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Abstract

We investigate asynchronous circuit verification using Dill’s trace
theory [1] as well as Milner’s CCS (as mechanized by the Concur-
rency Workbench). Trace theory is a formalism specifically designed
for asynchronous circuit specification and verification. CCS is a gen-
eral purpose calculus of communicating systems that is being recently
applied for hardware specification and verification [2]. Although both
formalisms are similar in many respects, we find that there are many
interesting differences between them when applied to asynchronous cir-
cutt specification and verification. The purpose of this paper ts to point
out these differences, many of which are precautions for avoiding writ-
g incorrect specifications. A long-term objective of this work is to
find a way to take advantage of the strengths of both the Trace The-
ory verifier and the Concurrency Workbench in verifying asynchronous
circuits.

1 Introduction

As VLSI systems become larger, faster, and more complex, timing problems
in them become progressively more severe, and account for an ever increasing
percentage of their design and debugging expenses. One emerging solution
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to these problems lies in adopting an asynchronous style of design. Asyn-
chronous circuits have a number of strengths, the principle ones being that
of modularity and incremental expandability.

Although asynchronous circuit design techniques have been known for
nearly four decades, and their advantages have been widely discussed, they
have not been adopted widely for several reasons. The most important
reason is the inadequacy of design formalisms as well as tools to deal with the
concurrency exhibited by asynchronous circuits. The situation has recently
been changing, with the development of asynchronous circuit compilers [3, 4,
5, 6, 7] as well as formalisms, the principal ones being several trace theories,
notably those of Dill [1] and Ebergen [8]. In addition, popularizing lectures
such as Sutherland’s 1988 Turing award lecture [9] have helped. See [10] for
a survey.

I have been studying Dill’s trace theory for some time now (referred to
in the rest of this paper simply as “trace theory”). I also am fairly familiar
with Milner’s Calculus of Communicating Systems. For a while I believed
that trace theory, being a formalism tailored specifically for studying asyn-
chronous circuits, is a “safer bet” in terms of the direct correspondence that
its constructs have to actual circuit phenomena such as transistors going
on/off, gates firing, etc. This correspondence is very important because
humans are no longer able to reason directly in terms of low-level circuit
phenomena because of the increasing circuit complexity. If there is even the
slightest risk of mismatch between the abstractions offered by the formalism
and the circuit realities, one’s reasoning can go way off course before one so
realizes.

The asynchronous circuits considered in this paper are assumed to follow
the transition signaling discipline [9]: a module toggles the current logic level
of a wire “a” in order to invoke input action “a” of the recipient.)

My main reason for thinking that CCS is not a suitable formalism for
studying asynchronous circuits, in the light of what I just now said, was
based on the fundamental difference in the way communication is modeled
in CCS versus how it is modeled in trace theory. Asynchronous circuits
communicate over wires. Communication over wires causes information to
flow only in one direction: the receiver knows when it receives the commu-
nication; however, the sender does not know when the receiver receives the
communication. In CCS, information flow during communication is bidi-
rectional because of the “handshake” or “rendezvous” semantics (both the
sender and the receiver know that the other has received the communica-
tion before they proceed). Said another way, in asynchronous circuits, a



module cannot refuse an input simply because the sender does not sense the
receptiveness of the receiver before it sends a communication. In CCS, since
receptiveness is explicitly checked for during handshake, the inputs offered
by the sender can be refused by a potential receiver.

My opinions in this regard have recently changed as I have been notic-
ing several researchers use either CCS or CCS-like formalisms for modeling
asynchronous circuits. Two examples are the use of CCS by Aldwinckle,
Nagarajan, and Birtwistle [2], and the use of CIRCAL by Bailey and Milne
[11]. This trend is quite important because this way one could “re-use”
what is being developed in the world of CCS (for example, tools such as the
Concurrency Workbench, “CWB”) for verifying asynchronous circuits.

