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A bs t rac t : An a rc h i te c tu re  for  a large (e .g .  1000 processor) para l le l
computer is presented. The processors are loosely-coupled,  in the sense
th a t  communication among them is  fu l ly  asynchronous, and each processor
is  general ly  not unduly delayed by any immediate need for  spe c i f ic  data
values. The network supporting th i s  communication is  t ree  shaped,
with the individual processors connected a t  l e a f  nodes. The machine
executes a graphical version of app l ica t ive  Lisp. The program
execution model is  demand-driven, with a special deferred in te rp re ta t io n
for  dotted pa i r  eva lua t ion ,  termed " len ien t  cons". Opportunities for
concurrency a r i s e  in the pa ra l le l  evaluat ion o f  arguments to s t r i c t
opera tors ,  i . e .  those known to require  evaluat ion of  t h e i r  full  s e t  of  arguments.
Such oppor tuni t ies  are exploi ted by exporting function appl ica t ion  tasks
to neighboring processor nodes in the t r e e ,  subject  to a h ierarchical
notion of  load balancing. Local ity  of task a l loca t ion  and communication
is a key objec t ive  o f  the machine. An in tegra ted  design toward th a t  end
is  presented ,  combining language i s su e s ,  firm semantic foundations,
and an t ic ipa ted  hardware technologies.

keywords and phrases : app l ica t ive  programming, a r c h i t e c tu re ,  
concurrency, data flow, demand-driven, l en ien t  cons, Lisp, l o c a l i t y ,  
loosely-coupled,  packet switching, p a ra l le l i sm ,  reduction machine, 
tagged a r c h i t e c tu re .
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The a rch i te c tu re  of  h igh ly -pa ra l le l  machines has received increased 

a t t e n t io n  from researchers  over the past  decade. At f i r s t ,  because of 

t h e i r  novel ty , workers were content  with proposing e labora te  machine 

a rch i tec tu re s  without giving grea t  considera t ion to how such machines 

would u l t imate ly  be programmed to ex p lo i t  t h e i r  ava i lab le  computational 

power. Experience with I l l i a c  IV, Star-100, e tc .  has shown th i s  to be 

a mistake. Indicat ions  are t h a t  programming languages deserve considera t ion 

a t  the e a r l i e s t  stages of a r c h i te c tu ra l  conception. Included in such 

cons idera t ions  are issues  such as s torage management and task management.

This paper describes  considera t ions  fo r  what might be ca l led  a 

l o o s e ly - c o u p le d  a r c h - i te o tu re . This term was used in [Arden and Berenbaum 75] 

in discussing memory management t r a d e -o f f s  in mult i -processor  systems.

We use i t  to denote a machine which p o te n t i a l ly  incorporates  a large 

number (say 1 0 0 0 ) of processors which can function independently to a 

large ex ten t ,  but which can e f f e c t iv e ly  communicate with one another when 

necessary. Furthermore, we require  t h a t  the computations being supported 

are  not t i ed  to the s t ru c tu r e  of the machine a t  the program leve l .  A 

coro l la ry  of  t h i s  a r c h i t e c tu ra l  concept is  th a t  the system is  eas i ly  

expan dab le , the re  being no logical  dependence on the number of processors .

Such expandabil i ty  is  f u r th e r  enhanced by the p a r t i c u la r  physical organizat ion 

to be descr ibed. A ddi t ional ly ,  through the use of a packet switching 

intercommunication network, the system can by seen to have many of the 

fea tu res  a t tending r e a o n f ig u r a b le  s y s te m s ,  {o f .  [Reddi and Feustel 78]).

The a r c h i te c tu re  presented here was influenced by work reported 

in [Dennis and Misunas 74] and [Arvind and Gostelow 77] on d a ta  f le w  

machines. Our machine a rch i t e c tu re  attempts to bring in terna l  communication 

costs  within the machine to a more manageable level by taking advantage

1. INTRODUCTION
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of l o c a l i t y  of reference.  The communication network in our machine plays 

the ro le  of the a r b i t r a t i o n  and d i s t r i b u t io n  network of the Dennis da ta ­

flow machine. However, the processing units  which assemble in s t ru c t io n s  and 

i n i t i a t e  information flow are more l ike  the processors of Arvind and 

Gostelow. Even though the a r c h i t e c tu re  of  our machine has a t r e e - l i k e  

s t r u c tu r e ,  i t  i s  not a " recurs ive a rch i tec tu re"  in the sense of [Davis 78]. 

Our system has in common with those c i ted  in th i s  paragraph the des i re  

to in te g ra te  a rc h i t e c tu ra l  and language cons idera t ions .  This is  one 

of the ways i t  d i f f e r s  from s u p e r f i c i a l l y  s im i la r  systems, such as Cm* [Swan, 

e t  a t .  77]. These s i m i l a r i t i e s  and d i f fe rences  wil l  be fu r th e r  reviewed 

in Section 16.

Our a r c h i t e c tu re  is  cu r ren t ly  in the development s tage .  We present 

in t h i s  paper some of the major phi losophical  decis ions  which are influencing 

us,  along with an execution model for  a subset of  the ul t imate  machine 

language.
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Heretofore, research on h igh ly -para l le i  machines seems to have predom­

ina te ly  emphasized numerical,  r a the r  than symbolic,  computations. He feel th a t  

fu r th e r  inves t iga t ion  of the l a t t e r  is  merited. The p o s s ib i l i t y  of  such 

appl ica t ions  has been alluded to before ,  e .g .  [Hearn 76]. Presently  we 

are choosing Lisp as a t a r g e t  language for  our a r c h i t e c tu re .  We would 

l ike  to present  arguments in fu r th e r  defense of th i s  choice. The f i r s t  is  tha t  

there is  a subs tan t ia l  community of Lisp users who are seeking the higher 

computing*speeds which a p a ra l le l  processing computer can give. We 

believe th a t  the problem of the acceptance of a new a rch i te c tu re  

will  be s u b s ta n t i a l ly  solved i f  Lisp can be supported on the computer, 

since th a t  choice would not involve acceptance of a new language.

Secondly, we feel th a t  Lisp, possibly  with some advice on programming 

s ty l e ,  can be much b e t t e r  matched to the power of  a loosely-coupled 

system than o ther  languages. For example, extensive transformation of 

Fortran programs i s  done to make e f fe c t iv e  use of  the I l l i a c  IV, e .g .

[Lamport 74]. Consequently, the connection between ob jec t  and source 

programs is  obscured, and debugging is  a f fec ted  adversely. We feel 

th a t  the ob jec t  language of  our machine can be made reasonably close  to 

a usable subset of Lisp.

Furthermore, Lisp, with some minor modif ica t ions ,  such as l e n ie n t  eons 

discussed l a t e r  (o f .  [Friedman and Wise 76], [Henderson and Morris 76]) seems

to include a l l  oppor tun i t ies  for  ex p lo i ta t ion  of  concurrency th a t  proposed data 

flow languages do. I t  a lso  seems to provide more, e .g .  concurrent  operations 

on t r e e  or graph data s t ru c tu re s  during the  l a t t e r ' s  c re a t io n ,  

and natural ways for  dealing with conceptually i n f i n i t e  s t r u c tu r e s .

2. LANGUAGE ISSUES
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Fina l ly ,  even i f  fu l l  Lisp proves to be too d i f f i c u l t  to support 

e f f i c i e n t l y ,  in our attempt to design a machine for  i t ,  we will  

gain valuable experience about the inherent d i f f i c u l t i e s  in supporting 

such languages on a loosely-coupled computer.

