n matrix: 

where 

R(S, I) = [ri,iIZi=l' ri,i = sgn(Ii(Sd), 

sgn(x) = {~ if x >0 
if x < 0 

The range matrix R(S, f) is called feasible if and only if 

rii = 1, Vi ~ j and 
(4.7) 

ri,i+l = 0, i = 1, ... , n - 1. 
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Define the parity of the range matrix R(S, f) by 

Par(R(S, f)) = {~l 
if R(S, f) is feasible after an even permutation of rowsj 
if R(S, f) is feasible after an odd permutation of rows; 
otherwise. 

We remark that the parity can be computed with roughly n2 /2 comparisons. 

Define the algorithm p* using N': by 

L 

(4.8) ip*(N~(J)) = E Par(R(tiSi,f)) , 
i=l 

where Land tiSi are as in (4.5). Then Remark 4.1 and the Parity Theorem, see Kearfott 

(1979), imply that 

deg(J, en, 0) = p* (N': (J)), "lIEF. 

Observe that implementation of p* requires computing the parities of L 

2nMn-l (n - I)! (n - l)simplices. Thus the complexity of p* is at ,most 

n2 (n2) comp(p*) < Ac + 2nM"-1 . "2(n - I)! ~ A c + "2(n - I)! 

where c is the cost of one function evaluation and arithmetic operations and comparisons 

cost unity. 

5. A LOWER BOUND 

In this section we find a lower bound on the number of function evaluations needed to 

compute the topological degree of functions from the class F. 
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THEOREM 5.1. For any information Nm , with m ~ 2n l~r-l - 1, there exist / 

two functions I., j** in F such that Nm(JU) = Nn(l*), Ideg(j*, en, fJ)1 = 1 and 

deg(/U
, en, fJ) = O. • 

Note that Theorem 5.1 implies (1.3), i.e. to compute the degree for any I E Fusing 

arbitrary information Nm we must use at least m = 2n(l~j)n-l function evaluations. 

This lower bound is exponential in the dimension n, thus for large n and/or large ~ the 

problem is intractable. 

In order to prove Theorem 5.1 we need the following lemma. 

LEMMA 5. 1. Let Hn be an n-cube in en with diameter 8; ~ 1 such that: 

B n = H n n Ben is an (n - 1) face of H n , and corresponding 
(5.1) 

(n - 1) faces of Hn and en are parallel. 

Then there exist a function f" E F, In = (lr, ... , I~), such that: 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

there exists exactly one zero an of In, Ilan - bnll = d/ K, 

where bn is the center of Bn, and dist( an, Bn) = d/ K • 
) 

Ij (z) = d for z E en - Hn, v·· , , 
II/n(z)11 = d for z EBen; 

Bf~ I {O -'- = ±KDii where Di; = 
BZi aft 1 

i~j 
t =Jj 

which implies that a is a simple zero; 

(5.6) 

(5.7) 

-d < Ij(z) ~ d, Vz E C", Vj; 

d 
Vz E C" : liz - bnll ~ 2 K' 3j: I?(z) = d. 
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PROOF: The proof is by induction on n. Let n = 2 and let H2 be a square satisfying (5.1). 

Without loss of generality assume that B2 C [0,1], B2 = [b l , b2], so b2 = ({b l + b2)/2, 0). 

Let CI = b2 + (~, ~) and C2 = b2 - (~, ~). Define the function r : (J2 -+ R2 by: 

see Fig. 5.1. 

12(Z) = (J;(z), li(z)) 

I;(z) = min(d,max(-d, -2d + Kllz - Clm), 

fl(z) = min(d,max(-d, -2d + Kllz - C211)), 

Observe that 12 satisfies a Lipschitz condition with constant K and that a2 = b2 + 

(- ~, ~) is the unique zero of r. Thus dist(a2,B2) = ~ and IIa2 
- b2 11 = ~, which 

implies (5.2). The definition of 12 directly yields (5.3), (5.4), (5.6), and (5.7). For (5.5) 

observe that 

alii K£ d alii K . -a. = Vi,1 an -a. = 8j,2,t = 1,2. 
z. 0 2 z. 0 2 

Thus the lemma holds for n = 2. 

INDUCTION STEP. 

Now assume that Lemma 5.1 holds for n - 1. Let H" C en, diam(H"} = 8;, be an 

n-cube such that (5.1) holds. Without loss of generality assume that all points in B" have 

the I-th (I =f:. n) component equal to 1. (If 1 = n then the same construction follows with 

the n-th dimension replaced by the first dimension). 

