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A b s t r a c t

Accurate real-time speech recognition is not currently possible in the mobile embedded 
space where the need for natural voice interfaces is clearly important. The continuous na
ture of speech recognition coupled with an inherently large working set creates significant 
cache interference with other processes. Hence real-time recognition is problematic even 
on high-performance general-purpose platforms. This paper provides a detailed analysis 
of CMU’s latest speech recognizer (Sphinx 3.2), identifies three distinct processing phases, 
and quantifies the architectural requirements for each phase. Several optimizations are 
then described which expose parallelism and drastically reduce the bandwidth and power 
requirements for real-time recognition. A special-purpose accelerator for the dominant 
Gaussian probability phase is developed for a 0.25n  CMOS process which is then analyzed 
and compared with Sphinx’s measured energy and performance on a 0.13/U 2.4 GHz Pen- 
tium4 system. The results show an improvement in power consumption by a factor of 29 
at equivalent processing throughput. However after normalizing for process, the special- 
purpose approach has twice the throughput, and consumes 104 times less energy than the 
general-purpose accelerator. The energy-delay product is a better comparison metric due to 
the inherent design trade-offs between energy consumption and performance. The energy- 
delay product of the special-purpose approach is 196 times better than the Pentium4. These 
results provide strong evidence that real-time large vocabulary speech recognition can be 
done within a power budget commensurate with embedded processing using today’s tech
nology.
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1 Introduction

For ubiquitous computing to become both useful and real, the computing embedded in 
all aspects of our environment must be accessible via natural human interfaces. Future 
embedded environments need to at least support interfaces such as speech (this paper's 
focus), feature, and gesture recognition. A viable speech recognizer needs to be speaker 
independent, accurate, cover a large vocabulary, handle continuous speech, and have imple
mentations amenable to mobile as well as tethered computing platforms. Current systems 
fall short of these goals primarily in the accuracy, real time, and power requirements. This 
work addresses the latter two problems. Modern approaches to large vocabulary continuous 
speech recognition are surprisingly similar in terms of their high-level structure[16]. Our 
work is based on CMU’s Sphinx3[7, 10] system. Sphinx3 uses a continuous model that 
is much more accurate than the previous semi-continuous Sphinx 2 system but requires 
significantly more compute power.

Sphinx3 runs at 1.8x slower than real time on a 1.7 GHz AMD Athlon. Performance is 
hardly the problem since Moore’s Law improvement rates means all that is needed is a 
little time. A much more important problem is that the real time main memory bandwidth 
requirement of Sphinx3 is 800 MB/sec. Our 400 MHz StrongARM development system 
has a peak bandwidth capability of only 64 MB/sec and this bandwidth costs 0.47 watts of 
power. A reasonable approximation is that power varies with main memory bandwidth for 
Sphinx3 indicating that Sphinx3 is at least an order of magnitude too slow and consumes an 
order of magnitude too much power for embedded applications. This provides significant 
motivation to investigate an alternate approach.

A simplistic view of Sphinx3’s high-level structure consists of 3 phases: front-end signal 
processing which transforms raw signal data into feature vectors; acoustic modeling which 
converts feature vectors into a series of phonemes; and a language model based search that 
transforms phoneme sequences into sequences of words. The process inherently considers 
multiple probable candidate phoneme and word sequences simultaneously. The final choice 
is made based on both phoneme and word context. We focus on the dominant processing 
component of the acoustic and search phases in this paper which we call GAU and HMM 
respectively.

The organization of Sphinx3 is shown in Figurel. Rectangles represent algorithmic phases 
and rounded boxes represent databases. The numbers in parenthesis are the approximate 
on-disk size of the databases before they are loaded into memory and possibly expanded. 
The 3 phases are front end signal processing, Gaussian probability estimation, and Hidden 
Markov Model evaluation, subsequently referred to as FE, GAU, and HMM.
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Figure 1: Anatomy of a Speech Recognizer

A more accurate and detailed view is that GAU precomputes Gaussian probabilities for 
sub-phonetic HMM states (senones). The output of the GAU phase is used during acoustic 
model evaluation and represents the probability of observing a feature vector in an HMM 
state. The set of feature vectors that can be observed from a state are assumed to follow 
a Gaussian distribution. The Gaussian probability is computed as the weighted sum of 
the Mahanalobis distance of the feature from a set of references used while training the 
recognizer. The Mahanalobis distance is a statistically significant distance squared metric 
between two vectors. Given a feature vector F ea t and the pair of vectors (M , V )  (hereafter 
called a component) which represent the mean and variance from a reference, GAU spends 
most of its time computing the quantity:

d =  Y?c=lF i n a l W e i g h t c +  F i n a l S c a l e c * Y li= i(F ea t[ i\  — M [ i] )2 * V[i]

GAU is a component of several recognizers including Sphinx3, Cambridge University’s 
HTK, ISIP and Sirocco to name a few [6, 7, 14, 13, 4]. For Sphinx3, the length of all three 
vectors is 39 and each element is an IEEE 754 32-bit floating point number. The Gaussian 
table contains 49,152 components.

