
A Survey o f M P I R elated D ebuggers and Tools*

Subodh Sharma Ganesh Gopalakrishnan Robert M. Kirby

School of Com puting, University of U tah
Salt Lake City, U T 84112, U.S.A.

UUCS-07-015

1 Overview

Message Passing Interface is a widely used standard in the High Performance
and Scientific Computing Community for writing programs that can exploit the
capability of parallel platforms. However, the inherent complexity and the size of
the communication standard have made it difficult for programmers to use it effi
ciently and more importantly correctly. There are numerous tools and debuggers
written by various academic/industry communities to find bugs in the MPI pro
grams written by users. Some of them are MPI-CHECK (Iowa state Univ. [12]).
MPIDD (UNBC. Canada [6]), UMPIRE (LLNL. [15]), Intel Message Checker
(Intel. [5]). MARMOT (HLRS. [8]) and TotalView ([1]). A brief analysis and
comparison of these tools are presented below. In addition, this report presents
an overview of the debugging support build into some of the currently popular
MPI libraries.

2 A Survey of M PI Debugging Tools

2.1 M PI-C H E C K

MPI-CHECK supports only FORTRAN programs. The version that supports
C /C + + is under developement. Unlike other tools like UMPIRE and MAR
MOT. MPI-CHECK does not use the MPI profiling Interface to capture the
calls and analyze them; instead, using a macro-like mechanism, they instrument
the programs where the MPI calls are replaced with modified calls that have ex
tra arguments. These arguments provide information such as line number in the
source code where the call was made, the MPI function name and its arguments.
The information is stored in a database known as the Program Database (PDB).
The process of checking is split in to two phases. In phase one. instrumentation
of MPI programs is performed followed by their compilation. In phase two. ex
ecution of the instrumented MPI code under the control of the MPI-CHECK
server takes place. The errors captured by MPI-CHECK as explained in [12.11]
are illustrated below:

* This work is supported by NSF CNS-0509379, SRC 2005-TJ-1318, and Microsoft
H P C |ng£j£U£es p rogram .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

— Mismatch in argument type, kind, rank or number. Some checks can be done
statically. For instance if tag, source, or destination arguments of MPI point
to point routines are constants, then checking can be performed prior to
run-time. For instance, if all sends have a tag of 2, then all receives with
constant tags must also have a tag of 2.

— When the bounds of the message buffer exceed the allocated size. Size of
the buffer can be calculated from the count and datatype arguments of the
MPI routine. For dynamically allocated arrays, MPI-CHECK instruments
the program by replacing malloc calls with special routines (macros with
extra arguments). These routines essentially update the PDB with the file
name, line number, start address of the message buffer and the block size
information.

— Potential and real deadlock detection by creating dependency graphs from
calls made for point-to-point or collective communication. It is an overly
conservative approach. MPI-CHECK reports a time-out deadlock for cases
where the dependency graph is not resolved in a user specified time.

— Negative message lengths.
— MPI calls before MPLInit or after MPLFinalize.
— Inconsistencies between the declared type of a message and its associated

datatype argument.
— Actual arguments which violate the INTENT attribute.

MPI-CHECK intruments the MPI user programs to a large extent in order to
check them. In contrast, UMPIRE and MARMOT need to relink the code in or
der to use the PMPI interface. MPI-CHECK, however, can check message buffer
types and bounds and correct usage of the dynamic memory. These functionali
ties, which are absent in MPIDD and UMPIRE, come with an extra price. The
MPI-CHECK method of checking invloves significant overhead of instrumenting
the user code and building the PDB.

2.2 M A R M O T

MARMOT is a tool to analyze MPI programs by trapping communication calls
using the MPI profiling interface. It performs all argument verification like tags,
communicators, ranks, etc. locally on the client side. MARMOT also detects
potential and real deadlocks. However, the mechanism employed to detect dead
locks is different from that of MPI-CHECK. In MARMOT dependency graph is
not created. Instead, a time-out mechanism is used to conclude the presence of
a deadlock. Some of the checks performed by MARMOT as explained in [8-10,
7] are summarized below.

