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Abstract

Current image database research is concerned for the most part with the encoding and processing of 
two-dimensional images. However, the most successful approach to computer vision is based on 3­
dimensional information, organized as either stacks of 2-D images (e.g., the intrinsic images of Barrow 
and Tennenbaum, or the 2 1/2 dimensional sketch of Marr) or as actual 3-dimensional data (e.g., the 
Multisensor Kernel System of Henderson). Efficient techniques for two-dimensional image processing 
have been well-developed over the last few decades and special purpose architectures are now available. 
However, the study of the organization, processing and analysis of three-dimensional scene data is only 
just beginning. We describe one approach to the representation of three-dimensional image data and 
evaluate several computer vision algorithms performed on the data. Finally, we describe how three­
dimensional feature operations can be performed as relational database operations.

1This work was supported in part by NSF Grants MCS-8221750, DCR-8506393, and DMC-8502115
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1. Introduction
Given the vast amount of data in digital images and the high cost of image processing operations, it is 

quite natural that much effort has been devoted to finding more efficient image processing techniques. 
However, in the analysis of three-dimensional range data, such techniques can only be used in an 
artificial way, in that range data is by its very nature misrepresented in a two-dimensional data structure. 
Our work has been aimed at developing more appropriate representations for three-dimensional data, 
and the development of concommitant processing techniques for such structures. In this paper, we 
describe some of our results in this domain.

There are two main problems with using two-dimensional images to store range data. First, the implicit 
neighborhoods in an image (e.g., 4-neighbors or 8-neighbors) do not capture the actual three-dimensional 
neighborhood information. That is, even though pixels (i,j) and (i+1 ,j) neighbor each other in the image, 
their corresponding points (x.y.z)^ and (x,y,z)(j+1jj may be very far apart. Thus, the use of special 
purpose architectures is limited in that consistency checking must always be performed. Second, and 
more importantly, it is very difficult, and usually impossible, to merge distinct views of a scene (i.e., 
multiple range images) into one data set. In general, this requires going to a three-dimensional array with 
all its incumbent inefficiencies. Moreover, if the data are sampled at different resolutions, say from a 
range finder and a tactile pad, it is very complicated to handle the differences in scale.

It is for these reasons that we have proposed the Multi-sensor Kernel System as an efficient and 
uniform mechanism for dealing with data taken from several diverse sensors [13,14]. The system can be 
logically divided into three major parts: the sensor specification, iow-level representation, and high-level 
modeling. In this paper, we discuss in detail the low-level representation and processing aspects of the 
system. For details on the high-level modeling, see [16,18] and for more on sensor specifications 
through logical sensors, see [15,17].

Several mechanisms have been proposed as low-level representations for three-dimensional data. In 
particular, Marr’s primal sketch [22], Barrow and Tennenbaum’s intrinsic characteristics [3], and to some 
extent, the region adjacency graph of Pavlidis [26], have all been proposed as a low-level organizational 
tool for image data analysis. We have shown how the recovery of 3-D information can be usefully 
organized in the spatial proximity graph [11,13]. Most features (e.g., surface curvature, surface normal, 
range, texture, etc.) can be localized in 3-space using current computer vision techniques (see Ballard 
and Brown for an introduction [2]). Other approaches to the organization of point data include minimal 
spanning trees [31], relative neighborhood graphs [30], oct-trees [28], and Voronoi triangulations [1]. 
However, due to the fact that we also use the low-level representation to organize feature space data 
(with arbitrary dimension), we find that the benefits of the k-d tree outweigh its problems.

2. The Multisensor Kernel System
An overview of the configuration time view of MKS has been given by Henderson and Wu [13]. Figure 

1 shows the major components of MKS. The high-level representation is either a feature vector model 
consisting of characteristic feature values for the object and a covariance matrix describing the 
uncertainty in sensor measurements or a Hough shape model consisting of a boundary model of the 
object. The sensor specifications are given in terms of Logical Sensors which characterize the output 
type of the sensor, alternative ways of producing the data, sensor characteristics and a mechanism for 
encoding knowledge about the sensor’s performance and role in the system. Finally, the low-level
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Figure 1. Organization of MKS

representation is one of either a k-d tree or a spatial proximity graph. Figure 2 shows the details of the 
low-level operations. The sensors provide the raw data upon which the low-level operations are 
performed. The operations are requested by the high-level model.

