
ASSASSIN : A CAD S y ste m for
S elf-T im ed C o n tro l-U n itD esig n

T ony U . C arter
Department of Computer Science

University of Utah ..
Salt Lake City. Utah 64112

October 1922 .

A b s t r a c t

M any software systems e » s t for automatically implementing synchronous state—machines.
Presented in this paper is a software system — ASSASSIN — for the design and automatic layout of
self-timed (or speed-independent) control-uaits as integrated circuit modules. ASSASSIN provides
far the editing of textual descriptions of ccntrol-flaw, the functional simulation of speed—independent
control—units, and the automatic layout of the implementation as a Path—Programmable Logic (PPL)
program. A ssassin uses a well—known technique (a one—hot slate encoding) £or implementatian of
the control—unit. Examples are given illustrating the specification and implementation of simple
state-^ma chines. In addition, the design of a state—machine of interest in the University of Utail's
A da-tc-Siliccn project is carried out A portion of the A da code for the "Output Side” of the Intea—
K et-iJ odule OUT), which veil! eventually be fabricated as part of the A da-to—Silicon Project, is
converted by hand to A ssassin input format and from there to an integrated circuit layout by
A SSASSIN, thus illustrating the use of A ssa SSIN in the context of the A da—to—Silicon.Project. ,

■ ! %

This work was sponsored in part by the Defense Advanced Research Projects Agency (DARPA)
under contract number W Da 9C3-61—C -0 4 14 . ' ; ' .

1. Introduction ■
The development of CAD tools for integrated circuit design has exploited a vast body of knowledge

about synchronous computing systems. Old and new integrated circuit technologies have been ■well-
suited fcr implementing synchronous computing systems. The success of these synchronous systems
has been prodigious as witnessed by the recent booms in the manufacturing and purchasing of com
puting systems. Current research in semiconductor devices is rapidly heading toward the ability to
construct computing systems which operate orders of magnitude faster and which are far more com
plex than those currently available. ASSASSIN treats part of problem of designing self—timed sys
tems.

yf ith projected room—temperature speeds cf logic devices ranging down to tens of picoseconds of
delay time [3], ii appears that the postulate advanced by Seit2 in Chapter 7 of J-nirod-iictLon to V L S I
S ystem s [7] will be borne out. The ccnter.ticn is that the current methods of system synchronization
(global clocks) will result in unreliable circuits as device speeds increase and as device switching
energies dea-ease.

If Seitz is indeed right, the newer and faster integrated circuit technologies will require computing
systems to be implemented using something like "Self—Timed” or "Speed—Independent” logic. In
these types of logic, only sequence is of ccncem. The actual gate and wiring delays will not affect the
function, only the absolute speed. It shculd be noted that any asynchronous device requires that the

‘A da is a re^i Blared trad em ark of liifc U S. G ovrm raecv. A di. J om l Program O flice.

A ssa ssin

surrounding environment to he suitably conditioned so as to tolerate the "un-synchranized" actions
of the device.

H uch work has been done in the implementation of synchronous structures in integrated circuits.
Computing systems can be divided into two main parts: ontrol and data-path. Universities and
industry alike have produced many methods for generating synchronous system control, some using
the PL A. "W crk has and is being dene in the automatic generation cf synchronous data -paths [9].
Yf hile there have been some successful efforts to construct self—timed or speed—independent comput
ing systems such as DDM 1 [2] and ILLIAC II [£], there has been very little work done an the im
plementation of self-timed oomputing systems in integrated circuits. This may be because there
were few Integrated circuit implementation strategies which readily lent themselves to the construc
tion of self—timed circuits.

The development of Path-Program m able Logic [l] (PPL), a derivative of the Storage/Logic Array
(SLA) [10], has proven to be cf great value in the generation of self—timed control in integrated
circuits.

ASSASSIN is part of a research effort, being pursued at the University of Utah, to convert Ada
programs into integrated circuit implementations, A s s a s s i n transforms the control portions of Ada
programs into their corresponding integrated circuit counterparts. In addition, ASSASSIN [l]
provides a software tool for the specification, simulation and compilation cf self-timed control-units
to integrated circuit module layouts. As such, it begins tc treat some of the low-level problems of
self-timed systems design. It uses PPL as the integrated circuit implementation strategy and a
cne-hot encoding cf the control states [4] as a mapping from the specification to the circuit
implementation. It allows an implementation independent specification d control (that is, inde
pendent of fabrication technologies and circuit implementation techniques), and provides functional .
simulation capabilities. Layout generation (analogous to the software compiler code generation)
results in self-timed circuits which functionally match the results of simulation. ASSASSIN also
provides a single, convenient user interface for ail cf its functions. ’ ■

2. The Specification of Control; Syntax
The specification of control for a given circuit can result in a labelled, directed graph similar to the

one in figure 2—1. There are named nodes which are called states and labelled directed arcs which
are called transitions. Associated with states are operations on cutput variables. These operations
may be functions cf only the state, cr they may be functions of the state end a boolean function of a
set of input variables. Transitions are labelled with a boolean function of members of the set of input
variables which dictates the condition upcn which that transition will take place. Transitions may
also have associated operations on outputs (M ealv M achines).

The ability tc specify strictly sequential control is certainly essential. Although our current un
derstanding of concurrent processing is very limited, the ability to handle concurrent paths of control
may also prove to be useful as our understanding increases. Concurrency (in the context of control)
can be interpreted in two ways. The first is where two separate machines operate independently,
communicating via some signalling protocol. The second is where a single machine performs some
types of concurrent processing by having concurrently executing control paths. The first is handled
by having control-units composed of multiple state-m achices. In terms of graphs, this implies that
cne can draw many separate graphs, h;se interconnection is implied by output and input variable
names. The second is handled by allowing, within a single state—machine, some notion of forking to
begin concurrently executing control paths and a notion of joining to terminate concurrently execut
ing control paths. The addition of the concepts of F o r k and JOIN to the graph model of control-flow
is illustrated in figure 2 -2 .

Output generation from a c o n tro l-u n i t can be either enduring or ephemeral. Enduring outputs

2

Figure 2—1: A Simple Control—Flow Graph

are latched and operated on by SET and RESET only. W hen an enduring output is SET it ■will
remain on until a RESET operation is performed. Ephemeral outputs are gated and remain on only
while the required condition is met (either residence in a state or execution c.' a transition). They are
operated on by H 0 LD. .

Figure 2—3 contains a control—flow graph which contains all of the features included in the discus
sion above. States are represented by rectangles with the name cf the state indicated in the upper
left corner, followed by a colon. Output generation is indicated by a right-er-row. To the left of the
right-arrow will be a boolean expression and tc the right the operations to be performed and the
names of the outputs -which are to be operated on. Fcr example, State B contains three output
operations. The first is unconditional (it depends only cn the state of the machine) and causes the
ephemeral output "0 1" tc be held true. The second is conditional (the boolean expression is ’'13") and
causes the enduring output ''0 3 '’ tc be SET. The third is also conditional (the boolean expression is
"14 OR 15") and causes the ephemeral outputs "02" and '’05 " to be held true and the enduring output
" 0 4 ” to be RESET.

Alsc required in the specification of ccr.trol is the concept of an initial state. In the graphs, this is
indicated by the arc labelled M asterResel which has no state node at its tail.

In summary, the specification language fcr control should indude the following features;
— the concept of an initial state.
— simple transitions from one state t.c another (M OVE),
— transitions frcm one state tc many states (FORK), .

— transitions from many states to one state (Join),
— outputs controlled only by residence in a sLate or by the execution of a transition,
-—outputs controlled by a boolean combination of inputs AND by residence in a state or by

the execution of a transition,

3

F ig u re 2 -2 : A Control-Flow Grapb W ith Concurrency

4

IW
VT
-8

Assa ssin

B I G = 1 1 A N D (12 O R N O T 13)

SIC

1̂6

I
C

D
D

O

- » rd_D/ W)
13 - » SET/ 031
U CR IS - > RESET/ &*J

M2_D/ Oi . DSf

IS
-» FEST77 OS)

BIG -> SET/ CM*

7JOIW

H X IS

A

r n

£1

(USTEK-flESET

V \1/
A§

-> «3L0/ 01. U|
—» RESET/
•> SET/ CM<

-je 17
| -> SET/ 03)

F ig u re 2 -3 : A Complex Control-Flow Graph

5

I Assassin

— arbitrarily complex boolean expressions far conditions (controlling transitions and output
generation),

— lambda transitions (where the condition is the tautology TRU E),

— ephemeral outputs,
—enduring outputs,
— multiple and varied transitions from a given state,
— multiple and varied transitions to a given state, and
—m ultip le sta te—m achine control-units. .

The task now is to codify the points listed above, such as in a grammar in BNF. It must allcw iar
all the points listed above while limiting its expressive power to those points. The language must be
easily parsed and it is desirable that parser generators be used to generate the code for the parser.
A bove all, the language should be concise and intelligible to design engineers.