— More than one call to MPLInit in an application.
— Any pending messages or active requests in any communicator at the time

of MPLFinalize.
— Checks the validity of the communicators used in calls. Also inspects the va

lidity of datatype argument and for MPI_Type_struct and MPLTypeJivector
it also inspects if the count and block-length are greater than zero.

2

— For point-to-point and other collective communication calls made, it inspects
the correctness of communicator, rank, tag, count, and datatype arguments.
For instance, MARMOT will issue a warning if ranks or tags used are beyond
valid ranges.

— Detects possible real deadlocks, using a time-out mechanism.
— MARMOT keeps track of construction, usage and destruction of all MPI

resources such as communicators, groups, datatypes, etc. It checks if requests
and other arguments are used correctly. For instance, MARMOT issues a
warning if an active request is reused.

— Gives warnings if there are active non-freed requests left at MPI JFinalize.
— MARMOT also detects the erroneous use of MPI I/O (defined in MPI-2

standard) interface which may go undetected by the MPI implementation.
• File Manipulation: MARMOT keeps track of all the opened files so as

to be able to generate a warning when MPI_File_delete is called on
files which are still open or there are still outstanding non-blocking re
quests or split collective operations when MPI JFinalize is called. Fur
thermore, MARMOT also generates a warning for groups (created by
MPI_File_get_group) that are not freed before MPI JFinalize.

— One Sided Communication : With the kind of setup MARMOT has, it can
check if there are any pending RMA (Remote Memory Accesses) function
calls left when window is to be freed. MARMOT can also check the validity
of RMA call arguments like target rank, window, displacement, datatype,
etc.

MARMOT supports the complete MPI-1.2 standard; however, not all pos
sible checks are performed by it. For instance, checks for data races are not
performed. Furthermore, checks for safe reuse of buffer after the successful trans
mission of data are also currently not handled by MARMOT.

2.3 In te l M essage Checker (IM C)

Intel Message Checker is an MPI correctness tool which has a centralized mech
anism to detect errors/deadlocks like MARMOT and UMPIRE. However, UM
PIRE and MARMOT are purely runtime checking tools. IMC, on the other
hand is a post-mortem analyzer. The component of IMC called “TRACE col
lector” , collects information of each MPI call in a trace file using a library file
libVTmc.so which is similiar to the PMPI interface. This trace file is then an
alyzed by a checking engine after the execution. IMC offers several features of
interest. Some of them are illustrated below:

— Extensive time stamping and event filtering facility.
— Support for Java tracing on platforms that support JVM Profiler Interface.
— Prints errors with lines tagged with process ranks. However, MPI applica

tions that use process spawning and attachment are not supported in IMC.

The errors trapped by Intel message checker as explained in [5,2] are summarized
below:

3

— Mismatch of send and receive calls caused by incorrect specification of mes
sage sender or receiver.

— Potential or real deadlocks. In case of real deadlocks, a cyclic dependency is
created from call stacks. Potential deadlocks are identified by the time-out
mechanism. The wait time is a configurable entity.

— Errors caused by touching the send bufffers before the Isend operation is
completed. However, the successful reporting of error is done in a lazy fash
ion. The error is reported later when the damage is detected.

— Different order of collective and reduction operation calls.
— Erroneous specification of different message lengths in matching send and

receive operations.
— Mismatch of checksums of sent and received messages.
— Infinite loop or abnormal program termination in an MPI function call.
— Incorrect specification of sending and receiving data types. The Intel Trace

Collector allows hash signatures to be computed piece-meal for the con
stituent data types. This helps in easier and faster matching of data types
across send-receive calls.

— Memory leaks occur when communicator is freed and there are still out
standing buffered messages yet to be received. Trace Collector catches such
a bug and gives a warning.

— Datatypes that are not freed or requests that are prematurely freed, are
detected and a warning is generated.

