View metadata, citation and similar papers at core.ac.uk brought to you by Ji CORE

provided by The University of Utah: J. Willard Marriott Digital Library

AN ARCHITECTURE FOR A LOOSELY-COUPLED
PARALLEL. PROCESSOR

Robert M Keller

Gary Lindstrom
Suhas Patil

UKcs - 78 - 105

October 1978

Department of Computer Science
University of Utah
Salt Lake City, Utah 84112

This work was supported in part by grants DCR-74-21822, MCS-77-09269 and
MCS-78-03832 from the National Science Foundation.

https://core.ac.uk/display/276277901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract: An architecture for a large (e.g. 1000 processor) parallel
computer is presented. The processors are loosely-coupled, in the sense
that communication among them is fully asynchronous, and each processor
is generally not unduly delayed by any immediate need for specific data
values. The network supporting this communication is tree shaped,

with the individual processors connected at leaf nodes. The machine
executes a graphical version of applicative Lisp. The program

execution model is demand-driven, with a special deferred interpretation
for dotted pair evaluation, termed "lenient cons”. Opportunities for
concurrency arise in the parallel evaluation of arguments to strict
operators, i.e. those known to require evaluation of their full set of arguments.
Such opportunities are exploited by exporting function application tasks
to neighboring processor nodes in the tree, subject to a hierarchical
notion of load balancing. Locality of task allocation and communication
is a key objective of the machine. An integrated design toward that end
is presented, combining language issues, firm semantic foundations,

and anticipated hardware technologies.

keywords and phrases: applicative programming, architecture,
concurrency, data flow, demand-driven, lenient cons, Lisp, locality,
loosely-coupled, packet switching, parallelism, reduction machine,
tagged architecture.

CR categories: 6.21, 4.22, 4.12, 4.32

10.
11.
12.
13.
14.
15.
16.

17.

CONTENTS

INEFOAUCTION ettt 1
LANQUAGE 1S S U €S it e . 3
BaSIC ATCRITECIUIE oo 5
Communication NETWOIK .o 7
L 0 C A T EY et 9
INFOrMAation FIOW .o n
MaChiNe LANQUAGE ..oooeeiieeiieiiiie ettt bbb 12
Program EXECULION .ot e 14
TaSK EValUTION o 16
WVOPA F O T IM @ T it 18
Representative OPEratOrs .o 20
Function Closures and the Operator apply ., 22
forward ChaiNiNg . 28
Processor ATCHITECTUIE e 30
(o7 To B = 7 U - ol I ¢ o U URUSSSRSPR 3l
Comparison with Related Machinescccccoveiiiiiiiiieieie e 32
Conclusions and Future Research ... 35
Figures:
1. Form of the physical architecture of the loosely-
coupled parallel ProCessSor ., 37
2. Graph representation and initial datablock for
sample main program M ... 41
3. Graph representation and codeblock representation
of the consequent of a producCtion....cccevevieniviiinicicienen, 42
4. Tree summMation €Xam Ple s 43
5. One possible snapshot of the program of Figure 4 . . . 44
6. Overall task processing flOW . 38
7. Evaluate/propagate for ordinary task type ... 39
8 Evaluate/propagate for invoke task type ., 40
9. Distribute/notify pProcessSing . 45
10. Evaluate/propagate for oar, adr task types ... 46
11. Illustration of forward chaining ..., 47
12. Simple example of function closures ...viiiiieienn, 48

AN AN =N AKX 49

1. INTRODUCTION

The architecture of highly-parallel machines has received increased
attention from researchers over the past decade. At first, because of
their novelty, workers were content with proposing elaborate machine
architectures without giving great consideration to how such machines
would ultimately be programmed to exploit their available computational
power. Experience with Illiac 1V, Star-100, etc. has shown this to be
a mistake. Indications are that programming languages deserve consideration
at the earliest stages of architectural conception. Included in such
considerations are issues such as storage management and task management.

This paper describes considerations for what might be called a
loosely-coupled arch-iteoture. This term was used in [Arden and Berenbaum 75]
in discussing memory management trade-offs in multi-processor systems.
We use it to denote a machine which potentially incorporates a large
number (say 1000) of processors which can function independently to a
large extent, but which can effectively communicate with one another when
necessary. Furthermore, we require that the computations being supported
are not tied to the structure of the machine at the program level. A
corollary of this architectural concept is that the system is easily
expandable, there being no logical dependence on the number of processors.
Such expandability is further enhanced by the particular physical organization
to be described. Additionally, through the use of a packet switching
intercommunication network, the system can by seen to have many of the
features attending reaonfigurable systems, {of. [Reddi and Feustel 78]).

The architecture presented here was influenced by work reported
in [Dennis and Misunas 74] and [Arvind and Gostelow 77] on data flew
machines. Our machine architecture attempts to bring internal communication

costs within the machine to a more manageable level by taking advantage

of locality of reference. The communication network in our machine plays
the role of the arbitration and distribution network of the Dennis data-
flow machine. However, the processing units which assemble instructions and
initiate information flow are more like the processors of Arvind and
Gostelow. Even though the architecture of our machine has a tree-like
structure, it is not a "recursive architecture” in the sense of [Davis 78].
Our system has in common with those cited in this paragraph the desire
to integrate architectural and language considerations. This is one
of the ways it differs from superficially similar systems, such as Ot [Swan,
et at. 77]. These similarities and differences will be further reviewed
in Section 16.

Our architecture is currently in the development stage. We present
in this paper some of the major philosophical decisions which are influencing
us, along with an execution model for a subset of the ultimate machine

language.

2. LANGUAGE ISSUES

Heretofore, research on highly-parallei machines seems to have predom-
inately emphasized numerical, rather than symbolic, computations. He feel that
further investigation of the latter is merited. The possibility of such
applications has been alluded to before, e.g. [Hearn 76]. Presently we
are choosing Lisp as a target language for our architecture. W would
like to present arguments in further defense of this choice. The first is that
there is a substantial community of Lisp users who are seeking the higher
computing*speeds which a parallel processing computer can give. W
believe that the problem of the acceptance of a new architecture
will be substantially solved if Lisp can be supported on the computer,
since that choice would not involve acceptance of a new language.