Let H"-I be the orthogonal projection of H" onto e"-I. From the induction assump­

tion there exists 1"-1 for Hn-I such that (5.1)-(5.6) hold. Define, (see Fig. 5.2), 

(5.8) a" = (a~ , ... , a~), 

h "- "-I . - 1 1 were a j - a j ,J - , ... , n - , a: = b: - ; and b" = (b~, ... , b:) is the center of 

B". 
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Let 

( . .) _ (bn . d bn . d Y '1, ... , 'n-2 - I +'1 . K' ... , l-I + 'l-I . K' 

(5.9) bn . d bn d) 
1, 1+1 + tl+1 . K'···' n + K 

where ii E {+1, -1},j = 1, ... , n - 2, i.e. these are 2n- 2 points in Bn. 

Define the function gn, gn : en -+ R, by 

(5.10) gn{z) = min(d, YI (z), ... , Yn-2(Z)), 

where Yi(Z) = max( -d, -2d, +Kllz - Yill), and Yi, i = 1, ... , 2n-2, are all of the points 

y(i l , .. , , in- 2). Observe that gn satisfies a Lipschitz condition with constant K since it is 

obtained by taking the minimum of Lipschitz functions with constant K. Also note that 

the zero set of gn, Zo = {z E c n : gn(z) = O}, (see Figure 5.2) is given by 

Zo = { z E en : 3i : 2 ~ = liz - Yill ~ liz - Yill, Vj = 1, ... , 2n
-

2 
} . 

Finally for z E C n , z = (Zl, ... , zn), let z = (Zl, ... , Zn-I) be the orthogonal projection of 

Z onto_Cn- l . 

Define 

where 

and 

J:'(z) = 
Ii-I (.i), 

In(Z) = (J~(z), ... , J~(z)), 

J;: (z) = { ~~ (z), 
VzEHn 
VzECn -Hn, 

min(d, max(Jr-l(z), -d + Klzn - b~l)), 

d 
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for z E Hn : 

b~ - 4 f < Zn ~ b~ - 2 ;!. , 
for z E Hn : 
b~ - 2 t < Zn < b~; 
for Z E Hn : 
b~ ~ Zn ~ b~ + 1!; 
for Z E en - Hn, 



.. 

for i = 1,2, ... , n - 1. 

Now we show that I" is in F and satisfies (5.2)-(5.7). 

First we check that I" is continuous. Since for every z E e" - Int(H"), Ilz-b"11 ~ 4*, 

then fii(z) ~ -2d + Kllz - Yill ~ -2d + K· 3 ~ = d Vj = 1, ... ,2"-2, and therefore 

g"(z) = d. This and continuity of g" implies that I:: is continuous. Thus we must only 

check the continuity of Ii", i = 1, ... , n - 1, at all z E e" - H" and z E H" such 

that z" = b~ or z" = b~ - 2 ~. First let z E e" - H". If z" = b~ - 4 ~ then Ii" (z) = 

min(d, maxU;-1 (i), d)) = d. If z" = b~ +4* then Ii(z) = min(d, maxU;-1 (i), 3d)) = d. 

If b~ - 4 ~ < z" < b~ + 4 ~ then i E (e"-I - H"-I) and from the induction assumption 

Ir- I (i) = d which implies Ii (z) = d. For z E H" such that z" = b~ we have ff (z) = 
min(d, maxU;-1 (i), -d)) = Ir- 1 (i), i.e. f[' is continuous. For z E H" such that z" = 
b~ - ~; we have r,: (z) = min(d, maxU;-1 (i), -d)) = 1:'-1 (i), i.e. ff is continuous. 

Thus all of Ii are continuous which implies continuity of f". The function I" satisfies 

a Lipschitz condition with constant K since it is defined by taking minima and ma.xima 

of Lipschitz functions with constant K. Now we show that a" is the only zero of I". 

Obviously I" can have zeros only inside H". Let z E H" be such that: 

(5.11) b" 2d 
z" ~ "- K. 

Then Iz" - (b~ + ~)I ~ 3~,so liz - Yill ~ 3~, VYi,; = 1, ... ,2"-2. This yields that 

g"(z) = min(d, d, . .. , d) = d, thus I" has no zeros in this domain. 