The complete BNF for the language (which is called CUDL) is induded in Appendix!. The lan
guage has the ability to represent each of the points Listed above. There are four types cf blocks In
the language. The first is the COXTROLUNTT block. This block indicates the name of the overall
control—unit and contains S T A T E H A C H I N E blocks. It also indudes the spedfication of "global" input
expressions which assign boolean expressions tc an internal variable which car significantly reduce
the size of the code written to desaribe the control-unit. The names of ’'global" inputs can be used in
the descriptions of transitions and ouiput generation. Figure 2 -4 contains the CUDL code describing
the machine whose graph is in figure 2—3.

c e n t r e l u n i t C o m p i l e T e i t 9 :

i n p u t s i B i t : = I I and <12 o r no t 1 3) ;

l e l f t i m e d s t a t e m a c n i n e T e s t S :
I t a r u t a l e F):

t o r k o n B I G t o 6 , C ;
t neveon NOT B I G t o Dj
h e l d 0 1 , 0 2 ; .
r e s e t 05 ;
s e t 04 j

a n d]

t t a t i 8 i
j o i n s C on 14 RND I S t o F ;

- j o i n s E on I t OR I S t o F j ■
h o l d D l ;
H 13 I r e n s a t 0 3 ;
I f 14 OR I S t h a n b e g i n r a s a t 0 4 ; h o l d 0 2 , OS; an d ;

e n d ;

S t a t e C :
move on NOT I S t o E;
j o i n t B on 16 t o F d o i n g b e g i n r e c a t 0 3 ;

i t BI G t h e n s a t 0 4 ; e n d ;
h o l d 0 1 ;

e n d ;

S t a t e D :
mo v e c n 17 t o F d o i n g s a t 0 3 ;

e n d ;

s t a t e E ;
j o i n s B on TftU£ t o F;

e n d ;

. s t a t e F :
mo v e o n I B t o A;
mov e on HOT 18 to D;

en d ;
e n d }

F ig u re 2—4: CUDL Code fcr the Graph in Figure 2-3

6

Assa ssin

Eventually, given an appropriate display device, a graphical version of this language could be
developed and the specification of control could be dene in terms of control-flow graphs rather a
textual description of the graph. A project is underway to implement such a front end to A ssassih

on an A polio D 0 M A IN computer.

3. The Simulation of Control: Sem antics
Given that the syntax of control—unit specification is defined, the designer must also understand

the semantics in order to use the system. The semantics of control is directly influenced by the
implementation strategy selected. Since the specification of control should allow for concurrency
within a given state—machine, a scheme which allows the implementation of such concurrency must
be selected. The notion of concurrency eliminates the possibility of completely and uniquely encod
ing the state variables. The one—hot implementation scheme (completely decoded) allows for easy
implementation of concurrency. The following discussion is largely based on the assumption that a
one—hot implementation is used.

The specification syntax described in the previous section ran be interpreted in three ways. The
interpretation depends on the particular mapping strategy being used in the compilation. The three
possible types of mapping are synchronous, asynchronous, and selM.imed. In order to allow far all
three interpretations to be eventually simulated and compiled, the language includes the concept of a
state—machine type. The choice of a state—machine level semantic interpretation is made explicit
through the use of the keywords: SELFTIHED, ASYNCHRONOUS, and SYNCHRQNQUg.^In this way, the.
user can specify various types -of control using the same system. .Only .the SELFTDIED option is
currently implemented in A SSASSIN. - ' ■ . ’

The simulation of self—timed control can be functional in nature. This functional simulation-
provides knowledge about the sequential function of the circuit Sines the implementation of ^he
circuit is such that if sequence is correct, Junction is correct, the user is sure that'the circuit will
work if the environment in which he places it is conditioned to interact in a self-timed manner with
the oontrol-unit. . . .

The simulation of synchronous and asynchronous control really requires the use of a detailed
timing simulator. This simulator must be able to make accurate delay calculations based on vari
able gate delays. Id the world of the integrated circuit, these delays may or may not be easily
calculated since long wires and heavy loads will significantly alter the operation of any given gate.
Thus, the problem of simulation fcr these types of systems is much more difficult that for the self
timed systems.

Tc interpret the semantic actions of the control—unit, one roust know first the actions to be taken
to execute a transition and second how outputs are generated. Transitions are operations that
change the internal state of the machine. Although there may be many transitions specified for
leaving a given state, it should never be possible to execute two transitions concurrently from the
same state. Since the ccntroi—unit has no ccr.trol ever the sequence of arrival and the timing of the
inputs that trigger transitions, the problem of having twe transitions executed simultaneously is
inherently a dynamic one and its avoidance requires a detailed knowledge of the environment into
which the control-unit is to be placed. If two transitions were executed simultaneously, the result
would be a state—machine which would be in two sequential and mutually exclusive states at the
same time.

The three interpretations of control have somewhat different views of transitions. The one-hot
implementation uses transitions that are essentially handshakes between logically adjacent states.
This characteristic can be portrayed by a "token—passing-machine", with provisions made far the
controlled splitting and recombination of tokens (F O R K and JOIN). In a transition between state A
and state B. state A will first set state B and then state B will reset state k . Consider the case (figure

7

A ssassin

s e t a s c t b s r r c i t d ■ s e t

F ig u re 3—1: Handshaking States

3 —1) ■where a machine contains four sequential slates, A, B, c and D. Assume the machine is currently
in state B. If a transition is executed, moving from state B to state c, both states B and C will be on
during the time it takes state c to reset state B. Now, consider what happens if the transition from
state C to state D can occur immediately after stale c is seL If state c can set state D and state D m n

reset state c before state c can reset state B , the machine will be left in a state where both states B

and D are on — resulting in a malfunction.
The differences between the three semantic interpretations all center around what to do about this

lining problem. In the self-timed approach, it must be guaranteed that such a malfunction cannot
occur. In order to ensure this, the state—machine must verify that each transition is complete before
allowing the next one. This is done by imposing an additional condition on each transition. It-is no
longer sufficient just to be in a state fcr e transition to be possible. In addi Lion, all stales which could
possibly cause a transition to the current state (its predecessors) must also be off. In the
asynchronous approach, it is assumed that gate delays will be welL enough behaved that this problem
does not arise. This approach is especially naive in the context of the integrated circuit where gate
delays may vary nearly an order of magnitude depending on loading. The synchronous approach
tries to avoid the problem by recognizing inputs that trigger transitions only at specified times. If
the dock period is of the same order as the delays in the faster gates, the problem will not be
avoided. Unfortunately, the introduction of the dock n e c e s s a r i l y slows the response of the control—
unit. Of the three approaches, only the self—timed approach guarantees a control—unit which cannot
malfunction due to internal timing problems.

Looking from inside the control-unit, there are two types of outputs. The first is the ephemeral or
gated output. It is turned cn only while the appropriate condition is met. The second is the enduring
cr latched output. This type of output is controlled by setting or resetting a latch and therefore its
level is maintained even after the appropriate condition has disappeared. It is possible, however, to
place a latcted output in a metastable condition by trying to set or reset it at the same time, so same
care must be taken in working with latched outputs.

The generation of outputs from e control—̂unit is always conditional upon something. What we
term as an unconditional output is an output that depends only on being in a particular state or only
on a particular transition being executed. W hat we term as a conditional output depends not only on
state or transition, but also on a boolean combination of input variables.

Unconditional outputs are operated cn immediately upon entry into a state or upon the execution
of a transition. Also, ephemeral outpu'-s which are unconditionally operated an from a state or
transition must be released when the sLate is left cr the transition is completed.

Conditional outputs are operated on when the entire condition becomes true, induding entry to a
state or execution of the appropriate transition. Again, ephemeral outputs which are conditionally
operated on from a state or transition must be released when either the boolean condition is no
longer met or the state is left or the transition is completed.

8

A ssa ssin

Because of the handshake going on between logically adjacent states, there is a small amount of
time when the machine is legally in both states at. the same time. This allows for ephemeral outputs
to be 0 Red in a glitch-free manner between logically adjacent states. Enduring outputs controlled
by logically adjBcent states pcse a problem if both a set and reset are attempted at the same time
— the output latch will temporarily be placed in a metastable state, possibly adversely affecting the
surrounding 'environment

In AS SA S SIN , there is no implicit communication between any two state-machines specified as
part of the same control-unit All such inter-state—machine communication is accomplished by
explicit signalling protocols using inputs to and outputs from the state—machines.

4. The Implementation of Control
The actual physical implementation of control depends on two factors: the circuit implementation

technique and the control-unit implementation technique. The circuit implementation technique
should be picked so as tc make the physical realization of the control—unit implementation technique
as simple as possible.

The selection of a control—unit implementation technique depends on the set of features to be
implemented. Thus, employing F o r k and J o i n prohibits using a monolithic, completely encoded
control -unit- Including F OR K and J o i n in a control—unit implementation technique requires either a
very complex strategy for splitting out the concurrent sections of the control into physically (and
perhaps logically) separate sections, a partially encoded scheme where the sequential control sections
are encoded and the concurrent are not, or a completely decoded machine. The one—hot implemen
tation is a completely decoded scheme in -which F OR K and J OI N are easily included. -The tradeoffs'
involved in selecting the one-hot strategy are discussed by Hollaar [4]. . '

B e s i c a l l y , the one—hot strategy involves the use cf cne later, for each state, two gates for each '
transition, a latch or driver for.each output, and cne gate fcr each condition controlling conditional
outputs from a given state or transition. F cr complex machines, the automatic full—custom layout of
a one-hot control-unit could be very difficult. .

Path-Program m able Logic provides a very regular structure that is particularly well suited for
implementing one—hot ocntrci—units. In the mapping of control onto PPL using a one—hot encoding, a
single latch is used for each state variable. Each transition maps to two PPL row segments, one to
set the next state and the other tc reset the current state once the next state has been set. In
addition, complex boolean conditions on transitions (or on outputs) may require the introduction of
temporary gates. In PPL, the AND cf several inputs is detected on a single row. The OR is formed
on the columns. For this reason, extra PPL columns containing temporary variables must be in
serted fcr forming the OR terms of boolean expressions. Outputs are controlled by using a single
PPL row tc drive all the unconditional outputs controlled by a state or a transition. Each separate
condition fcr controlling conditional outputs uses a single PPL row.

