
AN ARCHITECTURE FOR A LOOSELY-COUPLED

PARALLEL PROCESSOR

Robert M. Keller
Gary Lindstrom

Suhas Pati l

UUCS - 78 - 105

October 1978

Department of Computer Science
Universi ty of Utah

Sa l t Lake City , Utah 84112

This work was supported in par t by grants DCR-74-21822, MCS-77-09269 and
MCS-78-03832 from the National Science Foundation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A bs t rac t : An a rc h i te c tu re for a large (e .g . 1000 processor) para l le l
computer is presented. The processors are loosely-coupled, in the sense
th a t communication among them is fu l ly asynchronous, and each processor
is general ly not unduly delayed by any immediate need for spe c i f ic data
values. The network supporting th i s communication is t ree shaped,
with the individual processors connected a t l e a f nodes. The machine
executes a graphical version of app l ica t ive Lisp. The program
execution model is demand-driven, with a special deferred in te rp re ta t io n
for dotted pa i r eva lua t ion , termed " len ien t cons". Opportunities for
concurrency a r i s e in the pa ra l le l evaluat ion o f arguments to s t r i c t
opera tors , i . e . those known to require evaluat ion of t h e i r full s e t of arguments.
Such oppor tuni t ies are exploi ted by exporting function appl ica t ion tasks
to neighboring processor nodes in the t r e e , subject to a h ierarchical
notion of load balancing. Local ity of task a l loca t ion and communication
is a key objec t ive o f the machine. An in tegra ted design toward th a t end
is presented , combining language i s su e s , firm semantic foundations,
and an t ic ipa ted hardware technologies.

keywords and phrases : app l ica t ive programming, a r c h i t e c tu re ,
concurrency, data flow, demand-driven, l en ien t cons, Lisp, l o c a l i t y ,
loosely-coupled, packet switching, p a ra l le l i sm , reduction machine,
tagged a r c h i t e c tu re .

CR categories: 6 .21 , 4 .2 2 , 4 .1 2 , 4.32

CONTENTS

1. Introduction .. 1

2. Language I s s u e s 3

3. Basic Architecture ... 5

4. Communication Network ... 7

5. L o c a l i t y .. 9

6 . Information F l o w ... 11

7. Machine Language ... 12

8 . Program Execution ... 14

9. Task E v a l u a t i o n ... 16

10. Word F o r m a t ..18

11. Representative Operators .. 20

12. Function Closures and the Operator ap p ly ... 22

13. forw ard C h a i n i n g ... 28

14. Processor Archi tec ture ... 30

15. Load B a l a n c in g ..31

16. Comparison with Related Machines ... 32

17. Conclusions and Future Research .. 35

Figures:
1. Form of the physical a rc h i te c tu re of the loose ly ­

' coupled pa ra l le l processor ... 37
2. Graph represen ta t ion and i n i t i a l datablock for

sample main program M .. 41
3. Graph rep resen ta t ion and codeblock represen ta t ion

of the consequent of a p r o d u c t i o n ... 42
4. Tree summation e x a m p l e .. 43
5. One possible snapshot of the program of Figure 4 . . . 44
6 . Overall task processing f l o w ... 38
7. Evaluate/propagate for ordinary task t y p e 39
8 . Evaluate/propagate for invoke task type 40
9. D is t r ib u te /n o t i fy processing ... 45

10. Evaluate/propagate for oar, adr task t y p e s 46
11. I l l u s t r a t i o n of forw ard chaining ... 47
12. Simple example of function c losures 48

R e fe re n c e s .. 49

1

The a rch i te c tu re of h igh ly -pa ra l le l machines has received increased

a t t e n t io n from researchers over the past decade. At f i r s t , because of

t h e i r novel ty , workers were content with proposing e labora te machine

a rch i tec tu re s without giving grea t considera t ion to how such machines

would u l t imate ly be programmed to ex p lo i t t h e i r ava i lab le computational

power. Experience with I l l i a c IV, Star-100, e tc . has shown th i s to be

a mistake. Indicat ions are t h a t programming languages deserve considera t ion

a t the e a r l i e s t stages of a r c h i te c tu ra l conception. Included in such

cons idera t ions are issues such as s torage management and task management.

This paper describes considera t ions fo r what might be ca l led a

l o o s e ly - c o u p le d a r c h - i te o tu re . This term was used in [Arden and Berenbaum 75]

in discussing memory management t r a d e -o f f s in mult i -processor systems.

We use i t to denote a machine which p o te n t i a l ly incorporates a large

number (say 1 0 0 0) of processors which can function independently to a

large ex ten t , but which can e f f e c t iv e ly communicate with one another when

necessary. Furthermore, we require t h a t the computations being supported

are not t i ed to the s t ru c tu r e of the machine a t the program leve l . A

coro l la ry of t h i s a r c h i t e c tu ra l concept is th a t the system is eas i ly

expan dab le , the re being no logical dependence on the number of processors .

Such expandabil i ty is f u r th e r enhanced by the p a r t i c u la r physical organizat ion

to be descr ibed. A ddi t ional ly , through the use of a packet switching

intercommunication network, the system can by seen to have many of the

fea tu res a t tending r e a o n f ig u r a b le s y s te m s , {o f . [Reddi and Feustel 78]).

The a r c h i te c tu re presented here was influenced by work reported

in [Dennis and Misunas 74] and [Arvind and Gostelow 77] on d a ta f le w

machines. Our machine a rch i t e c tu re attempts to bring in terna l communication

costs within the machine to a more manageable level by taking advantage

1. INTRODUCTION

2

of l o c a l i t y of reference. The communication network in our machine plays

the ro le of the a r b i t r a t i o n and d i s t r i b u t io n network of the Dennis da ta ­

flow machine. However, the processing units which assemble in s t ru c t io n s and

i n i t i a t e information flow are more l ike the processors of Arvind and

Gostelow. Even though the a r c h i t e c tu re of our machine has a t r e e - l i k e

s t r u c tu r e , i t i s not a " recurs ive a rch i tec tu re" in the sense of [Davis 78].

Our system has in common with those c i ted in th i s paragraph the des i re

to in te g ra te a rc h i t e c tu ra l and language cons idera t ions . This is one

of the ways i t d i f f e r s from s u p e r f i c i a l l y s im i la r systems, such as Cm* [Swan,

e t a t . 77]. These s i m i l a r i t i e s and d i f fe rences wil l be fu r th e r reviewed

in Section 16.

Our a r c h i t e c tu re is cu r ren t ly in the development s tage . We present

in t h i s paper some of the major phi losophical decis ions which are influencing

us, along with an execution model for a subset of the ul t imate machine

language.

3

Heretofore, research on h igh ly -para l le i machines seems to have predom­

ina te ly emphasized numerical, r a the r than symbolic, computations. He feel th a t

fu r th e r inves t iga t ion of the l a t t e r is merited. The p o s s ib i l i t y of such

appl ica t ions has been alluded to before , e .g . [Hearn 76]. Presently we

are choosing Lisp as a t a r g e t language for our a r c h i t e c tu re . We would

l ike to present arguments in fu r th e r defense of th i s choice. The f i r s t is tha t

there is a subs tan t ia l community of Lisp users who are seeking the higher

computing*speeds which a p a ra l le l processing computer can give. We

believe th a t the problem of the acceptance of a new a rch i te c tu re

will be s u b s ta n t i a l ly solved i f Lisp can be supported on the computer,

since th a t choice would not involve acceptance of a new language.