— Errors caused by specifying overlapped receive buffers in different commu
nication operations running in parallel.

— Prints a list of unfreed requests at the time of MPIJFinalize.

IMG can suffer from several impediments. The trace files generated can be
large. Furthermore, the generation of trace files in the presence of an MPI error
cannot be guaranteed, as the behaviour after an MPI error is implementation
defined. Reading a memory location that is already under use, is not allowed.
However, such a scenario remains undetected in ITC (Intel Trace Collector) as
reads do not modify the buffers.

2.4 U M P IR E

UMPIRE, developed at LLNL, is another MPI program correctness checker. It
is a tool that dynamically analyzes MPI programming errors using a profiling
interface like MARMOT and MPIDD. It performs checking at two levels. First
it checks at the local level where it uses all the task-local information to perform
the checks. For instance, tests regarding the checksum on non-blocking send
buffers can be carried out at this level. The second check is performed at a
global level. It digs out more subtle errors like deadlocks, consistency errors, etc.
at the global level. UMPIRE uses time-out mechanism and dependency graphs
to detect deadlocks. Few of the errors that UMPIRE uncovers as explained in
[15] are summarized below:

— Deadlocks caused due to blocking calls.

4

— Deadlocks involving spinloops over non-blocking completion calls.
— Ordering of collective communication calls within a communicator.
— Detects configuration dependent buffer deadlocks.
— Mismatch collective call operations.
— UMPIRE does extensive resource tracking. Consequently it is able to unearth

resource leaks. For instance, applications can repeatedly create opaque ob
jects without freeing them, leading to memory exaustion. Or there can be
lost requests due to overwriting of request handles.

— Errant writes to send buffers before non-blocking sends are completed.

2.5 M PIDD

MPIDD. like UMPIRE has a central manager that traps all MPI calls using
PMPI; however UMPIRE runs as a separate process and communicate using
shared memory with different processes. MPIDD runs as another MPI process
and the trapped information is sent to the central detector using MPI calls as
explained in [6]. MPIDD is essentially a deadlock detection tool. It creates a de
pendency graph to figure out potential/real deadlocks. The detection algorithm
is a Depth First Search for cycles in the dependency graph. The architecture
of MPIDD suggests that it should be able to do all the argument verification
tests that other tools perform. This can be done by the wrappers component of
MPIDD.

A succinct comparative study of the above mentioned tools is presented in
Table 1:

2.6 TotalView

Total View is an industrial strength debugger. It is designed especially for com
plex multi-process or multi-threaded applications. It provides two decision points
to users to control the execution of a program as explained in [1].

— Users can select an appropriate command.
— Users are provided with an option to decide upon the scope of the chosen

command.

The execution control commands are: Go. Halt. Step. Kill. Next. etc. One can
execute these control commands at the Group. Process or Thread scoping level.

1. Group Scoping: Executes the chosen command on all the processes that
define that Group.

2. Process Scoping: Executes the chosen command on a single selected pro
cess. If the process has several threads, then the command influences all the
threads owned by the process.

Tools M PI-CIIECK MARM OT UM PIRE IMC MPIDD
Deadlock Detection
M ethod T,D T T,D T,D D
Argum ent Verification V V V V V
Use PM PI/M acros Macros PM PI PM PI PM PI PM PI
S tatic/R untim e

Checking S,R R R Trace R
Check of buffer
type and bounds V - - V -

D ata Race detection
(Consistency Checks) V - V - -

Buffer Reuse
(Incomplete request) - - V V -

Resource Leak
Checks - V V V -

Mismatch of
Collective Operations V V V -

MBT - - - - -

T a b le 1. Com paritive Study of MPI Debugging Tools. T: Tim e based deadlock de
tection; D: Dependency G raph based deadlock detection; S: Static; Ft: Runtim e Trace:
Analysis on Trace; MET: Model Based Testing; - Not Available; \/: Available

3. T h r e a d S c o p in g : Executes the chosen command on a single specified thread
of a Multi-threaded process. Thread scoping offers interesting subtleties.
Normally, all processes in a thread stop when any one of them encounters
a breakpoint. However. TotalView provides additional expressions that in
clude intrinsic variables and b u iltin statements, using which thread-specific
breakpoints can be implemented.