Secondly, we feel that Lisp, possibly with some advice on programming
style, can be much better matched to the power of a loosely-coupled
system than other languages. For example, extensive transformation of
Fortran programs is done to make effective use of the Illiac 1V, e.g.
[Lamport 74]. Consequently, the connection between object and source
programs is obscured, and debugging is affected adversely. W feel
that the object language of our machine can be made reasonably close to
a usable subset of Lisp.

Furthermore, Lisp, with some minor modifications, such as lenient eons
discussed later (of. [Friedman and Wise 76], [Henderson and Morris 76]) seems

to include all opportunities for exploitation of concurrency that proposed data

flow languages do. It also seems to provide more, e.g. concurrent operations

on tree or graph data structures during the latter's creation,

and natural ways for dealing with conceptually infinite structures.

Finally, even if full Lisp proves to be too difficult to support
efficiently, in our attempt to design a machine for it, we will
gain valuable experience about the inherent difficulties in supporting

such languages on a loosely-coupled computer.

It may seem that catering to Lisp would have the effect of excluding
most of the potential users of other data-flow machines, e.g. those
interested in large numevioal computations, as users of our machine.

It is our hope that such users will approach our design with an open mind.
We believe, for several reasons, that our machine can compete with others
in the numerical computation domain. First, although our evaluator is
different, other machines are likely to incur very similar mechanization
problems, making the execution speeds similar for the same underlying
computation, independent of source language used. Secondly, numerical
computations, e.g. large Fortran programs, can be mechanically translated
into Lisp. There are known case studies, e.g. [Fateman 73], where the
Lisp version actually runs faster, even when iteration is replaced with

recursion.

3. BASIC ARCHITECTURE

Figure 1 shows the physical arrangement of components in our machine.
The internal nodes of the tree structure are bi-directional communication
units, thus combining the attributes of the arbiter and distribution
units of the Dennis machine along with additional balancing functions.
Processing units are attached to the machine as leaf nodes. The leaf
nodes are not necessarily equidistant from the root node of the tree.
One might expect, for example, special-purpose units, of which there
are relatively few, to be closer to the root node, for enhanced accessibility
and utilization. Although the figure shows a binary tree, and the discussion
in this paper makes that assumption for simplicity, technology considerations
suggest that a 4-ary or s-ary tree might be more appropriate.

A general processing unit is roughly the size of a conventional
micro-computer, but its architecture is substantially different. It is
able to carry out local computation, particularly with respect to assembly
and dissemination of information, and to initiate actions for fetching
information from other nodes of the tree. It will be able to execute single
program tasks, and create tasks in response to the execution of invoke
(procedure application) operations, which may then be executed either in
the local processing unit or in another processing unit.

The primary memory of the system is distributed among the processing
units. Each processing unit has immediate access to that segment of
memory located within it. It also has access, through the communication

network, to the segments of memory located at other processing units.

Even though the memory is distributed among the processing units,
there is only one unified logical address space. Given the address of a
datum, any node in the machine is able to logically access it directly.
The internal nodes of the communication network are responsible for any
required physical routing of addresses and data. Access to auxiliary
memory and other forms of external communication take place through

special-purpose leaf processors.

4. COMMUNICATION NETWORK

The communication network is designed to help the machine to take
advantage of locality of information flow, thereby reducing communication
costs which often tend to be high in data-flow oriented machines. It is
also responsible for distributing the computing load among available
processing units.

In the data-flow machine of Dennis, the arbitration and distribution
networks are disjoint, and any piece of information which needs to be sent
from one instruction cell to another needs to traverse the entire depth of
these networks, even if the cells are physically close neighbors. By combining
the arbitration and distribution functions, we can cut down the distance
information needs to travel in such cases.

In our machine, information first travels up the tree towards the
root node until it comes to a node from which the destination cell is
reachable by going down the tree, then it proceeds down the tree until it
finally reaches the desired destination cell. Thus, for sending or receiving
information from neighboring cells, it is not necessary for the information
to travel the entire depth of the tree. Relatively local data-flow therefore
takes less time and improves the overall communication cost of the computation.
Furthermore, another important consequence of combining the arbitration and
distribution networks is that the traffic congestion at the narrow ends of
these networks is reduced, enabling the communication network to handle a
higher volume of data.

A second function of the communication network is to provide a reasonably
balanced distribution of the computing load. Such a function is not required
in the Dennis machine, as the latter does not attempt to allocate tasks

dynamically (i.e. cell addresses are fixed at compile time). Each node of

our communication network periodically obtains monitoring signals from
its subordinates, which indicate their current utilizations. When such
signals indicate a sufficiently unbalanced state, the node can cause the

transfer of uninitiated tasks from one subtree to the other (see Section

15).

5. LOCALITY

One of the most important concepts of our architecture is to improve
performance by exploiting locality of information flow. Locality of
reference is an established concept for program execution, which should
therefore be exploitable within data-flow computations. Locality will
be enhanced by the fact that functions are apt to reference their arguments
repeatedly. Secondly, repeated global references to the same data will
become localized by a caching effect which results from the implementation
of such references. The latter will be further discussed in Section 12,
dealing with the apply operator.

If computations which interact heavily with one another are allocated
space in such a way that they are a shorter average distance apart in
the nodes of the communication network, the overall time spent in information
flow will be reduced. It is important to note that even if it is not
possible to allocate space for a new computation in the address space
of the same leaf, the correctness of the overall computation will be
maintained, even though the speed of the computation may be degraded.
This is a consequence of the uniformly accessible address space.