Secondly, we feel th a t Lisp, possibly with some advice on programming

s ty l e , can be much b e t t e r matched to the power of a loosely-coupled

system than o ther languages. For example, extensive transformation of

Fortran programs i s done to make e f fe c t iv e use of the I l l i a c IV, e .g .

[Lamport 74]. Consequently, the connection between ob jec t and source

programs is obscured, and debugging is a f fec ted adversely. We feel

th a t the ob jec t language of our machine can be made reasonably close to

a usable subset of Lisp.

Furthermore, Lisp, with some minor modif ica t ions , such as l e n ie n t eons

discussed l a t e r (o f . [Friedman and Wise 76], [Henderson and Morris 76]) seems

to include a l l oppor tun i t ies for ex p lo i ta t ion of concurrency th a t proposed data

flow languages do. I t a lso seems to provide more, e .g . concurrent operations

on t r e e or graph data s t ru c tu re s during the l a t t e r ' s c re a t io n ,

and natural ways for dealing with conceptually i n f i n i t e s t r u c tu r e s .

2. LANGUAGE ISSUES

4

Fina l ly , even i f fu l l Lisp proves to be too d i f f i c u l t to support

e f f i c i e n t l y , in our attempt to design a machine for i t , we will

gain valuable experience about the inherent d i f f i c u l t i e s in supporting

such languages on a loosely-coupled computer.

I t may seem th a t ca ter ing to Lisp would have the e f f e c t of excluding

most of the poten t ia l users of o ther data-flow machines, e .g . those

in te re s te d in large numevioal computations, as users of our machine.

I t is our hope th a t such users wil l approach our design with an open mind.

We bel ieve , fo r several reasons , th a t our machine can compete with others

in the numerical computation domain. F i r s t , although our evaluator is

d i f f e r e n t , o ther machines are l ik e ly to incur very s im i la r mechanization

problems, making the execution speeds s im i la r fo r the same underlying

computation, independent of source language used. Secondly, numerical

computations, e .g . large Fortran programs, can be mechanically t ran s la ted

into Lisp. There are known case s tu d ie s , e .g . [Fateman 73], where the

Lisp version a c tu a l ly runs f a s t e r , even when i t e r a t i o n is replaced with

recurs ion.

5

3 . BASIC ARCHITECTURE

Figure 1 shows the physical arrangement of components in our machine.

The in terna l nodes of the t r e e s t ru c tu re are b i -d i r e c t io n a l communication

u n i t s , thus combining the a t t r i b u t e s of the a r b i t e r and d i s t r ib u t io n

uni ts of the Dennis machine along with addit ional b a lan c in g functions .

Processing uni ts are at tached to the machine as l e a f nodes. The le a f

nodes are not necessar i ly equ id i s tan t from the root node of the t r e e .

One might expect, for example, specia l-purpose u n i t s , of which there

are r e l a t i v e ly few, to be c lose r to the root node, fo r enhanced a c c e s s i b i l i t y

and u t i l i z a t i o n . Although the f igure shows a b in ary t r e e , and the discussion

in th i s paper makes t h a t assumption for s im p l ic i ty , technology considera t ions

suggest t h a t a 4-ary or 8 -ary t r e e might be more appropria te .

A general processing un i t is roughly the s ize of a conventional

micro-computer, but i t s a rc h i t e c tu re is su b s ta n t i a l ly d i f f e r e n t . I t is

able to carry out local computation, p a r t i c u la r ly with respect to assembly

and dissemination of information, and to i n i t i a t e ac t ions for fetching

information from other nodes of the t r e e . I t will be able to execute s ingle

program ta sk s , and c rea te tasks in response to the execution of invoke

(procedure app l ica t ion) opera t ions , which may then be executed e i t h e r in

the local processing un i t or in another processing un i t .

The primary memory of the system is d i s t r ib u te d among the processing

u n i t s . Each processing un i t has immediate access to t h a t segment of

memory located within i t . I t a lso has access , through the communication

netw ork , to the segments of memory located a t other processing un i ts .

Even though the memory is d i s t r ib u ted among the processing u n i t s ,

there is only one u n i f i e d l o g i c a l a d d ress space . Given the address of a

datum, any node in the machine is able to lo g ica l ly access i t d i r e c t ly .

The in terna l nodes of the communication network are responsible for any

required physical routing of addresses and data. Access to au x i l ia ry

memory and other forms o f external communication take place through

special-purpose l e a f processors .

7

The communication network is designed to help the machine to take

advantage of l o c a l i t y of information flow, thereby reducing communication

costs which often tend to be high in data-flow or iented machines. I t is

a lso responsib le for d i s t r i b u t in g the computing load among ava i lab le

processing un i t s .

In the data-flow machine of Dennis, the a r b i t r a t i o n and d i s t r i b u t io n

networks are d i s j o i n t , and any piece of information which needs to be sent

from one in s t ru c t io n ce l l to another needs to t rave rse the e n t i r e depth of

these networks, even i f the c e l l s are phys ica l ly c lose neighbors. By combining

the a r b i t r a t i o n and d i s t r i b u t io n funct ions , we can cut down the dis tance

information needs to t ravel in such cases.

In our machine, information f i r s t t r a v e l s up the t r e e towards the

root node unt i l i t comes to a node from which the d e s t ina t ion ce l l is

reachable by going down the t r e e , then i t proceeds down the t r e e unt i l i t

f i n a l l y reaches the desired d e s t ina t ion c e l l . Thus, fo r sending or receiving

information from neighboring c e l l s , i t is not necessary for the information

to t ravel the e n t i r e depth of the t r e e . Rela t ively local data- flow therefo re

takes less time and improves the overal l communication cos t of the computation.

Furthermore, another important consequence of combining the a r b i t r a t i o n and

d i s t r i b u t io n networks is t h a t the t r a f f i c congestion a t the narrow ends of

these networks is reduced, enabling the communication network to handle a

higher volume of data.

A second function of the communication network is to provide a reasonably

balanced d i s t r i b u t i o n of the computing load. Such a funct ion is not required

in the Dennis machine, as the l a t t e r does not attempt to a l lo c a te tasks

dynamically (i . e . cel l addresses are fixed a t compile t ime). Each node of

4. COMMUNICATION NETWORK

8

our communication network p e r iod ica l ly obtains m on itor in g s ig n a ls from

i t s subordinates , which ind ica te t h e i r current u t i l i z a t i o n s . When such

s ignals indica te a s u f f i c i e n t ly unbalanced s t a t e , the node can cause the

t r a n s f e r of u n in i t i a t e d tasks from one subtree to the o ther (see Section

15) .

9

One of the most important concepts of our a rc h i t e c tu re is to improve

performance by explo i t ing l o c a l i t y of information flow. Local ity of

reference is an es tab l ished concept for program execution, which should

there fo re be exp lo i tab le within data- flow computations. Locality will

be enhanced by the f a c t t h a t functions are apt to reference t h e i r arguments

repeatedly. Secondly, repeated global references to the same data will

become local ized by a caching e f f e c t which r e s u l t s from the implementation

of such references . The l a t t e r will be fu r th e r discussed in Section 12,

deal ing with the a pp ly operator.

I f computations which i n t e r a c t heavily with one another are a l loca ted

space in such a way th a t they are a sho r te r average d is tance apar t in

the nodes of the communication network, the overal l time spent in information

flow will be reduced. I t i s important to note th a t even i f i t i s not

poss ib le to a l lo c a te space for a new computation in the address space

of the same l e a f , the correc tness of the overal l computation will be

maintained, even though the speed of the computation may be degraded.

This is a consequence of the uniformly access ib le address space.

