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Abstract

As network latency rapidly approaches thousands of processor cycles and multiprocessors systems be-

come larger and larger, the primary factor in determining a barrier algorithm’s performance is the number

of serialized network latencies it requires. All existing barrier algorithms require at least ✂☎✄✝✆✟✞✡✠☞☛✍✌ round
trip message latencies to perform a single barrier operation on an ☛ -node shared memory multiprocessor.

In addition, existing barrier algorithms are not well tuned in terms of how they interact with modern shared

memory systems, which leads to an excessive number of message exchanges to signal barrier completion.

The contributions of this paper are threefold. First, we identify and quantitatively analyze the perfor-

mance deficiencies of conventional barrier implementations when they are executed on real (non-idealized)

hardware. Second, we propose a queue-based barrier algorithm that has effectively ✂✎✄✑✏✒✌ time complexity as
measured in round trip message latencies. Third, by exploiting a hardware write-update (PUT) mechanism

for signaling, we demonstrate how carefully matching the barrier implementation to the way that modern

shared memory systems operate can improve performance dramatically. The resulting optimized algorithm

only costs one round trip message latency to perform a barrier operation across ☛ processors. Using a

cycle-accurate execution-driven simulator of a future-generation SGI multiprocessor, we show that the pro-

posed queue-based barrier outperforms conventional barrier implementations based on load-linked/store-

conditional instructions by a factor of 5.43 (on 4 processors) to 93.96 (on 256 processors).
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1 Introduction

Since 1987, processor performance has improved

at a rate of 55% per year due to increasing clock

rates and die sizes and decreasing feature sizes. How-

ever, DRAM latency has only decreased by 7% per

year and interprocessor communication latencies have

dropped only slightly in terms of wall clock time

As a result, the round trip communication latency

between the nodes of a large share memory mul-

tiprocessor is rapidly approaching a thousand pro-

cessor cycles. This growing gap between processor

and remote memory access times is impacting the

scalability of many shared memory algorithms, and

in particular synchronization operations are becom-

ing increasingly expensive. Relatively slow syn-

chronization has become a major obstacle to sus-

taining high application performance on scalable

shared memory multiprocessors [3, 11].

In this paper, we focus on analyzing and improv-

ing the performance of barriers, a common syn-

chronization operation often used in modern shared

memory algorithms [2, 9, 15]. Barriers synchronize

a large number of cooperating threads that repeat-

edly perform some work and then wait until all co-

operating threads are ready to move on to the next

computation phase, e.g., as follows:

for (i = 0; i < MAX; i++) {

DoWork(thread_id);

...

BarrierWait(barrier);

}

Figure1 illustrates the timing information for a

single barrier operation. We define the time at which

Figure 1. Timing information for barrier

synchronization

( a )  naive coding

( b )  "optimized" version

if( count == num_procs−1 )

else

atomic_inc( &gather_variable );

spin_until( gather_variable == num_procs );

int count = atomic_inc( &gather_variable );

      release_variable = num_procs;

      spin_until( release_variable == num_procs );

Figure 2. Traditional barrier pseudo-code

the first processor performs a BarrierWait()

operation as the barrier start time. We define the

time at which the last thread has been signaled that

the barrier operation is complete and returns from

the BarrierWait() operation as the barrier com-

pletion time. The total time required to perform a

single barrier operation is the difference between

the barrier start time and the barrier end time. We

divide this time into two components, the time dur-

ing which each thread signals its arrival at the bar-

rier, which we denote the gather phase, and the

time it takes to convey to each thread that the bar-

rier operation has completed and it is ok to resume

execution, which we denote the release phase. Be-

tween the time when a thread signals its arrival at

the barrier and the time that it is signaled that the

barrier operation has completed, it can perform no

other computation. To motivate the need to improve

barrier performance we measured the time it takes

to perform a 32-thread OpenMP barrier operation

on a 32-node Origin 3000. We found that in the

time it takes to perform a 32-node barrier opera-

tion, the system could have executed 5.76 million

FLOPS.

Traditionally, barriers have been implemented by

having each thread increment one or more barrier

count variables located in shared memory, e.g., as

illustrated in Figure 2. Barrier completion is sig-

naled via a release flag [6] that each thread checks

repeatedly until it indicates that all threads have ar-

rived at the barrier.

Traditional barrier implementations often suffer

from contention during both the gather phase, when

all the processors must atomically update a count,

and during the release stage, when all the proces-

sors must read a release flag. For example, Fig-

ure 2(a) illustrates a naive barrier implementation
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where the count and signal variables are the same;

threads waiting for the barrier operation to com-

plete spin reading the count variable, which is up-

dated each time a new thread reaches the barrier.