TotalView has a GUI showing message queues. The message queues capture
the following information:

— Pending Receives
— Pending Sends
— Buffer contents can be viewed.
— Unexpected messages - messages sent to a process which did not post a

matching receive.

These message queues can be thought of dependency graphs. Consequently,
users can identify deadlocks by viewing the message queues.TotalView also dis
plays MPI call arguments. Sanity of MPI call arguments can thus be validated
against user’s intentions.

TotalView provides support for hybrid codes where multiple threads can exist
within an MPI process. When communication has to be performed, one thread
makes the required MPI call. It is still not very clear whether programs that
utilize MPI_THREAD_MULTIPLE functionality wherein multiple threads can
make an MPI call, can be debugged under TotalView environment.

6

3 Debugging Support in M PI Libraries

Some popular MPI implementations also provide debugging facilities in the form
of flags or separate profilers. For instance Open-MPI has a set of in-built, debug
ging parameters for the MPI layer. Flags as explained in [3] are listed below:

3.1 OpenM PI

— mpi pa ram check: If set to true, and when Open MPI is compiled with
parameter checking enabled (the default), the parameters to each MPI func
tion can be passed through a series of correctness checks. Problems such
as passing illegal values (e.g.. NULL or MPI_DATATYPE_NULL or other
’’bad” values) will be discovered at run time and an MPI exception will be
invoked.

— mpi_show_handie_Ieaks: If set to true. OMPI will display lists of any MPI
handles that were not freed before MPI JFINALIZE (e.g.. communicators,
datatypes, requests, etc.).

— mpi_no_free_handies: If set to true, do not actually free MPI object when
their corresponding MPI ’’free” function (e.g.. do not free communicators
when MPI_COMM_FREE is invoked)is called. This can be helpful in tracking
down any use of MPI handles after they have been freed.

— mpi show mca params: If set to true, show a list of all MCA parameters
and their values during MPLINIT. This can be quite helpful for reproduca-
bility of MPI applications.

— mpi show mca params flic*: If set to a non-empty value, and if the value
of mpi_show_mca_params is true, then output the list of MCA parameters
to the filename value. If this parameter is an empty value, the list is sent to
stderr.

— mpi_keep_peer_hostnames: If set to a true value, send the list of all host
names involved in the MPI job to every process in the job. This can help the
specificity of error messages that Open MPI emits if a problem occurs (i.e..
Open MPI can display the name of the peer host that it was trying to com
municate with), but it can somewhat slow down the startup of large-scale
MPI jobs.

— mpi abor t delay: Prints out an identifying message when MPI ABORT is
invoked showing the hostname and PID of the process that invoked MPI ABORT,
and then delay that many seconds before exiting. This allows a user to man
ually come in and attach a debugger when an error occurs.

— mpi abor t pr int stack: Prints out a stack trace when MPI ABORT is
invoked.

3.2 LAM -M PI

LAM-MPI implementation has a GUI-based tool support for MPI debugging
and visualizing called as XMPI. Extensive book-keeping is done for running
MPI applications. LAM-MPI is now succeeded by Open MPI. Following are the
few key features provided by XMPI as explained in [4]:

7

— Runtime snapshot of MPI process synchronization.
— Runtime snapshot of unreceived message synchronization.
— Extensive detailing on information like communicator, datatype, tag, mes

sage and length.
— A highly integrated snapshot from communication trace timeline.
— A matrix display of unreceived message sources.
— Process group and datatype type map displays.

3.3 M PICH

In MPICH implementation, one can execute mpirun in a controlled environ
ment of a debugger, say, TotalView. The option can be specified while executing
mpirun with an extra flag -dgb set to the appropriate script.