Obviously, the system is driven by the arrival of data from the actual sensors. Currently, the data from 
one or more sensors can be analyzed as a sequence of snapshots of data. Moreover, rather than 
analyze data continually as it is received, the data is collected in a buffer until the buffer is filled, then the 
data in the buffer is analyzed. If more data arrives, it can either be discarded, or integrated into existing 
data structures; however, it is computationally expensive to add data to the existing data structures, since 
the k-d tree must be completely rebuilt when new data is added.

The sensor provides output vectors which are then formulated into the appropriate k-tuple for low-level 
processing. Currently, this is just a sequence of (x,y,z) triples each with an associated intensity value and 
status bit (indicating good or bad data at that point). The k-tuples provided by the formatting step are

High-Level < 
Knowledge

3-D Scene < 
Database

Sensors

Figure 2. Organization of Data in MKS
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then built into a k-d tree [9,13]. This provides an efficient method for recovering the spatial structure of 
the data. This step is accomplished by querying the k-d tree with each data point in turn and creating a 
graph linking the m nearest neighbors to each query point. Note that the graph is not necessarily 
symmetric.

At the heart of MKS are the following two data structures: the k-d tree and the spatial proximity graph. 
The spatial proximity graph simply takes a set of points and creates a graph whose nodes are the points, 
and whose edges connect each node to the m nearest neighbors of that node. MKS allows the spatial 
proximity graph to be generalized by allowing points from any k-dimensional space, and as will be 
discussed later, this permits one to analyze structure in any feature space chosen by the user. The 
spatial proximity graph is built quite efficiently in terms of the k-d tree [9] which is built directly from the 
data (see Henderson [12,19] for the use of the k-d tree for feature organization).

The k-d tree is a generalized form of the simple binary tree used to achieve Order(nlogn) sorting and 
searching. Therefore, a k-d tree is a binary tree in which each node represents a subset of the vectors in 
a set of vectors and a partitioning of that subset [9], The root of the tree represents the whole set of 
vectors (in our application, the vectors are (x,y,z) locations in a range image where a surface point was 
detected). Each nonterminal node has two successor nodes which represent the two subsets classified 
by the partition. The terminal nodes represent mutually exclusive small collections of the vectors in the 
set. These data vectors collectively form a partition of the set and are known as buckets. See Bentley [4] 
for the original definition of k-d trees. The version used here minimizes the expected number of vectors 
examined during the search for nearest neighbors. This is achieved by appropriately choosing both the 
discriminator key element and the partition value for each subset, and the number of vectors in each 
bucket.

Since information provided to a binary choice is maximal when the two alternatives are equally 
probable, it is equally likely that a vector will be placed on either side of the partition. Hence, irrespective 
of which key (i.e., which element of the vector) is selected as the discriminator, the median of the 
marginal distribution of key values serves well as the partition.

The search algorithm can stop searching the subset on the side of the partition opposite the query 
vector if the partition boundary does not intersect the ball centered at the query vector with radius equal to 
the dissimilarity to the m*1 closest vector so far encountered. Consequently, the partition will intersect 
least the ball for that key which showed the greatest range in values before partitioning.

With these considerations in mind, the optimized k-d tree algorithm chooses at every nonterminal node 
the key with the largest range in values as the discriminator, and the median of the discriminator key 
values as the partition. (Upon analysis of performance, the terminal buckets should each contain one 
record in order to minimize the number of vectors examined.) The average case complexity required to 
build a k-d tree is of the Order(nlogn), and the m nearest neighbors for a vector query can be found in 
Order(logn) operations.

The user defines the k-tuple (to be used in iow-level processing) as a subset of the n-tuple returned by 
the class of sensors providing the data to the low-level processing module. These k-tuples serve as the 
basic organizational element of low-level processing, and all high-level models must be defined either 
directly in terms of them (as when feature models are defined in terms of particular values for each 
element) or indirectly in terms of the spatial relations existing between the vectors (as in the Hough shape
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model). Finally, the user may also define a distance function to be used by the system K the standard 
ones such as Euclidean distance and Manhattan distance are not desired.