This naive algorithm results in ✂☎✄ ☛ ✁ ✌ coherence

protocol messages being sent per barrier to invali-

date and reload the shared count.

Figure 3 illustrates the source of these ✂✎✄ ☛ ✁ ✌
coherence messages in a typical barrier implemen-

tation running on a 3-node CC-NUMA (cache co-

herence non-uniform memory access) multiproces-

sor system. Solid lines represent request and data

messages, dashed lines represent intervention mes-

sages (i.e., ones that request data from a remote

cache or request that a remote cache invalidate its

copy of a shared cache line), and dotted lines rep-

resent intervention replies. In the illustrated sce-

nario, we assume that all three processors start with

a read-only (shared) copy of the cache line contain-

ing gather variable in their cache, and one

thread on each node arrives at the barrier at ap-

proximately the same time. Each thread attempts

to perform the atomic inc() operation, which

causes each processor to send a request to the home

node of the barrier count variable asking that the

other cached copies of the count be invalidated and

the requesting node be given write access to the

corresponding cache line (messages (1), (2), and

(3)). Only the first request to arrive at the barrier

variable’s home memory controller will be granted

write access (message (8)), which occurs only af-

ter the other processors have been sent invalidation

messages (messages (4) and (5)) that have been ac-

knowledged (messages (6) and (7)). The remaining

two processors will again compete for write access

to the barrier count variable, which will generate

another round of invalidations and acknowledge-

ments. As the figure shows, the simple algorithm

barrier requires 18 messages before all three pro-

cessors can increment the barrier count, plus a few

more messages (not shown) for each processor to

detect that the barrier count has reached its upper

limit. Even worse, relatively few of these messages

are pipelined (overlapped); each message round trip

adds to the overall barrier completion time, which

can lead to very poor performance.

Previous optimized barrier algorithms have sought

to minimize contention and the number of messages

1

8

13

12

4

6 9

10 15

11 18

3

5

2

7

14

16

17

P3P2

P1

     Coordinator

Barrier_counter

Figure 3. Traditional barrier

Thread(i):

Coordinator:

struct flag_type{

for (;;) {

}

atomic_inc(release_flag);

   while(!gather_flags[z]);

for (z =0; z<N; z++)

-------------

}

      while(!release_flag);

      /* Wait for coordinator to signal completion */

      atomic_inc(gather_flags[i]);

      /* Set my completion flag */

      ...

for (;;) {

...

-----------

struct flag_type release_flag;

struct flag_type gather_flags[N];

/* and cache line aligned.                            */

/* in physical memory on coordinator node*/

/* In practice, these are carefully allocated*/

int padding[31];

}

/*make sizeof(flag_type) = L2C line size*/

int flag;

Figure 4. Queue-based barrier

required to synchronize in a number of ways. For

example, Figure 2(b) illustrates a barrier implemen-

tation that uses separate count and signal variables

for each thread [16]. However, as we show in Sec-

tions 2 and 3, previous algorithmic optimizations

have not eliminated all sources of contention, and

in some cases even lead to reduced performance on

real shared memory systems.
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In this paper, we present a novel barrier algo-

rithm that is carefully designed to perform well on

real shared memory multiprocessors, which typi-

cally employ write-invalidate protocols and which

can support only a limited number of outstanding

cache misses by any particular processor. To elim-

inate contention for the single global barrier count

variable, we employ an array of per-thread signal

flags. Each thread participating in the barrier syn-

chronization signals its arrival at the barrier by writ-

ing to its flag variable in the global flag array, and

then spins on a separate release flag. A separate

coordinator thread continually examines the shared

flags until they indicate that all threads have arrived

at the barrier. When the coordinator determines that

all threads have arrived at the barrier, it updates the

release flag to signal all threads that they may exit

the barrier spin loop. To minimize inter-processor

memory contention, the signal flags are allocated in

separate cache lines (via array padding) in physical

memory located on the coordinate node (via careful

memory allocation)