Sphinx uses feedback from the HMM phase to minimize the number of components GAU 
needs to evaluate. In the worst case, every single component needs to be evaluated for 
every single frame. A real time recognizer should have the ability to perform 4.9 million 
component evaluations per second. In practice, the feedback heuristic manages to reduce 
this number to well under 50%. The Viterbi search algorithm for HMMs is multiplication 
intensive, but Sphinx as well as many other speech recognizers convert it to an integer 
addition problem by using fixed point arithmetic in a logarithmic domain. FE and GAU are 
the only floating point intensive components of Sphinx.



The Sphinx3 code spends less than 1% of its time on front end processing, 57.5% of the 
time on the Gaussian phase and 41.5% on the HMM phase. While our work has addressed 
the entire application, the work reported here addresses the optimization and implementa
tion of the dominant Gaussian phase. The contributions include an analysis of the Sphinx3 
system, an algorithmic modification which exposes additional parallelism at the cost of 
increased work, an optimization which drastically reduces bandwidth requirements, and 
a special-purpose co-processor architecture which improves Sphinx3’s performance while 
simultaneously reducing the energy requirements to the point where real-time, speaker- 
independent speech recognition is viable on embedded systems in today’s technology.

2  C h a r a c t e r i z a t i o n  a n d  O p t i m i z a t i o n  o f  S p h i n x  3

To fully characterize the complex behavior of Sphinx, we developed several variants of the 
original application. In addition to the FE, GAU and HMM phases, Sphinx has a lengthy 
startup phase and extremely large data structures which could cause high TLB miss rates on 
embedded platforms with limited TLB reach. To avoid performance characteristics being 
aliased by startup cost and TLB miss rate, Sphinx 3.2 was modified to support check
pointing and fast restart. For embedded platforms, the check-pointed data structures may 
be moved to ROM in a physically mapped segment similar to kseg0 in MIPS processors. 
Results in this paper are based on this low startup cost version of Sphinx referred to as 
original.

Previous studies have not characterized the 3 phases separately [2, 8]. To capture the phase 
characteristics and to separate optimizations for embedded architectures, we developed a 
“phased” version of Sphinx 3. In phased, each of the FE, GAU and HMM phases can 
be run independently with input and output data redirected to intermediate files. In the 
rest of this paper FE, GAU, HM M  refers to the corresponding phase run in isolation while 
phased  refers to all three chained sequentially with no feedback. In Phased, FE and HMM 
are identical to original, while GAU work is increased by the lack of dynamic feedback 
from HMM. Breaking this feedback path exposes parallelism in each phase and allows the 
phases to be pipelined. GAU O PT  refers to a cache optimized version of the GAU phase 
alone. PAR runs each of the FE, GAU OPT and HMM phases on separate processors. It 
also uses the same cache optimizations as GAU OPT.

We used both simulation and native profiling tools to analyze Sphinx 3. Simulations pro
vide flexibility and a high degree of observability, while profiled execution on a real plat
form provides realistic performance measures and serves as a way to validate the accuracy 
of the simulator. The configurations used to analyze Sphinx 3 are:



Native execution: SGI Onyx3, 32 R12K processors at 400 MHz, 32KB 2 way IL1, 32KB
2 way DL1, 8 MB L2 . Software: IRIX 64, MIPS Pro compiler, Perfex, Speedshop. 
Sim ulator (default configuration): SimpleScalar 3.0, out of order CPU model, PISA ISA, 
8 KB 2 way IL1, 2 cycle latency, 32 KB 2 way DL1, 4 cycle latency, 2 MB 2 way L2, 20 
cycle latency, 228 cycle DRAM latency, L1 line size 64 bytes, L2 line size 128 bytes .