In designing a h igh ly -pa ra l le i machine, one must be careful t h a t costs

involved in c rea t ing and communicating with new tasks do not outweigh

the speed advantage gained from overlapped execution of these tasks .

Consequently, our design prescr ibes th a t a l l computation local to a procedure

body (i . e . exclusive of c a l l s to other procedures) wil l usually be done

within one processing u n i t . Hence, the global s t ru c tu re does not seek

gains from para l le l i sm on the level of , say, an ar i thm et ic expression

(although th i s could be done within the processing un i t i t s e l f i f d e s i red) ,

but r a th e r from in te r -p r o c e d u r e concurrency. -

5. LOCALITY

Another an t ic ipa ted e f f e c t which will con tr ibu te to lo c a l i t y might

be ca l led the seed in g e f f e c t . As shall be seen, when a task A in execution

creates a second task B, the l a t t e r may be a l loca ted i t s s torage in any

of the processing uni ts in which there is s u f f i c i e n t space. Since B

may cause the crea t ion of other tasks C-j, C ^ , , Cn , lo c a l i t y is

enhanced i f the s torage for the l a t t e r is a l loca ted in processing units

near to t h a t of B in the t r e e . Hence, even i f B is a long dis tance from A,

thus incurr ing a major communication cost between the two, th i s cost may

be balanced out by the lower costs of communicating between B and

C-j, C2 , , Cn. Hence, th i s seeding e f f e c t c rea tes a t rad eo ff in

resolving a choice of how fa r away a created task should be placed. I t

a lso demonstrates the p o s s i b i l i t y of a c e r ta in amount of r e - l o c a l i z a t i o n

in recovering from bad task-placement decis ions by the system. For

example, even i f B is placed in a congested a rea , the s torage from

completing tasks near B can be reclaimed to provide more space for

11

The cha rac te r iza t io n of information flow within the machine is very

dependent on the conceptual level being considered. For example, a t the

ta s k l e v e l , we are concerned with the flow of operands between tasks .

In p a r t i c u la r , our system permits demand d r iv e n computation a t t h i s leve l .

In c o n t r a s t , the machines of Dennis, Arvind and Gostelow, and Davis are a l l

data-driven machines, in th a t an in s t ru c t io n never asks for data to be sent

to i t . Instead, i t waits for data to be sent to i t , and when a l l pieces of

data are received, i t i n i t i a t e s computation whose r e s u l t s are then sent to

a l l o ther designated in s t ru c t io n s . In the demand-driven scheme, a procedure

may ac t ive ly seek addit ional pieces of data a f t e r i t has demanded and

received some i n i t i a l pieces of data . This topic wil l be fu r th e r discussed

in subsequent sec t ions . .

At the communication network l e v e l , we find the information flow

separated in to the flow of ta s k s (which are invoke i n s t r u c t io n s) , operands

(s ingle data words), and b lo c k s (mul tiple data words). All such pieces

of information are accompanied by addit ional routing information in the

form of des t in a t io n addresses, e tc . All information transmit ted through

the communication network is done by p a c k e t sw i tc h in g (or s to r e -a n d - fo rw a r d)

as opposed to l ine switching. The l a t t e r type of switching is not used

because of the potent ia l congestion incurred by tying up long paths through

the network.

A node of the communication network communicates to i t s parent through a

t r a d i t io n a l form of handshaking. However, for block t r a n s f e r s , a h u rs t mode

of communication is used in which the handshaking occurs only before and

a f t e r the e n t i r e block has been t r a n s f e r r e d , thus d r a s t i c a l l y reducing the

associated overhead.

6. INFORMATION FLOW

12

7. MACHINE LANGUAGE

Our machine executes a compiled version of Lisp as i t s machine language.

We avoid syn tac t ic issues by using a p a r a l l e l program graph , such as

described in [Kel ler 77], instead of the conventional l i s t represen ta t ion

of Lisp programs. For sake of d e f in i t e n e s s , we r e fe r to the graphical

language as Flow-Graph L isp {fgl) . FGL allows us to c le a r ly disp lay

the data flow between operators and thus potent ia l concurrency within programs.

The equivalent of procedure c a l l s , including recurs ive ones, is

provided in FGL through graph p r o d u c t io n s , which specify how a programmer-

defined operator (the a n te c e d e n t of the production) is to be replaced by

a program graph (the consequent of the production).

FGL also supports l e n i e n t c o n s , which allows the machine to exp lo i t

concurrency which i t could not with conventional s t r i c t cons [Friedman and

Wise 78]. For the curren t p resen ta t ion , i t e r a t i o n is implemented by

recurs ion , in the manner of [McCarthy 63]. This automatical ly gives the

same concurrency-detect ion e f f e c t o f "look-ahead" processors , which

"unfold" i t e r a t i o n s to achieve concurrency [Keller 75].

For sake of t h i s p resen ta t ion , l e t us suppose tha t data s t ru c tu re s

are t r e e s , with the in tegers and n i l as atoms. Boolean values may be

implemented by in te rp re t in g n i l as f a l s e , and any non- n i l value as

t r u e . The program cons is ts of a network of operators which are functions

on t r e e s . For s im p l ic i ty , we do not discuss in p u t of t rees . Rather, we

assume them to be res iden t a t the beginning of the computation. Our t rees

are represented using an appropria te network of cons operators and atoms.

In summary, the program and a l l of i t s data are represented as one

network in the machine, in a manner not too d i f f e r e n t from conventional

represen ta t ions of graphs in a 1 inear ly-addressable memory.

To cause a r e s u l t to be p r in ted , a demand is generated a t some p r i n t

J

node in the network. This causes propagation of the demand to the operator

feeding the p r i n t , which in turn eventual ly causes the value of th a t operator

to be evaluated and pr in ted .

Evaluation co n s is t s of a combination of t ransmutations to the graph and

operat ions which produce new values from o thers . In t h i s sense, we have a

re d u c t io n machine a la [Berkling 75], executing a r e d u c t io n language a la

[Backus 73]. By using graphs ra the r than s t r i n g s , we can avoid much of the

co m b in a to r ia l ex p lo s io n which takes place in purely s t r in g -o r ien te d machines.

Figures 2, 3, and 4 give examples of programs in FGL. In Figure 2,

there is a main program M. M c a l l s a r e c u r s i v e procedure g, the graph of which is

presented in Figure 3. In each f igure we give the graph represen ta t ion and

the corresponding "code block" rep resen ta t ion (see Section 8). The paren the t ic

l abe ls on the graph ind ica te the correspondence between the two. I n tu i t i v e l y ,

g(n) "computes" the i n f i n i t e sequence

n n+1 n+2 n+3 ___

In the context of the main program, the value pr in ted is the th i rd element

{caddr) of the sequence with n = 0 .

A second program, which sums a t r e e of in teg e rs , is shown in Figure 4. .

This example uses a s t r i c t opera tor , a d d , to cause the crea t ion of instances

of operators which can be evaluated concurrently . Figure 5 shows a possible

snapshot of the program during i t s app l ica t ion to a spe c i f i c t re e .

In the next sect ions we descr ibe , in more d e t a i l , program storage, task

execut ion, typical opera to rs , graph expansion via the special invoke opera tor ,

and forw ard c h a in in g , which is a key idea in implementing l e n i e n t cons and our

p a r t i c u la r form of procedures. We do not discuss s torage reclamation here,

as i t is an issue s t i l l under inves t iga t ion .