In designing a highly-parallei machine, one must be careful that costs
involved in creating and communicating with new tasks do not outweigh
the speed advantage gained from overlapped execution of these tasks.
Consequently, our design prescribes that all computation local to a procedure
body (i.e. exclusive of calls to other procedures) will usually be done
within one processing unit. Hence, the global structure does not seek
gains from parallelism on the level of, say, an arithmetic expression
(although this could be done within the processing unit itself if desired),

but rather from inter-procedure concurrency. -

Another anticipated effect which will contribute to locality might
be called the seeding effect. As shall be seen, when a task A in execution
creates a second task B, the latter may be allocated its storage in any
of the processing units in which there is sufficient space. Since B
may cause the creation of other tasks Cj, C~,...., (n, locality is
enhanced if the storage for the latter is allocated in processing units
near to that of B in the tree. Hence, even if Bis a long distance from A
thus incurring a major communication cost between the two, this cost may
be balanced out by the lower costs of communicating between B and
Cj, C,...., On. Hence, this seeding effect creates a tradeoff in
resolving a choice of how far away a created task should be placed. It
also demonstrates the possibility of a certain amount of re-localization
in recovering from bad task-placement decisions by the system. For
example, even if B is placed in a congested area, the storage from

completing tasks near B can be reclaimed to provide more space for

6. INFORMATION FALOW

The characterization of information flow within the machine is very
dependent on the conceptual level being considered. For example, at the
task level, we are concerned with the flow of operands between tasks.

In particular, our system permits demand driven computation at this level.
In contrast, the machines of Dennis, Arvind and Gostelow, and Davis are all
data-driven machines, in that an instruction never asks for data to be sent
to it. Instead, it waits for data to be sent to it, and when all pieces of
data are received, it initiates computation whose results are then sent to
all other designated instructions. In the demand-driven scheme, a procedure
may actively seek additional pieces of data after it has demanded and
received some initial pieces of data. This topic will be further discussed
in subsequent sections.

At the communication network level, we find the information flow
separated into the flow of tasks (which are invoke instructions), operands
(single data words), and blocks (multiple data words). All such pieces
of information are accompanied by additional routing information in the
form of destination addresses, etc. All information transmitted through
the communication network is done by packet switching (or store-and-forward)
as opposed to line switching. The latter type of switching is not used
because of the potential congestion incurred by tying up long paths through
the network.

A node of the communication network communicates to its parent through a
traditional form of handshaking. However, for block transfers, a hurst mode
of communication is used in which the handshaking occurs only before and
after the entire block has been transferred, thus drastically reducing the

associated overhead.

7. MACHINE LANGUAGE

Our machine executes a compiled version of Lisp as its machine language.
We avoid syntactic issues by using a parallel program graph, such as
described in [Keller 77], instead of the conventional list representation
of Lisp programs. For sake of definiteness, we refer to the graphical
language as Flow-Graph Lisp {fgl). FGL allows us to clearly display
the data flow between operators and thus potential concurrency within programs.

The equivalent of procedure calls, including recursive ones, is
provided in FGL through graph productions, which specify how a programmer-
defined operator (the antecedent of the production) is to be replaced by
a program graph (the consequent of the production).

FG. also supports lenient cons, which allows the machine to exploit
concurrency which it could not with conventional strict cons [Friedman and
Wise 78]. For the current presentation, iteration is implemented by
recursion, in the manner of [McCarthy 63]. This automatically gives the
same concurrency-detection effect of "look-ahead"™ processors, which
"unfold" iterations to achieve concurrency [Keller 75].

For sake of this presentation, let us suppose that data structures
are trees, with the integers and nil as atoms. Boolean values may be
implemented by interpreting nil as false, and any non-nil value as
true. The program consists of a network of operators which are functions
on trees. For simplicity, we do not discuss input of trees. Rather, we
assume them to be resident at the beginning of the computation. Our trees
are represented using an appropriate network of cons operators and atoms.

In summary, the program and all of its data are represented as one
network in the machine, in a manner not too different from conventional
representations of graphs in a 1inearly-addressable memory.

To cause a result to be printed, a demand is generated at some print

13
node in the network. This causes propagation of the demand to the operator
feeding the print, which in turn eventually causes the value of that operator
to be evaluated and printed.

Evaluation consists of a combination of transmutations to the graph and
operations which produce new values from others. In this sense, we have a
reduction machine a la [Berkling 75], executing a reduction language a la
[Backus 73]. By using graphs rather than strings, we can avoid much of the
combinatorial explosion which takes place in purely string-oriented machines.

Figures 2, 3, and 4 give examples of programs in FGL In Figure 2,
there is a main program M Mcalls a recursive procedure g, the graph of which is
presented in Figure 3. In each figure we give the graph representation and
the corresponding "code block™ representation (see Section 8). The parenthetic
labels on the graph indicate the correspondence between the two. Intuitively,
g(n) "computes" the infinite sequence

n ml n+t2 nt3
In the context of the main program, the value printed is the third element
{caddr) of the sequence with n =o.

A second program, which sums a tree of integers, is shown in Figure 4.
This example uses a strict operator, add, to cause the creation of instances
of operators which can be evaluated concurrently. Figure 5 shows a possible
snapshot of the program during its application to a specific tree.

In the next sections we describe, in more detail, program storage, task
execution, typical operators, graph expansion via the special invoke operator,
and forward chaining, which is a key idea in implementing lenient cons and our
particular form of procedures. W do not discuss storage reclamation here,

as it is an issue still under investigation.

8. PROGRAM EXECUTION
All storage is allocated in blocks. Blocks make storage management
more efficient, and are consistent with trying to keep the locality
of a computation contained with one processing unit. A block is either
a data block or a code block. The words of a data block are initially code
and literals. The former gradually get changed to data during execution.
A code block is copied as the source of initial code to be stored in a
newly allocated data block. The contents of a code block form a linear
representation of an FGL program graph. .
The copying of code blocks may be contrasted with approaches such
as that in [Patil 67], which interpret a pure code block without copying.
The approach taken here is more effective in keeping references local to
a processing unit. It also reduces the amount of word fetching required
during actual task processing.
The words in a data block correspond roughly to data values which
may eventually appear on the output arcs of operator nodes in the
program graph. Initially however, instead of containing data, a word
contains the instruction code representation of the corresponding
operator, along with the local addresses of words corresponding to its input
arcs, i.e. the sources of its operands. W assume here for simplicity
that each operator has only one output arc, although such arcs may

fan out as necessary.