Given the spatial proximity graph representation of a set of points sampled from the surfaces of objects 
in a scene, the points in the graph can be grouped to find various features of interest in the data. In 
particular, we describe the following operations:

• Normal Calculation - Many other operations can be performed if the surface normal vector is 
known at each point,

• 3-D Edge Detection • Most high-level models use some knowledge of the 3-D edges in the 
scene, and

• Curvature Calculation - In order to get at the features characterizing non-polyhedral objects,
H is necessary to determine the curvature (e.g., Gaussion or mean) at each point.

The analysis of the data performed by MKS is essentially a cycle of data collection, data organization, 
data analysis and environment manipulation. The basic interface to MKS occurs through public functions 
allowed on the scene database: the k-d tree and spatial proximity graph. As a result, we choose to run in 
our multi-sensor environment by invoking certain operations on the database. The flow of the execution 
of the multi-sensor framework is as follows:

1. invocation of a low-level operation on the scene database.
2. Activation of the sensors which acquire the 3-D scene data.
3. Organization of the sensed data into a k-d tree structure.
4. Construction, if necessary, of the spatial proximity graph from the k-d tree.
5. The performance of the required low-level operation.

In the following sections, we describe the low-level operations as well as their complexity and give some 
examples of their application to three-dimensional data.

3. Range Data
Most computer vision analysis is performed with respect to features derived from the raw intensity or 

surface point data. Given the enormous amount of data, it is necessary that these operations be 
performed efficiently and rapidly. Although highly optimized techniques have been developed for image 
processing, even to the point of making special purpose image processing systems cost effective, the 
calculation of features from multi-dimensional data and their storage can often be more efficient using tree 
structures rather than standard image representations. For example, we have shown that edge finding 
and storing is more efficient using tree methods in the application domain of remotely sensed data [19].

The advent of true three dimensional sensors is changing the processing techniques used in computer 
vision. Rather than attempt to reconstruct 3-D attributes from 2-D sensory data, researchers are now 
able to analyze actual 3-D data. The remainder of this chapter will describe 3 dimensional sensing and 
the sensing environment which we are using and then explain the low-level processing techniques we use 
to extract features from the raw range data. We will then describe how to construct higher level 
representations based on the information obtained from the low level processing.
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3.1. Range Sensors
Three-dimensional data obtained with visual 3-D sensors can be grouped into two classes: depth map 

data and Cartesian data. Depth map data refers to values at every pixel as an inverse function of the 
distance from the sensor to the surface being sampled. This yields an image in which pixels with a high 
intensity represent a surface point which is closer to the sensor than pixels with a low intensity value. 
Since the distance increases with the offset angle from the viewing axis, these images tend to be 
cylindrical in nature unless corrected. Conversely, Cartesian data contains actual 3-D points in world 
coordinates. Thus, for every pixel, there will be a 3-tuple, (X.Y.Z), returned for every surface point rather 
than just a single distance value. This results in 3 times as much data to be processed as opposed to 
depth data.

Visual 3-D range sensors can be grouped into 3 classes: triangulation, time of flight sensors, and 
phase modulation sensors [21, 27]. In triangulation systems, the scene is illuminated by some means of 
structured light, possibly a laser or specialized pattern of light. The geometry of the light source with 
respect to the scene and that of the sensor, typically a video camera, with the respect to the scene is 
used in conjunction with trigonometric methods to recover depth from the 2-D image returned by the 
camera. A major draw back with 3-D triangulation systems is that depth information is computed with 
knowledge of the angle formed by the structured light source and the viewing angle of the camera. This 
results in shadows being cast on the scene. In time of flight sensors, structured light, typically laser light, 
is cast on the scene and the amount of time is measured between illumination and detection of that 
illumination. The time difference is used to compute the depth of the surface reflecting the light. Since 
depth is recovered as a function of the amount of time it takes the structured light to travel to the surface 
and back, this type of sensor doesn't suffer from shadows but requires extremely fast hardware if the 
scene is a relatively short distance from the sensor. This is similar to the methods used in laser-driven 
surveying devices. Phase modulation sensors obtain depth in a similar fashion but rather than counting 
time, they perform phase detection similar to radar devices. Moreover, these sensors don’t suffer from 
shadows but resolution is only modulo the wave length or the wave length modulation. The sensoring 
system we use is the Technical Arts White Scanner which falls into the class of triangulation systems and 
returns Cartesian data [29].