13

All storage is a l loca ted in b lo c k s . Blocks make storage management

more e f f i c i e n t , and are c ons is ten t with t ry ing to keep the l o c a l i t y

of a computation contained with one processing un i t . A block is e i t h e r

a d a ta b lo c k or a code b lo c k . The words of a data block are i n i t i a l l y code

and l i t e r a l s . The former gradually get changed to data during execution.

A code block is copied as the source of i n i t i a l code to be stored in a

newly a l loca ted data block. The contents of a code block form a l in e a r

represen ta t ion of an FGL program graph. •

The copying of code blocks may be contras ted with approaches such

as t h a t in [P a t i1 67], which in t e rp r e t a pure code block without copying.

The approach taken here is more e f f e c t iv e in keeping references local to

a processing un i t . I t a lso reduces the amount of word fetching required

during actual task processing.

The words in a data block correspond roughly to data values which

may eventual ly appear on the output arcs of operator nodes in the

program graph. I n i t i a l l y however, instead of containing da ta , a word

contains the in s t r u c t i o n code rep resen ta t ion of the corresponding

opera tor , along with the local addresses of words corresponding to i t s input

a rc s , i . e . the sources of i t s operands. We assume here fo r s im pl ic i ty

th a t each operator has only one output a rc , although such arcs may

fan out as necessary.

8. PROGRAM EXECUTION

15

In addit ion to specifying the input arcs of i t s operands, an

in s t ruc t ion may be accompanied by n o t i f i e r s , which are addresses of

operators which have th i s o p e ra to r ' s output arc as one of t h e i r input

a rcs . These could conceivably be s e t dynamically, but in t h i s presenta t ion

we have elected to have them se t in the i n i t i a l code. Again, Figures 2, 3, and

4 give examples of code blocks corresponding to program graphs. Further

information on in te rp re t in g these blocks i s given in subsequent sec t ions .

By keeping data blocks reasonably small, say 256 words, and by using

only addresses r e l a t i v e to the s t a r t of the block in the code, the operat ion

code and necessary se t of operand and n o t i f i e r addresses can be accommodated

within a reasonable word s iz e , say 48 b i t s . For references across blocks,

which the re fo re involve global addresses, we provide some special opera to rs ,

to be described subsequently. By dividing the physical memory into blocks

and a l lo ca t in g on block boundaries only, a paging e f f e c t , which s im pl i f ies

s torage management, is r ead i ly obtained.

The loosely-coupled aspect of task evaluat ion is achievable through

a ta s k l i s t o rganiza t ion , which allows many processors to partake in the

evaluat ion of t a s k s , i . e . p a r t i c u la r instances of operators with t h e i r

associated data . The task l i s t is decomposed into two separa te l i s t s

which may be served independently. These are:

demand l i s t : contains addresses of operators for which evaluation is
to be attempted.

r e s u l t l i s t : contains addresses of opera tors , along with t h e i r
corresponding values a f t e r evaluation.

At t h i s s tage of development, the recommended p r io r i t y of service is

r e s u l t f i r s t , then demand. The reasoning here is t h a t r e s u l t values

genera l ly enable successful evaluat ion of ta sks , while demand general ly

c rea tes more tasks . These l i s t s are fu r th e r divided and d i s t r ib u te d to

individual processing un i ts by the communication network, which takes into

account the cu r ren t processor load d i s t r i b u t i o n . Only invoke

i n s t ru c t io n s will be considered fo r d i s t r i b u t i o n , for i t i s only these which

might p ro f i t ab ly be executed in another processing u n i t , due to the commun­

ica t ion cos t incurred in ge t t ing them there . Hence, the invoke l i s t i s a

s u b - l i s t of the demand l i s t , containing only invoke in s t ru c t io n s .

Figures 6 through 11 show the organizat ion of the task

evaluat ion mechanism. The flow diagrams are to be in te rp re ted in an

informal sense, and are less akin to conventional flowcharts than they are

ind ica t ive of d a ta f lo w , with ta s k s as data .

The following b r i e f n a r ra t iv e wi l l aid in the understanding of the

flow diagrams. . I n i t i a l l y , the address of the word which will produce the

"main r e su l t " is put on the demand l i s t . The word i t s e l f is then fetched.

I t i s evaluated, i f poss ib le . I f not, then demand is propagated to i t s

arguments by placing t h e i r addresses on the demand l i s t .

16

9. TASK EVALUATION

Once evaluated, a r e s u l t value rep laces the coded operator as ready

data . Via the r e s u l t l i s t , any n o t i f i a b l e operators awaiting th i s

r e s u l t as an argument are then n o t i f ied by putt ing them on the demand

l i s t to be r e t r i e d . We notice th a t a l l demanded operators remain accessi

un t i l they become ready as da ta , e i t h e r through:

(1) being on the demand l i s t ,

or (2) being referenced by a n o t i f i e r of an access ib le operator ,

or (3) being referenced by the "forwarding address" of an access ib le

operator .

Forms of evaluat ion other than pure demand evaluat ion can thus be

supported by jud ic ious s e t t in g of "d-b i ts" and advanced placement on

the demand l i s t .

18

10. WORD FORMAT

A word in a data block may begin as a code word and l a t e r be changed

to a datum as the computation proceeds, corresponding to the evaluat ion

of the operator represented by th a t code word. The ready b i t { r b i t)

in each case is s e t when the word does contain a datum. I t may be se t

i n i t i a l l y in some words, to provide i n i t i a l i z e d l i t e r a l s .

A datum can e i t h e r be an atom , in which case i t contains a l i t e r a l value,

or i t can be a p a i r p o in te r . In the l a t t e r case, i t is the global address

of a pa i r . A p a i r cons is t s of two consecutive words within some block,

each of which is e i t h e r a datum or a forw ard operator . The purpose of

the l a t t e r will be described subsequently.

There are several o ther formats for data which extend the above, such

as represent ing l i s t s in contiguous space, chains of po in te rs , e t c . , as used

in [Bawden, e t a l . 77]. These wil l not be discussed here for b rev i ty .

All global addresses are represented as

B.R

where B is the base address of a data block and R the local address

of a word within the block. The advantage of th i s scheme is th a t once

the word in question has been referenced, the processor will usually

need access to o ther words in the block and can gain i t using only t h e i r

local addresses.

19

The following f ie ld s will always he Dresent in a code word: ^

d b i t : s e t to ind ica te th a t i t s u l t imate data value has been demanded

op : o p e ra t io n code .

The following f i e ld s may or may not be p resen t , depending on the

nature of the p a r t i c u la r operat ion code:

as : local addresses of arguments to the operator

ns : n o t i f i e r S y i . e . local addresses of n o t i f i e e operators

-*-B.R : where B.R is a global address , which is e i t h e r :

a forw ard ing a d d re s s s which is used with a forw ard opera to r , or

a f e t c h a d d ress , which is used with a f e t c h ope ra to r , or

a p o in te r to a code block (in which case R = 0) , which
is used with an invoke operator . .

The presence of the demand b i t in a code word allows support of a

demand d r iv e n e v a lu a t io n s t r a t e g y . In t h i s s t r a t e g y , no operator is

evaluated unless i t produces some value known to be e s sen t ia l to the

computation. Aside from the obvious po ten t ia l e f f ic ien cy gain, another

advantage of t h i s approach is t h a t i t provides a. natural means of deciding

whether and when to t r i g g e r the invocation of a defined funct ion , which

requires the a l lo c a t io n of a s torage block.

The use of b i t s to d i r e c t the processor to i n t e r p r e t a given word

as da ta , in s t r u c t io n , e tc . exemplifies the "tagged a rch i tec tu re" approach

[Feustel 73]. Adopting th i s approach allows us to keep open a l l of

i t s a t tendan t opt ions as the design progresses.