In this paper, I report results from my preliminary studies in applying
both Dill’s trace theory [1] as well as Milner’s CCS [12] (as mechanized by the
CWB) to verify asynchronous circuits. Although both formalisms are similar
in many respects, I find that there are many interesting differences between
them when applied to asynchronous circuit specification and verification.
The purpose of this paper is to point out these differences, many of which
are precautions for avoiding writing incorrect specifications. A long-term
objective of this work is to find a way to take advantage of the strengths of
both the Trace Theory verifier and the CWB in order to verify asynchronous
circuits.

Section 2 is devoted to explaining trace theory, as it may not be well
known outside the area of asynchronous design. Familiarity with CCS is
assumed. Section 3 explains the problems one may face, if the fact that
asynchronous circuits cannot refuse their inputs is ignored. Section 4 ex-
plains the problems one may face if a phenomenon called autofailures is
ignored. Section 5 presents examples where the strengths of the CWB are
pointed out. In particular, we establish correctness properties of a new com-
ponent that we have developed — a lockable C' element. Section 6 has our
conclusions.

2 Background: Trace Theory

2.1 Definitions and Trace Structures

The following definitions and notations are taken from [1]. Trace theory
is a formalism for modeling, specifying, and verifying speed-independent
circuits. It is based on the idea that the behavior of a circuit can be described
by a regular set of traces, or sequences of transitions. Each trace corresponds



to a partial history of signals that might be observed at the input and output
terminals of a circuit.

A simple prefiz-closed trace structure, written SPCTS, is a three tuple
(1,0,85) where [ is the input alphabet (the set of input terminal names), O
is the output alphabet (the set of output terminal names), and S is a prefix-
closed regular set of strings over &« = I U O called the success set. I and O
are disjoint. In the following discussion, we assume that S is a non-empty
set.

These trace structures are more aptly called directed trace structures
because the direction (input or output) of every member of a trace is im-
portant (as will become clear as we go along). Basically, information flow
among circuit modules is wunidirectional as pointed out before, whereas in
CCS (or in other rendezvous based languages) the information flow is bidi-
rectional. This distinction has, in fact, been studied extensively by Chen,
Udding and Verhoeff in [13] who call it the synchronous game and the asyn-
chronous game. We show later that ignoring this difference may have dire
consequences in terms of not being able to spot certain errors.

We associate a SPCTS with a module that we wish to describe. Roughly
speaking, the success set of a module described through a SPCTS is the set
of traces that can be observed when the circuit is “properly used”.

With each module, we also associate a failure set, F', which is a regular
set of strings over . The failure set of a module is the set of traces that
correspond to “improper uses” of the module. The failure set of a module
is completely determined by the success set: F' = (ST — S)a™. Intuitively,
(SI —9) describes all strings of the form za, where z is a success and a is
an “illegal” input signal (see below). Such strings are the minimal possible
failures, called chokes. Once a choke occurs, failure cannot be prevented by
future events; therefore F is suffix-closed.

As an example, consider the SPCTS associated with a unidirectional
WIRE with input a, output b, and success set

({a},{b},{¢,a,ab,aba,..}).

The success set is a record of all the partial histories (including the empty
one, €), of successful executions of WIRE. An example of a choke for WIRE is
the trace “aa”. Once input “a” has arrived, a second change in “a” is illegal
since it may cause unpredictable output behavior.

There are two fundamental operations on trace structures: compose (||)
finds the concurrent behavior of two circuits that have some of their termi-
nals of opposite directions (the directions are input and output) connected,



and hide makes some terminals unobservable (suppressing irrelevant details
of the circuit’s operation). A third operation, rename, allows the user to
generate modules from templates by renaming terminals. Details about
these operations are reported in [1]; briefly, compose is like conjunction; it
constructs the success set of the composite as follows. It first takes the
Kleene star of the union of the alphabets of the trace structures and then
retains from it only strings s such that the projection of s onto the alphabet
of trace structure ¢ of the composition (denoted by T;) is a member of the
success set of T;. After determining the success set of the composite this
way, the success set and the failure set are “adjusted” through autofailure
manifestation and failure exclusion as explained in section 2.2. Compose
of two trace structures 77 = (11,04, 51) and Ty = (3,02, 52) is illegal if
O1 N O3 # B; if not, the output alphabet of the composite is O; U Oy and
the input alphabet is (I3 \ O1) U (11 \ O2).