4 Conclusions

MPI programs are notoriously difficult, to debug. Tools such as MARMOT, UM
PIRE, IMG, MPI-CHECK, and MPIDD are capable of detecting many errors
in MPI programs. However, these tools do not guarantee to explore systemati
cally all the execution interleavings of a program. For instance, MPI programs
can have many sources of nondeterminism. There may be potential bugs lurk
ing behind the cover of nondeterminism. It would simpily not suffice to explore
just one execution interleaving of such a program. In [14], SPIN is extended with
MPI non-blocking constructs to perform Model Checking based verification. One
may argue to an extent that MPI-SPIN is reliable and expandable but the fact
remains that modeling programs is a laborious and error prone task. Efforts, as
mentioned in [13] are directed at removing the modeling overhead and to carry
out similar checks as were performed in the tools discussed. It also guarantees
that all interleavings of a program are being tested systematically. The disad
vantage of this method include reduced execution speeds. In summary, no single
method is superior and a variety of approaches need to be supported.

References

1 . h ttp ://w w w .lln l.gov /com puting /tu to ria ls/to talv iew /.
2. h ttp: / /su p p o rt.intel.com/support/perfo rm ancetoo ls/c luste r/analyzer/.
3. h ttp ://w w w .open-m pi.org/faq/?category=debugging.
4. h ttp ://w w w .lam -m pi.org /softw are/xm pi/.
5. Jayant DeSouza, Bob Kuhn, Bronis R. de Supinski, V ictor Samofalov, Sergey Zhel-

tov, and Stanislav Bratanov. A utom ated, scalable debugging of M PI programs
with Intel Message Checker. In S E -IIP C S ’05: Proceedings o f the second in terna
tional workshop on Softw are engineering fo r high perform ance com puting system
applications, pages 78-82, New York, NY, USA, 2005. ACM Press.

6 . W. Ilaque. Concurrent deadlock detection in parallel programs. In t. J. Comput.
A p p l, 28(l):19-25, 2006.

8

http://www.llnl.gov/computing/tutorials/totalview/
http://www.open-mpi.org/faq/?category=debugging
http://www.lam-mpi.org/software/xmpi/

7. B ettina Krammer, M atthias S. Muller, and Michael M. Resell. M PI I /O Analysis
and Error Detection w ith MARMOT. In P V M /M P I , pages 242-250, 2004.

8. B ettina Krammer, M atthias S. Mller, and Michael M. Resell. M PI Application
Development using the analysis tool M ARMOT. In IC C S, volume LNCS, pages
464-471. Springer, 2004.

9. B ettina Krammer, M atthias S. Mller, and Michael M. Resell. Runtim e Checking
of M PI appieations w ith M ARMOT. 2005.

10. B ettina Kram m er and Michael M. Resell. Correctness Checking of M PI One-Sided
Communication using MARMOT. In P V M /M P I , pages 105-114, 2006.

11. Pavel K rusina and Glenn Luecke. M PI-CIIECK for C /C + + M PI Programs. 2003.
12. G. Luecke, II. Chen, J. Coyle, J. Iloekstra, M. Kraeva, and Y. Zou. M PI-CIIECK:

A tool for checking Fortran 90 M PI programs. C oncurrency and C om putation:
Practice and Experience, 15:93-100, 2003.

13. Salman Pervez, Ganesh Gopalakrislinan, Robert M. K irby Robert Palmer, Rajeev
Thakur, and W illiam Gropp. P ractical Model Checking M ethod for Verifying
Correctness of M PI Programs. In E u ro P V M /M P I, September 2007. Subm itted.

14. Stephen F. Siegel. Model checking nonblocking M PI programs. In Verification,
M odel Checking, and Abstract In terpreta tion (V M C A I), January 2007.

15. Jeffrey S. V etter and Bronis R. de Supinski. Dynamic Software Testing of M PI
Applications w ith Umpire, pages 70-70, 2000.

9