4.1. The Implementation of Control: Floor Plan '
Vr ith the basic mapping strategy defined above, we soon see that there are many ways to specify

the global organization or floor plan of the ccr.trcl-unil. The one selected fcr use in ASSASSIH was
chcsen because it appears to be simple. This Hoor plan (see figure 4—1) has the state latches, tem
porary variable inverters, and input inverters in a single band across the middle of the control-unit.
Output latches and inverters are placed in a band across the top of the control—unit Inputs arrive
from the bottom of the control—unit and outputs are emitted from the top of the control-unit. This
stacking of inputs and outputs results in a significantly smaller area and is a direct consequence of
using a PPL-like structure for the circuit implementation. State transitions are generated in the

9

A ssa ssin

bottom half of the control—unit and boolean expressions and outputs are generated between the state
latch band and the output band It is possible to make other area optimizations in the PPL layout of
cne-hot control-units.

O utput L atch es and G ates

Boolean E xp ression s
and

0 u tp u t G e n e ra tio n

State L atch es, Input/Tem p G ates

T ransitioELS

. F ig u re 4 -1 : Global Organization of A SSA SSIN Output „ _ ■ .

This global organization results in a simple PPL generator that needs nc routing tools for con
structing the control—unit. All the PPL generator has to know is ■which ceils to place and where to
place them — an easy problem ■when compared with routing. .' ■

4.2. The Implementation of Control: Code Generation
ft' e have now almost fully specified the entire system. All that remains is to actually construct

algorithms for generating PPL programs that implement the control-unit. The self—timed control—
unit requires the use cf latches fcr representing sLates. These latches must indicate their change in
state after the set or reset signal has arrived. The PPL cell designed fcr this purpose is the four-wire
latch. It contains crcss-coupled NMOS inverters for the latch with inverting-buffered outputs.
Thus, this cell cannot signal its change in state until after the latch has changed state. A s s a s s i n

can currently generate either a CIF description cf the can trcl-unit cr a file written In
Computervision’s C A D D 52 E>rtemal Data Base format.

The transitions for a self—timed control—unit require two row segments. The first senses that the
machine is in a certain state — say state a, that all passible predecessor states (states which could
have caused a transition Lc state A) have been reset, and thal Lhe condition for the transition is meL
If all these conditions are met, the latch fcr the ne>rt state is set. If there are outputs controlled by
the transition, an inverter is used to appropriately control output generation from the transition.
The second row segment detects that the next state has beer, successfully set and resets state A.

Figure 4 -2 illustrates a simple L-ansition between two states. The machine is in state B, having
come from state A. State A has been reset. The first row below the state latches performs the
'■forward'1 transition, or setting of the next sta te The ‘O' under the latch fcr state A detects that state
A has been reset The T under the latch for slate B detects that state B has been set. The *1’ under
the inverter Tor input II detects that the input condition has been met and the ‘S’ under the latch for
state C will set state C when the transition occurs. The second row performs the "reverse" transition,

10

Assa ssin

or the resetting of the previous state. The *1' under the latch for state c detects that state c hm been
set and the ’R’ under the latch for state B 'will reset state B when the forward transition has been
completed. Completing the operations of both these rows constitutes a complete transition.

I I I I I I
l i J 11 l I I
J A l l l 8 l C I
] M 12 1 I I
I I I I I I

t t i i i i t t
I B --------P - l ---------J ----------S I
i : I 1 1 I 1 1

I - 1 - I - I - I R -------- P - l I.

Fig a re 4—2: A Simple Self—Timed Transition

Asynchronous transitions are different from self-timed transitions in that they do not sense that
predecessor slates have been reset. If gate delays are suffidently non—uniform, a machine construc
ted in the asynchronous manner would not function properly. Figure 4 -3 show the same section of
control as in figure 4 -2 , implemented asynchroncusly.

I 1 1 1 I l
I l I l 1 I I I
I A I I I B I C i
I I 1 I 21 I I
I I I I I I

t i i t t i i t
l - l - l - l l - P - l -------- s i
I I I I ! t I I

I - 1 - I - I - I R -------- P - l I

F ig u re 4—3: A Simple Asynchronous Transition

Synchronous transitions are implemented the same as asynchronous transitions, With the excep
tion that the state latches are replaced by clocked flip-flops. This is illustrated in figure 4-4 .

I I I I l I
I I I I I I
l I I I l l
I) I I 1 l
I 11 I I I I l
l A l l l B I C l
- - 1 - 2 - - - P h 12
I I I I I I
- - - - - - Phil
I I I I) I
I I I I I I
t i t : ; : i i

l-l-l-l 1-P-l-- SI
t i l l) ! I 1

l - l - l - l - I R --------P - l I

F ig u re 4 -4 : A Simple Synchronous Transition

The following discussion explains the ASSASSDf compilation of all the constructs described by
Hcllaar [4], Examples are drawn from the sample control-unit whose flow-graph is contained in
figure 2 -2 . The CUDL code for this ccr.trol-urJt is in figure 2 -4 . The complete PPL program for this
example is in figure 4 —5. The various constructs being discussed contain portions of this PPL
program. Row segments are referred to from left to right in a given row. Row and column numbers

11

A ssa ssin

are as labeled in the figures.
Figure 4 -6 illustrates the compilation of a move transition (from state A to state D). Rows 17

through 19 contain the state latches, input gates and temporary gates. T 1 contains "12 and not 13."
T2 contains ”14 or 15.” T3 indicates that the JOIN transition from states B and c to state F is cur
rently being taken. T4 indicates that the M OVE transition from state D to state P is being taken.
Row 15 is the forward transition from state A tc state D. It senses that state A is active by the *1' ia
column 1, that ‘'BIG” is false by the ‘O' in columns 2 and 3, and that state F is inactive by the ‘O' in
column 22. State D is made active by the ‘S’ in column 17 and the ro-w load is the ‘P ’ in column 11.
The reverse transition in row 14 simply senses with the ‘1’ in column 17 that state D is active and
resets state A with the ‘R ’ in column 0.

Scale—of—tv,-o loops pose a particular problem It is possible to get stuck in both states, with no
way to get out. Scale—of-two loops therefore require some sort of mutual exclusion on transitions to
avoid this problem. Figure 4—7 illustrates the compilation of a scale—of—two loop. Row 5 contains
the forward transition from state D to state F. Note the 'C's in col limns 0 and 22 which detecL the
predecessors to state D. The ' in column 18 is used in generating the outputs associated with this
transition by driving T4 when the transition is in progress. The right segment on row 12 resets state
D after the forward transition tc state F has been finished. Note the ‘l* in column 19 which senses
that input Ifi has not yet become false. This gives the required mutual exdusion of input signals in a
scale—cf—two loop. Row 4 contains the forward transition from state F to state D. The ’0 ’ in column
19 detects the false state of input 16 and the other '0's detect the inactivity of the possible predeces
sors to state F. Row 4 contains the r e v e r s e transition associated with the transition from stale P to
state t). The ‘O' in column 15 senses that input 17 is currently false. ' .

Figure 4—6 illustrates the FORK transition from state a to states B and c. Row 13 contains the
forward FORK transition. It senses the state A is active, that state F is inactive and that input BIG is
true (the T s in columns 2 and 3). It also sets both states B and c. The reverse F ork transition is in
the left segment of row 12. It detects that both states B and c have been activated and resets state A.

Figure 4—9 shows the JOIN transition from states B and C tc state F. Row 9 implements the
forward transition by sensing that the predecessor state (a) is inactive, states B and C are active,
inputs 14, 15 and 16 are true, and by setting state F. The ‘+ ' in column 14 is used for generating the ̂
outputs associated with the JOIN transition from state C. The reverse transition is implemented in
row 6 where the activation of state F is detected and states B and c are deactivated (reset).

Figure 4—10 shews the compilation cf the input boolean expression BIG - I I and (12 or not 13). The
leftmost row segments on rows 2C and 21 (l+ —i-P la n d W -P —01 respectively) compile the subexpres
sion ”12 cr net 13.” The ‘-r 1 in column 2 generate the OR of these two rows into T 1. 12 is sensed by
the ‘1’ in column 4- of row 20 and "not 13” is sensed by the ‘C’ in cciumn 5 of row 21. Tc sense "BIG”,
the program must contain ‘l ’s in bcth columns 2 and 3. Tc sense ''not BIG” it must contain ‘Os in
both columns 2 and 3.

Figure 4—11 shows both conditional and uncerditjcnal output generation from states and tran
sitions. Row 22 implements the unconditional outputs controlled by state A . The ‘V in column 1
senses that state A is active. The 's in columns 6 and 13 implement the "HOLD 0 1 , 0 2 ; ”
statem ent, the ‘S' in column 17 implements the "RESET 0 3 ” statement and the ‘R' in column 10
implements the "SET 0 4 ” statement. The 'S' is used to reset a LATCH2 PPL cell and the ‘R’ is used
to set it. Rows 24 and 25 implement the conditional outputs controlled by state B. Row 24 detects
the ”14 or 15" condition and HOLDs 0 5 and 0 2 and resets 04- Rcw 25 detects the "IS” condition and
sets 0 3 . The last row segment on row 20 (»1 —P---------51) implements the unconditional output (03)
controlled by the JOIN transition from states B and c tu F. Row 26 implements the "if BIG then set
0 4" statem ent from the J OIK transition in state c.