Hiding is allowed only on the output symbols. If ¢ is a member of S U
F of trace structure 7', then t' is a member of hide(H)(T) where t' is a
projection of t onto the alphabet of T'. Hidingis not allowed on input symbols
mainly because a module cannot refuse an input from being applied to it (and
therefore it is hard to define what hiding an input means). However, inputs
are effectively “removed” through compose because when an input port is
connected to an output port, the result is an output port.

Rename renames the ports used in a description, mainly to model elec-
trical connections; two ports that are named alike are connected, provided
that they are not both outputs.

We can denote the success set of a SPCTS by using state-transition
specifications. The success set of WIRE, described earlier, is captured by the
following specification, where WIRE is regarded as a process:

WIRE = a? - bl - WIRFE

In a process description, we use ‘|’ to denote choice, ‘=’ to denote sequenc-
ing, and a system of tail recursive equations to capture repetitive behavior.
We use symbols such as a7 to denote incoming transitions (rising or falling)
and b! to denote outgoing transitions (rising or falling). (Extensions to this
syntax will be introduced as required.)

When we specify a SPCTS, we generally specify only its success set; its
input and output alphabet are usually clear from the context, and hence are
left out.



2.2 “Illegal Inputs”

Suppose for a trace structure (1,0, .S) with failure set F', z € S but 2o € I
where o € O. Intuitively, after having seen x, the module has an output o
which it can autonomously perform, leading to a failure. It is also possible
that after 2 another output o is enabled which can evade this failure (i.e.
2o is a success). Likewise, an input ¢ can also be enabled which, if “applied
soon enough” can also evade failure (i.e. i is a success). Nevertheless,
having seen z, there is a definite possibility that the module can perform
o and fail. Keeping this in mind, we remove z from S and add it to F.
(Remember that F' has to be made suffix-closed.) z is called an autofailure.
The process of removing = from S and adding it to F' is called autofailure
manifestation. After autofailure manifestation, S is set to S\ F'; this step
is called failure exclusion.

The trace structures considered in the rest of this paper are already
assumed to have been subject to autofailure manifestation.

2.3 Conformance: The Ability to Perform Safe Substitutions

A trace structure specification, Ts, can be compared with a trace structure
description, T7, of the actual behavior of a circuit. When 77 implements T,
we say that 17 conforms to Ts; that is, Tt < T's. (The inputs and outputs of
the two trace structures must be the same.) This relation is a preorder and
is called conformance. Conformance holds when T} can be safely substituted
for Ts.

More precisely, 77 < T if for every 1", whenever Ts || T” has no failures,
Tr || T' has no failures, either. Intuitively, T7:

(a) must be able to handle every input that T's can handle (otherwise,
Ty could fail in a context where T's would have succeeded); and

(b) must not produce an output unless Ts produces it (otherwise, 77
could cause a failure in the surrounding circuitry when T's would not).

We illustrate these two facets of conformance, first considering restric-
tions on input behavior (case (a)). Consider a JOIN element:

J = a? =+ b7 =l —J
|67 = a? =l = J

Now, consider a modified JOIN:

J1l = a? = b7 =l —=J1



Notice that the success set of J1 leaves out the trace b; a; c. Clearly it is not
safe to substitute J1 for J: J1 cannot accept a transition on b as its first
input, whereas the environment is allowed to generate a b as its first output
transition, because this would have been acceptable for J. Formally, we say
J1 £ J, since the implementation cannot accept an input transition which
the specification can receive.

However, note that it is safe to substitute J for J1, since J can handle
every input (and more) which J1 can handle; so J < J1. Trace theory
allows an implementation to have “more general” input behavior than its
specification.