I t  may seem th a t  ca ter ing  to Lisp would have the e f f e c t  of  excluding 

most of  the poten t ia l  users of  o ther  data-flow machines, e .g .  those 

in te re s te d  in large numevioal computations, as users  of  our machine.

I t  is  our hope th a t  such users wil l  approach our design with an open mind. 

We bel ieve ,  fo r  several reasons , th a t  our machine can compete with others 

in the numerical computation domain. F i r s t ,  although our evaluator  is 

d i f f e r e n t ,  o ther  machines are  l ik e ly  to incur very s im i la r  mechanization 

problems, making the execution speeds s im i la r  fo r  the same underlying 

computation, independent of source language used. Secondly, numerical 

computations, e .g .  large Fortran programs, can be mechanically t ran s la ted  

into Lisp. There are known case s tu d ie s ,  e .g .  [Fateman 73],  where the 

Lisp version a c tu a l ly  runs f a s t e r ,  even when i t e r a t i o n  is  replaced with 

recurs ion.
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3 . BASIC ARCHITECTURE

Figure 1 shows the physical arrangement of components in our machine.

The in terna l  nodes of the t r e e  s t ru c tu re  are b i -d i r e c t io n a l  communication 

u n i t s ,  thus combining the a t t r i b u t e s  of the a r b i t e r  and d i s t r ib u t io n  

uni ts  of the Dennis machine along with addit ional  b a lan c in g  functions .  

Processing uni ts  are at tached to the machine as l e a f  nodes. The le a f  

nodes are not necessar i ly  equ id i s tan t  from the root node of the t r e e .

One might expect,  for  example, specia l-purpose u n i t s ,  of which there 

are r e l a t i v e ly  few, to be c lose r  to the root  node, fo r  enhanced a c c e s s i b i l i t y  

and u t i l i z a t i o n .  Although the f igure  shows a b in ary  t r e e ,  and the discussion 

in th i s  paper makes t h a t  assumption for  s im p l ic i ty ,  technology considera t ions  

suggest t h a t  a 4-ary or 8 -ary  t r e e  might be more appropria te .

A general processing un i t  is  roughly the s ize  of  a conventional 

micro-computer, but i t s  a rc h i t e c tu re  is  su b s ta n t i a l ly  d i f f e r e n t .  I t  is 

able  to carry out local computation, p a r t i c u la r ly  with respect  to assembly 

and dissemination of  information, and to i n i t i a t e  ac t ions  for  fetching 

information from other  nodes of  the t r e e .  I t  will  be able to execute s ingle  

program ta sk s ,  and c rea te  tasks in response to the execution of  invoke  

(procedure app l ica t ion)  opera t ions ,  which may then be executed e i t h e r  in 

the local processing un i t  or in another processing un i t .

The primary memory of the system is  d i s t r ib u te d  among the processing 

u n i t s .  Each processing un i t  has immediate access to t h a t  segment of 

memory located within i t .  I t  a lso  has access ,  through the communication 

netw ork ,  to the segments of memory located a t  other  processing un i ts .



Even though the memory is d i s t r ib u ted  among the processing u n i t s ,  

there  is  only one u n i f i e d  l o g i c a l  a d d ress  space .  Given the address of  a 

datum, any node in the machine is able to lo g ica l ly  access i t  d i r e c t ly .  

The in terna l  nodes of  the communication network are responsible  for  any 

required physical routing of  addresses and data.  Access to au x i l ia ry  

memory and other  forms o f  external communication take place through 

special-purpose l e a f  processors .
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The communication network is  designed to help the machine to take 

advantage of l o c a l i t y  of information flow, thereby reducing communication 

costs  which often tend to be high in data-flow or iented machines. I t  is 

a lso  responsib le  for  d i s t r i b u t in g  the computing load among ava i lab le  

processing un i t s .

In the data-flow machine of  Dennis, the a r b i t r a t i o n  and d i s t r i b u t io n  

networks are  d i s j o i n t ,  and any piece of  information which needs to be sent 

from one in s t ru c t io n  ce l l  to another  needs to t rave rse  the e n t i r e  depth of 

these networks, even i f  the c e l l s  are  phys ica l ly  c lose  neighbors.  By combining 

the a r b i t r a t i o n  and d i s t r i b u t io n  funct ions ,  we can cut down the dis tance 

information needs to t ravel  in such cases.

In our machine, information f i r s t  t r a v e l s  up the t r e e  towards the 

root node unt i l  i t  comes to a node from which the d e s t ina t ion  ce l l  is 

reachable by going down the t r e e ,  then i t  proceeds down the t r e e  unt i l  i t  

f i n a l l y  reaches the desired  d e s t ina t ion  c e l l .  Thus, fo r  sending or receiving 

information from neighboring c e l l s ,  i t  is not necessary for  the information 

to t ravel  the e n t i r e  depth of  the t r e e .  Rela t ively  local data- flow therefo re  

takes less  time and improves the overal l  communication cos t  of  the computation. 

Furthermore, another  important consequence of combining the a r b i t r a t i o n  and 

d i s t r i b u t io n  networks is  t h a t  the t r a f f i c  congestion a t  the narrow ends of 

these networks is  reduced, enabling the communication network to handle a 

higher volume of data.

A second function of  the communication network is  to provide a reasonably 

balanced d i s t r i b u t i o n  of the computing load. Such a funct ion is  not required 

in the Dennis machine, as the l a t t e r  does not attempt to a l lo c a te  tasks 

dynamically ( i . e .  cel l  addresses are fixed a t  compile t ime). Each node of

4. COMMUNICATION NETWORK
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our communication network p e r iod ica l ly  obtains m on itor in g  s ig n a ls  from 

i t s  subordinates ,  which ind ica te  t h e i r  current  u t i l i z a t i o n s .  When such 

s ignals  indica te  a s u f f i c i e n t ly  unbalanced s t a t e ,  the node can cause the 

t r a n s f e r  of u n in i t i a t e d  tasks from one subtree to the o ther  (see Section 

15) .
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One of the most important concepts of our a rc h i t e c tu re  is  to improve 

performance by explo i t ing  l o c a l i t y  of information flow. Local ity  of 

reference is  an es tab l ished  concept for  program execution,  which should 

there fo re  be exp lo i tab le  within data- flow computations. Locality will 

be enhanced by the f a c t  t h a t  functions are apt to reference t h e i r  arguments 

repeatedly.  Secondly, repeated global references to the same data will  

become local ized  by a caching e f f e c t  which r e s u l t s  from the implementation 

of such references .  The l a t t e r  will  be fu r th e r  discussed in Section 12, 

deal ing with the a pp ly  operator.

I f  computations which i n t e r a c t  heavily with one another are a l loca ted  

space in such a way th a t  they are  a sho r te r  average d is tance  apar t  in 

the nodes of  the communication network, the overal l  time spent in information 

flow will  be reduced. I t  i s  important to note th a t  even i f  i t  i s  not 

poss ib le  to a l lo c a te  space for  a new computation in the address space 

of the same l e a f ,  the correc tness  of the overal l  computation will  be 

maintained, even though the speed of the computation may be degraded.

This is  a consequence of the uniformly access ib le  address space.

In designing a h igh ly -pa ra l le i  machine, one must be careful  t h a t  costs  

involved in c rea t ing  and communicating with new tasks do not outweigh 

the speed advantage gained from overlapped execution of these tasks .  