12

A ssassin

- 1 0 1 - 1 0 1 - - - 1 0 1 - 1 0 1 - - - - 1 0 1 -
- 1-151-121-1-1

- 1 l - l I- - -
1 4
I

1 - 1 1 1 - 1 - 1
1 - 1 J- - -

1-131
- 1 1 -

- l - l

1 - 1 - - ------ -R ---- --- 1 1 - I - I - I - - t- I - - l - i
- - i t a - , - - _ i “ 1 - - i - - - - - -

1 - j - 1 -] - 1 - | 1 --- 1 ----- - - -P — ------- --- R ! - - 1 - 1 - -l -l
- - i i » 1 1 ! - - a - i - 1 “ -) - - - ~ - -

) - 1-14 -S t- 1- 1 • 1 - 1 - 1 - 1 - 1 - - l - l
• - i 1 - 1 \ t 1 — i - i “ i * - i • - - - - -

1 - 1 - 1 - I - 1 • 1 — 1 - 1 1---P - - 1 - 1 - I - 1 - 1 - 1 - - (- \ - -t-
- - : 3 - t ! l l “ t - i - 1 - - i - - - - - -

(“ 1 1 - - --- - ---+------ p -ft ---♦•------ --- S 1 - - 1 - 1 - l - l - i
- 'I ; 1 - l - l t - - - ; - 1 - - : - - - - - -

1 - } - I " 1 +- P -01 - 1 - I+-P - 1 l - l - 1 - 1 - 1 - 1P-R-1 - 1 - 1 - 1 - 1 -
- J ; 1 -* : - i : - • 1 - 1 - - i i ̂ - - « -

1 - 1 -) - W - 1 -P 1 P- +-1 i 1-P --- S 1 - - 1 - I - l - l -
- J 1 1 a » — i i i ! - - : j - - - j - - - * -

1 A
1 1 1
1 I I T I 1

I I I I
I I I B 1 T i I

1 1 1
[T i l l

i l l - *
C m i l D I T 1) £ i r

I 1
1

1 1 1
| 1

2131 12 U 15 15 1
1 1 1 E 1 1 1

13 17 1 M
(i t i

8 1
1

(
i

i i 1 i i i i j t 1 : : i i t i i t t

i i r i i i i : i i i i 1 i i ■ i
1 R-- --- 1 1 - i - 1 - 1 - i - i -

i i - i t t i i 1 t i t t : t t i

1 R - - - --- — p - i — - - - - - 1 1 - 1 - 1 R ---P - 1 --- - j
i i - i i i t i : i i i i l l t i

i ; - t : i - : i i i ! i i i t i
1 - 1 - 1 - 1 - 1 - 1 R------ - --- --- P-- ------- --- R - - — i

- S ■ 1 — i i : I i : : i * i
\e-~ ------1 — - 1 -■*■-

t 1 - : i - - 1 - i : i : : l 1 i
1 - 1 - 1 1 - 1 - 1 R------ - --- --- p. ------- ------- — i

i : - : 5 - - i - i ; i i \

1 0 -- -0 “ - 1 --- i - i -
t \ - : : - - 1 i : i i i

1 - i - 1 1 - I - 1 - 1 - I t 1 - 1 ---- - _ p --- ------1 I - 1 -
- i ; -> - - - i : i i : - i t

- i - 1 : - - — - ; - t i
1 - 1 - 1 1 - 1 - 1 0 - ----- ------P - - 0 - S - - -0 -0 -- — i

- t - : : - - - - i f - : : - i t
i - \ I 1 - \ - l - \ - \ - \ 1 1 - 1 • 1 - 1 - I ---1-P ------------ -R 1 -

- t - : i - — - - t - - i i -
! - 1 S - ----- ------0 ► - - P - 0 ---------- - 0 -------- - 1 - 0 - - ----- 1

- | - i - - - i -
1 - 1 I

_ ; - - —

F igure 4—5: Sample PPL Program

13

Assa ssin

Col u m n N u m b e r

1 1 1 1 1 1 1 1 1 1 Z 2 2 2
B . 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ■2 3

R 1 19 1 1 1 1 1 1 1 1 1) 1 1 1 1 1
01 1 A 1 I 1TI 1 1 1 1 B i T i i u i n c m u 3 I T I I 1 £
Wl
1

18
1

1 1 1 1 2 1 3 1
1 1 1

1 2 I 4 1 5i i i 1 £ 1i i
1317 1
I I I

14 16 1
1 1 1

* ! 17
\
1

I
1

1 I ■

1 1 1
i

1
4
1

I I

1 1
1 1 1

1 1) 1 1 1
0) ■ t i i ! 1 1 I 1 » i i : i : i : i i i ; t i i i
. 1 15 -

t i i l l l l l » i t i l i t : i i l I t i i i
14

F ig u re 4 -6 : Compilation cf the MOVE Transition

C o l u m n N u m b e r

1 1 1 1 1 1 1 1 1 1 2 2 2 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

ft I 19 I I I 1 I I I I I I I I I I I I I I I
01 I A I 1 I T I I I I I B I T I 1 I 1 I I I C I T 1 I I D I T I J l E t F I
V I 18 I 111 1 12131 I 2 I 4 I 5 I £ I I 3 I 7 I 14161 I I

I I I I 1 I I I I I I I I I I I I I I I
NI 17 I I I I I I I I I I I I I I I I I t I
01 I t I i i i) i i i i i r t i : i i : i t I I I
. 1 12 I R -------------- P - l -------------- 1 I- I - I ft----P - l ---------1 I

i i I i i i i i :i i i i i i ; i i i i : I I I
5 1J0---------------------------- p--------- l ----1 -♦--------- 0- S I

- l i - i : : — — * i t i — — r ' i i - i i - i i
4 I - I - I - I - I - I - 15----------------------------------0 -------- P ---------0 - S -------- B - B 11

- i i - » t : — — « ; : - i : - i i
3 l - l - l - l - l - l - l - l - l - l - l - l - l - l - l -10--- 1-P--------- R | - |

F igu re 4 —7: Compilation, of the Scale—cf—Two Loop

C o l u m n H u m b e r

0 1 2 3 4 5 6 7 8 9

R I 1 9 I I I I 1 I I I
01 I A I 1 I T) I I I I B I T) 1
VI 18 I 111112131 1214

I I I I I I I I I
NI 17 I I I I I I I I
01 I t I I i : i t t :
. I 13 l - l 1 - 1 - 1 -------------S-------

1 i 1 t i : : i i i
12 IR — P - l -------

1 1 1 1 1 1 1 1 1 1 2 2 2 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3

1 1 1 I I I I I I I I
l l l l l C I T I I I D I T I I I E I F I
I 5 I 6 I I 3 I 7 I I 4 I 6 I I I
I I I I I I I I I I I
I I I 1 1 1 I I I I I

i i : i : : : i l i i t ; l
 P ----------S -- 0 1 - 1

i i 1 t t t I i
-------) | . |_ |R---p-l------- j |

F ig u re 4—6: Compilation of the FORK Transition

5. The A ssassination oi a Control Unit
This section illustrates the complete design of z non—trivial state—machine. The control-unit to be

designed comes Irom the Ada-Lo-Si!icon Project underway at the University of Utah. This project
has as one cf its objectives the automatic transformation ol Ada programs into hardware implemen
tations using integrated circuits [5j. The A da—Lc-Silicon project is using the Internet Protocol (see

14

A ssa ssin

• C o l u m n Nu m b e r

1 1 1 1 1 1 1 1 1 1 2 2 2 2
£ 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

RJ 19 j I I I I 1 I I I | | i i i | | |
0 A I I I T | 1m 6 I T l I l l l I i C I T J 1 I D I TI I I E
U 18 I 1 I 1 12 13 1 1214.15161 13171 M I 8 I
1 1 I I I I I I I I I I I I I I I I

NI 17 I I I I I I I I I I | I I) | | |
1 1 > ' I I T 1 t : t J I ; | 1 t 1 i

F I

I t I

8 i if I (I i _ 1111 1 J |

01 i .
.1 9 10

F ig u re 4-9: Compilation of the JO IK Transition

C o l u m n N u m b e r

1 1 1 1 1 1 1 1 1 1 2 2 2 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

Rl 21 I - I - I - I ♦ - P - 0 I - I - I + - P - 1 | - | - |- I - I - 1p - R - l | - | - | - |- |- |
01 “ I 1 I - ! * 1 I - 1 - 1 - I 1
W l 2 0 I - I - I - I + - 1 - P I - | - I + - 1 - p | p - * - l | i - p ---------- S I — I — t — I — I — I — I

I “ l) I) : - t s i i * - ;
N I 1 9 I I I I I I I I I I I I I I I I I I |
01 1 A I 1 I T 1 I I 1 I B I TI 1 I I I I 1 C I T I I I D I T I I I E I F t
■ 1 1 8 I 111112131 I 2 I 4 I 5 I 6 I I 3 I 7 I 14 18 1 | |

I I I 1 I 1 I I I I I I I I I I I I |
17 I 1) 1 1) I I I I I I I I I I I | |

F ig u re 4—10: Compilation cf Boolean Expressions - BIG

Column Number .