Next, consider the case of restrictions on output behavior (case (b)
above). We begin with a simple case:

CONCURMOD = a? = (|| ¢'Y) = CONCUR_MOD
SEQNTL.MOD = a? = b — ¢! = SEQNTL_MOD

Note that the success set of SEQNTL_MOQOD omits the trace a;c. It is not
safe to substitute CONCUR_MOD for SEQNTL_MOD: some environ-
ment of SEQNTL_MOD may not accept a transition on c¢ after producing
an a. Therefore, CONCUR_MOD £ SEQNTL_MOD (intuitively, imple-
mentation CONCUR_MOD is “too concurrent”).

However, SEQNTL_MOD can be safely substituted for CONCUR_MOD
in anyenvironment. Any environment accepting outputs from CONCUR_MOD
will also accept outputs generated by SEQNTL_MOD,so SEQNTL MOD <
CONCUR_MOD. Trace theory allows an implementation to have “more
constrained” output behavior than its specification.

This point can be illustrated more dramatically. We return to the earlier
JOIN and a new implementation:

AlmostWood = a? = b7 = ¢! = AlmostWood
| b7 — a? — Almost Wood

The reason why J can be safely substituted by AlmostWood in any context
is the following. So long as the environment and the component keep gen-
erating the sequence abcabecabe ..., both J and AlmostWood behave alike.
Suppose the environment generates the string ba and awaits a ¢. J does
generate a ¢ after seeing ba, thereby allowing the environment to proceed;
AlmostWood, on the other hand, outputs nothing, and awaits a further a or
a b—at the same time as the environment is awaiting a ¢; in this case, the
result is a deadlock.



Going to the extreme, we find that

BlockOfWood = a? — BlockOfWood
| b7 — BlockOfWood

conforms to J.

In summary, conformance allows an implementation to be a refinement of
a specification: an implementation may have “more general” input behavior
or “more constrained” output behavior than its specification. However, we
want to show not only that an implementation does no harm, but that it
also does something useful! Unfortunately, prefix-closed trace theory cannot
distinguish “constrained” output behavior from deadlock. In spite of the
usefulness of trace theory, this is its greatest practical weakness.

2.4 On Establishing Conformance

A verifier has been developed by Dill to establish conformation. Relation <
is established in this verifier as follows (we use 7', T’s, etc. to denote trace
structures):

e The verifier constructs a trace structure, T, called the mirror of spec-
ification Ts (see [1]; originally proposed in [8]). Ts is the same as Tk,
but with input and output sets reversed. The mirror is the worst-case
environment which will “break” any trace structure that is not a true
implementation of Ts.

e The verifier then generates the parallel composition of the implemen-
tation, 17, and the mirror, Ts: Ty || Ts. It has been proven that
Tr < Ts iff Ty || Ts is failure-free (see [1]).

e T; < Ts is checked by testing that 77 || Ts is free of failures. This
check can be performed by “simulating” the parallel behavior of the
two trace structures, presented in Figure 1.

As an example of the above simulation, consider the simulation of J1
against J, where J is the mirror of specification J:

J = ad-obosc?2oJ
| 0! = al = ¢? = J

We can see that J is the only module capable of performing the first
output action: either a! or b!. The production of b! will cause J1 to choke.



2.5 Conformation Equivalence

We have seen that while conformance captures the notion of “refinement”,
it cannot capture the notions of deadlock and livelock. There is another

relation that can be considered: conformation equivalence. Trace structures

A and B are conformation equivalent (A o B)if A< Band B < A (see

[1]).
Unfortunately, just as conformance is “too weak” a relation for our pur-
poses, conformation equivalence is often “too strong”. Often, for a specifica-

tion Spec and implementation I'mp, where I'mp < Spec, we cannot establish

that I'mp C(gf Spec. For example, I'mp commonly is overbuilt in the sense

that it accepts more inputs than necessary.