It appeared likely that a multi-GHz processor might be required to operate Sphinx in real 
time. Parameters like L1 cache hit time, memory access time, floating point latencies etc 
were measured on a 1.7GHz AMD Athlon processor using the lmbench hardware perfor
mance analysis benchmark [9]. Numbers that could not be directly measured were ob
tained from vendor micro architecture references. Simplescalar was configured to reflect 
these parameters. Unless mentioned otherwise, the remainder of this paper uses the default 
configuration.

Native profiling indicates that the original Sphinx 3 spends approximately 0.89%, 49.8% 
and 49.3% of its compute cycles in the FE, GAU and HMM phases respectively. Another 
recent study found that as high as 70% of another speech recognizers execution time was 
spent in Gaussian probability computation [8]. In the phased  version we found that approx
imately 0.74%, 55.5% and 41.3% of time was spent in FE, GAU and HMM respectively. 
Since FE is such a small component of the execution time, we ignore it in the rest of this 
study and concentrate on GAU and HMM.

15—I

L1 Data Cache Size

Figure 2: L1 DCache Miss rate 

Figures 2 and 3 show the L1 Dcache and L2 cache miss rates for original, phased , FE,
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Figure 3: L2 Cache Miss rate

HMM and GAU for a variety of configurations. Since earlier studies showed that larger 
line sizes benefited Sphinx II, 64 byte L1 and 128 byte L2 cache line sizes were chosen [2]. 
In addition, the L2 cache experiments assume a 32K L1 Dcache. Both figures assume an 
8 KB ICache. Since Sphinx has an extremely low instruction cache miss rate of 0.08% for 
an 8KB ICache, no other ICache experiments were done. The SGI data provides a reality 
check since they represent results obtained using hardware performance counters. Though 
the SGI memory system latency is much lower than that of simulated processors on account 
of low processor to memory clock ratio, the L2 results are very similar in character to the 
8MB simulation results in spite of the effects of out of order execution affected by memory 
system latency and differences in cache replacement policy. The L1 results are not directly 
comparable since the R12000 uses a 32 byte L1 line size and suffers from cache pollution 
caused by abundant DTLB misses.

Figure 4 shows the average bandwidth required to process the workload in real time. This 
is obtained by dividing the total L2 to memory traffic while Sphinx operates on a speech 
file by the duration in seconds of the speech signal. The evidence suggests that bandwidth 
starvation leading to stalls on L2 misses is the reason this application is not able to meet real 
time requirements. The memory bandwidth required for this application is several times 
higher than what is available in practice (not theoretical peak) on most architectures. For 
example, a 16 fold improvement in L2 size from 256 KB (the L2 size of a 1.7 GHz Athlon) 
to 8 MB (SGI Onyx) produces only a very small decrease in the bandwidth requirement 
of GAU. This phase essentially works in stream mode making 100 sequential passes per
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Figure 4: L2 to Memory Bandwidth

second over a 14 MB Gaussian table. The speech signal itself contributes only 16KB/s 
to the total bandwidth requirements. Some computation saving heuristics in Sphinx also 
have the beneficial side effect of helping to save bandwidth by not touching blocks that are 
deemed improbable. Until the L2 size reaches 8 MB, long term reuse of Gaussian table 
entries in the L2 is infrequent. It should be noted that the bandwidth requirement of GAU  
in isolation is more severe than if it were operating inside original, since feedback driven 
heuristics cannot be applied.

2 . 1  I L P  i n  S p h i n x

Before exploring special-purpose architecture extensions for speech, it is worthwhile to in
vestigate the limits of modern architectures. GAU is a floating point dominant code while 
HMM is dominated by integer computations. GAU also appears to be easily vectorizable. 
We performed two simulation studies to explore possibilities for extracting ILP. For GAU, 
a surplus of integer ALUs were provided and the number of floating point units were var
ied. Since this algorithm uses an equal number of multiplies and adds, the number of 
floating point adders and multipliers were increased in equal numbers from 1 to 4, which 
corresponds to the X axis varying from 2 to 8 FPUs in Figure 5. Two different memory 
system hierarchies were considered: a reasonable one for a multi GHZ processor () and an 
aggressive memory system with lower latencies. Reasonable configuration: 32KB DL1,



4 cycle latency, 2MB L2, 20 cycle latency, 2 memory ports. Aggressive configuration: 
32KB DL1, 2 cycle latency, 8MB L2, 20 cycle latency, 4 memory ports.