The White Scanner uses a laser beam which is spread into a plane of light by an oscillating mirror and 
then directed via a director mirror onto the scene. The director mirror is stepped in user controlled 
increments of 0.055 degrees which illuminates the scene with the plane of laser light. This plane of light 
forms a curve on any surface which it intersects. This curve is sampled using a 2-D CCD camera yielding 
240 Cartesian sample points, each containing an X,Y,Z value. In the configuration we used, the sensor 
returns very dense range data on the order of a sample every 0.005 inches for a planar surface normal to 
the angle of the plane of laser light.

Figures 3 to 8 show some samples of scenes in the Utah Range Database [10].

3.2. Storage Comparisons
Let us now consider the advantages of storing range data and associated features in graph structures, 

suppose that the range scanner produces an m by n image; let p = mn. Furthermore, suppose there are 
ap good data points in the image. (Bad data occurs when the range finder fails to compute a range value 
due to laser or camera shadow or improper relectance.) Let a be in the range [0,1]. Finally, suppose



Figure 3. Scene from Range Database: bottle

there are e storage elements required for the x, y, and z values and for the features which are computed; 
e.g., surface normals, surface curvature, etc.

In an image format, the number of storage elements required is ep. If a k-d tree is used, then there are 
eap storage elements required for each leaf of the tree; also, there is a (4ap)/b storage element overhead 
for the nonterminals in the tree, where b is the bucket size or number of records per leaf (assuming 4 
storage elements per nonterminal: median value, axis of split, and two pointers). Thus, the k-d tree is 
more economical whenever:

ep > eap + (4ap)/b 

or e /(e+ (4 /b )) > a. (1)

It is easily seen that as b increases, the left hand side of Equation (1) approaches 1; thus, the tree 
structure will almost always be more economical as b gets larger. Even when b=1, the left hand side is 
e/(e+4) which for the values of e we are considering (e.g., 20) still makes the tree structure more 
economical when there is 17% or more bad data. Moreover, when b=4, the usual bucket size, the tree 
structure is more economical when there is 5% or more bad data.

In our experience with the Utah Range Database, we have found that the amount of bad data is a 
function of scene complexity (essentially due to shadow areas). A summary of the data is given in Table 
1. Two percentages are given; in a fixed environment (such as is found in manufacturing), there is no 
need to analyze the fixed background since we are only interested in recognizing and locating new
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Figure 4. Scene from Range Database: bottle_1

objects in the scene. The first column of data is produced when fixed background points (i.e., points on 
the underlying workbench) are counted as bad data (i.e., they are not used in the processing step), while 
the second column gives the percentage of bad data when the fixed background points are included as 
good data. As can be inferred from the table, the tree storage structure is definitely more efficient.

Of course, feature calculations will most often be performed on the spatial proximity graph and not on 
the k-d tree in order to get constant time neighbor lookup. Thus, we must know the storage requirements 
of the spatial proximity graph. Since the spatial proximity graph simply stores the m nearest neighbors of 
each data point, it requires m(ap) storage elements.

4. Range Data Analysis
Features form the basis or primitive elements of model-based vision and must fullfill three requirements 

for a recognition system: low cost, reliability, and appropriateness for the particular problem. The cost 
requirement can be constrained by both time and space. In most computer vision applications, time is 
generally more critical than storage space, thus time is the primary consideration for the measure of cost. 
One would like to use features which are computationally efficient to obtain from sensory data. This can 
be facilitated by use of specialized hardware if it is available.

Features must also have the attribute of reliable detection. This encompasses both detection and false 
responses. When we say that a feature is reliably detected, we mean that given a known set of data 
which contains one or more of the features sought, the detector algorithms/hardware should locate those 
features in the data set. If the algorithms/hardware respond with features being present in the data when,
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Figure 5. Scene from Range Database: poly_1

in fact, no features are be present, then reliability suffers from false responses. Ideally, we would like our 
feature detectors to locate only those features which we are looking for and not yield any false-alarms. 
Realistically, we must strike a balance where we maximize the detected features and minimize the false 
response rate.