Such an implementation gives rise to the following problems. In showing
I'mp < Spec, no problem arises, because I'mp will accept all the inputs that
Spec can. However, in trying to show that Spec < I'mp, we “simulate”
Imp || Spec. Since I'mp can accept more inputs than it needs to, Imp ends
up generating more outputs than it “needs to”—some of these outputs go
beyond what Spec can accept, and thus the test Spec < I'mp fails.

How do we rescue the situation? The answer lies in not attempting
Spec < I'mp, but merely whether Sgpec € Spmp, Where “Sy;” denotes the
success set of ‘M’. We have identified precisely such a relation, called strong
conformance [14]. This relation is now briefly explained.

2.6 Strong Conformance

Definition: We define T C T, read T conforms strongly to 7', if T < T’
and St O S;s. The algorithm to check for strong conformance is omitted
to conserve space.

The strong conformance relation is safe in that it guarantees confor-
mance. However, it is not guaranteed to catch all liveness failures; but for a
number of examples, a verifier based on strong conformance provides much
better error detection capabilities [14].

3 Examples Motivating Non-refusal of Inputs

Having studied Dill’s trace theory, we now proceed to experiment with the
CWB, and compare our observations with those observed in Dill’s trace
theory verifier.



Consider the process WIRF defined on page 5. Suppose we specify this
process in CCS as

Wire = a.’b.Wire

Here, following the syntax of the Concurrency Workbench [15], an action of
the form ’x is a co-name (output action) and an action of the form x is an
input action. Let us pose the question: “does Wire conform to Spec, where:

Spec = a.(’b.Spec + a.Spec)

In other words, we are asking whether Wire is a safe substitution (in the sense
of conformance), for Spec, in any context. The most liberal environment in
which Spec can be operated is obtained by taking its mirror:

Specmirrorl = ’a. (b.Specmirrorl + ’a.Specmirrorl)

Though the above process is the mirror, for practical reasons, we modify it
to Specmirror given below. Since CCS converts synchronizing actions to a
silent action, tau (written t in our syntax), we add “marker” actions aout
and bout to Specmirrorl so that its execution can be more meaningfully
observed from outside. We thus obtain:

Specmirror = ’a.aout. (b.’bout.Specmirror + ’a.aout.Specmirror)

Now consider the system:

Specmirror_Wire = (( Specmirror | Wire)\ {a,b}) [a/aocut,b/bout]

In the combined system, after accepting an ‘a’, Wire can be subject to
another ‘a’ from Specmirror; however, Wire can refuse this ‘a’ and proceed
to do a ‘b’. Therefore, the combined system does not exhibit a deadlock (as
revealed by the “find deadlock” — £d — command).

fd Specmirror_Wire

No such agents.

10



If the above specifications are transliterated into trace-theoretic specifica-
tions and we ask if Wire conforms to Spec, the answer will be false, meaning
that a choke ‘a,a’ can occur!

In other words, when modeling asynchronous circuits, it can be danger-
ous (in the sense of not being able to detect certain chokes) not to take into
account the fact that asynchronous circuits can ignore their inputs.

How do we model a “real wire”? The fact that an actual wire cannot
refuse an input is easily captured by amending the specification of Wire to
Realwire, below. Then we define Specmirror Realwire, also defined be-
low, which indeed reveals precisely the choke discovered by the trace theory
verifier:

a.(’b.Realwire + a.Choke)
nil
(( Specmirror | Realwire)\ {a,b})[a/aout,b/bout]

Realwire
Choke
Specmirror_Realwire

fd Specmirror_Realwire

--— t at a ---> (Specnirror | Choke)\{a,b}[a/aout,b/bout]

This shows that Specmirror Realwire “deadlocks” by going into state
Choke. (The definition of state Choke helps us spot these deadlocks more
easily. Also the above “deadlock” is merely a way to model actual chokes in
circuits; we could very well have modeled a choke through any other error
situation that is easily detectable in the CWB.)

Thus, it appears that Realwire models an electrical conductor more
faithfully. We shall confirm this through another experiment presented later.