15

In addition to specifying the input arcs of its operands, an
instruction may be accompanied by notifiers, which are addresses of
operators which have this operator's output arc as one of their input
arcs. These could conceivably be set dynamically, but in this presentation
we have elected to have them set in the initial code. Again, Figures 2, 3, and
4 give examples of code blocks corresponding to program graphs. Further
information on interpreting these blocks is given in subsequent sections.

By keeping data blocks reasonably small, say 256 words, and by using
only addresses relative to the start of the block in the code, the operation
code and necessary set of operand and notifier addresses can be accommodated
within a reasonable word size, say 48 bits. For references across blocks,
which therefore involve global addresses, we provide some special operators,
to be described subsequently. By dividing the physical memory into blocks
and allocating on block boundaries only, a paging effect, which simplifies

storage management, is readily obtained.

16

9. TASK EVALUATION

The loosely-coupled aspect of task evaluation is achievable through
a task list organization, which allows many processors to partake in the
evaluation of tasks, i.e. particular instances of operators with their
associated data. The task list is decomposed into two separate lists
which may be served independently. These are:

demand list: contains addresses of operators for which evaluation is
to be attempted.

result list: contains addresses of operators, along with their
corresponding values after evaluation.

At this stage of development, the recommended priority of service is

result first, then demand. The reasoning here is that result values
generally enable successful evaluation of tasks, while demand generally
creates more tasks. These lists are further divided and distributed to
individual processing units by the communication network, which takes into
account the current processor load distribution. Only invoke

instructions will be considered for distribution, for it is only these which
might profitably be executed in another processing unit, due to the commun-
ication cost incurred in getting them there. Hence, the invoke list is a
sub-list of the demand list, containing only invoke instructions.

Figures e through 11 show the organization of the task
evaluation mechanism. The flow diagrams are to be interpreted in an
informal sense, and are less akin to conventional flowcharts than they are
indicative of data flow, with tasks as data.

The following brief narrative will aid in the understanding of the
flow diagrams. .Initially, the address of the word which will produce the
"main result™ is put on the demand list. The word itself is then fetched.
It is evaluated, if possible. If not, then demand is propagated to its

arguments by placing their addresses on the demand list.

Once evaluated, a result value replaces the coded operator as ready
data. Via the result list, any notifiable operators awaiting this
result as an argument are then notified by putting them on the demand
list to be retried. W notice that all demanded operators remain accessi
until they become ready as data, either through:

(1) being on the demand list,

or (2) being referenced by a notifier of an accessible operator,
or (3) being referenced by the "forwarding address” of an accessible
operator.

Forms of evaluation other than pure demand evaluation can thus be

supported by judicious setting of "d-bits" and advanced placement on

the demand list.

18

10. WCRD FORVAT
A word in a data block may begin as a code word and later be changed

to a datum as the computation proceeds, corresponding to the evaluation
of the operator represented by that code word. The ready bit {r bit)
in each case is set when the word does contain a datum. It may be set
initially in some words, to provide initialized literals.

A datum can either be an atom, in which case it contains a literal value,
or it can be a pair pointer. In the latter case, it is the global address
of a pair. Apair consists of two consecutive words within some block,
each of which is either a datum or a forward operator. The purpose of
the latter will be described subsequently.

There are several other formats for data which extend the above, such
as representing lists in contiguous space, chains of pointers, etc., as used
in [Bawden, et al. 77]. These will not be discussed here for brevity.

All global addresses are represented as

B.R
where B is the base address of a data block and R the local address
of a word within the block. The advantage of this scheme is that once
the word in question has been referenced, the processor will usually
need access to other words in the block and can gain it using only their

local addresses.

19

The following fields will always he Dresent in a code word: N

d bit: set to indicate that its ultimate data value has been demanded

op : operation code

The following fields may or may not be present, depending on the

nature of the particular operation code:

as . local addresses of arguments to the operator

ns . notifierSy i.e. local addresses of notifiee operators

*BR : where B.R is a global address, which is either:
a forwarding addresss which is used with a forward operator, or
a fetch address, which is used with a fetch operator, or

a pointer to a code block (in which case R = 0), which
is used with an invoke operator.

The presence of the demand bit in a code word allows support of a
demand driven evaluation strategy. In this strategy, no operator is

evaluated unless it produces some value known to be essential to the

computation. Aside from the obvious potential efficiency gain, another
advantage of this approach is that it provides a. natural means of deciding

whether and when to trigger the invocation of a defined function, which

requires the allocation of a storage block.

The use of bits to direct the processor to interpret a given word
as data, instruction, etc. exemplifies the "tagged architecture™ approach
[Feustel 73]. Adopting this approach allows us to keep open all of

its attendant options as the design progresses.

20

11. REPRESENTATIVE OPERATORS

The repertoire of operators includes the Lisp operators car, cdr,
cons, atom} eq, if-then-else (cond), etc. Of these, all but the first
three are called ordinary, as they operate purely within the data block.
The first three are called special, because they can cause data transfer
between blocks.

In contrast to conventional Lisp, we have elected to make cons
a lenient operator. That is, it has a "result” even if one of its
arguments has not yet been computed. This can be argued to increase the
asynchrony of a computation and hence improve the utilization of a parallel
processing system on which it may be run, of. [Friedman and Wise 76].

A consequence of the lenience of cons is that, in our implementation,
cons is not really an operator at all, but rather just a pair of data*
namely, its arguments.

Some other special operators, which do not appear in the program
graph, are used to effect the necessary transfers of data between procedures,
and other housekeeping operations. These are ident, forward, fetch, locptr,
and invoke.