20

11. REPRESENTATIVE OPERATORS ,

The r ep e r to i r e of operators includes the Lisp operators c a r , cd r ,

co n s , atom} e q , i f - t h e n - e l s e (cond), e t c . Of these , a l l but the f i r s t

three are ca l led o r d in a r y , as they operate purely within the data block.

The f i r s t three are ca l led s p e c i a l , because they can cause data t r a n s f e r

between blocks.

In co n t ra s t to conventional Lisp, we have e lec ted to make cons

a le n ie n t operator. That i s , i t has a " re su l t" even i f one of i t s

arguments has not y e t been computed. This can be argued to increase the

asynchrony of a computation and hence improve the u t i l i z a t i o n of a pa ra l le l

processing system on which i t may be run, o f . [Friedman and Wise 76].

A consequence of the lenience of cons i s t h a t , in our implementation,

cons i s not r e a l ly an operator a t a l l , but r a th e r j u s t a pa i r of data*

namely, i t s arguments.

Some other special opera to rs , which do not appear in the program

graph, are used to e f f e c t the necessary t r a n s f e r s of data between procedures,

and o ther housekeeping operat ions . These are i d e n t , fo rw ard , f e t c h , l o c p t r ,

and in vo k e . .

The operators i d e n t , fo rw ard , and f e t c h a l l have the nature of

i d e n t i t y fu n c t io n s . The d i s t i n c t i o n is as follows: i d e n t has a local

argument and local n o t i f i e r s . I t i s used mainly fo r increased fan-out

when there are more n o t i f i e r s fo r a word than can f i t in a s ingle word;

f e t c h has a global argument and one or more local n o t i f i e r s ; forw ard

has one local argument and one global forw ard ing a d d r e s s . The l a t t e r is

s e t when a demand i s issued to the corresponding f e t c h . All cons pa irs com­

p i le as two consecutive forw ard opera tors , or l i t e r a l s . The operator l o c p t r

is used to generate global pointers to cons pa i rs .

21

The following discussion describes the compilation of an i n v o k e :

where / is a programmer-defined symbol

invoke + f ns nz,J 1 k
forward ax1 -+?

forward ax -»■?

forward aa^ -»■?

where -+/ is the address of f ' s code block, the ax. are local arguments, the nz .'1' 't'

are local n o t i f i e e s , and the ? ' s are s e t when the forwards are demanded.

The data block corresponding to f begins with:

forward au -+x

fetch +(x+l) nyj •••

fetch + (x+2) ny£ . . .

fetch -+(x+^) ny . . .

where x is the address of the in v o k e , u is the local word which will contain

the r e s u l t to be delivered by the in v o k e , and r\y. . . . are the n o t i f i e r s

of the i - t h parameter of f . Following crea t ion of the data block, demand

propagates to the forw ard in the data block for f .

compiles as:

22

12. FUNCTION CLOSURES AND THE OPERATOR a p p l y .

An important aspect of Lisp programming is the manipulation of functions

as data values. While we do not envision supporting run-time c r e a t io n of

function d e f i n i t i o n s , we do accommodate the formation and manipulation of

function c lo s u r e s (records combining compiled code poin ters with environ­

ments for t h e i r u l t imate ap p l ica t ion ; i . e . , FUNARGs). This will permit not

only the programming of f u n c t io n a l s (funct ion-valued functions) on our

machine, but a lso provides a form of shared values , thereby re l iev ing the

need to exhaust ively parameterize functions.

We assume th a t our programs are b lo c k com piled . That i s , the program

cons is ts of a se t of symbolically named funct ion d e f in i t io n s tha t are com­

piled as a group. Within these " top- level" function d e f in i t i o n s , there may

be some number of nested function d e f in i t io n s of the following form:

In FGL In Lisp:

(FUNCTION
(LAMBDA (<bound v a r i a b l e s >)

<body>))

(bound v a r ia b l e s)

(g lo b a l v a lu e s)

denotes graph of <body>

Such forms c rea te c lo su r e values a t run-t ime. Each combines the entry

point fo r the nested fu n c t io n ' s compiled code with an environment p o in te r

which references the cu r ren t ly executing ac t iv a t io n of the i[mediately

surrounding funct ion d e f in i t i o n . Thus global (i . e . " f ree" , or non-local)

var iable occurrences within the nested function are bound s t a t i c a l l y to

23

re fe r to the matching dec la ra t ion (i . e . parameter) binding a t the place of

the c lo su re ' s c rea t ion .

For completeness, we include:

In FGL: In Lisp:

(FUNCTION F)

where F is the symbolic name of a function. This makes the semantics of

function a p p l ica t ion more uniform, and s y n ta c t i c a l ly d is t ingu ishes between

the funct ion F and any parameter F th a t may be access ib le . Note, however,

tha t the environment po in ter in such a closure i s superfluous, since a named

function may not contain any occurrences of var iab les global to i t .

A closure value may be passed as a function argument, returned as a

function value, cond i t iona l ly se lec ted , e tc . un t i l u l t im a te ly i t is applied

via the operator a p p ly , akin to the APPLY funct ion of Lisp:

In FGL: In Lisp:

(APPLY <closure-form >

<ca'g j-form>

<arg^-form>)
(c l o s u r e) (argum ents)

Observe th a t a l l function c a l l s in our source language could be expressed in

APPLY notation through the following transformat ion:

(F OLj • • ■ afe) (APPLY (FUNCTION F) ct̂ . . . afe)

However, we r e ta in the option of the d i r e c t function ca l l nota t ion (and the

invoke opcode supporting i t) for expressive convenience and run-time e f f i ­

ciency.

These cons truc ts are compiled as follows (see Fig. 12 for examples):

Construct 1: Function c losures .

In FGL: In Lisp:

(FUNCTION <f>)

(g lo b a l va lues)

We use the opcode lo o p tr to generate a fu l l - ad d re ss (i . e . "global")

pointer to a cons pa ir representing the c losure . The cap of the pa i r is the

25

keyword atom FUNARG, while the cd r is a pseudo-opcode dummy with a code

poin ter to <t> as i t s argument. Thus the ca r of a closure may be computationally

inspected a t run-t ime, but since dummy causes a run-time e r ro r i f executed,

the odr of the closure is inspectable only by a p p ly . Note th a t the global

pointer S . 3 to the closure as b u i l t by l o c p t r contains the c lo su re ' s environ­

ment po in ter d i r e c t l y in S.

Construct 2r. Nested fu n c t io n s .

In FGL: In Lisp:

(LAMBDA (<bound v a r ia b le s >) <body>)

{bound v a r ia b l e s) (g lo b a l v a lu e s)

Each funct ion d e f in i t io n is compiled into a separate code block to

minimize code copying a t function app l ica t ion time. (Note th a t i f nested

funct ions were compiled " in - l i n e " , t h e i r code would s t i l l need to be copied

when appl ied , since several app l ica t ions of tha t p a r t i c u la r c losure value

may occur .) Within each fu n c t io n ' s code, special "pseudo-parameter" f e t c h

opcodes are compiled for each var iab le accessed g lobal ly from within i t s

d e f in i t i o n . Observe th a t such f e t c h e s are compiled even for global var iab les

accessed only a t deeper nested function leve ls .