The SG I-2+2f entry describes the measured total IPC on the R12000 which has 2 integer 
and 2 floating point units. The SGI-2 entry is the measured floating point IPC alone. In the 
case of GAU, IPC remains low because of the inability of the algorithm to have sufficient 
memory bandwidth to keep the FPUs active. In the case of the R12000 which can issue two 
floating point operations per cycle, the IPC for this loop is an underwhelming 0.37. GAU 
OPT, uncovers opportunities for ILP by virtue of its cache optimizations thereby improving 
IPC greatly. However, IPC saturates at 1.2 in spite of available function units. A recently 
published study also indicated IPC in the range of 0.4 to 1.2 for another speech recognizer
[8]. Clearly, the architecture and compiler are unable to automatically extract the available 
ILP which again argues for custom acceleration strategies.

Number of FPUs Number of FPUs

Figure 5: GAU and GAU OPT IPC

Figure 6 shows the corresponding experiment for the HMM phase. In this experiment, the 
number of integer adders and multipliers in equal numbers varies from 1 to 4. In spite of 
available execution resources, IPC remains low. It should be noted that in both experiments, 
the SGI results are indicative of cases where the CPU to memory clock ratio is low. This 
ratio will undoubtedly increase in the future.

The observations from sections 2, 2.1 have several implications: If speech is an “always on” 
feature, it could cause significant L2 cache pollution and memory bandwidth degradation to 
the foreground application. To guarantee real time processing, it might be better to stream 
data around the L2 rather than pollute it. Since the L2 cache is one of the largest sources 
of capacitance on the chip, accessing it for stream data also incurs a large power overhead. 
Low power embedded platforms may not need any L2 cache at all since dramatic increases



Figure 6: HMM IPC Figure 7: Measured Speedup on R12K

in L2 size are not accompanied by corresponding improvements in DRAM bandwidth or 
performance. Bandwidth reduction is important for its own sake as well as to reduce power 
consumption. Bandwidth partitioning so that each phase has independent access to its data 
set is important.

2 . 2  R e s u l t s  o f  S o f t w a r e  O p t i m i z a t i o n s  f o r  S p h i n x

Cache Optimizations: In the Section 2, GAU was shown to be bandwidth starved. The 
GAU code in ph ased  was instrumented and found to require approximately twice the 
amount of computation as in original. However, Figure 7 shows that phased  suffers only 
0.85 times slow down over original on an R12000. Clearly, a large fraction of the excess 
computation is hidden by memory latency. With processor to memory speed ratios increas
ing in the future, an out of order processor can hide an even larger amount of compute 
overhead. The key is to improve the memory system behavior without an unreasonable 
increase in compute requirements.

To achieve this goal, two transformations were performed on phased . First, a blocking op
timization similar in spirit to loop tiling is performed which delays the initial speech signal 
by 100ms or 10 frames. The Gaussian probabilities for all 10 frames are then computed 
by making a single pass over the Gaussian tables. This effectively reduces the number 
of passes to 10 per second where original would have done 100. The blocking factor is 
limited to 10 to avoid a perceptible real-time lag at the decoder output. Sphinx allocates 
the mean and variance vectors used for Gaussian computation described in section 1 sepa
rately. Second, every component evaluation consumes one mean and one variance vector. 
We interleaved corresponding vectors to reduce cache conflicts. Since Sphinx originally 
allocated each table of vectors separately and each is more than 7 MB, they potentially
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Figure 8: Cache Optimized Gaussian Algorithm

conflict with each other in the cache. To avoid this, corresponding mean and variance vec
tors are interleaved and padded with an additional 64 bytes to be exactly 3 L2 cache lines 
long. This padding strategy consumes bandwidth but simplifies DMA transfers for the co
processor architecture described later. The optimized version appears in Figure 8. Note 
the interleaving of vectors and a blocking loop that is not present in the equation shown in 
Section 1. More details of how this affects a hardware implementation will be presented in 
the next section. The optimized version appears in Figures 2, 3, 4 and 7 as the data point 
GAU OPT.

GAU OPT demonstrates the true streaming nature of GAU. Figure 4 shows that GAU 
OPT uses a factor of 4.7 to 3.9 less bandwidth than GAU in simulation with a factor of 4.2 
improvement obtained on a real machine. This supports our claim that GAU processing 
can be done without an L2 cache. With a 256 KB L2 cache, the GAU OPT bandwidth is 
174 MB/s. We have calculated that with no heuristic, and no L2 cache, GAU OPT can meet 
its real time requirements with 180 MB/s of main memory bandwidth. This has important 
implications for the scalability of servers that process speech.