The operators ident, forward, and fetch all have the nature of
identity functions. The distinction is as follows: ident has a local
argument and local notifiers. It is used mainly for increased fan-out
when there are more notifiers for a word than can fit in a single word;
fetch has a global argument and one or more local notifiers; forward
has one local argument and one global forwarding address. The latter is
set when a demand is issued to the corresponding fetch. All cons pairs com-
pile as two consecutive forward operators, or literals. The operator locptr

is used to generate global pointers to cons pairs.

21

The following discussion describes the compilation of an invoke:

where / is a programmer-defined symbol

compiles as:

invoke +J‘ ns1 nzk

forward axl —+?

forward ax -w®

forward aa” -w®

where -+/ is the address of f's code block, the ax,, are local arguments, the nz.,,

are local notifiees, and the ?'s are set when the forwards are demanded.

The data block corresponding to f begins with:

forward au -#x
fetch +(x+1) nyj eee

fetch +(x+2) nyf ...

fetch -+(x+") ny

where X is the address of the invoke, u is the local word which will contain

the result to be delivered by the invoke, and r\y. ... are the notifiers

of the i-th parameter of f. Following creation of the data block, demand

propagates to the forward in the data block for f.

22

12. FUNCTION CLOSURES AND THE OPERATOR apply.

An important aspect of Lisp programming is the manipulation of functions
as data values. While we do not envision supporting run-time creation of
function definitions, we do accommodate the formation and manipulation of
function closures (records combining compiled code pointers with environ-
ments for their ultimate application; i.e., FUNARGs). This will permit not
only the programming of functionals (function-valued functions) on our
machine, but also provides a form of shared values, thereby relieving the
need to exhaustively parameterize functions.

W assume that our programs are block compiled. That is, the program
consists of a set of symbolically named function definitions that are com-
piled as a group. Within these "top-level” function definitions, there may

be some number of nested function definitions of the following form:

In FGL In Lisp:

(FUNCTION
(LAVBDA (<bound variables>)
<body>))

(bound variables) denotes graph of <body>

(global values)

Such forms create closure values at run-time. Each combines the entry
point for the nested function's compiled code with an environment pointer
which references the currently executing activation of the i[mediately
surrounding function definition. Thus global (i.e. "free", or non-local)

variable occurrences within the nested function are bound statically to

23

refer to the matching declaration (i.e. parameter) binding at the place of
the closure's creation.

For completeness, we include:

In FGL: In Lisp:

(FUNCTION F)

where F is the symbolic name of a function. This makes the semantics of
function application more uniform, and syntactically distinguishes between
the function F and any parameter F that may be accessible. Note, however,
that the environment pointer in such a closure is superfluous, since a named
function may not contain any occurrences of variables global to it.

A closure value may be passed as a function argument, returned as a
function value, conditionally selected, etc. until ultimately it is applied

via the operator apply, akin to the APPLY function of Lisp:

In FGL: In Lisp:

(APPLY <closure-form>

<ca'gj-form>

<arg”-form>)
(closure) (arguments)

Observe that all function calls in our source language could be expressed in

APPLY notation through the following transformation:

(FQj --m afe) (APPLY (FUNCTION P o ... afe)

However, we retain the option of the direct function call notation (and the
invoke opcode supporting it) for expressive convenience and run-time effi-
ciency.

These constructs are compiled as follows (see Fig. 12 for examples):

Construct 1: Function closures.

In FGL In Lisp:
(FUNCTION

(global values)

We use the opcode looptr to generate a full-address (i.e. "global™)

pointer to a cons pair representing the closure. The cap of the pair is the

25

keyword atom FUNARG, while the cdr is a pseudo-opcode dummy with a code

pointer to ¢as its argument. Thus the car of a closure may be computationally
inspected at run-time, but since dummy causes a run-time error if executed,

the odr of the closure is inspectable only by apply. Note that the global
pointer S.3 to the closure as built by locptr contains the closure's environ-
ment pointer directly in S.

Construct 2r. Nested functions.

In FGL: In Lisp:
(LAVBDA (<bound variables>) <body>)

{bound variables) (global values)

Each function definition is compiled into a separate code block to
minimize code copying at function application time. (Note that if nested
functions were compiled "in-line", their code would still need to be copied
when applied, since several applications of that particular closure value
may occur.) Within each function's code, special "pseudo-parameter" fetch
opcodes are compiled for each variable accessed globally from within its
definition. Observe that such fetches are compiled even for global variables
accessed only at deeper nested function levels.

Any global variable occurrence is thus connected at run-time through a
sequence of fetch opcodes, one per level of textual function nesting, from its
containing activation record to its binding as a bona fide parameter at some
outer level. The S.|i pointers of the global j'cLrh.es are bound in two stages:

the s is fixed at compile time (with complete security), and the S is fixed

26

at application time to be the closure's environment pointer S.

Thus,in the same sense that the activation record's dynamic (i.e. calling)
link is redundantly represented in each parameter fetch, its static link is
redundantly represented in each global fetch. The fetch opcode offers suffi-
cient space for such full addresses, and the design provides uniform fetch
processing in both cases with less memory contention (as might arise if the
static and dynamic links were put into a single header word in the activation
record).

An alternative accessing scheme for globals would be to replace this
"bucket brigade" approach and provide direct fetch linkage from occurrence
to binding levels. Although such a scheme might offer faster access in
certain cases, we consider it to be less desirable for two reasons. First,
the compiled code would need to be adapted to contain two-dimensional addresses
(i.e. [static level, offset], as is customary in Algol-like language implemen-
tation), with the added application time set-up activity. Secondly, a
potentially valuable caching effect would be lost along global fetch sequences.
Given our concern for exploiting locality on this machine, we feel that the
latter concern will be economically dominant.

Construct V. Function applications.

In FGL: In Lisp:

(APPLY <closure-form>

<arg 2~form>
<argk-form>
closure arguments g)

The apply operator is compiled in a manner similar to that for invoke,

but with the closure being an operator argument (as opposed to the

27

arguments, which are compiled using forwards as per invoke).