Any global va r iab le occurrence is thus connected a t run-time through a

sequence of f e t c h opcodes, one per level of textual function nes t ing , from i t s

containing ac t iv a t io n record to i t s binding as a bona f i d e parameter a t some

outer leve l . The S.|i pointers of the global j'cLrh.es are bound in two stages:

the 8 is fixed a t compile time (with complete s e c u r i ty) , and the S is fixed

26

a t app l ica t ion time to be the c lo s u r e ' s environment poin ter S.

Thus,in the same sense th a t the ac t iv a t io n record 's dynamic (i . e . c a l l ing)

l ink is redundantly represented in each parameter f e t c h , i t s s t a t i c l ink is

redundantly represented in each global f e t c h . The f e t c h opcode o f fe r s s u f f i ­

c ien t space for such fu l l addresses, and the design provides uniform f e t c h

processing in both cases with less memory contention (as might a r i s e i f the

s t a t i c and dynamic l inks were put into a s ingle header word in the ac t iv a t io n

record).

An a l t e r n a t iv e accessing scheme for globals would be to replace th i s

"bucket brigade" approach and provide d i r e c t f e t c h l inkage from occurrence

to binding lev e ls . Although such a scheme might o f fe r f a s t e r access in

ce r ta in cases , we consider i t to be less des irab le for two reasons. F i r s t ,

the compiled code would need to be adapted to contain two-dimensional addresses

(i . e . [s t a t i c l e v e l , o f f s e t] , as is customary in Algol- l ike language implemen­

t a t i o n) , with the added app l ica t ion time set-up a c t i v i t y . Secondly, a

p o te n t i a l ly valuable caching e f f e c t would be l o s t along global f e t c h sequences.

Given our concern for explo i t ing l o c a l i t y on th i s machine, we feel t h a t the

l a t t e r concern will be economically dominant.

Construct V. Function a p p l i c a t i o n s .

In FGL: In Lisp:

(APPLY <closure-form >

<arg 2~form>

c lo su r e arguments <argk-form >)

The ap p ly operator is compiled in a manner s imilar to t h a t for in v o k e ,

but with the c lo s u r e being an operator argument (as opposed to the

27

argum ents , which are compiled using forw ards as per in v o k e) .

The act ions taken by the app ly opcode are viewed as a s l i g h t extension of

the invoke opcode, with the added a c t i v i t i e s of global f e t c h se t-up and

argument count checking. When demand reaches an app ly opera tor , i t propagates

immediately to the a p p l y ' s f i r s t argument. Upon rec e ip t of the necessary

closure value for t h i s argument, the appl y task becomes an invoke task and is

moved to the invoke l i s t .

28

13. forward CHAINING

The n a r ra t iv e in Section 9 does not discuss special a t t e n t io n paid

to various opera tors , e .g . forw ard . The handling of such operators

is the essence of both the procedure linkage mechanism and the successful

handling of l en ien t eons.

When an operator is evaluated, i t i s replaced with a value. At th i s

time, the presence of any n o t i f i e r s i s noted and the corresponding operators

are put on the demand l i s t . These operators can then access the data as

an operand.

No use is to be made of the argument par t of the contents of operators

over-wri t ten by forw ard . Ins tead, a special forw ard chain ing technique is

required for co n s is ten t handling of len ien t cons. I f the operator being r e ­

placed is a forw ard , the data a lso replaces the contents of a forw ard ing

address which may be present . This process is repeated, un t i l an operator

containing no forwarding address is encountered. The need for t h i s technique

can be seen by the following argument:

Figure 11a shows par ts of three data blocks as par t of a s t a t e . Notice

t h a t X-j and can both p o te n t i a l ly request the same value, namely the

value of U, which is not ye t ready (nor demanded). When the f i r s t demand

on Z is generated, as indicated in Figure 11a, the forwarding address in

Z is s e t to X-| and U is demanded.

Suppose meanwhile t h a t demand is generated on X£, which in turn r e s u l t s in

a second demand on Z. Since a forwarding address has al ready been stored in Z,

there is i n s u f f i c i e n t room for a second. (Even i f two could be s to red , there

might be three demands generated, e t c .) . Since we know th a t X̂ is to receive the

r e s u l t of Z, we s to re forw ard in Z, as in Figure 11c. When U is f in a l l y

n o t i f i e d , any data s tored over a forw ard wi l l be s tored over the contents of the

word spec i f ied by i t s forwarding address , according to the d i s t r i b u t e / n o t i f y

phase of the evaluat ion algorithm.

Although we used oar to motivate the above example, we mention tha t

s im i la r t reatment is given to cd r and f e t c h (when used for global

value l inkage) .

We do not go in to great de ta i l here on the organizat ion of individual

general processing u n i t s . As described in Section 9, each un i t s e le c t s tasks

from i t s demand l i s t . While on th i s l i s t , a task is represented by i t s .

address in memory. This word is fetched and i f not present ly ready as da ta ,

an attempt is made to evaluate i t . For ord in ary t a sk s , t h i s normally

e n t a i l s reference to one or more addit ional words in the memory; hence

a fe tch of these words occurs. Since each of them might res ide in the

physical memory of any processing u n i t , fe tching may involve transmission of

words through the communication network. In order th a t the processor need not be

id le while such a fetch is taking place, we provide for buffer ing a se t

of such tasks while t h e i r operands are being assembled. We cal l such a

buffer a s ta g in g area . I t is conceptual ly s im i la r to a conventional ■

p i p e l i n e , except th a t order of task execution is unimportant, a l l

e s sen t ia l ordering being e x p l i c i t in the program graph. The size of the

s taging area is chosen to maintain reasonably good u t i l i z a t i o n of the

function uni ts within the processing u n i t , which carry out the actual

operat ions once the task leaves the s taging area. Of course , each

function un i t could i t s e l f be p ipe l ined , depending on economic advantages

which would accrue due to a p a r t i c u la r app l ica t ion load. Design of

such a staging area is f a i r l y routine and there fore will not be fu r th e r

discussed here.

30

14. PROCESSOR ARCHITECTURE

31

Load balancing occurs through the r e d i s t r ib u t io n of tasks from the

invoke l i s t of one processing un i t to tha t of another. This is a separa te ,

but topo log ica l ly comptabile, function of the communication network from

the routing of operand data.

By the load a t a processing u n i t , we mean the number of tasks on the

segment of the invoke l i s t a t t h a t un i t . In a s im i la r manner, we can define

the load a t any node of the communication network to be the sum of the loads

a t i t s leaves , divided by the number of i t s leaves as a normalizing fa c to r .

Again, to s implify the explanat ion, we are assuming tha t the communication

network is a binary t r e e . Each node of the communication network

maintains lower and upper l im i t s , L and U, on the loads of i t s immediate

descendants. I f the load of one is above U and th a t of the other below L,

i t attempts to s h i f t tasks from the invoke l i s t of the overloaded descendant

to th a t of the underloaded one. I f loads of both i t s descendants are above

U, t h i s wil l be communicated to i t s parent (i f any), so t h a t the l a t t e r may

t ry to s h i f t some of the load to one of i t s descendants having load less

than L. In t h i s way, the balancing function i s d i s t r ib u te d throughout the

communication network, with each node thereof applying the same balancing

s t ra tegy .

The e f fec t iveness of the balancing scheme r e l i e s on the loosely-coupled

aspect of the system. That i s , no task is bound to a p a r t i c u la r processor

un t i l storage is a l loca ted for i t .