Our barrier algorithm, as shown in figure 4 out-

performs conventional barrier algorithms for sev-

eral reasons. First, since each thread updates an

independent signal flag, no invalidation and reload

coherence protocol messages are generated due to

inter-thread contention. Second, because each thread

updates an independent signal flag, their updates, or

rather the coherence protocol messages needed to

perform the updates, can be pipelined (performed

concurrently). If the round trip communication la-

tency is much larger than the time it takes the co-

ordinator’s memory controller to respond to a sin-

gle read or write request, which is increasingly the

case in large-scale multiprocessors, O(N) protocol

exchanges can be overlapped such that they occur

in roughly O(1) time (as measured in round trip

message latencies). Third, by using a single (sepa-

rate) signal flag, as opposed to one signal flag per

thread as proposed by some researchers [13], we

avoid the problem that modern processors can only

signal a limited number of processors at a time be-

fore the load-store unit runs out of Miss Status Han-

dling Registers (MSHRs) and thus stalls the proces-

sor pipeline. As a result of these optimizations, our

best queue-based barrier algorithm that assumes no

special hardware support for updates outperforms

the baseline OpenMP barrier implementation by a

factor of 7.9X on 256 processors. On a system

that supports write updates (or coherent PUT oper-

ations), our optimized barrier implementation per-

forms 94X as well as the baseline OpenMP barrier

implementation and 6.5X faster than barriers using

SGI’s proprietary memory controller-based atomic

operations (MAOs).

Looking ahead to architectural features that have

been proposed for future multiprocessors, we inves-

tigated the extent to which judicious use of write

update protocols (or PUT operations) could improve

both gather and release operations. A write update

protocol can reduce the amount of coherence traf-

fic required to update the value of a shared variable

in a remote node by eliminating the invalidations

and reloads that occur using a conventional write-

invalidate shared memory coherence protocol. Us-

ing updates to signal barrier arrival and barrier com-

pletion, our optimized barrier algorithm can reduce

the time required to synchronize N threads to a sin-

gle message round trip, assuming round trip mes-

sage latency dwarfs memory controller overhead,

which is the limit of how fast a barrier operation

can be performed.

The rest of the paper is organized as follows. We

review various hardware and software barrier im-

plementations in Section 2 to provide background

for this work. In Section 3 we describe a variety of

queue-based barrier implementations in detail. In

Section 4 we present our simulation results, and in

Section 5 we present our conclusions.

2 Background

A number of barrier implementations have been

published over the years. Among them, the hard-

ware barriers of Cray et. al. are the fastest [2, 11,

19, 20]. Pure hardware barrier require a pair of

wired-AND lines between every two nodes. Pro-

cessors signal arrival at the barrier by pulling the

input wire voltage high, and then wait for the output

wire to be high to signal completion. While prov-

ably optimal in terms of performance, this approach

is only feasible in a small scale system, where the

number of dedicated wires is manageable. The re-

quirement for ☛✁� ✄ ☛✄✂ ✏✒✌ unidirectional wires on a

☛ node system is prohibitive when ☛ is large. Be-
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sides the high cost of dedicated wires, static hard-

ware approaches cannot synchronize an arbitrary

subset of threads and do not perform well when

the number and identity of participants in a barrier

change over time.

Most barrier implementations are software-based,

but exploit whatever hardware synchronization sup-

port is provided on the particular platform. Many

modern processors, including MIPSTM [8], AlphaTM [1],

and PowerPCTM [12] rely on load linked / store

conditional (LL/SC) instructions to implement atomic

operations. These instructions are used as follows.

A thread performs a load linked operation, which

causes the thread to start tracking external accesses

to the loaded data. If the contents of load linked

memory location are changed before the subsequent

store conditional to the same address, then the store

conditional fails. If a context switch occurs before

the subsequent store conditional, then the store con-

ditional also fails. A successful SC implies that the

read-write pair is effectively atomic from the point

of view of any other process. To implement other

synchronization primitives, libraries typically retry

the LL/SC pair until the SC succeeds.