Figures 2 and 3 show dramatic reduction in the cache miss rates in both simulation and 
native execution. The L2 native execution results are better than simulation results. The 
large variation in the L1 results is due to the 32 byte L1 line size on the R12000 and also



possibly because of an extremely large number of TLB misses. The software miss handler 
could easily pollute the L1 cache. The important point is that Figure 7 shows that OPT, 
a version of phased  with our GAU OPT blocking optimizations achieves a slight speedup 
over original in spite of performing a larger number of computations. In summary, to be 
able to extract parallelism, the feedback loop was broken which approximately doubled the 
GAU workload. With cache optimizations (which are not possible with feedback), the loss 
due to the extra GAU workload is recovered and the exposed parallelism is now open for 
further optimization.

Parallelization: Based on the percentage of execution time, Amdahl’s law predicts a factor 
of 1.97 speedup if GAU and HMM processing could be entirely overlapped. It is clear that 
a special-purpose architecture for GAU can have significant speedup, as well as power and 
scaling benefits. We parallelized Sphinx in order to see if there were any practical impedi
ments to achieving good speedup. We developed, a parallel version of Sphinx, called PAR, 
which runs each of the FE, GAU OPT and HMM phases on separate processors. In effect, 
this models an SMP version of Sphinx 3 as well as the case where each processor could 
be replaced by a special-purpose accelerator. As shown in Figure 7, the parallel version 
achieves a speedup of 1.67 over the original sequential version. A custom accelerator will 
likely be even better. The HMM phase was further multi-threaded to use 4 processors in
stead of 1, but the resulting 5 processor version was slower than the 2 processor version 
due to the high synchronization overhead. Our research shows that HMM processing also 
benefits from special-purpose acceleration but that work is not reported here.

3  A  G A U  A c c e l e r a t i o n  A r c h i t e c t u r e

The tight structure of the GAU computation lends itself to a high-throughput custom im
plementation. The key questions are how to achieve area, power and bandwidth efficiency 
as well as scalability. This section describes how we achieved these goals by a) reduc
ing the floating point precision, b) restructuring the computation, and c) sharing memory 
bandwidth.

Sphinx designers try hard to eliminate floating point computation wherever possible. GAU 
and FE are the only floating point dominant computations in Sphinx. An attempt was 
made to convert GAU to use fixed point integer arithmetic. This was a total failure. The 
computations require a very high dynamic range which cannot be provided with 32 bit 
scaled integer arithmetic. Fortunately, the scores of the highly probable states are typically 
several orders of magnitude higher than those of the less likely ones indicating that a wide 
range is more important than precision.



Earlier work explored the use of special-purpose floating point formats in Gaussian estima
tion to save memory bandwidth [11]. Special floating point formats should be almost in
visible to the application. This reduces complexity and enables the development of speech 
models without access to any special hardware. We conducted an empirical search for the 
precision requirements by creating a custom software floating point emulation library for 
GAU. The library supports multiplication, addition, MAC, and (a — b)2 operations on IEEE 
754 format floating point numbers. The approach was to experimentally reduce mantissa 
and exponent sizes without changing the output results of the Sphinx3 recognizer. The 
result is an IEEE 754 compatible 12-bit mantissa and 8-bit exponent format similar to an 
IEEE 754 number in that, it has a sign-bit, an 8-bit excess 127 exponent and a hidden one- 
bit in its normalized mantissa. Unlike IEEE 754 which has 23 explicit-bits in the mantissa, 
we only need 12-bits. Conversion between the reduced precision representation and IEEE 
754 is trivial. Though our study was done independently, we subsequently found a previous 
study which arrived at similar conclusions based on an earlier version of Sphinx [15]. How
ever this study used digit serial multipliers which cannot provide the kind of throughput 
required for GAU computation. Hence we chose to use fully pipelined reduced precision 
multipliers instead.

Another key insight is that current high performance microprocessors provide a fused mul
tiply add operation which would benefit GAU. However, GAU also needs an add multiply 
(subtract-square) operation. There is scope for floating point circuit improvements relying 
on the nature of always returning a positive number. Further gains can be obtained
both in area, latency, power and magnitude of the numerical error by fusing the operations 
(a — b)2 * c. This is the approach we have taken.

Figure 9 illustrates the system context for our GAU accelerator. Figure 10 shows the details 
of the accelerator itself.