1 1 1 1 1 1 1 1 1 1 2 2 2 2
0 1 2 3 4 5 6 7 6 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 ,

I — : — — — i — i — - —

29 - 1 l-l 1- - 1-

26 1- 1- 1 - 1 - 15 1-12 1- 1 - 1-14 1-111- 1 - 1 - 1 - 13!- - - (- - 1 -

27 1 - I - 1 - 1

R 1 26 1 - I - 1 1-1 --------- -P- --R------- -1 1 - 1 - 1- 1 - - - I - - 1 -
0 1 - - l i t - : - - - i - ; - i - - ; - - - - - -
Wl 25 1- 1 - 1 - 1 - 1 - 1 1---I --- ---- p___- ------ -R I - - - \ -
1 - - i i i : i i - - i - i - i - - l -* - - - - —

N 1 24 1 - 1 - 1 - 1 - 1+-P-»-l - 1 ---S 1 - 1 - 1 - l-l-l - I- 1 - - - | - - I -
U I - - I : — J : i I - i * i - : - - ; - - - - - -
Ml 22 1-11 P “R---+ --
B 1 - i i I - i - i I — - . , - i - - i - - — ~ — —
E 1 20) - 1 - 1 - 1 ♦-1 -P 1 - 1 - 1 ♦- 1 -P t P- + - 1 1 1-P-- -s 1 - - - I - - 1 -
R 1

1 9

1 8

17

1
1 A
1
1
1

1 1 1 : - 1
1 1 1 1 1
t I IT 1 I 1 1 1 B
1 1 1 1 1 2 1 3 1
1 1 1 1 1
1 1 1 1 1

« I 1 - - <
1) 1 1 1
1T 1 1 1 I I II C
1 2 1 4 1 5 1 6 1
1 1 1 1 1
1 1 1 1 1

t 1 1
ITIII
1317 1
1 1 1
1 1 1

)
D IT

1 4
1
1

I
8

E F

F ig u re 4—11: Compilation of Outputs

Postel [6]) as a test vehicle. The Internet Protocol hes been decomposed, into three communicating
hardware (and software) submodules [5]. Figure 5-1 illustrates this division. The protocol consists

15

A ssa ssin

of N 1NM-IN submodules, each of which receives transm itted data and assem bles datagram s from a
single local area network, N INH-OUT submodules, each of which appropriately fragm ents and
tra n sm its datagram s to a single local area network, and a single DCif _ SRV submodule th a t interfaces
the N INK _ OUT and N INU_IN subm odules to one or more host computers. The complete Ada code
describing the INW-OUT submodule has been w ritten and compiled and w illis presented in a
forthcoming rep o rt

F ig u re 5 —1: In te rnet Protocol H ardw are Submodules '

■ The INM-OUT submodule cf the In ternet Protocol has been selected as the in itial test case
P re lim inary Ada code in the form of a complete task has been w ritten and compiled. INli_OCT
consists of th ree separate tasks, M ain, Read— Init_ Param eters and T ransla te—TO S_ Table. Of
these, the hardw are arch itectural design has been completed for the R ead— In it_ Param eters task.
R ea d - In it_ Param eters deals w ith the initialization param eters of INU-OUT and loads various
reg isters w ith data rela ted to the transm ission of datagram s through a local area network. Il
lu s tra ted in figure 5-3 is a block d iagram of the hardw are im plem entation of th is task. Professor Al
D avis performed the mapping of the in itial version cf Ada code into a block diagram. Several
m odifications have been made since th a t time. The block n a rk e d "R ead- In it— Pars -F S M " is the
co n trc l-u n it derived from th e Ada code for the R ead- Init_ P aram eters task. Figure 5-2 contains
the Ada code for a section of Read— ln it_ Param eters. The complete code is found in Appendix .

F igu re 5-4 contains th e control flow -graph for the Read— lnit_Param eters task as extracted from
the Ada program . It should be noted th a t this particu lar flew—graph does not use the FORK and JOIN
transitions available in CUDL. Indeed. F ork and J oin will probably not be used in implementing
task ing , b u t may be used for more fine grained parallelism based on data independency. Ada accept,
s ta tem en ts are transla ted into r e q u e s t - a c k n o w ledge bundshakes w ith the appropriate module.
T hese are indicated by the nam e of the accept (GO or SRV) concatenated with ".REQ" and "A C K '1.
S ta te RIPO is the in itial sta te cf the m achine and sends in itia lization signals to several of the
d a tap a th modules in the environm ent of Read— Init_ Param eters. Of p articu la r interest, the signal
INITNUM .REG,L0D is held during th is slate . This signal indicates to the reg ister holding the
in itia lization num ber to w atch the associated three—wire bus and assum e its value at all times.
'W hen th is signal is dropped (in s ta te R IPl), this register latches the value on the bus. The first
accept sta tem en t ("accept G 0(...) ") is begun with the transition from sta te RIPO to sta te RIPl..

16

Assa ssin

b i t i A
l o o p

• C C t P t t a I •" Ca t 0 ^ Cf t dt < r e « Ha i n (| i z t e f h a a p r y f i d d r » a *)
I n 1 t _ # u » , < d r « a l i b i t j i

r t i p t M i i o u t c u t . f • * p o o » i)
da
rtfPOMt 1 = itM. ek > -" Aiao tiini inlt.pk*
/ p r i n 0 i « i n 1 . . i n i \. m ft v i . f c r a » 1
l o o s

i e c a D t S r v . r » f l (- - P f D C i M H i i B P 7 A d d r « t a
n r v t f . d a t u i i i r v . c o i i h d ;
r * i p p r » » , v t r i ok/\ c u t . ' (i p s n i t)

do
fVi *©r y_ f | Q U « • t t - - P y t t h y ^ i l ©Hi l e t h » y » c * d u l f .

r * o v * » l . t K O I . U f M i = > 1 c k d . i d d r f r (i
c h u n k , e / . i o d r i n . f fi r ■ ■ 1 — > i i r v « f a c D > c i n i l , d i i u i .
o e t * t „ f e r *a 1 * > d o M , c » r « , o c t t t) i

and Sr r . r » i) i
» r d 1o o b :

“ “ Gat i ^ » fi * rvd » v < d u x 1 ■ a i t i • 1 i t at ■ p « f i i i l « n (eon a j n a d rn t h *
- - n # » t E o c d t l r a C B l v e d) f r o P> t ►»* n # ® o r y f l o d u l * .
< 0 ^ m d a * < n fc > ■ ?
l o o p

n « » 0r r ^ f c Q u n t (
e a Qii • p t _ t r » f ^ f b r a a 1 = > r i c i i » i . d i l g t . o c i i t .

c h u n t . i d d i ’ t i t . ^ c r » »] — > T . d i l u * ,
o e t a t . f o r a *) = > o c i « t , . f * j i f t t r J :

c s c c ift 6 a r ■•
] - >) t>*% a ft*^ p a d t \ . 1 6 c c t at „ r • $ ► f i # r i - - 9 b i t «

wh a n 2 2 > I n i . i i k , f t t c k t i . : 3 e c (n . f * s n t « r i - - 8 b i t *
x h t f i 3 2 > l r » . l o d m i . l t n $ i h - : S c c l i l . r i s i f t i r I - “ 6 b i t *
*r»af> t = > V i » I , 6u1, . 1 » 1 = 6 C U V . r » p i H » r) 6 b * i a
« h a n 5 “ > U * . < [* i . s v i . h i : S o c t d . r t e n u r ; — 0 b i t *
vfran t = > m c k „ \ y p 9 : » o c \ a t _ r • 9 i * v ar J * “ 1 bi t
« h * n ? = > 1 c c a l „ t y p i , e f . »*r » 1 t a* t » b 1 a . ro*- . « > I •

i — e c l » t . r # j i » 1 » r : “ - 1 b i t *

» h * n fi =■ > r . o f c b i r . t r , U t *] , n r v . c *
. ■' ’ i s o £ i » t . r i 8 'it«i‘ i ■■ 3 b i l l

* n d c • * a 3 -
an d l o o p ;

- - R e a d i h t y p * - o f - # # r v * c t u i r i i h i t a b) * .

d i c l t r i "

r D k . n u i k i r : ■f'ttgir r i n ^ i 6 . . nu« be r w t(_ 1 o c ft\A r» • t _ t ve w t . c ̂ i«/* v i d I
c q l . h o i k i r : i n t | j » C f i r j i 6 . . I o €*i) 4 I ? P * . t # ^ </i C f , (* o « . * I fcftJ

i h di* ■ ' « » is » ^ r#fwp* f , . r»o»b»r_e^_ 1 d c i), « • \ _ t r P •« . a f n r v i c i

■ i * r v . c (, r t) k . . i i u
. = 8 i

B I S ' "
f h u i t m 1 ; = fe.