4 Dealing With Autofailures

To motivate the importance of directionality in trace theory, as well as the
phenomenon of autofailures, consider the following CCS definitions:

Testl = c.’d.’e.Testl

Driverl = ’c.d.Driverl

Test2 = ’c.d.’e.Test2

Driver2 = c.’d.Driver?2

Systeml = (Testl | Driverl)\{c,d}
System2 = (Test2 | Driver?2)\{c,d}

11



The only difference between Systeml and System?2 is that their constituent
processes use different directions for their ports ¢ and d. Doing so has no
observable effect on the computations of Systeml and System2 because the
ports ¢, c’, d, and d’ synchronize in the same fashion as before, and they
are unobservable. In other words, we could show that Systeml and System?2
are observationally congruent.

Now, suppose we transliterate these specifications into the input syntax
of Dill’s verifier. In other words,

Testl =  ¢?—d!— el — Testl
Driverl = ¢! — d? — Drwerl
Test2 = ' —d? — el — Test2
Driver2 = ¢? — d!'— Driver2
Systeml = hide(c, d)(compose(Testl, Driverl))
System2 = hide(c, d)(compose(Test2, Driver2))

We find that Systeml exhibits a choke while System2 doesn’t!

Here is the reason. Consider Systeml1. First Driverl applies a ¢! onto
Testl causing both the modules to make progress; then Testl applies a d!
onto Driverl, causing Driverl to return to its top state, while Testl is in a
state where it can only generate output el If Testl were to now generate
el “soon enough”, it would return to its top-level state, and all would be
well (both processes resume their behavior); however if Testl were a bit slow
relative to Driverl, the latter, since it is now in its top level state, would
apply a ¢! which Testl cannot accept! The simulation of System2 is safe
because after Driver2 is back in its top level state, it only awaits an input
c? — and this input can only come from Test2 because the output port ¢! of
Test2 is connected to input port ¢? of Driver2, and there can be no further
“drives” onto this node (see the restrictions on compose).

How do we make the CCS specifications manifest these errors? There are
two approaches. The first approach consists of the following steps. (1) con-
nect a Realwire to the input ports of every component; (2) then assemble
the system. For example, define

Driverl’ = ( Driverl [rwb_d/d] | Realwire [d/rwa, rwb_d/rwb] ) \ rwb_d

12



and likewise define Driver2’, Test1’, and Test2’. Now we get:

eq Systeml’ System2’
false

fd Systeml’
* ——— rwb_c t erwb_ct t t e rwb_ct t t e rub_c t e rwub_c -——>

(((’d.e.Testl) [rub_c/c] | Chokelrwb_c/rwb,c/rwal) | (Driverll[rwb_d4/d]
Choke[d/rwa,rwb_d/rwb]l)\rwb_d)\{c,d}

¥ ——— rwb_ct erwb_ct tt erwb_ct e rwb_ct ——> (((°’d.e.Testl)[rwb_c/
Choke[rwb_c/rwb,c/rwal) | ((d.Driverl) [rwb_d/d] | Chokel[d/rwa,rwb_d/rwb]l)\

¥ ———rwb_ct erwb_.ct et t ——> (((’d.e.Testl) [rwb_c/c] |
Realwirel[rwb_c/rwb,c/rwal) | ((d.Driverl) [rwb_d/d] |
Choke[d/rwa,rwb_d/rwb]l)\rwb_d)\{c,d}

fd System2’
No such agents.

cl |
rwb_d)\{c,d}

Notice that we can now detect a choke in System1’ but not in System2’

The second approach (which is automatable and more efficient in prac-
tice) is to redefine the processes as follows, which then gives the indicated

simulation results:

Test1’’ = c.(c.Choke + ’d. (c.Choke + ’e.Test1’’))
Driver1’’ = d.Choke + ’c.d.Driveril’’

Test2’’ = d.Choke + ’c.d.(d.Choke + ’e.Test2’’)
Driver2’’ = c.(c.Choke + ’d.Driver2’’)

Systeml’’ = (Testl’’ | Driverl1’’)\{c,d}

System2’’ = (Test2’’ | Driver2’’)\{c,d}

eq Systeml’’ System2’’
false

fd Systeml’’
--—— t t t ——> (Choke | d.Driveri)\{c,d}

fd System2’’

No such agents.