15. LOAD BALANCING

32

16. COMPARISONS WITH RELATED MACHINES

I t is e a s i e s t to understand the r e la t io n between the machine a rc h i t e c tu re

presented here and the a r c h i te c tu re of the data-flow computer proposed in

[Dennis and Misunas 74] by folding the l a t t e r through the center of i t s

in s t ru c t io n c e l l s and functional un i ts in such a way th a t the a r b i t r a t i o n

network overlaps the d i s t r i b u t io n network. Our general processing uni ts

then play the ro le of the ins tuc t ion ce l l blocks, and our communication

network performs the function of both a r b i t r a t i o n and d i s t r ib u t io n networks.

Furthermore, our a rc h i t e c tu re may o f fe r improved performance because data would

not often have to t ravel as fa r to get from a source cell to a des t ina t ion c e l l .

As in the machine proposed in [Arvind and Gostelow 77], the

machine proposed here uses micro-computers to do the processing. However,

we feel th a t the communication network used in our machine is

super ior to the one in th a t machine. The communication bus s t ru c tu re of the

former machine may cause in to le ra b le delays in t ransm it t ing information from

one processing un i t to another , a f a c t th a t may prove to be a grea t ,

impediment to the success of the machine.

The DDM-1 [Davis 78] is a very d i f f e r e n t kind of machine than the

one proposed here. I t s h ierarch ica l s t r u c tu re seems to impose c e r ta in

co n s t r a in t s on the c rea t ion of new computations and on the flow of information

in the machine. For example, when a processing element c rea tes a

ta sk , the l a t t e r must be placed e i t h e r in the space of the processor

carrying out the app l ica t ion or in the space of a subordinate

processor , even i f the subordinates are crowded fo r space and the machine

has o ther processors which have plenty of f ree space. This problem does

33

not occur in our machine, due to the cons truct ion of the communication

network, the uniformity of the address space, and our notion of load

balancing.

Some t r e e - s t ru c tu r e d reduction language machines th a t have been

proposed are fundamentally d i f f e r e n t in t h e i r operation when compared

with the machine presented here. In these machines, the expressions

th a t need to be evaluated are mapped d i r e c t ly onto the physical t r e e ,

of the machine. In our machine, such expressions would not be mapped

onto the communication t r e e ; instead they would be mapped via p a ra l le l

program graphs in to the address space of the machine, and would res ide

in the memory space of one or more processing un i ts of the machine.

A common fea tu re of a l l of the above a r c h i te c tu re s is th a t they

are data-driven r a th e r than demand-driven, as ours i s . One might be

led to think th a t the l a t t e r presents some addi t ional overhead. However,

c lo se r examination of the other a r c h i te c tu re s may reveal th a t some

form of ready-acknowledge s igna l l ing is taking place when i t comes to

transmission of data via s torage words. This i s , in f a c t , a special

case of demand-driven computation, in which the demand for an operand

is equated with readiness of i t s r e c ip ie n t . We ex p lo i t the f l e x i b i l i t y

of the general case , to obtain advantages in deciding when to invoke

procedures. I t is a lso c lea r t h a t the demand-driven f ea tu re is a necess i ty

in supporting len ie n t cons. One the other hand, i t i s a lso c le a r th a t

demand-driven computation can be en g in eered on the other a rch i tec tu re s

by t r e a t in g demands as da ta , but t h i s seems to be cumbersome.

Although a t the physical level the Cm* computer [Swan, e t a l . 77]

may appear s im i la r to our machine, the two are qu i te d i f f e r e n t on account

of t h e i r underlying mechanism of program execution. In Cm*, para l le l

processing is based on the concept of in te ra c t in g sequentia l processes

t h a t run on conventional processors (PDP-11), while our machine embodies

an evaluat ion scheme for the FGL language and is capable of d i r e c t ly

evaluat ing data-flow graphs and ap p l ica t iv e expressions. Our evaluation

scheme, language, and overal l organizat ion have been developed in an

in tegra ted fashion as parts of one functioning system.

We have s ta ted our fee l ing th a t machine a rch i te c tu re s should be

developed with g rea te r a t t e n t io n paid to u l t imate programmability. As an

example, we discussed p r inc ip les for a loosely-coupled a r c h i te c tu re and the

use of Lisp as a language w el l - su i ted fo r such a machine. We sketched in

some de ta i l the in te rna l represen ta t ion of programs in our machine and

the execution of programs on i t .

Our implementation seems to be the f i r s t de ta i led one presented fo r

Lisp programs on a pa ra l le l machine. An implementation has been

described q u a l i t a t i v e ly in [Friedman and Wise 78]. However, t h e i r work

r e l a t e s mainly to the issues associa ted with c o lo n e l versus

se r g e a n t t a sks , the l a t t e r being d is t inguished from the former as

tasks whose evaluation may never be a c tu a l ly requ ired , but which

provide a p o t e n t i a l ly useful way of employing otherwise id le processors .

In c o n t r a s t , a l l tasks in the machine described here are of the colonel

v a r i e ty , whose exis tence may be traced to ce r ta in s t r i c t opera tors ,

such as add in the t r e e sum example. Hence such issues have not

been of immediate concern here. On the o ther hand, subtle d e t a i l s ,

such as the need for forw ard cha in in g have been discovered in the

course of designing our eva lua tor . How such s u b t l e t i e s in t e r a c t with

an implementation which does support sergeant tasks remains a topic for

fu ture inves t iga t ion .

The ideas presented here were derived a f t e r considering many

possib le a l t e r n a t iv e s . I t i s , of course , possible th a t we may e l e c t

to re turn to one or more of these a l t e rn a t iv e s a f t e r more experience

in programming the machine has been gained. A simulator for the evaluat ion

model has been w r i t ten in Pascal to a s s i s t in such a venture.

35

17. CONCLUSIONS AND FUTURE RESEARCH

36

Many important d e t a i l s remain to be inves t iga ted . These include not

only the necessary support for the language described here in terms of

storage reclamation and schedul ing, but extension of the language to

allow other fea tures as wel l . We are cu r ren t ly contemplating how to best

introduce a d i s t r ib u te d heap for more e f f i c i e n t long-term data s torage.

We must decide how to deal with o ther fea tures of Lisp, such as p r o g ,

upon which many programmers have learned to r e ly . A re la ted issue is

whether in d e te rm in a te computations should be supported, as there are some

indica t ions th a t they permit e f f ic ien cy gains not otherwise achievable

[Kel ler 78]. The usefulness of ap p l ica t iv e programs in allowing graceful

backup when a processing un i t f a i l s a lso remains to be explored. Thus

many issues , a t levels from de ta i led processor cons truct ion to more

fundamental language problems, await us.

ACKNOWLEDGEMENTS

Comments by Al Davis, Milos Ercegovac, and Mark Franklin , as well as
encouragement from Jack Dennis, are appreciated.

The authors express t h e i r thanks to Kathy Burgi, Jodie Doyle, Karen Evans,
Lujuana Fornelius , and Mary Ann Kleiner t for t h e i r a s s i s tan c e in preparing
the manuscript.

37

O Leaf node'- e i th e r a general
processing un i t (with memory),
special processing u n i t , or
in te r face to external I/O.

Figure 1 Form of the physical a rc h i te c tu re of the loosely-coupled pa ra l le l
processor.

39

0 forward a2 ->X

1 fetch -*-(X+l) n3 n7

2 locp tr a3 nO
(5)

3 forward al -*■?
(6)

4 forward a 5 -*■?
(7)

5 invoke -kj n4

6 forward a 7 -*■?

7 addl al n6

cons

Figure 3 Graph represen ta t ion and code block rep resen ta t ion of the
consequent of a production, x is the global address of the
invoke operator which crea tes the corresponding data block.
? ind ica tes poin ter f i e ld s which are se t on demand of th i s
word. is an operator which generates the global
address of tFie word i t references .