The actions taken by the apply opcode are viewed as a slight extension of

the invoke opcode, with the added activities of global fetch set-up and
argument count checking. When demand reaches an apply operator, it propagates
immediately to the apply's first argument. Upon receipt of the necessary

closure value for this argument, the apply task becomes an invoke task and is

moved to the invoke list.

28

13. forward CHAINING

The narrative in Section 9 does not discuss special attention paid
to various operators, e.g. forward. The handling of such operators
is the essence of both the procedure linkage mechanism and the successful
handling of lenient eons.

When an operator is evaluated, it is replaced with a value. At this
time, the presence of any notifiers is noted and the corresponding operators
are put on the demand list. These operators can then access the data as
an operand.

No use is to be made of the argument part of the contents of operators
over-written by forward. Instead, a special forward chaining technique is
required for consistent handling of lenient cons. If the operator being re-
placed is a forward, the data also replaces the contents of a forwarding
address which may be present. This process is repeated, until an operator
containing no forwarding address is encountered. The need for this technique
can be seen by the following argument:

Figure 1la shows parts of three data blocks as part of a state. Notice
that X and can both potentially request the same value, namely the
value of U, which is not yet ready (nor demanded). When the first demand
on Z is generated, as indicated in Figure 1la, the forwarding address in
Z is set to X and U is demanded.

Suppose meanwhile that demand is generated on XE, which in turn results in
a second demand on Z Since a forwarding address has already been stored in Z,
there is insufficient room for a second. (Even if two could be stored, there
might be three demands generated, etc.). Since we know that X is to receive the
result of Z, we store forward in Z, as in Figure 11c. When U is finally

notified, any data stored over a forward will be stored over the contents of the

word specified by its forwarding address, according to the distribute/notify
phase of the evaluation algorithm.

Although we used oar to motivate the above example, we mention that
similar treatment is given to cdr and fetch (when used for global

value linkage).

30

14. PROCESSOR ARCHITECTURE

We do not go into great detail here on the organization of individual
general processing units. As described in Section 9, each unit selects tasks
from its demand list. While on this list, a task is represented by its
address in memory. This word is fetched and if not presently ready as data,
an attempt is made to evaluate it. For ordinary tasks, this normally
entails reference to one or more additional words in the memory; hence
a fetch of these words occurs. Since each of them might reside in the
physical memory of any processing unit, fetching may involve transmission of
words through the communication network. In order that the processor need not be
idle while such a fetch is taking place, we provide for buffering a set
of such tasks while their operands are being assembled. W call such a
buffer a staging area. It is conceptually similar to a conventional
pipeline, except that order of task execution is unimportant, all
essential ordering being explicit in the program graph. The size of the
staging area is chosen to maintain reasonably good utilization of the
function units within the processing unit, which carry out the actual
operations once the task leaves the staging area. Of course, each
function unit could itself be pipelined, depending on economic advantages
which would accrue due to a particular application load. Design of
such a staging area is fairly routine and therefore will not be further

discussed here.

31

15. LOAD BALANCING

Load balancing occurs through the redistribution of tasks from the
invoke list of one processing unit to that of another. This is a separate,
but topologically comptabile, function of the communication network from
the routing of operand data.

By the load at a processing unit, we mean the number of tasks on the
segment of the invoke list at that unit. In a similar manner, we can define
the load at any node of the communication network to be the sum of the loads
at its leaves, divided by the number of its leaves as a normalizing factor.

Again, to simplify the explanation, we are assuming that the communication
network is a binary tree. Each node of the communication network
maintains lower and upper limits, L and U, on the loads of its immediate
descendants. If the load of one is above Uand that of the other below L,
it attempts to shift tasks from the invoke list of the overloaded descendant
to that of the underloaded one. |If loads of both its descendants are above
U, this will be communicated to its parent (if any), so that the latter may
try to shift some of the load to one of its descendants having load less
than L. In this way, the balancing function is distributed throughout the
communication network, with each node thereof applying the same balancing
strategy.

The effectiveness of the balancing scheme relies on the loosely-coupled
aspect of the system. That is, no task is bound to a particular processor

until storage is allocated for it.

32

16. COMPARISONS WITH RELATED MACHINES

It is easiest to understand the relation between the machine architecture
presented here and the architecture of the data-flow computer proposed in
[Dennis and Misunas 74] by folding the latter through the center of its
instruction cells and functional units in such a way that the arbitration
network overlaps the distribution network. Our general processing units
then play the role of the instuction cell blocks, and our communication
network performs the function of both arbitration and distribution networks.
Furthermore, our architecture may offer improved performance because data would

not often have to travel as far to get from a source cell to a destination cell.

As in the machine proposed in [Arvind and Gostelow 77], the
machine proposed here uses micro-computers to do the processing. However,
we feel that the communication network used in our machine is
superior to the one in that machine. The communication bus structure of the
former machine may cause intolerable delays in transmitting information from
one processing unit to another, a fact that may prove to be a great
impediment to the success of the machine.

The DDM1 [Davis 78] is a very different kind of machine than the
one proposed here. Its hierarchical structure seems to impose certain
constraints on the creation of new computations and on the flow of information
in the machine. For example, when a processing element creates a
task, the latter must be placed either in the space of the processor
carrying out the application or in the space of a subordinate
processor, even if the subordinates are crowded for space and the machine

has other processors which have plenty of free space. This problem does

33

not occur in our machine, due to the construction of the communication
network, the uniformity of the address space, and our notion of load
balancing.

Some tree-structured reduction language machines that have been
proposed are fundamentally different in their operation when compared
with the machine presented here. In these machines, the expressions
that need to be evaluated are mapped directly onto the physical tree :
of the machine. In our machine, such expressions would not be mapped
onto the communication tree; instead they would be mapped via parallel
program graphs into the address space of the machine, and would reside
in the memory space of one or more processing units of the machine.