1 t 6 x> - ~ O u t e r l o c o n a d i a l l r o«>i sf T OS t a b l e -
c o l . n o * be r j ~ 8 -
1 p f i p I n f t f t f i o o p r a i d s i n t>f »« r o w o f 7 0 S l a b i a ,

ft* a a r y _ p « q u a % I (

r # # n i n . l * P I . ^ n r i i l = > f r c « I » t . O C L H ■
- c h v r t W ^ t <_ i o o r aft*, t c r w a l - > d o n t . t i n . >. « i \ u * .

a c t a t . / o r a a L = > U i , i i b l i (i r < d i x)) J
col. ftU>D«' cc). Pu*t'l' + 1 •
i k i l r f hf i ' c o l , f iu f tt .r* ’ c) 6 c a 1 . <•> c \ . \ y pa „ c f _ * t r v i c a . r Ok „ • » 3 a J
i»io»» ! — ♦- 1:
► f <r,dl- > (iv.'.DI, >lbll, r ! < t h an

f e f o p n n fc a d . a r . ̂ c o • n « ;
f i u r « : - * E » i i t Ka c u r r * M f t ecvat s t a t e m e n t ,

arte* 1 f i
i r i d U c c ; ■■ t n d • n ' - a r l o c p -

rtK. n u t b i ^ ■= roi.w n u» tif f 1 ;
^ h * r , r 6 » ^ n u * a # r = n u t s a r . t r . t y f i i . e f . i i r v i c i /

a n d l o o p : - - E ^ < l o o t a r 1 .
ar*d: - - C " d d « c l a r « b l t c ^

and Go ; - - C ^ d m u p r f t e a a n n ^ .
a rst) o 6 c ; L n d of c u t e r - a o a t (i ^ u) I o c p -

a n d I a 1 P a ' » * i i a ' i :

Figu re 5 -2 : ADA Code for Read_ Ini t_ Parameters

Note Lhat the condition for Lhe Lransitior. includes, in addition to CO.REQ, INITNUM .REC J3 0K and
INITNUM .CTR.DON. The machine cannot proceed until it is sure th a t the initialization num ber
reg ister contains the correct value and the associated counter has been reset. In state R IP l, the
m achine begins the seoond accept ioop. W hen the SRV.REQ signal arrives, a transition is made to

17

A ssa ssin

F ig u r e 5-3 : Block Diagram of R ead . IniL_ Parameters

18

kTU
M
J
O
U

-v
se
.c
rp
.t
o/

i-
rf
cn
.A
o;

-n
R/
.R
co
t

-̂
oi
.«
x

i
-.
iH
jm
ui
.o
r.
Eo

A ssa ssin

F ig u re 5—4: Control F lc r w -G -r a p h fcr Read- Init_ Parameters

19

-T
cs
.i
si
w.
cr
r.
tn

A ssa ssin

s ta te RIP2, w here th e counter is increm ented (indicating that ano ther byte of address is to be tran s
m itted to the memory module), and a request-acknow ledge handshake is performed between
READ - IN IT_ PARS and the memory module. The signal MEM.SEND Indicates to the memory
th a t it is to receive data. W hen the counter has been increm ented (INITN UM .CTR.DON) and an
acknow ledgem ent from the memory (M EM A CK) have been received, a transition is made to state
RIP2. S ta te RIP2 term ina tes the handshake 'with the IN i i _ SRV module by asserting the signal
SRVACK. Onoe both SRV.REQ and MEM.ACK have been lowered, the output cf the comparator
betw een the in itia lization counter and register is examined. One of the two transitions from state
RIP2 is executed based on the value of INITNUM .CM P.EQ. If INITNUM .CM P.EQ is on, the in
itia liza tion loop is term inated. If it is off, the in itia lization loop is continued. ■

The memory module now has the complete address of the param eter block which needs to be
tran sm itted to INU_OUT. S tate RIP3 begins an in teraction between the memory module and
Read— In it_ P aram eters th a t loads a set of registers appropriately. The handshake w ith the
memory m odule is begun by holding MEM .REQ. At th e same time, the register counter (which was
in itialized to 7) is increm ented (and is now 0). V hen an acknowledgem ent is received from the
m em ory (M £M A CK), and the reg ister counter is finished counting up by one, a transition is made to
s ta te RIP4 w here the signal REG.DECODE.ENA signals the appropriate latch tc gate in the value
from the memory bus. M EM .REQ is left on here so th a t the valid data on the memory bus does not
d isappear before i t can be latched. V hen the appropriate register signals th a t it has the data loaded
(REG.A CK). a transition is m ade to s ta te RIP5. W hen the memory acknowledges the term ination of
a transm ission cycle (net MEM.ACK), a com parator w ith the reg ister counter is m ade to see If all
required registers have been loaded (REG.CTR.EQ7). If net, the loop is repeated, incrementing the
reg iste r counter each time. If so, a transition is made to state RIP6 and the processing of the Type—
of-Service (TO S) t? >!e is performed. .

The type-of-se- ~e tab le is to be a linear array of registers (or ram cells), indexed by row and
column. In itia lly tins indexing was done via a m ultiplication (in the A da code). It w as replaced w ith
a doubly nested loop tc m ake the hardw are im plem entation easier' and more straightforw ard. In
s ta te RIP6, th e type—of—service column counter and type-cf—service address counter are increm en
ted. They w ere in itialized to their m axim um value in state RIPO. At the sam e time, a handshake
w ith the memory module is begun (by raising M EM .REQ) W ben the memory has placed the data on
the line and replied by using MEM.ACK. and when the two counters, TOS.COL.CTR and
TOS.ADR.CTR have beer, incremented, a transition is made to s ta te RIP7. Here the TOS table is
signalled to load the value from the memory bus (TO S.REG.LOD). M EM .REQ is held high so tha t
the data en the mem ory bus rem ains valid. V hen the data is in the TOS table, TOS.REG.DON is
asserted and the next s ta te becomes RIPS, This s ta te term inates the handshake w ith the memory
module. W hen the acknow ledgem ent from the mem ory arrives, if all columns in the current TOS
table en try have been processed, a transition is made tc slate RIP9 to proceed to the next TOS table
entry . If more columns in the entry need to be processed, the TO5 .COL.CM P.EQ signal will be false
and the transition from s ta te RIP8 tc state RIP6 will be taken.

In s ta te RIP9, the column counter (TOS.COL.CTR) is cleared and the row counter
(TOS.ROYr' .CTR) is increm ented. V hen these two operations are complete, the next sta te becomes
RIPA w here a check is performed to see of the en tire TOS table has been loaded. If it has not,
TO S.ROW .CM P.EQ will be false and the a transition occurs from state RIPA to state RIP6. If
TOS.ROW.CMP.EQ is true, the output GO.ACK is asserted, term inating the 'A ccept GO (...)”
s ta tem en t. W hen GO.REQ is lowered, the next s ta te becomes RIPO to begin over again when
necessary. F igure 5 -5 contains the CUDL code Fcr the R ead- In it_ Param eters sta te machine.

The CUDL code in figure 5-5 was run through A SSASSIX. The code was sim ulated to verify th a t it
m atched the flow—graph; the associated PPL program was then generated through compilation of the
CUDL code. F igure 5—6 contains a plot of the PPL program for the Read_ In it_ Param eters control.

20

A ssa ssin

C o n t r - o t l l n i t R e a d l n i t P a r m * ;

S i a t « H a e t i i ne R I P :

S t a r t S i a t e R I P 81
■ o v i o n G 0 _ R e q and (I n l l N u t t REG_D0M and I h i t K u m C T R 00 N) to R I P 1;
h o l d l n l t K u n CTR C L R, I n i t K u B _ R E S _ L 0 0 , REC CTR flBX;
h o l d T 0 S _ C c I _ C T R _H R X , T O S _ R o w _ C T R _ C L R , T OS_ f l OR_ CT R_ n f i X j

• n d ;

s t a t e R I M : .
a o v a o n S R V _ R » q t o R I P l f l ;

end ;

c u t * R I P l R i
n o v e o n flEH_fl cK a n d I n i t K u n CTR DOK t o R I P 2 ;
h e l a f 1 E n _ R e q , I I E n . S e n d , I n I t N u * _ C T R _ I N C ;
s a t C 0 _ R » s p o n E » ;

• n d ;

c t a i * R I P 2 :
mo v e o n n o t S R V _ R « q a n d (n o t rEn_Ftcfc an d I n i t N u » _ C n P _ E G) t o R I P 3 ;
n o v e o n n o t 5 R V _ R* q a n d (n o t n£ n_ f i es and not I n i t N u a CUP EQ) t o R I P 1 ;
ho I d SRV^ f i eK;

end ;

I t l l t R I P 3 ; .
n o v e o n nEn_ f i ex a n d Reg CTR DON t o R I P * ;
h e l d 11Efl_Req, R « g _ C T R _ I N C ;

e n d ; •

s t a l e R I P 4 :
t t ev eon R e g _ R C K t o R i p S ;
h o l d n E H _ R » q , R * g _ D e c o d e _ E N R ;

e n d ; _ ,

t t A t * R I P S : . -
mo v e o n R e g _ C T R _ E Q 7 and n o t f l En_Acl : t o R I P 6 ;
mo v e o n no1 R e g _ C T R _ E Q 7 end n o t f l En_fl cK t o R I P 3 ; .

• n d ;

s ta t e R I P S : '
n o v e o n nEf l . Aei c a n d (T 0 S _ C o I _ C T R _ D 0 N and TOS Rdr- CTR 00 N) t o R I P 7 ;
h o l d n E H _ R * q , T 0 S _ C e I _ C T R _ I N C , T O S _ f i d r _ C T R _ l N C ;

e n d ; .

t t a t e R] P 7 :
mo v e o n T O S _ R e g _ D O N t o R I P S ;
h o l d T O S _ R * g _ L O O , r i E f l J U q j

• nd;

s t a t e R I P S :
mov e on n o t REfl _Aei : a n d T C S _ C o I _CHP _ EQ t o R I P S ;
mov e on n o t f l En_fl eK a n d n o t T 0 S _ C c I _ Cf l P_EQ t o R 1 P 6 ;

e n d ;

d a t e R I P S :
i t cveor . T C 5 _ C o I _ C T R _ C Q N and T C S _ R c u _ C T R _ D O H to RI Pf l ;
h o l d T O S . C o I _ C T R _ n a x , ■ t OS _ Ro w_ C T R _ l NC ;

• nd ;

s t a t e R IPft :
si eve on n o t T O S _ R o w _ C R P _ E Q to R I P S ;
mo v e o n n o t G C _ R e q t o R1P 6 ; •
i f T O S _ R o u ^ C n P _ £ Q t h e n h o l d G0_flck: ;

e n d ; .
e n d ;

F ig u re 5 -6 : CUDL Code for R ead - Irut_ Param eters Control

F igure 5—7 shcrws the composite layout.
The compilation of the control unit took approxim ately 2 m inutes of DEC-System 20 CPU time.