(DE SUM (TREE) (COND

((NULL TREE) 0)

((ATOM TREE) TREE)

(T (ADD (SUM (CAR TREE)) (SUM (CDR TREE))).)))

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

forward a 2 -*x

fetch ->-(x+ l) n3 n6 n14

cond a3 a4 a5 nO

null al n2

r 0

cond a6 al4 a7 n2

atom al n5

add a8 all n5

invoke -*sum n7

forward alO ->-?

car a 14 n9

invoke ->-sum n7

forward a 13 -*?

cdr a 14 n 12

ident al n5 nlO nl3

Fiqure 4 Tree summation example: Lisp code; consequent of production
defining SUM; compiled code.

41

Figure 5 One possible snapshot of the program of Figure 4 during
its computation on a tree.

42

initial task addresses
(d bits of tasks already set)

Figure 6 Overall task processing flow. Asterisk denotes sequence o f.
The evaluate/propagate box for different task types is expanded
in Figures 7, 8 and 10. The distribute/notify box is expanded
in Figure 9.

43

(task address, contents)

i
evaluate/propagate

for ordinary 1
types

4

evaluated task
(task address, value)

propagated tasks
(task address)*

expands into:

task

Figure 7 Evaluate/propagate for ordinary task type.

(task address, contents)

f __________

evaluate/propagate __
for invoke

- y 1

evaluated task
(does not occur)

expands into:

(B.O)

F i g u r e 8 E v a l u a t e / p r o p a g a t e f o r invoke t a s k t y p e .

44

^ propagated tasks
(task address)*

45

(task address, value)

i
distribute/

noti fy J

J-
notifiee tasks
(task address)*

expands into:

(T , V)

forwarded value
(task address, value)

(T , V)

notifiee tasks

F i g u r e 9 D i s t r i b u t e / n o t i f y p r o c e s s i n g .

46

(t a s k a d d r e s s , c o n t e n t s)

process task type
for oar, adr

propagated task
(task address)

evaluated task
(task address, value)

expands into

i
let X be task address,
let Y be argument location

fetch contents of Y,
•setting d bit if not already data

I
contents of Y already data?

J

no

yes

contents of Y a pair pointer?

I
no error

yes

let Z be the address in Y,
let W be l(a a r) or Z+l{adr)

i
contents of W already data? ■

no

^ y e s

propagated task,
address Y

W's forwarding address set?

evaluated task,
contents of W is value of X

I
yes

replace X's
contents with W's rE

I no

JL
et W forwarding

address to X

J
propagated task,

address W

F i g u r e 10 E v a l u a t e / p r o p a g a t e f o r ca r, cub- t a s k t y p e s .

47

first
demand

car Y.|
xi d car

r +Z
vi r +Z

X2 car Y^ X2 car Y^

V2 r +Z
V2 r +Z

second
demand

d forward all -+X

d f nZ

1 forward all -»■? Z forward all -̂X-j

U f nZ

first
demand
propagated

d f nZ

(a) (b)

xi d car Y1
xi d car Y 1

Yi r +Z
Yi r ->Z

X2 car Y2
X2 d forward ->X-|

V2 r ->Z
V2 r -+Z

Z

U

d forward all +X.

d f nZ

(c) (d)

Figure 11 Illustration of forw ard chaining. (r and d denote ready

and demand bits, respectively.)

48

Lisp code: (DE ADDK (K) (FUNCTION (LAMBDA (J) (ADD J K))))

FGL code:

Compiled code: ADDK: 0

1

2

3

4

forward a2 -»-x

fetch ->-(x+ 1)

locptr a3 nO

r 'FUNARG'

dummy -»a

a: 0

1

2

3

forward a3 -»-x

fetch -»-(x+ l) n3

fetch + U + 1) n3

add al a2 nO

Fiqure 12 Simple example of function closures: "Currying" the operator
add to have a bound second argument, (x denotes the dynamic
link, and £ denotes the static link, both bound at invoke time.)

49

REFERENCES

[Arden and Berenbaum 75] B. W. Arden and A. D. Berenbaum. A multi­
microprocessor computer system architecture. Operating systems review,
9, 6, 114-121 (Nov. 1975).

[Arvind and Gostelow 77] Arvind and K. P. Gostelow. A computer capable
of exchanging processors for time. Proc I FIP '77, 849-853 (1977).

[Backus 73] J. Backus. Programming language semantics and closed
applicative languages. Proc. ACM Symp. on Principles of Programming
Languages (1973), 71-86.

[Bawden, et al. 77] A. Bawden et al. Lisp machine progress report. MIT
Al Memo No. 444 (August 1977).

[Berkling 75] K. J. Berkling. Reduction languages for reduction machines.
Second Annual Meeting of Computer Architecture (1975), 133-138.

[Davis 78] A. L. Davis. The architecture and system method of DDM-1:
A recursively-structured data driven machine. Proceedings of the Fifth Annual
Symposium on Computer Architecture (1978).

[Dennis and Misunas 74] J. B. Dennis and D. P. Misunas. A preliminary
architecture for a basic data flow processor. Proc. 2nd Annual Symposium
on Computer Architecture, 126-132 (Dec. 1974).

[Fateman 73] R. J. Fateman. Reply to an editorial. ACM SIGSAM Bulletin,
No. 25, 9-11 (March 1973).

[Feustel 73] E. A. Feustel. On the advantages of tagged architecture.
IEEE Trans, on computers, C-22, 7, 644-656 (July 1973).

[Friedman and Wise 76] D. P. Friedman and D. S. Wise. CONS should not
evaluate its arguments, in Michael son and Milner (eds.), Automata,
Languages, and Programming, 257-284, Edinburgh University Press (1976).

[Friedman and Wise 78] D. P. Friedman and D. S. Wise. Aspects of
applicative programming for parallel processing. IEEE Trans. C-27,
4, 289-296 (April 1978).

[Hearn 76] A. C. Hearn. Symbolic computation. Proc. CERN School of
Computing, 201-211 (Sept. 1976).

[Henderson and Morris 76] P. Henderson and J. H. Morris, Jr. A lazy
evaluator. Proc. 3rd ACM Conference on Principles of Programming Languages,
95-103 (Jan. 1976).

[Keller 75] R. M. Keller. Look-ahead processors. Computing Surveys,
7, 4, 177-195 (Dec. 1975).

[Keller 77] R. M. Keller. Semantics of parallel program graphs. University
of Utah, Department of Computer Science, Tech. Rept. UUCS-77-110 (July 1977).

[Keller 78] R. M. Keller. An approach to determinacy proofs. University
of Utah, Department of computer Science, Tech. Rept. UUCS-78-102 (March 1978)

50

[Lamport 74] L. Lamport. The parallel execution of DO loops. CACM,
1_7, 2, 83-93 (Feb. 1974).

[McCarthy 63] J. McCarthy. Towards a mathematical science of computation.
Proc. IFIP *62, 21-28 (1963).

[Pati1 67] S. Patil. An abstract parallei-processing system. M.S.
Thesis. MIT, Department of Electrical Engineering (June 1967).

[Reddi and Feustel 78] S. S. Reddi and E. A. Feustel. A restructurable
computer system. IEEE Trans, on computers, C-27, 1, 1-20 (Jan. 1978),

[Swan, e t a l. 77] R. J. Swan, S. H. Fuller, and D. P. Siewiorek. Cm* -
A modular, multi-microprocessor. AFIPS Conference Proc., 46_, 637-644
(June, 1977).