Features must also provide a basis for the recognition process. They must contain enough information 
to correctly characterize the objects in the scene. For example, comers as features wouldn’t provide a 
basis for the detection of spheres or circles whereas they would for polyhedral objects.

Features must satisfy these requirements simultaneously. If a feature is fast to compute and provides 
a basis but isn’t reliable, it might not be as good as a feature which is reliable but slightly more expensive 
to compute. Furthermore, there is no single rule for when one should use specific features. This process 
is application dependent.

Features can be thought of as hierarchical in nature. That is, surface points can be considered 
features, yet they can be combined to form edges, another type of feature. The properties of a class of 
features at one level is propagated to the features which use that class. As this one travels up hierarchy, 
there generally is a compression of the amount of data.
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Figure 6. Scene from Range Database: scene_1

4.1. Normal Calculation
An interesting attribute of actual 3-D data is that it contains the intrinsic characteristics of surfaces 

which it represents. This allows us to recover shape more readily than with 2-D intensity data. Surface 
characteristics, such as edges, which are lost in intensity images due to the illumination process are 
always present wherever the surface is sampled with 3-D sensing techniques. Furthermore, some 
shapes which are ambiguous in intensity images are clearly discernible in 3-D data. An example is a 
deep bowl and shallow plate. When illuminated without shadows, these both appear similar in intensity 
images yet with range data, one is clearly different than the other. One would like to recover the intrinsic 
features which make up the surface.

Since each pixel contains the world coordinate in terms of the 3 Cartesian components, there are 
several low-level techniques which are useful for recovering surface information. These include surface 
normals and pointwise curvature.

There are several methods for computing surface normals. One would like to use a simple method 
such as the vector cross-product of neighboring points:

A? = Dx?

Where Ft is orthogonal to both if and \7.

Although computationally efficient, the reliability of this method is hampered by the noise present in the
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Figure 7. Scene from Range Database: scene_2

range data. One can simply smooth the data by an averaging technique, such as Guassian filtering, to 
remove some of this noise [7]. However, there are problems with smoothing the range data to overcome 
the noise. The major drawback is the loss of potentially interesting inflections on the surface of objects 
represented by the range data. Inflections, such as edges, change in curvatures, or shadows, are 
smeared by the averaging process as are the actual world space coordinates of the data points. Thus, 
sharp edges are reduced to smoother curves as a result of averaging operators. Median filter operators 
tend to sharpen an image, but there is a problem with attempting to find a median in 3 dimensions.

A second method incorporates heuristics about the signal-to-noise ratio of the particular sensor and 
computes the normals as a vector cross product of non-neighboring points. One can do this by selecting 
points with the following heuristic:

A? = where ||Z)||>f and ||V̂ ||>t 
where ||.|| is vector length and t is some threshold based on the amount of noise compared to the inner 
pixel distance.

Although this overcomes the signal-to-noise ratio, several other problems are incurred. One cannot be 
sure that the points 0  and are part of the same surface if the vector length is too large. This tends 
to cause the normals to not reflect the actual tangent plane at the sampled surface point. Another 
problem is that pixels which are orthogonal in the image plane may not be orthogonal on the surface of 
the object. This introduces error due to the relative closeness of the two non-orthogonal points.

The method which we found to work the best is one which approximates a least-squares fit of a plane
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b o ttle  0.423896 0.112651
b o ttle _ l 0.253951 0.135679
poly_l 0.299228 0.254938
scene 2 0.346903 0.291482

Table 1. Percentage of Bad Data Points in  Range Database Scenes

to a small window of the data. The approximation is achieved using the following well known technique
[8]. We wish to fit a plane to a portion of our data, the small window, such that the error term, E, is 
minimized:

E = .X (tf-xj+d)*
M

where is the unit normal to the plane and d is the distance of this plane from the origin. By minimizing 
this, we achieve the best fitting plane for the given set of points, P.