Consequently, our design prescr ibes  th a t  a l l  computation local to a procedure 

body ( i . e .  exclusive of c a l l s  to other  procedures) wil l  usually  be done 

within one processing u n i t .  Hence, the global s t ru c tu re  does not seek 

gains from para l le l i sm  on the level of ,  say, an ar i thm et ic  expression 

(although th i s  could be done within the processing un i t  i t s e l f  i f  d e s i red ) ,  

but r a th e r  from in te r -p r o c e d u r e  concurrency. -

5. LOCALITY



Another an t ic ipa ted  e f f e c t  which will  con tr ibu te  to lo c a l i t y  might 

be ca l led  the seed in g  e f f e c t .  As shall  be seen, when a task A in execution 

creates  a second task B, the l a t t e r  may be a l loca ted  i t s  s torage in any 

of  the processing uni ts  in which there  is s u f f i c i e n t  space. Since B 

may cause the crea t ion  of other  tasks C-j, C ^ , . . . . ,  Cn , lo c a l i t y  is 

enhanced i f  the s torage for  the l a t t e r  is  a l loca ted  in processing units  

near to t h a t  of B in the t r e e .  Hence, even i f  B is a long dis tance from A, 

thus incurr ing a major communication cost  between the two, th i s  cost may 

be balanced out by the lower costs  of  communicating between B and 

C-j, C2 , . . . . ,  Cn. Hence, th i s  seeding e f f e c t  c rea tes  a t rad eo ff  in 

resolving a choice of  how fa r  away a created task should be placed. I t  

a lso demonstrates the p o s s i b i l i t y  of a c e r ta in  amount of r e - l o c a l i z a t i o n  

in recovering from bad task-placement decis ions by the system. For 

example, even i f  B is  placed in a congested a rea ,  the s torage from 

completing tasks near B can be reclaimed to provide more space for
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The cha rac te r iza t io n  of information flow within the machine is  very 

dependent on the conceptual level being considered. For example, a t  the 

ta s k  l e v e l , we are concerned with the flow of operands between tasks .

In p a r t i c u la r ,  our system permits demand d r iv e n  computation a t  t h i s  leve l .

In c o n t r a s t ,  the machines of Dennis, Arvind and Gostelow, and Davis are a l l  

data-driven machines, in th a t  an in s t ru c t io n  never asks for  data to be sent 

to i t .  Instead,  i t  waits for  data to be sent to i t ,  and when a l l  pieces of 

data are received,  i t  i n i t i a t e s  computation whose r e s u l t s  are then sent to 

a l l  o ther  designated in s t ru c t io n s .  In the demand-driven scheme, a procedure 

may ac t ive ly  seek addit ional pieces of data a f t e r  i t  has demanded and 

received some i n i t i a l  pieces of data .  This topic wil l  be fu r th e r  discussed 

in subsequent sec t ions .  .

At the communication network l e v e l , we find the information flow 

separated in to the flow of ta s k s  (which are invoke  i n s t r u c t io n s ) ,  operands  

( s ingle  data words),  and b lo c k s  (mul tiple  data words). All such pieces 

of  information are accompanied by addit ional routing information in the 

form of des t in a t io n  addresses,  e tc .  All information transmit ted  through 

the communication network is  done by p a c k e t  sw i tc h in g  (or s to r e -a n d - fo rw a r d )  

as opposed to l ine  switching. The l a t t e r  type of switching is  not used 

because of  the potent ia l  congestion incurred by tying up long paths through 

the network.

A node of the communication network communicates to i t s  parent  through a 

t r a d i t io n a l  form of handshaking. However, for  block t r a n s f e r s ,  a h u rs t  mode 

of communication is  used in which the handshaking occurs only before and 

a f t e r  the e n t i r e  block has been t r a n s f e r r e d ,  thus d r a s t i c a l l y  reducing the 

associated overhead.

6. INFORMATION FLOW
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7. MACHINE LANGUAGE

Our machine executes a compiled version of  Lisp as i t s  machine language.

We avoid syn tac t ic  issues by using a p a r a l l e l  program graph , such as 

described in [Kel ler  77], instead of the conventional l i s t  represen ta t ion  

of Lisp programs. For sake of d e f in i t e n e s s ,  we r e fe r  to the graphical 

language as Flow-Graph L isp  {fgl) . FGL allows us to c le a r ly  disp lay 

the data flow between operators  and thus potent ia l  concurrency within programs.

The equivalent  of  procedure c a l l s ,  including recurs ive  ones, is 

provided in FGL through graph p r o d u c t io n s ,  which specify how a programmer- 

defined operator  (the a n te c e d e n t  of the production) is to be replaced by 

a program graph (the consequent  of the production).

FGL also  supports l e n i e n t  c o n s , which allows the machine to exp lo i t  

concurrency which i t  could not with conventional s t r i c t  cons [Friedman and 

Wise 78]. For the curren t  p resen ta t ion ,  i t e r a t i o n  is implemented by 

recurs ion ,  in the manner of  [McCarthy 63]. This automatical ly  gives the 

same concurrency-detect ion e f f e c t  o f  "look-ahead" processors ,  which 

"unfold" i t e r a t i o n s  to achieve concurrency [Keller 75].

For sake of t h i s  p resen ta t ion ,  l e t  us suppose tha t  data s t ru c tu re s  

are t r e e s ,  with the in tegers  and n i l  as atoms. Boolean values may be 

implemented by in te rp re t in g  n i l  as f a l s e , and any non- n i l  value as 

t r u e .  The program cons is ts  of a network of operators  which are functions  

on t r e e s .  For s im p l ic i ty ,  we do not discuss in p u t  of t rees .  Rather, we 

assume them to be res iden t  a t  the beginning of  the computation. Our t rees  

are  represented using an appropria te  network of  cons operators  and atoms.

In summary, the program and a l l  of  i t s  data are represented  as one 

network in the machine, in a manner not too d i f f e r e n t  from conventional 

represen ta t ions  of  graphs in a 1 inear ly-addressable  memory.

To cause a r e s u l t  to be p r in ted ,  a demand is  generated a t  some p r i n t
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node in the network. This causes propagation of the demand to the operator  

feeding the p r i n t ,  which in turn eventual ly  causes the value of th a t  operator  

to be evaluated and pr in ted .

Evaluation co n s is t s  of a combination of  t ransmutations to the graph and 

operat ions  which produce new values from o thers .  In t h i s  sense, we have a 

re d u c t io n  machine a la  [Berkling 75],  executing a r e d u c t io n  language a la  

[Backus 73]. By using graphs ra the r  than s t r i n g s ,  we can avoid much of  the 

co m b in a to r ia l  ex p lo s io n  which takes place in purely s t r in g -o r ien te d  machines.

Figures 2, 3, and 4 give examples of  programs in FGL. In Figure 2, 

there  is  a main program  M. M c a l l s  a r e c u r s i v e  procedure  g, the graph of which is  

presented in Figure 3. In each f igure  we give the graph represen ta t ion  and 

the corresponding "code block" rep resen ta t ion  (see Section 8 ).  The paren the t ic  

l abe ls  on the graph ind ica te  the correspondence between the two. I n tu i t i v e l y ,  

g(n) "computes" the i n f i n i t e  sequence

n n+1 n+2 n+3 ___

In the context  of the main program, the value pr in ted is  the th i rd  element 

{caddr)  of the sequence with n = 0 .

A second program, which sums a t r e e  of in teg e rs ,  is  shown in Figure 4. .

This example uses a s t r i c t  opera tor ,  a d d , to cause the crea t ion  of  instances  

of operators  which can be evaluated concurrently .  Figure 5 shows a possible 

snapshot of the program during i t s  app l ica t ion  to a spe c i f i c  t re e .