A common feature of all of the above architectures is that they
are data-driven rather than demand-driven, as ours is. One might be
led to think that the latter presents some additional overhead. However,
closer examination of the other architectures may reveal that some
form of ready-acknowledge signalling is taking place when it comes to
transmission of data via storage words. This is, in fact, a special
case of demand-driven computation, in which the demand for an operand
is equated with readiness of its recipient. We exploit the flexibility
of the general case, to obtain advantages in deciding when to invoke
procedures. It is also clear that the demand-driven feature is a necessity
in supporting lenient cons. One the other hand, it is also clear that
demand-driven computation can be engineered on the other architectures
by treating demands as data, but this seems to be cumbersome.

Although at the physical level the QOr* computer [Swan, et al. 77]
may appear similar to our machine, the two are quite different on account

of their underlying mechanism of program execution. In Cm* parallel

processing is based on the concept of interacting sequential processes
that run on conventional processors (PDP-11), while our machine embodies
an evaluation scheme for the FG. language and is capable of directly
evaluating data-flow graphs and applicative expressions. Our evaluation
scheme, language, and overall organization have been developed in an

integrated fashion as parts of one functioning system.

35

17. CONCLUSIONS AND FUTURE RESEARCH

W have stated our feeling that machine architectures should be
developed with greater attention paid to ultimate programmability. As an
example, we discussed principles for a loosely-coupled architecture and the
use of Lisp as a language well-suited for such a machine. W sketched in
some detail the internal representation of programs in our machine and
the execution of programs on it.

Our implementation seems to be the first detailed one presented for
Lisp programs on a parallel machine. An implementation has been
described qualitatively in [Friedman and Wise 78]. However, their work
relates mainly to the issues associated with colonel versus
sergeant tasks, the latter being distinguished from the former as
tasks whose evaluation may never be actually required, but which
provide a potentially useful way of employing otherwise idle processors.
In contrast, all tasks in the machine described here are of the colonel
variety, whose existence may be traced to certain strict operators,
such as add in the tree sum example. Hence such issues have not
been of immediate concern here. On the other hand, subtle details,
such as the need for forward chaining have been discovered in the
course of designing our evaluator. How such subtleties interact with
an implementation which does support sergeant tasks remains a topic for
future investigation.

The ideas presented here were derived after considering many
possible alternatives. It is, of course, possible that we may elect
to return to one or more of these alternatives after more experience
in programming the machine has been gained. A simulator for the evaluation

model has been written in Pascal to assist in such a venture.

36

Many important details remain to be investigated. These include not
only the necessary support for the language described here in terms of
storage reclamation and scheduling, but extension of the language to
allow other features as well. We are currently contemplating how to best
introduce a distributed heap for more efficient long-term data storage.
We must decide how to deal with other features of Lisp, such as prog,
upon which many programmers have learned to rely. A related issue is
whether indeterminate computations should be supported, as there are some
indications that they permit efficiency gains not otherwise achievable
[Keller 78]. The usefulness of applicative programs in allowing graceful
backup when a processing unit fails also remains to be explored. Thus
many issues, at levels from detailed processor construction to more

fundamental language problems, await us.

ACKNOM_EDGEVENTS

Comments by Al Davis, Milos Ercegovac, and Mark Franklin, as well as
encouragement from Jack Dennis, are appreciated.

The authors express their thanks to Kathy Burgi, Jodie Doyle, Karen Evans,
Lujuana Fornelius, and Mary Ann Kleinert for their assistance in preparing

the manuscript.

37

o) Leaf node’- either a general
processing unit (with memory),
special processing unit, or
interface to external 1/0.

Figure 1 Form of the physical architecture of the loosely-coupled parallel
processor.

39

0 forward a2 =X
1 fetch -*(X#l) n3 n7
2 locptr a3 nO
)
3 forward al -“w
(6) cons
4 forward a5 W
(7) _
5 invoke «j n4
6 forward a7 ‘W
7 addl al ne

Figure 3 Graph representation and code block representation of the
consequent of a production, x is the global address of the
invoke operator which creates the corresponding data block.
? indicates pointer fields which are set on demand of this
word. is an operator which generates the global
address of tFie word it references.

(DE SUM (TREE) (COND
((NULL TREE) 0)
((ATOM TREE) TREE)
(T (ADD (SUM (CAR TREE)) (SUM (CDR TREE))).)))

0 forward a2 —*x

1 fetch >(+1) n3 nb6 nl4
2 cond a3 a4 a5 nO
3 null al n2

4 r0

5 cond a6 al4 a7 n2
6 atom al n5

7 add a8 all n5

8 invoke -*sum n7

9 forward al0 >?

10 car al4 n9

1 invoke —->-sum n7

12 forward al3 —*?

13 cdr al4 nl2

14 ident al n5 nl0 nl3

Fiqure 4 Tree summation example: Lisp code; consequent of production
defining SUM; compiled code.

Figure 5 One possible snapshot of the program of Figure 4 during
its computation on a tree.

41

initial task addresses
(d bits of tasks already set)

P

(L;)._DEMAND LIST
(task address)*

Y

fetch task contents

yes

already data?
(r bit set?) [P

evaluate/
propagate propagated tasks

evaluated tasks
-

CD— RESULT LIST
(task address, value)*

distribute/
notify forwarded values

| notifiee tasks

42

Figure 6 Overall task processing flow. Asterisk denotes sequence of

The evaluate/propagate box for different task types
in Figures 7, 8 and 10. The distribute/notify box
in Figure 9.

is expanded
is expanded

(task address, contents)

evaluate/propagate
for ordinary
types

evaluated task
(task address, value)

into:

v

evaluable « true

Y

'do

for each relevant argument ———3»

#one
f

evaluable? ﬁ))

*Y‘UE

evaluate

v

evaluated task

4

43

propagated tasks
(task address)™*

fetch argument,
set its 4 bit if not data

¥

argument already data? r)is—)ﬂ
(r bit was set?)

¥ no

evaluable « false

Y

argument already demanded? xes’
(d bit was set?) p

no

——— 3 propagate

task

Evaluate/propagate for ordinary task type.