Figure 8. Scene from Range Database: scene_3

Scene % Bad Data %Bad Data
(with background (with background 

as bad data) as good data)

But d is just:



by substituting:

The direction,ft, of the best fitting plane corresponds to the smallest eigenvalue of the matrix:

M = J  ( W )

where:

Although we have obtained good results with this method, it is computationally expensive. The speed 
would be improved with the appropriate hardware. We chose this method over the first two methods 
because of the noise in the data. Using a window as defined by P above, the data is locally smoothed 
thereby reducing the error. When implemented in terms of graph traversal, this algorithm becomes much 
more efficient in terms of execution time. Figure 9 shows the spatial proximity graph for poly_1 and 
Figure 10 shows the normals computed on that graph. The execution time on poly_1 was over three 
times shorter using the graph structure (11.3 vs. 37.5 cpu seconds).

Figure 9. The Spatial Proximity Graph for poly_1



Figure 10. The Normals Calculated over the SPG

4.2. Curvature
Recently, computer vision researchers have attempted to look at surface curvature as a means for 

recovering the intrinsic shape of objects. The resurgence of this is due to the advent of dense range 
data. Curvature possesses the intrinsic characteristic of being invariant to translation and rotation thereby 
making it a prime candidate for describing surfaces. Curvature is defined as the acceleration of a moving 
trihedral, normal to the surface, following a space curve on the surface [24]. Since it is the acceleration, 
we can define curvature as a function of first and second derivatives. There are several types of 
curvatures defined in classical differential geometry textbooks which computer vision researchers have 
investigated. These include:

• normal curvature
• principal curvatures
• Gaussian curvature
• mean curvature

Medioni and Nevatia described a one dimensional operator to compute curvature as [23]:

This defines curvature, k, in the y direction. The directions in which this metric reaches a minimum and a 
maximum are called the principal curvatures, k ^  and kmax. These can be shown to be orthogonal. 
Obviously, in the discrete case, the directions must be approximated and error is introduced by the
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aliasing in the chosen directions. Medioni and Nevatia used the one dimensional difference operator in 4 
directions to approximate the min and max local curvature.

Besl and Jain have described a method for pixel-wise computation of Gaussian and mean curvature
[5]. They define the Gaussian curvature, K, and the mean curvature, M, at a point in terms of the 1st and 
2nd fundamental forms:

K =

M =

'uv

(1+ 

fu W )2

fuu+ fw + fu J ¥ fvJ~ 2 fJ J I

2(1+fu2+fv2)  1 

The Gaussian and mean curvature measures can also be defined in terms of the k ^  and k ^  
curvatures as follows:

M =

k ■ *kmin max

k min+ k max

Besl and Jain approximate the Monge Patch at each surface point with a 5x5 or 7x7 window. By 
approximating the surface with this patch, their method tends to be less prone to noise-error than Medioni 
and Nevatia's method.

We have investigated both methods of computing curvature in the context of our range sensing 
system. We have found that the using the computational technique for the principle curvatures, kmin and 
kj,,^, gives us the best results.

4.3. Segmentation
In the previous sections, we have described how to compute pointwise surface characteristics: normals 

and curvature. In this section, we will describe how to use these to segment scenes into symbolic 
representations which can be used for recognition and localization.

For most 3-D recognition schemes, features used for classification and matching can be grouped into 
two classes: region-based and edge-based. Since our goal is to realize an algorithmic/representation 
independent environment, we will formulate methods for achieving structure in both classes. We will not 
develop methods for global shape techniques since these are not robust to occlusion and not as strong in 
the 3-D paradigms. Similarly, we will exclude syntactic representations from our study although they 
could be derived from the data given proper algorithms.

The most obvious region-based representation is planar faces. There exist many techniques for 
computing planar faces given a set of 3-D data [14]. Since we have previously computed pointwise 
surface normals, the technique we use is a simple region-growing algorithm where the region grown is a 
planar region.

fo r every point,
i f  i t  doesn't belong to a plane,

s ta rt a new plane with th is point; mark the point as part of the plane
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Check the 8-neighbors and i f  they haven't been marked, 
then push them on the stack.

U n til the stack is  empty, 
pop the top of the stack
i f  the normal is  within a tolerance fo r the plane, 

mark the point as part of the plane
Check the 8-neighbors and i f  they haven't been marked, 

then push them on the stack.