In the next sect ions  we descr ibe ,  in more d e t a i l ,  program storage,  task 

execut ion,  typical  opera to rs ,  graph expansion via the special invoke  opera tor ,  

and forw ard  c h a in in g , which is  a key idea in implementing l e n i e n t  cons and our 

p a r t i c u la r  form of procedures.  We do not discuss s torage reclamation here, 

as i t  is an issue s t i l l  under inves t iga t ion .

13



All storage is  a l loca ted  in b lo c k s .  Blocks make storage management 

more e f f i c i e n t ,  and are c ons is ten t  with t ry ing to keep the l o c a l i t y  

of  a computation contained with one processing un i t .  A block is e i t h e r  

a d a ta  b lo c k  or a code b lo c k .  The words of a data block are i n i t i a l l y  code 

and l i t e r a l s .  The former gradually get changed to  data during execution.

A code block is  copied as the source of i n i t i a l  code to be stored in a 

newly a l loca ted  data block. The contents of a code block form a l in e a r  

represen ta t ion  of an FGL program graph. •

The copying of  code blocks may be contras ted  with approaches such 

as t h a t  in [P a t i1 67], which in t e rp r e t  a pure code block without copying.

The approach taken here is more e f f e c t iv e  in keeping references local to 

a processing un i t .  I t  a lso reduces the amount of  word fetching required 

during actual  task processing.

The words in a data block correspond roughly to data  values which 

may eventual ly  appear on the output arcs  of operator  nodes in the 

program graph. I n i t i a l l y  however, instead of  containing da ta ,  a word 

contains the in s t r u c t i o n  code rep resen ta t ion  of the corresponding 

opera tor ,  along with the local addresses of words corresponding to i t s  input 

a rc s ,  i . e .  the sources of i t s  operands. We assume here fo r  s im pl ic i ty  

th a t  each operator  has only one output a rc ,  although such arcs may 

fan out as necessary.

8. PROGRAM EXECUTION
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In addit ion to specifying the input arcs  of  i t s  operands, an 

in s t ruc t ion  may be accompanied by n o t i f i e r s ,  which are addresses of 

operators  which have th i s  o p e ra to r ' s  output arc as one of t h e i r  input 

a rcs .  These could conceivably be s e t  dynamically, but in t h i s  presenta t ion  

we have elected to have them se t  in the i n i t i a l  code. Again, Figures 2, 3, and 

4 give examples of code blocks corresponding to program graphs. Further 

information on in te rp re t in g  these blocks i s  given in subsequent sec t ions .

By keeping data  blocks reasonably small,  say 256 words, and by using 

only addresses r e l a t i v e  to the s t a r t  of the block in the code, the operat ion 

code and necessary se t  of operand and n o t i f i e r  addresses can be accommodated 

within a reasonable word s iz e ,  say 48 b i t s .  For references  across  blocks, 

which the re fo re  involve global addresses,  we provide some special opera to rs ,  

to be described subsequently. By dividing the physical memory into blocks 

and a l lo ca t in g  on block boundaries only, a paging e f f e c t ,  which s im pl i f ies  

s torage management, is r ead i ly  obtained.



The loosely-coupled aspect  of task evaluat ion is  achievable through 

a ta s k  l i s t  o rganiza t ion ,  which allows many processors to partake in the 

evaluat ion of t a s k s , i . e .  p a r t i c u la r  instances of operators  with t h e i r  

associated data .  The task l i s t  is  decomposed into two separa te  l i s t s  

which may be served independently. These are:

demand l i s t :  contains addresses of operators  for  which evaluation is  
to be attempted.

r e s u l t  l i s t :  contains addresses of opera tors ,  along with t h e i r  
corresponding values a f t e r  evaluation.

At t h i s  s tage of development, the recommended p r io r i t y  of  service is  

r e s u l t  f i r s t ,  then demand. The reasoning here is t h a t  r e s u l t  values 

genera l ly  enable successful evaluat ion of ta sks ,  while demand general ly  

c rea tes  more tasks .  These l i s t s  are fu r th e r  divided and d i s t r ib u te d  to 

individual processing un i ts  by the communication network, which takes into 

account the cu r ren t  processor load d i s t r i b u t i o n .  Only invoke  

i n s t ru c t io n s  will be considered fo r  d i s t r i b u t i o n ,  for  i t  i s  only these which 

might p ro f i t ab ly  be executed in another  processing u n i t ,  due to the commun­

ica t ion  cos t  incurred in ge t t ing  them there .  Hence, the invoke  l i s t  i s  a 

s u b - l i s t  of  the demand l i s t ,  containing only invoke  in s t ru c t io n s .

Figures 6  through 11 show the organizat ion of  the task 

evaluat ion mechanism. The flow diagrams are to be in te rp re ted  in an 

informal sense, and are less  akin to conventional flowcharts than they are 

ind ica t ive  of d a ta  f lo w ,  with ta s k s  as data .

The following b r i e f  n a r ra t iv e  wi l l  aid in the understanding of the 

flow diagrams. . I n i t i a l l y ,  the address of  the word which will  produce the 

"main r e su l t "  is  put on the demand l i s t .  The word i t s e l f  is  then fetched.

I t  i s  evaluated, i f  poss ib le .  I f  not,  then demand is  propagated to i t s  

arguments by placing t h e i r  addresses on the demand l i s t .
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9. TASK EVALUATION



Once evaluated,  a r e s u l t  value rep laces the coded operator  as ready  

data .  Via the r e s u l t  l i s t ,  any n o t i f i a b l e  operators  awaiting th i s  

r e s u l t  as an argument are then n o t i f ied  by putt ing them on the demand 

l i s t  to be r e t r i e d .  We notice  th a t  a l l  demanded operators  remain accessi 

un t i l  they become ready as da ta ,  e i t h e r  through:

( 1 ) being on the demand l i s t ,  

or (2 ) being referenced by a n o t i f i e r  of an access ib le  operator ,

or (3) being referenced by the "forwarding address" of an access ib le  

operator .

Forms of evaluat ion other  than pure demand evaluat ion can thus be 

supported by jud ic ious  s e t t in g  of "d-b i ts"  and advanced placement on 

the demand l i s t .
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10. WORD FORMAT

A word in a data block may begin as a code word and l a t e r  be changed 

to a datum as the computation proceeds, corresponding to the evaluat ion 

of the operator  represented by th a t  code word. The ready b i t  { r  b i t )  

in each case is  s e t  when the word does contain a datum. I t  may be se t  

i n i t i a l l y  in some words, to provide i n i t i a l i z e d  l i t e r a l s .

A datum can e i t h e r  be an atom , in which case i t  contains a l i t e r a l  value, 

or i t  can be a p a i r  p o in te r .  In the l a t t e r  case,  i t  is  the global address 

of a pa i r .  A p a i r  cons is t s  of two consecutive words within some block, 

each of which is  e i t h e r  a datum or a forw ard  operator .  The purpose of 

the l a t t e r  will  be described subsequently.

There are several o ther  formats for  data which extend the above, such 

as represent ing l i s t s  in contiguous space, chains of po in te rs ,  e t c . ,  as used 

in [Bawden, e t  a l .  77].  These wil l  not be discussed here for  b rev i ty .

All global addresses are  represented as

B.R

where B is  the base address of  a data block and R the local address 

of  a word within the block. The advantage of  th i s  scheme is  th a t  once 

the word in question has been referenced,  the processor will  usually  

need access to o ther  words in the block and can gain i t  using only t h e i r  

local addresses.
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The following f ie ld s  will  always he Dresent in a code word: ^

d  b i t :  s e t  to ind ica te  th a t  i t s  u l t imate  data value has been demanded

op : o p e ra t io n  code .