Gaussian memory 
read requests

Figure 9: Top Level Organization of Gaussian Estimator



We implement loops 1,2,3 (from the optimized GAU algorithm in Figure 8) in hardware 
while the outer loop is implemented in software. The max operation can be folded into the 
denormal floating point number handling section of our floating point adder without addi
tional latency, but empirically it can be discarded without sacrificing recognition accuracy. 
The organization in Figure 9 is essentially a decoupled access/execute architecture where 
the outer loop runs on a host processor and instructs a DMA engine to transfer X, Mean and 
Var vectors into the accelerators input memory. A set of 10 input blocks are transferred into 
the accelerator memory and retained for the duration of a pass over the entire interleaved 
Mean/Var table. The Mean/Var memory is double buffered for simultaneous access by the 
DMA engine and the accelerator. The accelerator sends results to an output queue from 
where they are read by the host processor using its coprocessor access interface.

The datapath consists of an floating point unit, followed by an adder that
accumulates the sum as well as a fused multiply add unit that performs the
final scaling and accumulates the score. Given that X, Mean, and Var are 39 element 
vectors, a vector style architecture is suggested. The problem comes in the accumulation 
step since this operation depends on the sum from the previous cycle, and floating point 
adders have multi-cycle latencies. For a vector length of N and an addition latency of M, a 
straight forward implementation takes (N-1) * M cycles. Binary tree reduction (similar to 
an optimal merge algorithm) is possible, but even then the whole loop cannot be pipelined 
with unit initiation interval.

This problem is solved using by reordering Loops 1,2,3 to a 2,3,1 order. This calculates 
an term for each input block while reading out the mean and variance
values just once from the SRAM. Effectively this is an interleaved execution of 10 separate 
vectors on a single function unit which leaves enough time to do a floating point addition 
of a partial sum term before the next term arrives for that vector. The cost is an additional
10 internal registers to maintain partial sums. Loops 2,3,1 can now be pipelined with 
unit initiation interval. In the original algorithm the Mean/Var SRAM is accessed every 
cycle whereas with the loop interchanged version this 64-bit wide SRAM is accessed only 
once every 10 cycles. Since SRAM read current is comparable to function unit current in 
the CMOS technology we use, the loop interchange also contributes significant savings in 
power consumption.

The Final Sigma unit in Figure 10 works in a similar manner except that instead of a floating 
point adder, it uses a fused multiply add unit. It scales the sum, adds the final weight and 
accumulates the final score. Due to the interleaved execution this unit also requires 10 
intermediate sum registers. This unit has a fairly low utilization since it receives only 8
* 10 inputs every 39 * 10 * 8 cycles. It is useful since it makes it possible for the host 
processor to read one combined value per block instead of having to do 8 coprocessor 
reads. To save power this unit is disabled when it is idle. In a multi-channel configuration



it is possible to share this unit between multiple channels.
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Figure 10: Gaussian Coprocessor

The datapath shown in Figure 10 has been implemented using a datapath description lan
guage (Synopsys Module Compiler Language) and is subsequently synthesized for a 0.25^ 
CMOS process. The control sections were written in Verilog and synthesized using Syn
opsys Design Compiler. The gate level netlist is then annotated with worst case wire loads 
calculated using the same wire load model used for synthesis. The netlist is then simulated 
at the Spice level using Synopsys Nanosim and transistor parameters extracted for the same
0.25/U process by MOSIS. Energy consumption is estimated from the RMS supply current 
computed by Spice. The unoptimized fully pipelined design can operate above 300 MHz 
at the nominal voltage of 2.5 volts with unit initiation interval. At this frequency the per
formance exceeds the real time requirements for GAU, indicating an opportunity to further 
reduce power. A lower frequency and voltage can be used to further reduce power.

The accelerator was designed and simulated along with a low-power embedded MIPS-like 
processor that we could modify as needed to support special purpose co-processor acceler
ators. This control processor is a simple in-order design that uses a blocking L1 DCache 
and has no L2 cache. To support the equivalent of multiple outstanding loads, it uses the 
MIPS coprocessor interface to directly submit DMA requests to a low priority queue in 
the on-chip memory controller. The queue supports 16 outstanding low priority block read 
requests with block sizes being multiples of 128 bytes. A load request specifies a ROM ad
dress and a destination -  one of the Feat, Mean or Var SRAMs. The memory controller ini
tiates a queued memory read and transfers the data directly to the requested SRAM index. 
A more capable out of order processor could initiate the loads directly. Software running on 
the processor core does the equivalent of the GAU OPT phase. It accumulates 100ms or 10 
frames of speech feature vectors (1560 bytes) into the Feat SRAM periodically. This trans
fer uses the memory controller queue interface. Next, it loads two interleaved Mean/Var 
vectors from ROM into the corresponding SRAM using the queue interface . A single