The resulting circuit is 2C28 microns by 1C50 microns (39 PPL columns by 30 PPL rows using 6—
m icrcn geometry). The datapath related to the Read— Init_ Param eters task cannot be layed out
until the relationship of some of the registers, which represent global variables (with respect to

21

A ssa ssin

I - i “ 1 - i i - * “ * • 1 * 1 ■ t * i * » m \ - i - -

A
- 1 {
- I A 1

“ 1 J
- 1 A 1

" 1
- I A

-
-

I -
A 1 -

l l -
LA I -

1)
1 A 1

- 1 I -
- 1 A l -

t 1
1 At

-1 1 -
- 1 Al -

1
IA

“ 1 l — l
- 1 A I - 1 A

- 1
• 1 A

- i i - i -
- 1 At - -

I - I l l
• 1 1

- I I I
- I 1
- i
- l - l

- 1 ! - 1
- L I -

i -
111-
j I •

1 I 1
I j

" I I I
- 1 \ “

1 1 1
I i

- i n
- 1 1 -

1 I
1

- H i - 1 I
- 1 1 - f

- n
. i

- I I 1- -
- i l - l -

i
- • l - l - 1 - - - 1 - i - i -

3
l - l • | l | .

i
i - 1

- 1 -
- l - l -

1
1 -

- l - i
- l - l - l - - i -

* — i — i ■
I l - l l - l i<
I A I - I A I - I A T
I l-l l-l I-
I I I - I 1 I -I I !•
I I - I l-l I'

i -
l - l - l I - I

l - l l - l 1 - I I - I -
- i

1- 1-

I - I*

IP-<

i -
l-l-l

- J - I - l - I - !

l - l - l - l - l - l - l - l - l - f * '

- i - i - : - : - -
I —I —l - l - l - l * --- 1 -P ■

■1 !
- i ■
-1-1
- i ■

I - I

l - l l - l - l - l I - I I - I - I - I l-l-l l - l

I - I

I - I

-1 I

P - * - l
i - i

I - I l - l I - I - j - j _

•1 I * -) -

l-l-l

-I

- I

1-

I - II - I - I I -

--- R- 1 -
i

-1- I +-P-

I t I
I A I A I

t i l l
I 11 I I
I I I

: i
s - -
i i
1-1
t !

I I
A I A I
I I 4 L

m i

I I I
I A I A I

L f I I
I I I 1 I
I I I

i

J A
4 L 14 I I

I 1
I I

I I
I A I
I U
I 1 I

I

i
IR*

I - I
i

l-l
i ■
I - I

I
I

L I 4
I
I

i
R
i

I I I
IA I A I

LI 114
t I I I I
I I I

i

I I I 1 I I I t
I A 1A I ! 1 I A t A I I

L I I 14 L I 4 L I I 14 L I 4
I I I 1 I I I 11 I I . I
I I I I I I I I

i :
ft--'
l i

- t

R-

0 - - P
i

I R -
i

-0-

i
IR-

i

- P
i

-0
t

l-l 1--
- - i .

------ B -

i
s
i
1 I
i
1

P

P-

P - 0 -

- 1 i -

-10-

i
■0i

i
IR-

i
•1
i
- I
i

■P
i

■SI

■1 I
i

1 !
R ---

0------
- I
--11
- I
-11
- I
- I - I

I
-S

i
-1

i
1 -

i

-R I - I -1- I - I

-- 1--- Sl-

i
I -

i
1 - \ -

-P - 1 - 1 ■ -S -0 I

i
R-

10-

1-11
- i

- i
I - I S -

1-11
- i
l-l-l

i
I - I

i -
- P

i
l - l

i
I - I
. i

I - I

■S-P-
- 1

- 0

- 0 -

I - I I - 1

10-
i

I 1-

-Sl

- 1 -

'S -

I - 1

- s - 0

1 - 1
I- I

■ —B-

- 10-

10-
i

-------------- 1-01
- — i ; \

---------------------1- 1 -

i

> i
■Rt

F ig u re 5 -6 : PPL Program for Read— ln it_ Parameters Control

22

Assa ssin

F ig u re 5—7 : Composite Laycu*. Ŝ'MOS) (cr Read- Init_ Parameters Control

23

A ssa ssin

Read— In it_ Param eters), w ith other associated control and da tapath elem ents has been established.

6. Conclusions
ASSASSIN dem onstrates several significant points.

1. Control can be spedfied at an abstract level and then autom atically and easily imple
m ented as an in teg rated circuit module. It is possible to m ap control specified a t even
higher levels cf abstraction tc something A s s a s s in understands, thereby enabling us to
m ake progress toward a true silioon compiler. Such work is reported in [ll] .

2. Self—tim ed (or asynchronous) control—units w ith concurrency can be easily implemen
ted. A s s a s s i n shows th a t the oontrol for self—timed m achines can be designed with
relative ease. ■

3. The successful use of Path-Program m able Logic in A SSI SS1N shows th a t PPL has great
.value as a d rc u it im plem entation technique, a t least for th is type of control-unit. This
also shows th a t PPL is indeed am enable to the developm ent of sophisticated CAD tools
th a t use it as th e underlying d rcu it im plem entation technique.

4. The m apping of A da’s rich set of control constructs is very straightforw ard as il
lustrated by the generation of the control for the R ea d - In it_ Param eters task.
ASSASSIN represents a step forward in tbe design of in tegrated d rcu its by allowing
high level descriptions of in tegrated d rcu it modules tc be autom atically compiled to a
layout.

7. Acknow ledgem ents ■ ,
I would like tc acknowledge the help of Dr. Lee H cllaar w ithou t whose help and encouragem ent

th is work would not have been done. The work cf Dr. Kent Sm ith cn the development of PPL is
greatly appreciated. Acknowledgements are also due tc Dr. E llio tt Organick, Dr. Alan Davis, Dr.
Gary Lindstrom , and Dr. A lan Hayes for work on developm ent cf the example of the transform ation
of A da to a hardw are module.

24

A ssa ssin

L The Syntax for ASSASSIN
T he following is a BNF description of CUDL - the Control U nit Description Language. The fol

lowing a re to be used in understanding th is description:

<> - 3 non-terminaI symbol .
- 0 or more repetitions

: = - t s def ined as
I - OR

language terminals are indicated by uppercase

<controI-uni t >

< i d e n t i f i e r >

< i d - t a i I >

< i n p u t - d e s c r i p t o r >

< i n p u t - r e d u c t i o n - I i s t >:

C r e d u c t i o n - s t a t e m e n t > :

< c o n d i t i on> :

< t e r m > :

< p r i mary > :

<s m- I i s t > :

< s m - d e s c r i p t o r > :

< s r e - t ype >

<s t a t e - I i s t >

< s t a t e - d e s c r i p t o r >

< s t a t e - n a m e - l i s t >

< s t a t e - n a m e >

< s t a t e m e n t - l i s t >

<6tatement>

=■ CDNTROLUNIT <identifier> :
{<input-descriptor>| <sm-list> END .

= <letter> < i d — t a i I>

= <letter> < i d—t a i I> I <digit> < i d— t a 1 I>
< letter> I <digit>

= INPUTS: < input-reductLon-I ist>

<reduction-statement> ,
< i nput-reduct i on - I i st > I

< redact ion-statement>

<identifier> := <condition> ; ■

= <t e r m > OR <condition> 1 <term>

= <primary> I <primary> AND <term>

= < identiiier> I (<condition>) I
NOT <primary> I TRUE I FALSE

= < sm-descriptor> !
<sm-descriptor> <sm-list>

= <sm-type> STATEHACHINE <identifier> :
<state-I i s t > END ;

= SELFTIffED I ASYNCHRONOUS I SYNCHRONOUS

= <state-descriptor> I
.<state-descriptor> <state-list>

= STARTSTATE <state-name> :
<statement-Iist> END ; I

STATE <state-name> :
<statement—Iist> END ;

= <state-name> , <state-name-Iist> I
<state-name>

= < i dent i f i er >

=s <statement> ; <statement-Iist> I
<s ta tement >

= Ctransition-statement> I
<act i on-s tatement >

25

A ssa ssin

< t r a n s 1 t i o n - s t a t e m e n t > : = < t r a n s i t i o n - o p > < t r a n s i t i o n >

<transition-op> := MOVEON I FORKON I
JOINS < s t a t e - n a m e - 1 i s t > ON

< t r a n s i t i o n > . t = < c o n d i t i o n > TO < s t a t e - n a m e - l ist> ; I
<condition> TO <state-name-l ist>

DOING O c t i o n - s t a t e m e n t - I i st> ;

O c t i o n - s t a t e m e n t - I i st >: = O c t i o n - 6 t a t e m e n t > !
BEGIN £Oction-statement> ;j END

O c t i on-statement > .*= oction-op> <output-I i st > I
< i f - a c t i o n - s t a t em e n t >

< a c t i.on-op> := HOLD I SET I RESET

< o u t p u t - I i e t > : = <output - narae> , C o u t p u t - I i s t > I
Co u t p u t - name >

< o u t p u t - n a m e > : = < i d e n t i f i e r > ' '

< if-action-statement> := IF <condition> THEN -
O c t i o n - s t a t eme n t - I i s t > ;

H Ada Code forth e R e a d - Init_ Param eters Task of the INH_ OUT Submodule
s e p a r a t e (I n » _ 0 u t _ n o d u I «) . ■

l a s t b o d y R e a d _ I n 1t _ P a r i t r t i s .