The following f i e ld s  may or may not be p resen t ,  depending on the 

nature of the p a r t i c u la r  operat ion code:

as : local addresses of arguments to the operator

ns : n o t i f i e r S y  i . e .  local addresses of  n o t i f i e e  operators

-*-B.R : where B.R is a global address ,  which is  e i t h e r :

a forw ard ing  a d d re s s s which is  used with a forw ard  opera to r ,  or 

a f e t c h  a d d ress  , which is  used with a f e t c h  ope ra to r ,  or

a p o in te r  to a code block (in which case R = 0 ) ,  which
is  used with an invoke  operator .  .

The presence of  the demand b i t  in a code word allows support of a

demand d r iv e n  e v a lu a t io n  s t r a t e g y .  In t h i s  s t r a t e g y ,  no operator  is 

evaluated unless i t  produces some value known to be e s sen t ia l  to the

computation. Aside from the obvious po ten t ia l  e f f ic ien cy  gain,  another 

advantage of t h i s  approach is  t h a t  i t  provides a. natural means of deciding 

whether and when to t r i g g e r  the invocation of a defined funct ion ,  which

requires  the a l lo c a t io n  of  a s torage block.

The use of b i t s  to d i r e c t  the processor to i n t e r p r e t  a given word 

as da ta ,  in s t r u c t io n ,  e tc .  exemplifies the "tagged a rch i tec tu re"  approach 

[Feustel 73].  Adopting th i s  approach allows us to keep open a l l  of 

i t s  a t tendan t  opt ions as the design progresses.
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11. REPRESENTATIVE OPERATORS ,

The r ep e r to i r e  of  operators  includes the Lisp operators  c a r ,  cd r  , 

co n s ,  atom} e q ,  i f - t h e n - e l s e  (cond), e t c .  Of these ,  a l l  but the f i r s t  

three are ca l led  o r d in a r y ,  as they operate purely within the data block.

The f i r s t  three are  ca l led  s p e c i a l ,  because they can cause data t r a n s f e r  

between blocks.

In co n t ra s t  to conventional Lisp, we have e lec ted  to make cons 

a le n ie n t  operator.  That i s ,  i t  has a " re su l t"  even i f  one of  i t s  

arguments has not y e t  been computed. This can be argued to increase  the 

asynchrony of  a computation and hence improve the u t i l i z a t i o n  of a pa ra l le l  

processing system on which i t  may be run, o f .  [Friedman and Wise 76].

A consequence of  the lenience of  cons  i s  t h a t ,  in our implementation, 

cons i s  not r e a l ly  an operator  a t  a l l ,  but r a th e r  j u s t  a pa i r  of  data* 

namely, i t s  arguments.

Some other  special opera to rs ,  which do not appear in the program 

graph, are used to e f f e c t  the necessary t r a n s f e r s  of data  between procedures,  

and o ther  housekeeping operat ions .  These are i d e n t ,  fo rw ard ,  f e t c h ,  l o c p t r ,  

and in vo k e .  .

The operators  i d e n t ,  fo rw ard ,  and f e t c h  a l l  have the nature  of 

i d e n t i t y  fu n c t io n s .  The d i s t i n c t i o n  is  as follows: i d e n t  has a local 

argument and local n o t i f i e r s .  I t  i s  used mainly fo r  increased fan-out 

when there  are  more n o t i f i e r s  fo r  a word than can f i t  in a s ingle  word; 

f e t c h  has a global argument and one or more local n o t i f i e r s ;  forw ard  

has one local argument and one global forw ard ing  a d d r e s s .  The l a t t e r  is  

s e t  when a demand i s  issued to the corresponding f e t c h .  All cons pa irs  com­

p i le  as two consecutive forw ard  opera tors ,  or l i t e r a l s .  The operator  l o c p t r  

is  used to generate global pointers  to cons pa i rs .
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The following discussion describes the compilation of an i n v o k e :

where /  is a programmer-defined symbol

invoke + f  ns .  . . .  nz,J 1 k
forward ax1 -+? 

forward ax -»■?

forward aa^ -»■?

where -+/ is  the address of f ' s  code block, the ax. are local arguments, the nz .'1' 't'

are  local n o t i f i e e s ,  and the ? ' s  are s e t  when the forwards  are demanded.

The data block corresponding to f  begins with:

forward au -+x 

fetch +(x+l) nyj  ••• 

fetch + (x+2 ) ny£ . . .

fetch  -+(x+^) ny  . . .

where x is the address of  the in v o k e , u is  the local word which will  contain 

the r e s u l t  to be delivered by the in v o k e , and r\y. . . .  are the n o t i f i e r s  

of the i - t h  parameter of f .  Following crea t ion  of the data block, demand 

propagates to the forw ard  in the data block for  f .

compiles as:
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12. FUNCTION CLOSURES AND THE OPERATOR a p p l y .

An important aspect of Lisp programming is the manipulation of functions  

as data values. While we do not envision supporting run-time c r e a t io n  of 

function d e f i n i t i o n s , we do accommodate the formation and manipulation of 

function c lo s u r e s  (records combining compiled code poin ters  with environ­

ments for  t h e i r  u l t imate  ap p l ica t ion ;  i . e . ,  FUNARGs). This will permit not 

only the programming of f u n c t io n a l s  ( funct ion-valued functions)  on our 

machine, but a lso  provides a form of shared values ,  thereby re l iev ing  the 

need to exhaust ively  parameterize functions.

We assume th a t  our programs are b lo c k  com piled .  That i s ,  the program 

cons is ts  of a se t  of symbolically named funct ion d e f in i t io n s  tha t  are com­

piled  as a group. Within these " top- level"  function d e f in i t i o n s ,  there may 

be some number of nested function d e f in i t io n s  of the following form:

In FGL In Lisp:

(FUNCTION
(LAMBDA ( <bound v a r i a b l e s >) 

<body>))

(bound v a r ia b l e s )

(g lo b a l  v a lu e s )

denotes graph of  <body>

Such forms c rea te  c lo su r e  values a t  run-t ime.  Each combines the entry 

point fo r  the nested fu n c t io n ' s  compiled code with an environment p o in te r  

which references  the cu r ren t ly  executing ac t iv a t io n  of the i[mediately 

surrounding funct ion d e f in i t i o n .  Thus global ( i . e .  " f ree" ,  or non-local)  

var iable  occurrences within the nested function are bound s t a t i c a l l y  to
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re fe r  to the matching dec la ra t ion  ( i . e .  parameter) binding a t  the place of 

the c lo su re ' s  c rea t ion .

For completeness,  we include:

In FGL: In Lisp:

(FUNCTION F)

where F is the symbolic name of a function.  This makes the semantics of 

function a p p l ica t ion  more uniform, and s y n ta c t i c a l ly  d is t ingu ishes  between 

the funct ion F and any parameter F th a t  may be access ib le .  Note, however, 

tha t  the environment po in ter  in such a closure i s  superfluous, since a named 

function may not contain any occurrences of var iab les  global to i t .

A closure value may be passed as a function argument, returned as a 

function value,  cond i t iona l ly  se lec ted ,  e tc .  un t i l  u l t im a te ly  i t  is  applied 

via the operator a p p ly ,  akin to the APPLY funct ion of Lisp:

In FGL: In Lisp:

(APPLY <closure-form >

<ca'g j-form>

<arg^-form>)
(c l o s u r e ) (argum ents)

Observe th a t  a l l  function c a l l s  in our source language could be expressed in 

APPLY notation through the following transformat ion:



( F OLj • • ■ afe) (APPLY (FUNCTION F) ct̂  . . .  afe)

However, we r e ta in  the option of the d i r e c t  function ca l l  nota t ion (and the 

invoke  opcode supporting i t )  for  expressive convenience and run-time e f f i ­

ciency.