The way in which we have modified Testl1, efc., to Testl’’, etc. is as
follows: for every agent, for every reachable state of the agent, if that state

13



has outgoing transitions on inputs I, C I where I are all the inputs of the
agent, add transitions on inputs I'\ [,,, to state C'hoke. This transformation
helps reveal autofailures through the “find deadlock” (fd) command. We
call this step adding failure paths.

To sum up, in this section, we have shown the following:

1. We have shown how autofailures can be detected in the context of the

CWB.

2. We have shown how conformance can be checked for by explicitly creat-
ing the mirror of the given specification (for example, see Specmirrori).
Actually, in effect, strong conformance is checked for if the CWB com-
mand eq is used.

To “simulate” the effects of Dill’s trace theory in CCS (and to then use the
CWB to detect errors), a few additional transformations are required on
CCS agent definitions. Since CCS agent connections are “point-to-point”
(i.e. a matching name and a co-name are turned into a 7) whereas Dill’s
trace theory takes the point of view of having “infinite fanout” (i.e. an
output connected to an input is retained as an output), explicitly use ForkN
modules in order to fanout the transition of an electrical signal. For example,
for a fanout of two, we use the Fork2 module

Fork2 = a.(’bl.’b2.Fork2 + ’b2.’bl.Fork?2)

5 Assorted Examples

In this section we first discuss the verification of a Lockable C Element.
Then we discuss some examples pertaining to the detection of deadlocks.

5.1 A Lockable C element

Muller’s C element is a very widely used component in asynchronous circuits.
It is very close to the join element, .J, introduced on page 6. Its specification
can be expressed in CCS (before the step of adding failure paths to avoid
clutter) as:

14



* A C element that allows ‘‘double clutching’’: e.g. two successive a’s capcel.
*

C = a.Aseen + b.Bseen
Aseen = a.C + b.ABseen
Bseen = b.C + a.ABseen
ABseen = ’c.C

* A C element that has seen a ‘‘b’’
Cb = Bseen

In typical applications, a C element allows two threads of control to ren-
dezvous. One common use of a C element is to build a micropipeline stage
as shown in figure 2.

We have recently developed a lockable version of the ' element called
LockC. Its specification is now given.

LockC = a.Aseen + b.Bseen + lock.’lack.Locked
Aseen = a.LockC + b.ABseen + lock.’lack.AseenlLocked
Bseen = b.LockC + a.ABseen + lock.’lack.BseenlLocked

Locked = lock.’lack.LockC + a.AseenLocked + b.BseenLocked

a.Bseen + b.Aseen + lock. (’lack.ABseenlLocked + ’c.’lack.Locked)
+ ’c.LockC

ABseenLocked = lock.’lack.ABseen + a.BseenLocked + b.AseenLocked

a.Locked + lock.’lack.Aseen + b.ABseenLocked

b.Locked + lock.’lack.Bseen + a.ABseenLocked

ABseen

Aseenlocked

BseenLocked

* LockC that has seen a "b"

LockCb = Bseen

The basic application of LockCb is in building stallable micropipelines as
described in [16]. It differs from Cb in that it offers the possibility of being
“locked” via a lock signal, and acknowledges locking via lack; it is then
unlocked via lock and it acknowledges the unlocking also via lack.

Suppose LockCb is used in place of Cb, with the lock and lack of LockCb
connected to a driver process, as shown in figure 3:

LockCDriver = ’lock.lack.’lock.lack.LockCDriver

Further assume that lock and lack are restricted. Then we expect the
circuit using LockCb to behave exactly the same as the one using Cb. We
could confirm this using the CWB, using the eq command.
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We could also apply the diveq command which checks whether both the
processes are observationally equivalent, also respecting divergence — this
proved to be false, because the circuit using LockCb can diverge through a
sequence of lock, ’lack actions —LockCDriver can be so fast that it causes
the circuit using LockCb to diverge in a tau loop, effectively preventing
LockCb from making any progress.