In an LL/SC-based barrier implementation[8], each

thread loads the barrier count into its local cache

before trying to increase it atomically. Only one

thread will succeed on the first try while the SCs

on all other threads will fail. This process repeats

itself as each new thread arrives at the barrier, until

all participating threads have atomically increased

the barrier count. For this basic barrier algorithm,

average barrier latency increases superlinearly with

respect to the number of synchronizing threads be-

cause (i) round trip network latency increases as

system size increases and (ii) contention for the sin-

gle barrier count variable increases as the number

of threads increases. In the worst case, when there

is significant contention and thus frequent backoff-

and-retry cycles, ✂☎✄ ☛ ✁ ✌ round trip message laten-

cies are required to complete the gather stage of the

barrier operation. When contention is light, updates

to the barrier count occur sequentially, resulting in

✂☎✄✝☛ ✌ round trip message latencies to complete the

gather stage of each barrier operation. Regardless

of load, ✂✎✄ ✏✒✌ round trip message latencies are re-

quired for the release phase, because the ☛ threads

are invalidated and the barrier count reloaded in

parallel. As a result, the best case time complexity

of LL/SC-based barriers is ✂☎✄ ☛ ✌ round trip mes-

sage latencies, while the worst case complexity is

✂☎✄✝☛ ✁ ✌ . The average case is highly application de-

pendent, and depends on the relative ratio of com-

putation to synchronization and the average skew

in completion time of each thread – the more skew,

the less contention, although large amounts of skew

can cause performance problems due to load imbal-

ance.

Note that while all ☛ threads can be invalidated

in parallel, and each of the ☛ threads can send a

reload request for the cache line containing the bar-

rier count in parallel, the memory controller than

is the home node for the cache line can only han-

dle one request at a time. For our analysis, we

assume that round trip message latency dwarfs the

controller occupancy required to handle a single pro-

tocol message, which is true for processor configu-

rations up into the low hundreds of nodes. In this

case, the predominant performance factor is the ✂✎✄✑✏✒✌
serialized round trip message latencies, not the ✂ ✄ ☛✍✌
protocol operations on the home node’s memory

controller. Readers interested in the details of what

a memory controller does in response to a remote

read request can find it discussed in detail elsewhere [6].

Replacing the LL/SC try-retry loop with atomic

fetch-and-incr instructions can eliminate failed SC

attempts, thereby improving the performance. Good-

man et al.[3] propose fetch-and-
�

as a generic hard-

ware atomic primitive and Michael et al. [15] demon-

strate how these primitives can be used to reduce

synchronization contention. Some modern proces-

sors support special instructions that perform a va-

riety of fetch-and-
�

operations, e.g., the Itanium

IA-64’s semaphore instructions [7]. These types of

instructions are often referred to as processor-side

atomic operations, because the data is loaded into

the processor cache and modified there atomically.

Data still must be invalidated from remote caches

before it is modified, and invalidated threads must

reload the data across the interconnect before they

can accesses it. Although barriers implemented us-

ing processor-side atomic operations induce less se-

rialization and scale better under heavy load, their

low contention performance is essentially the same

as LL/SC-based barriers. The global shared counter

must be updated by every single thread, and every
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atomic update costs a round trip message latency,

so the gather stage still has ✂✎✄✝☛✍✌ time complexity.

As a result, barriers implemented using processor-

side atomic operations do not significantly outper-

form LL/SC-based barriers.

The NYU Ultracomputer [4, 9] implements a va-

riety of atomic instructions in its memory controller.

Further, it uses a combining network that tries to

combine all loads and stores for the same memory

location in the routers. Combining is useful only

when barriers are global and accessed frequently,

because the combining mechanism can slow down

other requests in an attempt to induce opportunities

to combine. In contrast, the SGI Origin 2000 [10]

and Cray T3E [19] implement similar combining

functionality, but do so at the barrier variable’s home

memory controller. This design eliminates the prob-

lems associated with combining in the router. In

the SGI Origin 2000 and Cray T3E, threads trig-

ger atomic memory operations by issuing requests

to special IO addresses on the home node mem-

ory controller of atomic variable. The home node

MC interprets these requests and performs the up-

date operations atomically. We refer to these mech-

anisms as memory-side atomic operations. Com-

pared to processor-side atomic operations, memory-

side atomic operations simplify the design of pro-

cessor pipeline and save system bus bandwidth. How-

ever, each atomic operation still requires a round

trip across the network, which needs to be done se-

rially.

Some researches have proposed using barrier trees

to reduce synchronization contention and overlap

communication in large-scale systems [5, 18, 21].

Barrier trees employ a hierarchy (tree) of barriers.

Rather than centralize the barrier implementation

through a single global barrier or coordinator, tree-

based barrier algorithms divide the participating threads

into modest-sized groups of threads that synchro-

nize amongst themselves. When the last thread in a

subgroup reaches the barrier, it signals its arrival at

the next higher level barrier in the barrier tree. This

process continues recursively until the last thread

arrives at the barrier at the root of the barrier tree,

which initiates a series of cascading signal oper-

ations that spread back down the barrier tree. If

we assume the maximum fanout in the tree is � ,

both the gather and release stages can complete in

✁ ✆ ✞ ✠✄✂ ☛✆☎ � ✂☎✄✝� ✌ round trip latencies. A tree-

based barrier on a large system is essentially a se-

ries of smaller barriers. For example, 256 threads

could synchronize by employing a four-level bar-

rier tree, with a fanout of four at each level in the

tree. Since barrier operations at the same level of

the tree can be done in parallel, the time required

for this 256-thread barrier is only roughly four times

that of a base 4-thread barrier.