The advantage to this algorithm, is that we only have to check the distance squared of the ends of the 
unit normals and don't have to call the square-root function for every point. With the 3-point seed 
method, or others like it, we would have to measure the distance of the point from the plane which is 
tantamount to recomputing the unit surface normal for every point. We can keep track of the center of 
mass and average the normals on the fly. After the planes have been segmented, we can compute the 
area based on a triangulation method. If we keep track of the border pixels for each plane, we can 
quickly determine adjacencies and dihedral edges. Figure 11 shows the results of this algorithm run on 
the object shown in Figure 9.

Figure 11. Planar Faces Detected in poly_1

This differs from the method of Hoffman and Jain in that they allow points to be added into a region 
through a clustering technique [20]. Clusters are then merged based on a generous threshold, 20 
degrees, thus missing edges if the shared dihedral is less than 20 degrees.

Similarly, curvature points can be combined to form regions of constant curvature. Since we have 
captured the intrinsic pointwise characteristic of the surface, we can simply perform region growing using



the curvature values. If we use the concise classifications described by Besl and Jain, we can easily 
grow regions of constant curvature.

Edges are another important feature which can be recovered from range data. Many 3-D object 
recognition systems are based on detecting edges of the object in a scene and then determining whether 
the detected edges map consistently onto the edges of the model. To find the edges in the range data, 
we simply traverse the spatial proximity graph, and at each point, if the error of fit of a planar surface is 
above a certain threshold, then we mark the point as an edge point. Figure 12 gives an example of the 
application of the algorithm.

16

Figure 12. Edges Detected in poly_1

5. Discussion and Future Research
It is not possible to directly compare the processing costs of an image storage structure and the graph 

storage structures. As was mentioned above, the image structure cannot even be used for certain 
problems; for example, extracting features from full view CAD models [6]. Moreover, the neighborhoods 
in the graph structures contain exactly the points of interest for the feature calculation, whereas in the 
image structure the "neighbors" may not actually be physically near the point in question. Finally, there 
are ways to use the k-d tree structure in a sequence of operations to determine the features of interest. 
For example, if the tree is first buiit using (x,y,z) as the key, followed by selecting surface normal as the 
key, then the resuit is the planar faces. This type of operation could be easily represented in a relational 
query language fashion. That is, the operation just described could be expressed as;

aF(Build(7txyz(R)))
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where F stands for a formula expressing constant surface normal

More complicated relational expressions are useful for extracting other features. This approach is one 
avenue for future research.

Of crucial importance to building up-to-date spatial proximity graphs to organize a continuous flow of a 
massive amount of sensor data is the ability to dynamically insert and delete data on a k-d tree or any 
equivalent database storage structure that allows efficient query and searching to be performed on the 
data. Overmars and van Leeuwen [25] have presented some initial work on dynamic multi-dimensional 
data structures, and the usefulness of their results to our application must be investigated.

We have described representations and processing operations which are useful for the analysis of 
three-dimensional range data. Such techniques are instrumental to the successful exploitation of such 
data.



18

[1] Ahuja, N.
Dot Pattern Processing Using Voronoi Neighborhoods.
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-4(3):336-343, May, 1982.

[2] Ballard, D.H. and C.M. Brown.
Computer Vision.
Prentice Hall, New York, 1982.

[3] Barrow, Harry and Jay Tennenbaum.
Recovering Intrinsic Scene Characteristics from Images.
Technical Report 157, SRI International, April, 1978.

[4] Bentley, J.L. .
Multidimensional Binary Search Trees Used for Associative Searching.
CACM  18(9):509-517, September, 1975.

[5] Paul J. Besl and Ramesh C. Jain.
Invariant Surface Characteristics for 3-D Object Recognition in Range Images.
CVGIP (33) :33-80, 1986.

[6] Bhanu, Bir, S.K. Lee, C.C. Ho and Thomas C. Henderson.
Range Data Processing: Representation of Surfaces by Edges.
In Proceedings of the International Conference on Pattern Recognition, pages 236-238. Paris, 

France, October, 1986.