These cons truc ts  are compiled as follows (see Fig. 12 for  examples): 

Construct 1: Function c losures .

In FGL: In Lisp:

(FUNCTION <f>)

( g lo b a l  va lues)

We use the opcode lo o p tr  to  generate  a fu l l - ad d re ss  ( i . e .  "global") 

pointer  to a cons pa ir  representing the c losure .  The cap  of the pa i r  is  the
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keyword atom FUNARG, while the cd r  is  a pseudo-opcode dummy with a code 

poin ter  to <t> as i t s  argument. Thus the ca r  of a closure may be computationally 

inspected a t  run-t ime,  but since dummy causes a run-time e r ro r  i f  executed, 

the odr  of the closure  is  inspectable  only by a p p ly .  Note th a t  the global 

pointer  S . 3 to the closure as b u i l t  by l o c p t r  contains  the c lo su re ' s  environ­

ment po in ter  d i r e c t l y  in S.

Construct 2r. Nested fu n c t io n s .

In FGL: In Lisp:

(LAMBDA ( <bound v a r ia b le s > )  <body>)

{bound v a r ia b l e s )  (g lo b a l  v a lu e s )

Each funct ion d e f in i t io n  is  compiled into a separate  code block to 

minimize code copying a t  function app l ica t ion  time. (Note th a t  i f  nested 

funct ions were compiled " in - l i n e " ,  t h e i r  code would s t i l l  need to be copied 

when appl ied ,  since several app l ica t ions  of tha t  p a r t i c u la r  c losure  value 

may occur .)  Within each fu n c t io n ' s  code, special "pseudo-parameter" f e t c h  

opcodes are compiled for  each var iab le  accessed g lobal ly  from within i t s  

d e f in i t i o n .  Observe th a t  such f e t c h e s  are compiled even for  global var iab les  

accessed only a t  deeper nested function leve ls .

Any global va r iab le  occurrence is  thus connected a t  run-time through a 

sequence of f e t c h  opcodes, one per level of  textual  function nes t ing ,  from i t s  

containing ac t iv a t io n  record to i t s  binding as a bona f i d e  parameter a t  some 

outer  leve l .  The S.|i pointers  of the global j'cLrh.es are bound in two stages:  

the 8 is  fixed a t  compile time (with complete s e c u r i ty ) ,  and the S is  fixed
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a t  app l ica t ion  time to be the c lo s u r e ' s  environment poin ter  S.

Thus,in the same sense th a t  the ac t iv a t io n  record 's  dynamic ( i . e .  c a l l ing )  

l ink is redundantly represented in each parameter f e t c h , i t s  s t a t i c  l ink  is 

redundantly represented in each global f e t c h .  The f e t c h  opcode o f fe r s  s u f f i ­

c ien t  space for  such fu l l  addresses,  and the design provides uniform f e t c h  

processing in both cases with less  memory contention (as might a r i s e  i f  the 

s t a t i c  and dynamic l inks  were put into a s ingle  header word in the ac t iv a t io n  

record).

An a l t e r n a t iv e  accessing scheme for  globals  would be to  replace th i s  

"bucket brigade" approach and provide d i r e c t  f e t c h  l inkage from occurrence 

to binding lev e ls .  Although such a scheme might o f fe r  f a s t e r  access in 

ce r ta in  cases ,  we consider i t  to be less  des irab le  for  two reasons. F i r s t ,  

the compiled code would need to  be adapted to contain two-dimensional addresses 

( i . e .  [ s t a t i c  l e v e l ,  o f f s e t ] ,  as is  customary in Algol- l ike  language implemen­

t a t i o n ) ,  with the added app l ica t ion  time set-up a c t i v i t y .  Secondly, a 

p o te n t i a l ly  valuable caching  e f f e c t  would be l o s t  along global f e t c h  sequences. 

Given our concern for  explo i t ing  l o c a l i t y  on th i s  machine, we feel t h a t  the 

l a t t e r  concern will be economically dominant.

Construct V. Function a p p l i c a t i o n s .

In FGL: In Lisp:

(APPLY <closure-form >  

<arg 2~form>

c lo su r e  arguments <argk-form >)

The ap p ly  operator  is  compiled in a manner s imilar  to  t h a t  for  in v o k e , 

but with the c lo s u r e  being an operator  argument (as opposed to the
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argum ents , which are compiled using forw ards  as per in v o k e ) .

The act ions  taken by the app ly  opcode are viewed as a s l i g h t  extension of 

the invoke  opcode, with the added a c t i v i t i e s  of global f e t c h  se t-up and 

argument count checking. When demand reaches an app ly  opera tor ,  i t  propagates 

immediately to the a p p l y ' s  f i r s t  argument. Upon rec e ip t  of the necessary 

closure value for  t h i s  argument, the appl y  task becomes an invoke  task and is  

moved to the invoke  l i s t .
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13. forward  CHAINING

The n a r ra t iv e  in Section 9 does not discuss special  a t t e n t io n  paid 

to various opera tors ,  e .g .  forw ard .  The handling of such operators 

is the essence of both the procedure linkage mechanism and the successful 

handling of l en ien t  eons.

When an operator  is  evaluated,  i t  i s  replaced with a value. At th i s  

time, the presence of  any n o t i f i e r s  i s  noted and the corresponding operators  

are  put on the demand l i s t .  These operators  can then access the data as 

an operand.

No use is  to be made of the argument par t  of the contents  of operators  

over-wri t ten  by forw ard .  Ins tead, a special forw ard  chain ing  technique is  

required for  co n s is ten t  handling of len ien t  cons. I f  the operator  being r e ­

placed is  a forw ard ,  the data a lso replaces the  contents  of a forw ard ing  

address  which may be present .  This process is  repeated,  un t i l  an operator  

containing no forwarding address is encountered. The need for  t h i s  technique 

can be seen by the following argument:

Figure 11a shows par ts  of three  data blocks as par t  of a s t a t e .  Notice 

t h a t  X-j and can both p o te n t i a l ly  request  the same value,  namely the 

value of U, which is  not ye t  ready (nor demanded). When the f i r s t  demand 

on Z is generated, as indicated in Figure 11a, the forwarding address in 

Z is  s e t  to X-| and U is  demanded.

Suppose meanwhile t h a t  demand is  generated on X£, which in turn  r e s u l t s  in 

a second demand on Z. Since a forwarding address has al ready been stored in Z, 

there is  i n s u f f i c i e n t  room for  a second. (Even i f  two could be s to red ,  there 

might be three  demands generated, e t c . ) .  Since we know th a t  X̂  is to receive the 

r e s u l t  of Z, we s to re  forw ard  in Z, as in Figure 11c. When U is  f in a l l y  

n o t i f i e d ,  any data s tored over a forw ard  wi l l  be s tored  over the contents of the



word spec i f ied  by i t s  forwarding address ,  according to the d i s t r i b u t e / n o t i f y  

phase of the evaluat ion algorithm.

Although we used oar  to motivate the above example, we mention tha t  

s im i la r  t reatment is  given to cd r  and f e t c h  (when used for  global 

value l inkage) .