(task address, contents)

f

evaluate/propagate __

for invoke
- y 1

evaluated task
(does not occur)

expands into:

N

propagated tasks
(task address)*

8.0

Figure 8 Evaluate/propagate for invoke task type.

44

(task address, value)

distribute/
noti fy

J

notifiee tasks
(task address)*

expands into:

(T, V)

notifiee tasks

forwarded value
(task address,

(T, V)

Figure 9 Distribute/notify processing.

value)

45

46

(task address, contents)

process task type propagated task
for oar, adr (task address)

evaluated task
(task address, value)

expands into

let X be task address,
let Y be argument location

fetch contents of Y,
-setting d bit if not already data

no
contents of Y already data? propagated task,
address Y
\] yes
- . no
contents of Y a pair pointer? error
I yes
let Z be the address in Y,
let W be I(aar) or z+I1{adr)
I no .
contents of W already data? = W"s forwarding address set?
yes Ino
"yes I JL
evaluated task, replace X's et W forwarding
contents of W is value of X contents with W"s address to X

J

propagated task,
address W

Figure 10 Evaluate/propagate for car, cub- task types.

car Y]
r +Z
first
demand
X2 car YA
V2 r +7
1 forward all -w
U f nZ
first
demand
@ propagated
, d car Yl
X0
Vi r +Z
X2 car Y2
V2 r =7
second
demand
d forward all —X
d f nz
©
Figure 11 Illustration of forward chaining.

and demand bits, respectively.)

X2

V2

X2

V2

d car

r +Z
car Y/

r +Z

forward all Mg

d f nz
Q)]

d car Y1l

r -7

d forward =X

r —Z

d forward all +X.

(D

(r and d denote ready

47

Lisp code:

FGL code:

Compiled code:

Fiqure 12

48

(DE ADDK (K) (FUNCTION (LAMBDA (J) (ADD J K))))

ADDK : 0 forward a2 -»x
1 fetch >0¢1)
2 locptr a3 nO
3 r "FUNARG"
4 dummy -»a

a. 0 forward a3 -»x

1 fetch -»(¢+1) n3
2 fetch +U+1) n3
3 add al a2 nO

Simple example of function closures:
add to have a bound second argument,
link,

and £ denotes the static link,

"Currying" the operator
(x denotes the dynamic

both bound at invoke time.)

REFERENCES

49

[Arden and Berenbaum 75] B. W. Arden and A. D. Berenbaum. A multi-
microprocessor computer system architecture. Operating systems review,
9, 6, 114-121 (Nov. 1975).

[Arvind and Gostelow 77] Arvind and K. P. Gostelow. A computer capable
of exchanging processors for time. Proc IFIP 77, 849-853 (1977).

[Backus 73] J. Backus. Programming language semantics and closed

applicative languages. Proc. ACM Symp. on Principles of Programming
Languages (1973), 71-86.
[Bawden, et al. 77] A. Bawden et al. Lisp machine progress report. MIT

Al Memo No. 444 (August 1977).

[Berkling 75] K. J. Berkling. Reduction languages for reduction machines.
Second Annual Meeting of Computer Architecture (1975), 133-138.

[Davis 78] A. L.

A recursively-structured data driven machine.

Davis. The architecture and system method of DDM-1:

Symposium on Computer Architecture (1978).

[Dennis and Misunas 74] J. B. Dennis and D. P. Misunas. A preliminary
architecture for a basic data flow processor. Proc. 2nd Annual Symposium
on Computer Architecture, 126-132 (Dec. 1974).

[Fateman 73] R. J.

Fateman. Reply to an editorial. ACM SIGSAM Bulletin,

No. 25, 9-11 (March 1973).

[Feustel 73] E. A. Feustel. On the advantages of tagged architecture.
IEEE Trans, on computers, C-22, 7, 644-656 (July 1973).

[Friedman and Wise 76] D. P. Friedman and D. S. Wise. CONS should not
evaluate its arguments, in Michael son and Milner (eds.), Automata,
Languages, and Programming, 257-284, Edinburgh University Press (1976).

[Friedman and Wise 78] D. P. Friedman and D. S. Wise. Aspects of

4, 289-296 (April

[Hearn 76] A. C.

applicative programming for parallel processing. IEEE Trans. C-27,
1978).
Hearn. Symbolic computation. Proc. CERN School of

Computing, 201-211 (Sept. 1976).

[Henderson and Morris 76] P. Henderson and J. H. Morris, Jr. A lazy

evaluator. Proc.
95-103 (Jan. 1976)

[Keller 75] R. M.

3rd ACM Conference on Principles of Programming Languages,

Keller. Look-ahead processors. Computing Surveys,

7, 4, 177-195 (Dec. 1975).

[Keller 77] R. M.

Keller. Semantics of parallel program graphs. University

of Utah, Department of Computer Science, Tech. Rept. UUCS-77-110 (July 1977).

[Keller 78] R. M.

Keller. An approach to determinacy proofs. University

of Utah, Department of computer Science, Tech. Rept. UUCS-78-102 (March 1978)

Proceedings of the Fifth Annual

50

[Lamport 74] L. Lamport. The parallel execution of DO loops. CACM,
17, 2, 83-93 (Feb. 1974).

[McCarthy 63] J. McCarthy. Towards a mathematical science of computation.
Proc. IFIP *62, 21-28 (1963).

[Patil 67] S. Patil. An abstract parallei-processing system. M.S.
Thesis. MIT, Department of Electrical Engineering (June 1967).

[Reddi and Feustel 78] S. S. Reddi and E. A. Feustel. A restructurable
computer system. IEEE Trans, on computers, C-27, 1, 1-20 (Jan. 1978),

[Swan, et al. 77] R. J. Swan, S. H. Fuller, and D. P. Siewiorek. Cm* -
A modular, multi-microprocessor. AFIPS Conference Proc., 46, 637-644

(June, 1977).