— R e c e s s e d g l o b a l * : ' ■ .

n u « b e r _ o #_ I oca l _ n * 1 y o e t _ o f _ s e r v i c e : o c t e t _ t y p e
— I oca I _ n e t _ t y p « _ o < _ * e r v i ee__tah 1 e ^ r o w ^ s i 2 * : o c t e t _ t y p e
— t o s _ t a b t e i o c t e t _ b u t <e r _ t y p e

— L o c a l v a r i a b l e d e c l a r a t i o n :

— T h » t o l t o u i n g v a r i a b l e i s c o n s e n t e d o u t . l l a p p e a r e d o n l y i n t h i
— " h i g h - l e v e l * u i t d t o r e a d i n The TOS t a b l e . See b e l o u .
■— n u n b i r j a i _ t o s _ t a b (e _ o e t e t s : I n t e g e r r a n g e 2 . . » a x _ t o s _ t a b I e _ s i z e - l j
o c t e 1 _ r e g i s t e r : o c t e t _ t y p e ;

b e g i n 1
l o o p

a c c e p t C o (-
i n i o r f c l I : b i l 3 ;

. r e s p o n s e : o u t o u t _ r e s p o n t e)
do

r e s p o n s e : = £ « n t _ _ o f ; — f i l t o De ans i n i t ^ o t .

— C a t i r o n t h e s e r v e r a l l ot t h e s d d r _ e h u r > t £ n e e d e d t o (o r e t he
— b a t e a d d r e s s i n t t emor y t h a t h o l d s t he i n i t i a l i z a t i o n p a r a m e t e r s
— and s e n d s t h e s e c h u r n s t o t h e f leroory n o d u l e .

■ f o r i n d e x i n 1 . . in i t _ n u « i _ f o r » a I
I oo p

a c c e p t S r v _ r e q (— Get n e x t a d d r e s s
— ehunK tro*> t he
— S e r v e r flodu I e .

s e r v e r _ c o » j u a n d _ d a t u x : i r v _ c o » o a n d ;
r e s p o n s e _ t o _ s e r v e r : o u t o u t _ r e s p o n s e)

do
f l e » o r y _ r e q u e * t (— P u t chuntr o u t t o

— t he f l e n o r y f eod ul e .
r e q u e s t _ t y p e _ < o r a l I = > I o a d _ a d d r t s s ,

- e h u n l t _ o < _ a d d r e n . l o r m a I c > s e r v e r _ e o n « a n d _ d e t u « ,
e e t e t _ f o r n a l = > don t _ c a r e _ o c t « O ;

end 5 r v _ r e q ;

26

Assa ssin

•rid l o o p ; -

— G e l t h e 6 i n d i v i d u a l i n i t i a l i z a t i o n p a r a m e t e r s (c o n t a i n e d I n t he
-— n e x t 8 o c t e t s r e c e i v e d) f r o a t h « t t a a o r y FI o d u I • .
f o r i n d a x I n i . . 8
I c o p

f i e m o r y _ r e t t u e * t (
r e q u e * t _ t y p e _ f o r a ^ I = > r e ee I v e _ d « t ua>_oc t e t ,
e h u n f c _ o f _ a d d r e s s _ f o r n a I b > d o n t _ c a r e _ X _ d a t u m ,
P C t e l _ < o r m a I * > o c I a l _ r a g i s t e r) ;

c i t e i n d e x 1s
u h e n 1 = > I n n _ ma x _ p a e l : e t ■ 16 : = o e t e t _ r e g I s t a r ;
Kha n 2 c > I n # _ i n a x _ j > a c k e t . h I : e o e t a t _ r e g i s t e r j
u h e n 3 - > I n » _ a d d r a s * _ l e n g t h i = o c t a t _ r e g i s t a r ;
whan 4 = > I n » _ t i a e _ o u t . I o : = o e t a t _ r a g I s t e r j
u h e n 5 = > I n n _ t I a * _ o u t . h I t e o e t a 1 „ r e g) s t a r ;
when 6 = > a c f c _ t y p e s * o e t e t _ r e g i i t e r ;
u h e n 7 = > I o c * I _ ne 1 _ t y p e _ o < _ s e r v i c e _ t ab I e _ r o u _ s i z a

t = o e t a t _ r a g I s t e r ;
whan 8 = > n u n b e r _ o f _ l o c a I _ n e t _ t y p e s _ o f _ * e r v i c a

: c o c t e t _ r e g I s t a r j
end e a s e)

and l o o p ;

— R a i d In t y p e of s e r v i c e t r a n s l a t i o n t a b l e .

d a c I a r a ,
r c u . n u n b t r : i n t e g e r r a n g e '

8 . . n u a b e f _ o < _ l o c a I _ n e t _ t y p e s _ o f a e r v l c e j
c o l _ n u » b e r : i n t e g e r r a n g e .

6 . . I o c a I _ n e t _ t y p e _ e < _ * e r v l e e _ r o M _ a l i e t

i n d e x ? i n t e g e r r a n g a :. ' ’
B . . nuai ber _ c f _ l o e a l _ T i e t _ t y p e s _ o * f « a r v l e a

a l o e a l _ n e i t y p e _ o f _ s a r v i c a _ r o u _ * i z a
1 » = fi; • . ■ .

bag i n ' ■ _
r o u _ n u i D b e r i * 8; ' .
l o o p — O u t e r l o o p r e a d s at I r o u s o< TQS t i b i a ,

c o 1 . n u t i b a r : = 8 ; ,
l o o p — I n n e r l o o p r e a d s i n a r o w o f TOS t i b i a ,

r i e o o r y _ r « a u » s t (-
r t o u c s t _ t y p e _ f o r « i a I = > r t c a i v e _ d a t u n . o c t a t ,
c h u n i ; _ o < _ a a d r e s s _ f o r n i I = > d o n t _ e a r a _ X _ d * t u b ,
o c t e t _ f o r n a l = > t o s _ t a b l e (i n d a x)) j

c o l _ n u i n b e r : = c o I . n u m b e r + i ;
a x i t u h e n c o l _ n o D b a r = I oca I _ n e t _ t y p e _ 0 <_ S e r v i e * _ r o u _ * i z a ;

i n d a x : = i n d a x +■ 1;
I f i n d a x > n a x _ t o f _ t a b I * i z a t h a n

r e s p o n s e : = b a d _ s r v _ e o m » a n d ;
r i t u r n ; — E x i t t h a c u r r a n t a c c e p t s t a t e m e n t ,

and i f ;
end l o o p ; - - End i n n e r l o o p .

r o u _ n u u b e r : s r on ̂ n u mb e r *■ 1;
a x i t whan r o u _ n u i b i r = n u m b « r _ o f _ t y p e s _ o ♦ _ « e r v i c a j

e n d l o o p ; — End o u t a r l o o p ,
a n d ; - - End d e c l a r e b l o c t .

and C o ; - - E n d of i n i t p r o c e s s i n g .

and l o o p ; - - E n d of o u t i r - i o i t (i n f i n i t e)
— l o o p .

and R e a d _ I n i t _ P a r a m * t » r s ;

27

A s s a s s in

References

1. T. M. C arte r. "ASSASSIN: An Assembly, Specification and Analysis System for Speed-
Independen t C ontro l-U nit Design in In tegrated Circuits Using PPL,” M aster's thesis,
D epartm en t of Computer Science, University of U tah, June 1982.

2. A. L. D avis and P. J. Drongowski, "Dataflow Computers: A Tutorial and Survey," Com puter
Science D epartm ent Technical Report UUCS-80-109, University of U tah, Jul. 1980.

3. S. H iyam izu et al., “Extrem ely High Mobility of Two-Dimensional E lectron Gas in Selec
tively Doped G aA s/N -A IG aA s Heterojunction S tructures Grown by MBE," Japanese Jotcmal
o f Applied Physics, V ol. 20, N o. 4, A pr. 1981, pp. L245-L248.

4. L. A. H ollaar, "Direct Im plem entation of A synchronous Control Units", Subm itted to IEEE
T ransactions on Computers, to be published December 1982

5. O rganick, E. I., and Lindstrom , G., ’’M apping high-order language un its into VLSI
. s truc tu res," Proc. COMPCON 82, IEEE, Feb. 1982, pp. 15—18.

6. Pcstel, Jon: editor, ’'In ternet Protocol: DARPA Internet Program, Protocol Specification,"
Tech. report RFC 791, Inform ation Sciences Institu te, USC, Sept. 1981.

7. C. L. Seitz, System Timing, Addison-W esley, Reading MA, 1980, pp. 218-262, .

8. J . H. Shelly, "Design of Speed-Independent C ircuits,1' F i)e225, UIDCL, July 1957.

9. H. E. Shrcbe, "The D ata P a th Generator," Digest o f Papers: CompCon Spring 82. IEEE Com
pu ter Soaety , 1982, pp. 340-344. . ■

10. K. F. Sm ith; T. H. Carter; and C, E. H unt, "S tructured Logic Design of In tegrated C ircujti
Using the Stored Logic A rray," IEEE Trxmsactums on Electron Devices, Vol. ED -29, No. 4,
A pril 1982, pp. 765-776. ; .

11. P. A. S u b rah m an y an . "Automated Design of VLSI Architectures: Some Prelim inary
Explorations", D raft Version

28