transfer in this case is 640 bytes. The Mean/Var SRAM is double buffered to hide the 
memory latency. Initially, the software fills both the buffers. It then queues up a series of 
vector execute commands to the control logic of the Gaussian accelerator. A single com
mand corresponds to executing the interchanged loops 2,3,1. The processor then proceeds 
to read results from the output queue of the Gaussian accelerator. When 10 results have 
been read, it is time to switch to the next Mean/Var vector and refill the used up half of the 
Mean/Var SRAM. This process continues until the end of the Gaussian ROM is reached. 
When one cache line of results has been accumulated, they are written to memory where 
another phase or an i/o interface can read it.

The processor frequency was chosen to provide a capability similar to the well known 
StrongArm. We also have a cycle accurate simulator which is validated by running it in 
lock step with the processor’s HDL model. The simulator is detailed enough to boot the 
SGI Linux 2.5 operating system and run user applications in multitasking mode. CAD tool 
latency estimates are used to time the simulated version of the accelerator. The resulting 
system accurately models the architecture depicted in Figures 10 and 9. The GAU OPT 
application for this system is a simple 250 line C program with less than 10 lines of as
sembly language for the coprocessor interface. Loop unrolling and double buffering were 
done by hand in C. The application was compiled using MIPS GCC 3.1 and run as a user 
application under Linux inside the simulator. It was able to process 100ms samples of a 
single channel in 67.3ms and scale up to 10 channels in real time. The actual data may be 
seen in the next section. Energy consumption was estimated using Spice simulation.

4  A c c e l e r a t o r  R e s u l t s

Though the Gaussian estimator was designed for Sphinx3 and the MIPS-like embedded 
processor, the results are widely applicable to other architectures and recognizers. There 
are several levels at which this system may be integrated into a speech recognition task 
pipeline similar to Phased . For example, an intelligent microphone may be created by 
using a simple low-power DSP to handle the A/D conversion and FE phase and then use the 
GAU co-processor for probability estimation. The probability estimates can then be sent to 
a high-end processor or custom accelerator that does language model computation thereby 
hiding more than 50% of the compute effort required for speech recognition. On desktop 
systems, the Gaussian accelerator may be part of a sound card or the Gaussian accelerator 
may be directly attached to the main processor. On commercial voice servers, the Gaussian 
estimator may be directly built into the line cards that interface to the telephone network 
thereby freeing up server resources for language model and application processing. This 
also has important implications for server scalability described in the next section.



The HUB4 speech model used in this study has 49,152 interleaved and padded Mean/Var 
components each occupying 3 L2 cache lines of 128 bytes or a total of 384 bytes/component. 
Thus the total size of the Gaussian table is 18MB. Sphinx processes this table 100 times 
every second, but uses some heuristics to cut down the bandwidth requirement. To guaran
tee real time processing, we can do brute force evaluation using the Gaussian accelerator 
at low-power. Because of our blocking optimization (GAU OPT), we need to process the 
data only 10 times per second with a peak bandwidth of 180 MB/s which can be further 
reduced by applying the sub-vector quantization (non-feedback) heuristics in Sphinx. Not 
only does our design bring the bandwidth requirements to limits possible on embedded 
systems, it also drastically improves the power consumption. On a 400 MHz Intel XScale 
(StrongARM) development system where the processor itself consumes less than 1 W, we 
measured a peak memory bandwidth of 64MB/s which consumes an additional 0.47 W. 
The factor of 4 or more bandwidth savings is significant for the embedded space since it 
indicates that a 52-watt server can be replaced by a 1-watt embedded processor.

In addition to power advantages, our design is also scalable. Figure 11 shows that our 
system can be scaled to process up to ten independent speech channels in real-time. The 
main limitation is our in-order processor with its simple blocking cache mode. The Final 
Sigma  stage enables the design to scale even with blocking caches due to the removal of 
destructive interference between the cache and the DMA engine. For embedded designs the 
power required to support out of order execution may be excessive but such an organization 
is likely in a server. One channel of speech feature vectors contributes about 16 KB/s to the 
memory bandwidth. The outgoing probabilities consume 2.3 MB/s.