Finally, we could check the following propositions about the circuit us-
ing the CWB: after every lock, ’lack will eventually happen; and vice
versa. These model checking commands are quite valuable in verifying asyn-
chronous circuits. Currently this facility is not available in Dill’s trace theory
verifier.

5.2 Detecting Deadlocks and Livelocks

Consider the circuit shown in figure 4. The components used in this circuit,
before the step of adding failure paths, have the following behaviors:

Gselector = ain. (’bout.Gselector+’cout.Gselector)
Merge a.’c.Merge + b.’c.Merge

We connect bout to the external output b, cout to x2, the b input of Merge
to x2, the c output of Merge to x1, and the ain input of Gselector to
x1. Then, after applying a transition at the A input, the circuit can engage
in a sequence of X1,%X2,X1,... actions of arbitrary length before it emits
a B (depending upon the “fairness” of selection of unit Gselector (shown
as G.S. in the Figure). Dill’s verifier is incapable of pointing out that the
circuit can diverge; the CWB is able to do this. If we now consider the circuit
shown in figure 5: (1) the conformance check passes the deadlockable wire
as a safe substitution for a wire; (2) the strong conformance check rightly
points out that the deadlockable wire is not a safe substitution for a wire;

and (3) the CWB is able to detect a deadlock.

6 Conclusions

We have identified some of the precautions necessary to be observed be-
fore CWB can be applied for verifying asynchronous circuits. We have also
presented two approaches, the addition of a Realwire component at every
modules’ input, or alternately, the process of adding failure paths, to con-
vert CCS specifications into those that exhibit all! chokes and autofailures.
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By taking one of these approaches, the CCS/CWB combination becomes
a powerful tool that is capable of detecting circuit errors, and also permit
checking for divergences, deadlocks (even those other than the ones caused
by Chokes), and also user-given modal properties. (Note: there is ongoing
work at the Carnegie Mellon University to study the use of both trace theory
and various temporal logics for asynchronous circuit verification.) Another
advantage we see with the CCS/CWB approach is that it permits both high
level protocols as well as low-level implementations of these protocols to be
reasoned about using the same tool.

Currently the CWB is not very efficient — even moderately sized circuits
take a long time to run. Dill’s verifier, on the other hand, executes much
faster. Perhaps the CWB can be re-coded to solve this.

In conclusion, we believe that we have identified some useful connections

between Dill’s trace theory and the CCS model from the point of view of
asynchronous circuit verification.
Acknowledgements: Graham Birtwistle and his group at the University
of Calgary taught me about CWB, and the use of CCS for asynchronous
circuit verification, for which I am grateful. Thanks also to Steve Nowick,
Nick Michell, and Erik Brunvand for valuable discussions.
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Notations:

e It is assumed that the network T; || Ts is closed (each output of
Ts matches an input of 77, and vice-versa), and no two outputs are
connected together.

Define Ty = T and Ty = T7.

Define Ty = the set {1y, T} }.

Define T = if (T =1Ty) then T} else Tp.

Define nezt(s,z) to be the next state attained from state s upon pro-
cessing input/output z.

Initialize a global set of state pairs, visited = ¢.
e Call conforms-to-p(70o1, start-state-0, start-state-1).
e Report “success”.

conforms-to-p(To1, sto, st1) =
if (sto, st1) € visited
then return
else
visited := visited U {(stg, st1)};
for each T € Ty
for each enabled output x of T
if 2 is enabled in T
then conforms-to-p(7o1, next(st0, ), next(stl, z))
else ERROR (print failure trace and abort)
end if
end for
end for
end if
end conforms-to-p

Figure 1: Algorithm for Checking for Conformance
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