We do not go in to  great  de ta i l  here on the organizat ion of individual 

general processing u n i t s .  As described in Section 9, each un i t  s e le c t s  tasks 

from i t s  demand l i s t .  While on th i s  l i s t ,  a task is  represented by i t s  . 

address in memory. This word is fetched and i f  not present ly  ready as da ta ,  

an attempt is made to evaluate  i t .  For ord in ary  t a sk s ,  t h i s  normally 

e n t a i l s  reference to one or more addit ional  words in the memory; hence 

a fe tch  of these words occurs.  Since each of them might res ide  in the 

physical memory of any processing u n i t ,  fe tching may involve transmission of 

words through the communication network. In order  th a t  the processor need not be 

id le  while such a fetch is  taking place,  we provide for  buffer ing a se t  

of such tasks while t h e i r  operands are being assembled. We cal l  such a 

buffer  a s ta g in g  area .  I t  is  conceptual ly s im i la r  to a conventional ■

p i p e l i n e , except th a t  order of task execution is  unimportant, a l l  

e s sen t ia l  ordering being e x p l i c i t  in the program graph. The size of the 

s taging area is chosen to maintain reasonably good u t i l i z a t i o n  of the 

function uni ts  within the processing u n i t ,  which carry  out the actual 

operat ions once the task leaves the s taging area.  Of course , each 

function un i t  could i t s e l f  be p ipe l ined ,  depending on economic advantages 

which would accrue due to a p a r t i c u la r  app l ica t ion  load. Design of 

such a staging area is  f a i r l y  routine and there fore  will  not be fu r th e r  

discussed here.

30

14. PROCESSOR ARCHITECTURE
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Load balancing occurs through the r e d i s t r ib u t io n  of tasks from the 

invoke l i s t  of one processing un i t  to tha t  of another.  This is  a separa te ,  

but topo log ica l ly  comptabile,  function of the communication network from 

the routing of operand data.

By the load  a t  a processing u n i t ,  we mean the number of tasks  on the 

segment of the invoke l i s t  a t  t h a t  un i t .  In a s im i la r  manner, we can define  

the load  a t  any node of  the communication network to be the sum of the loads 

a t  i t s  leaves ,  divided by the number of i t s  leaves as a normalizing fa c to r .

Again, to s implify the explanat ion,  we are assuming tha t  the communication 

network is  a binary t r e e .  Each node of the communication network

maintains lower and upper l im i t s ,  L and U, on the loads of  i t s  immediate 

descendants.  I f  the load of one is  above U and th a t  of the other  below L, 

i t  attempts to s h i f t  tasks  from the invoke l i s t  of the overloaded descendant 

to th a t  of the underloaded one. I f  loads of both i t s  descendants are above 

U, t h i s  wil l  be communicated to i t s  parent ( i f  any),  so t h a t  the l a t t e r  may 

t ry  to s h i f t  some of the load to one of i t s  descendants having load less  

than L. In t h i s  way, the balancing function i s  d i s t r ib u te d  throughout the 

communication network, with each node thereof  applying the same balancing 

s t ra tegy .

The e f fec t iveness  of the balancing scheme r e l i e s  on the loosely-coupled 

aspect of the system. That i s ,  no task is  bound to a p a r t i c u la r  processor 

un t i l  storage is  a l loca ted  for  i t .

15. LOAD BALANCING
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16. COMPARISONS WITH RELATED MACHINES

I t  is  e a s i e s t  to understand the r e la t io n  between the machine a rc h i t e c tu re  

presented here and the a r c h i te c tu re  of the data-flow computer proposed in 

[Dennis and Misunas 74] by folding the l a t t e r  through the center  of i t s  

in s t ru c t io n  c e l l s  and functional un i ts  in such a way th a t  the a r b i t r a t i o n  

network overlaps the d i s t r i b u t io n  network. Our general processing uni ts  

then play the ro le  of the ins tuc t ion  ce l l  blocks, and our communication 

network performs the function of both a r b i t r a t i o n  and d i s t r ib u t io n  networks. 

Furthermore, our a rc h i t e c tu re  may o f fe r  improved performance because data would 

not often have to t ravel  as fa r  to get from a source cell  to a des t ina t ion  c e l l .

As in the machine proposed in [Arvind and Gostelow 77],  the 

machine proposed here uses micro-computers to do the processing. However, 

we feel th a t  the communication network used in our machine is 

super ior  to the one in th a t  machine. The communication bus s t ru c tu re  of  the 

former machine may cause in to le ra b le  delays in t ransm it t ing  information from 

one processing un i t  to another ,  a f a c t  th a t  may prove to be a grea t  ,

impediment to the success of  the machine.

The DDM-1 [Davis 78] is  a very d i f f e r e n t  kind of machine than the 

one proposed here. I t s  h ierarch ica l  s t r u c tu re  seems to impose c e r ta in  

co n s t r a in t s  on the c rea t ion  of  new computations and on the flow of information 

in the machine. For example, when a processing element c rea tes  a 

ta sk ,  the l a t t e r  must be placed e i t h e r  in the space of  the processor 

carrying out the app l ica t ion  or in the space of  a subordinate 

processor ,  even i f  the subordinates  are crowded fo r  space and the machine 

has o ther  processors which have plenty of  f ree  space. This problem does
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not occur in our machine, due to the cons truct ion  of the communication 

network, the uniformity of the address space, and our notion of load 

balancing.

Some t r e e - s t ru c tu r e d  reduction language machines th a t  have been 

proposed are  fundamentally d i f f e r e n t  in t h e i r  operation when compared 

with the machine presented here. In these machines, the expressions 

th a t  need to be evaluated are mapped d i r e c t ly  onto the physical t r e e  , 

of  the machine. In our machine, such expressions would not be mapped 

onto the communication t r e e ;  instead they would be mapped via p a ra l le l  

program graphs in to  the address space of  the machine, and would res ide  

in the memory space of one or more processing un i ts  of the machine.

A common fea tu re  of a l l  of the above a r c h i te c tu re s  is  th a t  they 

are data-driven r a th e r  than demand-driven, as ours i s .  One might be 

led to think th a t  the l a t t e r  presents  some addi t ional  overhead. However, 

c lo se r  examination of  the other  a r c h i te c tu re s  may reveal th a t  some 

form of  ready-acknowledge s igna l l ing  is  taking place when i t  comes to 

transmission of data via s torage words. This i s ,  in f a c t ,  a special 

case of demand-driven computation, in which the demand for  an operand 

is  equated with readiness  of  i t s  r e c ip ie n t .  We ex p lo i t  the f l e x i b i l i t y  

of the general case , to obtain advantages in deciding when to invoke 

procedures.  I t  is  a lso  c lea r  t h a t  the demand-driven f ea tu re  is  a necess i ty  

in supporting len ie n t  cons.  One the other  hand, i t  i s  a lso c le a r  th a t  

demand-driven computation can be en g in eered  on the other  a rch i tec tu re s  

by t r e a t in g  demands as da ta ,  but t h i s  seems to be cumbersome.

Although a t  the physical level the Cm* computer [Swan, e t  a l .  77] 

may appear s im i la r  to our machine, the two are qu i te  d i f f e r e n t  on account 

of t h e i r  underlying mechanism of program execution. In Cm*, para l le l



processing is  based on the concept of in te ra c t in g  sequentia l processes 

t h a t  run on conventional processors (PDP-11), while our machine embodies 

an evaluat ion scheme for  the FGL language and is  capable of d i r e c t ly  

evaluat ing data-flow graphs and ap p l ica t iv e  expressions.  Our evaluation 

scheme, language, and overal l  organizat ion have been developed in an 

in tegra ted  fashion as parts  of  one functioning system.



We have s ta ted  our fee l ing  th a t  machine a rch i te c tu re s  should be 

developed with g rea te r  a t t e n t io n  paid to  u l t imate  programmability.  As an 

example, we discussed p r inc ip les  for  a loosely-coupled a r c h i te c tu re  and the 

use of Lisp as a language w el l - su i ted  fo r  such a machine. We sketched in 

some de ta i l  the in te rna l  represen ta t ion  of programs in our machine and 

the execution of programs on i t .