By setting a threshold on acceptable Gaussian scores and selectively sending out the scores, 
this can be significantly reduced. The dominant bandwidth component is still the Gaussian 
table. We can add additional Feat SRAMs and Gaussian accelerator data paths that share 
the same Var/Mean SRAMs since the Gaussian tables are common for all channels, thereby 
reusing the same 180 MB/s vector stream for a large number of channels. With a higher 
frequency implementation of the Gaussian datapath, multiple channels can also be multi
plexed on the same datapath. In a server, the Gaussian estimation of several channels can 
be delegated to a line card which operates out of its own 18 MB Gaussian ROM. The par
titioning of bandwidth, a 50% reduction in server workload per channel as well as reduced 
cache pollution leads to improved server scalability.

Finally, we compared the Spice results from our fully synthesized coprocessor architecture 
with an actual 2.4 GHz Pentium4 system that was modified to allow accurate measure
ment of processor power. Without considering the power consumed by main memory, the 
GAU accelerator consumed 1.8 watts while the Pentium4 consumed 52.3 watts during Ma- 
hanalobis distance calculation representing an improvement of 29 fold. The performance of 
the Pentium4 system exceeded real-time demands by a factor of 1.6 while the coprocessor
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approach exceeded real-time by 1.55. However the Pentium4 is implemented in a highly 
tuned 0.13//. process whereas the GAU accelerator was designed for a generally available 
TSMC 0.25// process. When normalizing for process differences, the advantage of the 
GAU coprocessor approach increases significantly. After normalizing for the process, the 
co-processor’s throughput is 187% higher than the Pentium4, while consuming a whop
ping 271 times less energy. However it is important to note that energy consumption vs. 
performance are common design trade-offs. A more valid comparison is the energy-delay 
product. The GAU co-processor improves upon the energy-delay product of the Pentium4 
processor by a factor of 507.

However the processor is only part of any system. Main memory is an important consid
eration as well. When the memory is included the GAU co-processor approach improves 
upon the Pentium4’s energy delay product by a factor of 196, has an energy advantage of a 
factor of 104, and the throughput performance stays the same as the processor-only results.

5  R e l a t e d  W o r k

Most speech recognition research has targeted recognition accuracy [5,4]. Performance is
sues have been secondary and power efficiency has largely been ignored. Ravishankar im



proved Sphinx performance by reducing accuracy and subsequently recovering it in a less 
computationally active phase and developed a multi-processor version of an older version 
of Sphinx [10]. However, details of this work are currently unavailable. Agram provided a 
detailed analysis of Sphinx 2 and compared this analysis with SPEC benchmarks [2]. Pihl 
designed a custom coprocessor to accelerate Gaussian probability generation for an 
HMM based recognizer. However Pihl’s work proposed a specialized arithmetic format 
rather than the IEEE 754 compatible version described here. Furthermore the number of 
Gaussian components need to be processed per second has escalated from 40,000 in the 
case of Pihl’s coprocessor to 4.9 million for our accelerator during the last 7 years and this 
trend is likely to continue as the search for increased accuracy proceeds. Pihl’s work did 
not address scalability which is a central theme for this research. Tong showed an example 
of reduced precision digit serial multiplication for Sphinx [15]. Anatharaman showed a 
custom multiprocessor architecture for improving the Viterbi beam search component of a 
predecessor of Sphinx [3]. Application acceleration using custom coprocessors has been in 
use for decades, however current researchers are exploiting this theme for reducing power 
consumption. Piperench is one such approach which exploits virtualized hardware, and 
run-time reconfiguration [12]. Pleiades is a reconfigurable DSP architecture that uses half 
the power of an Intel StrongARM for FFT calculations [1].

6  C o n c l u s i o n s

Sphinx3 has been analyzed to show that real-time processing is problematic due to cache 
pollution on high-end general-purpose machines, and even more problematic due to both 
power and performance concerns for low-end embedded systems. Optimizations were then 
presented and analyzed to expose parallelism and substantially reduce the bandwidth re
quirements for real-time recognizers. A custom accelerator for the dominant Gaussian 
phase was then described and analyzed. The accelerator takes advantage of the low preci
sion floating point requirements of Sphinx3 as well as creating a custom function unit for 
calculating Gaussian probabilities which is the dominant component of the Gaussian phase 
of Sphinx3. The accelerator has been synthesized for a .25u CMOS process and shown 
to improve on the process normalized performance of a Pentium4 system by a factor of
2, while simultaneously improving on the energy consumption by 2 orders of magnitude. 
Other work, not reported here, shows similar results for other phases of the speech recog
nition process. This is strong evidence that by incorporating a small amount of custom 
acceleration hardware, it is possible to perform real-time Sphinx3 speech recognition for 
the HUB4 language model on an embedded processor implemented in current technology.
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