Take 

(5.12) 

Then Iz" - b~l> 2 ~ which combined with the induction assumption Ir- 1(z) ~ d yields 

Ii (z) = min( d, maxUr-1 (i), d)) = d. Thus I" has no zeros in this domain. 

Take now 

(5.13) b" d b" "- 2 K ~ z" ~ ". 
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In this domain, by the induction assumption the only zeros of 17, j == 1, ... , n - 1 are 

(0'7- 1, ... ,a~:!, .. . ,a~:!, zn). But gn is zero only for one of these points, namely with 

Zn = b~ - t. To see this recall that 10'7-1 
- bil ~ ;, j = 1, ... , n -1 and a~ == b~ - t, 

thus by the definition (5.9) lIan 
- Yill = 2; for i = 1, ... , 2n

-
2 so gn (an) = O. For every 

Z E H n such that b~ - ~ < Zn < b~ there exists a Yi with iq = 1 for a~-1 ~ b~ and 

iq = -1 for a~-1 < b~ such that IIYi - zil < 2;, thus gn(z) < O. For every Z E H" such 

that b~ - 2;: < Zn ~ b~ - ~ and for every Yi' we have IIYi - zil > 2 ~, thus g~(z) > o. 

Therefore a" is the only zero of I:: in this domain. 

For 

(5.14) bn bn d 
n < Zn ~ n + 2 K' 

\lve shall take any Z such that gn (z) = 0 and show that 3i E {I, ... , n -I} such that ff (z) "# 

O. Observe first that if IZj -bil > 2; for some j = 1, ... , n-l, then Ilz-bn
-

1 11 ~ 2 t and 

from the induction assumption (5.7) there exists an i such that 1?-1 (z) == d, which implies 

IF(z) = d since Iz" - b~1 ~ 2 t. Thus assume that IZj - bil < 2 ~, 'V j = 1, ... , n -1, and 

take Z such that gn(z) = O. This means that 

(i) 

and 

(ii) 3j': liz - Yj,lI = 2 ~. 

Suppose that Yj' = y(it , ••• , in-d where 

and 
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• 

where Ql '# 0 and Ql UQ2 = {1, ... ,j -1,j+l, ... , n-l}. Thus for every q E Q., we have 

IZq - b~1 = 3;:' or IZq - b~1 = t. If 3q E Ql such that IZq - b~1 = 3;:' then liz - bnll ~ 3 t 
and (5.7) implies that If(z) = d for some i. Otherwise, (i.e. if IZq - b~1 = ;:. for all 

q E Ql), Zq = b~ ± t. Then take y(; 1, ... , ;n-2) such that iq are as above for q E Q2, and 

for q E Ql take iq = +1 if Zq = b~ + ;:. and iq = -1 if Zq = b~ - ;. This implies that 

Ily(i1 , ••• , in - 2 ) - zll < 2; which contradicts (i) and completes the proof of the existence 

and uniqueness of the zero of In. 

Obviously lion - bnll = t since on = b~ - t and 107 - b71 ~ t for i = 1, ... , n - 1. 

Also note dist{an , Bn) = dist(on-l, Bn-l) = ;:., thus (5.2) holds. 

Equations (5.3) and (5.7) follow immediately from the definition of r and the continuity. 

Now we show that (5.4) holds. Obviously (5.3) implies (5.4) for Z E (Jan - Bn. Therefore 

let z E Bn and subdivide Bn into 5 regions, Bf)=1, .. . ,5 (see Figure 5.2), where 

and 

B n = {z E B n : bn < z < bn + 2!!... and liz - bnll > 2.!!..} 2 n- n n K - K ' 

B~ = { z E Bn 
: Zn < b~ - 2 ~ } . 
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Then recall that (5.6) holds and 

(a) Vz E Bf, by an argument similar to that following (5.12) we have II'(z) = d, i = 

1, ... , n - 1, thus III" (z)1I = d. 

(b) Vz E B~ the same argument as follows (5.14) yields fI'(z) = d for some i E {I, ... , n-

I}. 

(c) Vz E B[j we have Iz" - (b~ + :')1 ~ ;, IZi - b?1 < 2; and obviously Zl = br = 1. Let 

Ql = {i: Zi > b?} and Q2 = {i: Zi < b?}. Then for i E Ql web ave IZi - (b? + ;)1 ~ 

:.' and for i E Q2 we have IZi - (bi - ;)1 < :. Thus for y(i., ... , i"-2) such that 

iq = 1 for q E Ql and iq = -1 for q E Q2 we get lIy(il,"" i"-2) - zil < :. which 

yields iii(z) = -d for some 1 E {i, ... , 2"-2}, i.e. g"(z) = -d, thus 11/"(z)1I = d. 