Our implementation seems to be the f i r s t  de ta i led  one presented fo r  

Lisp programs on a pa ra l le l  machine. An implementation has been 

described q u a l i t a t i v e ly  in [Friedman and Wise 78]. However, t h e i r  work 

r e l a t e s  mainly to the issues  associa ted  with c o lo n e l  versus 

se r g e a n t  t a sks ,  the l a t t e r  being d is t inguished  from the former as 

tasks  whose evaluation may never be a c tu a l ly  requ ired ,  but which 

provide a p o t e n t i a l ly  useful way of employing otherwise id le  processors .

In c o n t r a s t ,  a l l  tasks  in the machine described here are of the colonel 

v a r i e ty ,  whose exis tence may be traced to ce r ta in  s t r i c t  opera tors ,  

such as add in the t r e e  sum example. Hence such issues  have not 

been of immediate concern here. On the o ther  hand, subtle  d e t a i l s ,  

such as the need for  forw ard  cha in in g  have been discovered in the 

course of designing our eva lua tor .  How such s u b t l e t i e s  in t e r a c t  with 

an implementation which does support sergeant tasks remains a topic  for  

fu ture  inves t iga t ion .

The ideas presented here were derived a f t e r  considering many 

possib le  a l t e r n a t iv e s .  I t  i s ,  of course , possible  th a t  we may e l e c t  

to re turn  to one or  more of these a l t e rn a t iv e s  a f t e r  more experience 

in programming the machine has been gained. A simulator  for  the evaluat ion 

model has been w r i t ten  in Pascal to a s s i s t  in such a venture.
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17. CONCLUSIONS AND FUTURE RESEARCH
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Many important d e t a i l s  remain to be inves t iga ted .  These include not 

only the necessary support for  the language described here in terms of 

storage reclamation and schedul ing, but extension of  the language to 

allow other  fea tures  as wel l .  We are cu r ren t ly  contemplating how to best  

introduce a d i s t r ib u te d  heap for  more e f f i c i e n t  long-term data s torage.

We must decide how to  deal with o ther  fea tures  of Lisp, such as p r o g , 

upon which many programmers have learned to r e ly .  A re la ted  issue is  

whether in d e te rm in a te  computations should be supported, as there are some 

indica t ions  th a t  they permit e f f ic ien cy  gains not otherwise achievable 

[Kel ler  78]. The usefulness  of ap p l ica t iv e  programs in allowing graceful 

backup when a processing un i t  f a i l s  a lso  remains to be explored. Thus 

many issues ,  a t  levels  from de ta i led  processor cons truct ion  to more 

fundamental language problems, await us.
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O Leaf node'- e i th e r  a general 
processing un i t  (with memory), 
special processing u n i t ,  or 
in te r face  to external I/O.

Figure 1 Form of the physical a rc h i te c tu re  of the loosely-coupled pa ra l le l  
processor.
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0 forward a2 ->X

1 fetch -*-(X+l) n3 n7

2 locp tr  a3 nO
(5)

3 forward al -*■?
(6 )

4 forward a 5 -*■?
(7)

5 invoke -kj n4

6 forward a 7 -*■?

7 addl al n6

cons

Figure 3 Graph represen ta t ion  and code block rep resen ta t ion  of  the
consequent of a production, x is  the global address of the 
invoke  operator  which crea tes  the corresponding data block. 
? ind ica tes  poin ter  f i e ld s  which are se t  on demand of th i s  
word. is  an operator  which generates the global
address of tFie word i t  references .



(DE SUM (TREE) (COND 

((NULL TREE) 0)

((ATOM TREE) TREE)

(T (ADD (SUM (CAR TREE)) (SUM (CDR TREE))).)))

0

1

2

3

4

5

6

7

8 

9

10

11

12

13

14

forward a 2 -*x 

fetch ->-(x+ l) n3 n6 n14 

cond a3 a4 a5 nO 

null al n2 

r 0

cond a6 al4 a7 n2 

atom al n5 

add a8 all n5 

invoke -*sum n7 

forward alO ->-? 

car a 14 n9 

invoke ->-sum n7 

forward a 13 -*? 

cdr a 14 n 12 

ident al n5 nlO nl3

Fiqure 4 Tree summation example: Lisp code; consequent of production 
defining SUM; compiled code.
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Figure 5 One possible snapshot of the program of Figure 4 during 
its computation on a tree.



42

initial task addresses 
(d bits of tasks already set)

Figure 6 Overall task processing flow. Asterisk denotes sequence o f.
The evaluate/propagate box for different task types is expanded 
in Figures 7, 8 and 10. The distribute/notify box is expanded 
in Figure 9.
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(task address, contents) 

i
evaluate/propagate 

for ordinary 1
types

4

evaluated task 
(task address, value)

propagated tasks 
(task address)*

expands into:

task

Figure 7 Evaluate/propagate for ordinary task type.



(task address, contents) 

f __________

evaluate/propagate __
for invoke

- y  1

evaluated task 
(does not occur)

expands into:

(B.O)

F i g u r e  8 E v a l u a t e / p r o p a g a t e  f o r  invoke  t a s k  t y p e .

44

^  propagated tasks 
(task address)*
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(task address, value)

i
distribute/ 

noti fy J

J-
notifiee tasks 
(task address)*

expands into: 

( T ,  V)

forwarded value 
(task address, value)

( T ,  V)

notifiee tasks

F i g u r e  9 D i s t r i b u t e / n o t i f y  p r o c e s s i n g .
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( t a s k  a d d r e s s ,  c o n t e n t s )

process task type
for oar, adr

propagated task 
(task address)

evaluated task 
(task address, value)

expands into

i
let X be task address, 
let Y be argument location

fetch contents of Y,
•setting d bit if not already data

I
contents of Y already data?

J

no

yes

contents of Y a pair pointer?

I
no error

yes

let Z be the address in Y, 
let W be l(a a r ) or Z+l{adr)

i
contents of W already data? ■

no

^ y e s

propagated task, 
address Y

W's forwarding address set?

evaluated task,
contents of W is value of X

I
yes

replace X's 
contents with W's rE

I no

JL
et W forwarding 

address to X

J
propagated task, 

address W

F i g u r e  10 E v a l u a t e / p r o p a g a t e  f o r  ca r, cub- t a s k  t y p e s .
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first
demand

car Y.|
xi d car

r +Z
vi r +Z

X2 car Y^ X2 car Y^

V2 r +Z
V2 r +Z

second
demand

d forward all -+X

d f nZ

1 forward all -»■? Z forward all -̂X-j

U f nZ

first
demand
propagated

d f nZ

(a) (b)

xi d car Y1
xi d car Y 1

Yi r +Z
Yi r ->Z

X2 car Y2
X2 d forward ->X-|

V2 r ->Z
V2 r -+Z

Z

U

d forward all +X.

d f nZ

(c) (d)

Figure 11 Illustration of forw ard chaining. (r and d denote ready  

and demand bits, respectively.)
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Lisp code: (DE ADDK (K) (FUNCTION (LAMBDA (J) (ADD J K))))

FGL code:

Compiled code: ADDK: 0

1

2

3

4

forward a2 -»-x 

fetch ->-(x+ 1 ) 

locptr a3 nO 

r 'FUNARG' 

dummy -»a

a: 0

1

2

3

forward a3 -»-x 

fetch -»-(x+ l) n3 

fetch + U + 1 )  n3 

add al a2 nO

Fiqure 12 Simple example of function closures: "Currying" the operator 
add to have a bound second argument, (x denotes the dynamic 
link, and £ denotes the static link, both bound at invoke time.)
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