[7] Michael Brady, Jean Ponce, Alan Yuille.
Describing Surfaces.
In Robotics Research, the 2nd International Symposium, pages 5-16. 1983.

[8] Faugeras, O.D. and M. Hebert.
The Representation, Recognition and Locating of 3-D Objects.
Robotics Research 5(3):27-52,1986.

[9] Friedman, J.H., J.L. Bentley and R.A. Finkel.
An Algorithm for Finding Best Matches in Logarithmic Expected Time.
ACM Trans, on Math. Soft. 3(3):209-226, September, 1977.

[10] Hansen, C. and Thomas C. Henderson.
The UTAH Range Database.
Computer Science UUCS-86-113, University of Utah, April, 1986.

[11] Henderson, T.C.
An Efficient Segmentation Method for Range Data.
In SPIE Conference on Robot Vision, pages 46-47. Arlington, VA, May, 1982.

[12] Henderson, T. and E. Triendl.
The k-d Tree Representation of Edge Descriptions.
In Proceedings of International Conference on Pattern Recognition. October, 1982.

[13] Henderson, Thomas C. and Wu So Fai.
A Multi-sensor Integration and Data Acquisition System.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 

274-280. IEEE, June, 1983.

[14] Henderson, T.C.
Efficient 3-D Object Representations for Industrial Vision Systems.
IEEE Transactions on Pattern Analysis and Machine Vision PAMI-5(6):609-618, November, 1983.

R e fe re n c e s



19

[15] Henderson, T.C. and E. Shilcrat.
Logical Sensor Systems.
Journal of Robotic Systems 1 (2):169-193,1984.

[16] Henderson, T.C. and Wu So Fai.
MKS: A Mutti-sensor Kernel System.
IEEE Transactions on Systems, Man, and Cyberbetics SMC-14(5):784-791, September/October, 

1984.

[17] Henderson, T.C., C.D. Hansen, and Bir Bhanu.
The Specification of Distributed Sensing and Control. .
Journal of Robotic Systems 2(4) 387-396,1985.

[18] Henderson, T.C., Chuck Hansen and Wu So Fai.
Organizing Spatial Data for Robotic Systems. .
Computers in Industry 6(5):331-344, October, 1985.

[19] Henderson, T.C. and E. Triendl.
Storing Feature Descriptions as 2-D Trees.
IEEE Transactions on Geoscience and Remote Sensing 301-303,1986.

[20] Richard Hoffman and Anil Jain.
Segmentation and Classification of Range Images.
In Computer Vision and Pattern Recognition, Miami Florida, pages 446-451. 1986.

[21] Jarvis, R.A.
A Perspective on Range Finding Techniques for Computer Vision.
IEEE Transactions on Pattern Analysis and Machine Intelligence 5(2) :122-139,1983.

[22] Marr, D.
Early Processing of Visual Information.
Al Memo 450, MIT, Cambridge Mass, December, 1975.

[23] G. Medioni, R. Nevatia.
Description of 3-D Surfaces Using Curvature Properties.
In Proc. DARPA Image Understanding Workshop, New Orleans, LA, pages 291 -299. 1984.

[24] Barrett O ’Neil.
Elementary Differential Geometry.
Academic Press, 1966.

[25] Overmars, M.H. and Jan van Leeuwen.
Dynamic Multi-Dimensional Data Structures Based on Quad- and K-D Trees.
Acta Informatica 17:267-285, 1982.

[26] Pavilidis, T.
Structural Pattern Recognition.
Springe r-Ve dag, 1977.

[27] Denis Poussart.
Three-Dimensional Sensing for Computer Vision.
In SPIE Tutorial, SPIE Quebec International Symposium on Optical and Optoelectronic Applied 

Sciences and Engineering, Quebec, Canada. 1986.

[28] Samet, H.
Region Representation: Quadtrees from Boundary Codes.
Ci4CM23(3):163-170, March, 1980.

[29] 100-A Scanner User’s  Manual 
1982.



[30] Toussaint, G.T.
The Relative Neighborhood Graph of a Finite Planar Set.
Pattern Recognition 12261-268, August, 1980.

[31] Zahn.C.T.
Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters 
IEEE Transactions on Computers C-20(1 ):68-86 ,1971.

20