(d) Vz E B'; the induction assumption (5.4) and the definition of r yield 11/"-1 (.i) II = d, 

therefore 1I/"(z)1I = d. 

(e) Vz E B5 (5.11) implies that g"(z) = d,therefore 1I/"(zHI = d. 

Thus Vz E ae" we have 1I/"(z)1I = d, which completes the proof of (5.4). 

For (5.5) note that for z close to a" by the induction assumption and definition of II' 

we have ~~; (z) = 0, Vi = 1, ... , n. Thus we need to show only ~~~ I = ±K . 6i", i = 
n , an 

1, ... , n. Let y(i., ... , i"-2) be such that for a~ ~ b~ we have iq = +1 and for a~ < b~ 

we have iq = -1. Then la~ - (b~ + iq . :) I ~ : since lIa" - b" II ~ :' and obviously 

laj - bj 1 ~ :. For z in a small neighborhood of a" we have 

"( ) min 
g Z = i=I ..... 2n - 2 

(-2d + K . liz - Yill) 

min = -2d + K· . n-2 liz - Yill 
.=1 ..... 2 

=-2d+K·llz-y(i1, ... ,i"-2)11 • 
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Thus gn{z) = -2d + K ·Izn - (b~ + :')1, and therefore 

which shows (5.5). 

Now we show (5.7). Observe that (5.3) implies (5.7) for Z E en - Hn. For Z E Hn 

such that Zn < b~ - 2 ~ or Zn ~ b~ + 2:' (5.7) follows directly from the proofs following 

(5.11) and (5.12). For Z E Hn such that b~ - ~ < Zn ~ b~ and liz - bnll ~ 2;!. we 

have liz - bn - 1 11 ~ 2;:' and then by the induction assumption there exists i such that 

1;-1 (z) = d, so I?(z) = d. For Z E Hn such that b~ < Zn ~ b~ + 2 ~ and liz - bnll ~ 2:' 

as in (5.14) we have liz - bn - 1 11 ~ 2;:' and by the induction assumption there exists i 

such that 1;-I{z) = d which combined with the definition of In yields I?(z) = d, which 

completes the proof of (5.7). 

The function In is in F since it satisfies a Lipschitz condition with constant K and its 

norm is exactly d on the boundary of en (see (5.4)). 

This finally completes the proof of Lemma 5.1. (We bet you thought it would never 

end.) • 
We are now ready to prove Theorem 5.1. 

First let P = l~J and we show that for every I in F and every sequential (adaptive) 

information Nm(J) = [f(xd, ... , f(xm)], with m ~ 2npn-l - 1, there exists a cube 

Hn c en with diam(Hn
) = 8: satisfying (5.1), and such that no point Xi belongs to 

Bn. Indeed, subdivide the boundary of en into 2npn-l (n - 1) cubes of diameter 1/ P 

by subdividing uniformly each (n - 1) face of en into pn-l (n - 1 )-cubes. Then since 

m < 2npn-l - 1 there must exist at least one (n - 1 )-cube in this subdivision, say iJn, 

which does not contain any of the Xi points. Since diam iJn = 1/ P ~ 8 ~, take as Bn any 

(n - 1) cube of diameter 8 ~, contained in iJn, with faces parallel to the corresponding 

faces of iJn .This Bn is obviously an (n - 1) face of a cube Hn satisfying (5.1). 
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--
10"1' #te. ~<:.t~,,~ l"+~* 

Let r* (z) = [d, . .. , d], Vz E en, and let H n be constructed as above. Let r = fn from 
1\ 

Lemma 5.1 applied to this cube Hn. Observe that 

(5.15) 

since for every Xi, f** (xd = f* (Xi) = [d, .. . , d]. Moreover there exists a unique zero on of 

f*. Let D be an open neighborhood of on such that r is continuously differentiable in 

D. Then since on is a simple zero of r, the degree deg(f*, D, fJ) = ±1. Also since f* has 

no zeros in en - D then deg(f*, en - D, fJ) = o. Thus by the additivity of degree we get 

deg(f*, en, fJ) = deg(f*, D, fJ) + deg(f*, en - D, fJ) = ±1. 

Obviously deg(f**, en, fJ) = 0, which combined with (5.15) completes the proof. 

• 
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