The queue-based algorithm presented in the fol-

lowing section requires only ✂✎✄✑✏ ✌ message round

trips to synchronize ☛ threads. However, this ✂✎✄✑✏ ✌
result assumes that the time for a given memory

controller to perform ☛ protocol operations is less

than a single message round trip latency. While

this assumption holds true for reasonable sized val-

ues of ☛ , it does not hold for arbitrary sizes of

☛ . For large values of ☛ , a hybrid barrier solution

employing barrier trees combined with our queue-

based barriers for synchronization within a level of

the barrier would perform best. Our algorithm im-

proves the performance of individual subtree bar-

rier synchronization, which allows us to increase

the fanout in the tree and thereby reduce the height

of the barrier tree. Determining what combination

of tree- and queue-based barrier provides the best

performance for various sizes of ☛ is part of our

future work.

Table1 shows the time complexities of existing

barrier solutions and our proposed queue-based bar-

rier algorithm as measured in round trip message

latencies.

3 Algorithms

In this section, we describe our proposed queue-

based barrier mechanism, starting with a simple ver-

sion in Section 3.1, followed by a series of refine-

ments in the subsequent subsections. We call our

algorithms “queue-based” due to their similarity in

spirit and data structures to Scott et al.’s queue-

based spinlocks [14]. However, our queue-based

barrier is quite different than simply implementing

a barrier using queue-based spinlocks. A barrier

can be implemented using two spin locks, one to

protect the barrier count variable and another on

which threads can block until the barrier operation

completes. However, this design requires every thread
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Algorithm Gather stage Release stage Total

LL/SC Average case �✂✁☎✄✝✆ �✂✁✟✞✠✆ �✡✁☛✄☞✆
LL/SC Worst case �✂✁☎✄✝✌✍✆ �✂✁✟✞✎✆ �✂✁☛✄✏✌✠✆
Atomic(Processor side) �✂✁☎✄✝✆ �✂✁✟✞✠✆ �✡✁☛✄☞✆
Atomic(Memory side) �✂✁☎✄✝✆ �✂✁✟✞✠✆ �✡✁☛✄☞✆
Barrier Tree �✂✁✒✑✔✓✖✕✗✄✝✆ �✂✁☎✑✘✓✖✕✙✄✏✆ �✡✁☎✑✘✓✚✕✗✄✏✆
Queue-based �✂✁✛✞✜✆ �✂✁✟✞✎✆ �✂✁✟✞✠✆

Table 1. Time complexity of various barrier implementation

to acquire and release each lock once per barrier it-

eration, which would result in a barrier time com-

plexity of ✂✎✄ ☛ ✌ .
✢✤✣✛✥ ✦✤✧✛★✪✩✬✫✮✭✪✯✱✰✤✭✲✰✳✭✵✴✷✶✹✸✗✺✻✭✽✼✿✾❀✫✛❁✗❂✗❃❄✧✮❅❇❆❈★

In our first queue-based barrier algorithm, we

designate one node as the coordinator and allocate

an array of flags, one per participating thread, in the

coordinator’s local physical memory. To eliminate

false sharing, we pad the flag array such that each

thread’s flag variable resides in a separate cache

line. When a thread arrives at the barrier, it sets

its flag to TRUE. This operation involves a single

round trip message latency – in response to the at-

tempt to update the flag on the signaling thread, a

READ EXCLUSIVE protocol message would be

sent to the flag variable’s home node (i.e., the co-

ordinator). Upon receiving this coherence proto-

col message, the coordinator’s memory controller

would invalidate the coordinator’s processor cache

(if necessary) and then supply a writable copy of

the appropriate cache line to the signaling thread.

The gather stage of the barrier operation completes

when the last thread sets its flag variable. Figure 5

depicts the coherence protocol messages exchanged

during the gather phase of our simple queue-based

algorithm. Note that each thread can update its

flag variable effectively in parallel, since the pro-

tocol request and response messages are indepen-

dent of one another and controller occupancy will

be low for reasonable-sized systems. This is illus-

trated in Figure 5 by the fact that request messages

1a, 1b, and 1c can occur in parallel (or at least be

pipelined). As a result, using an array of flag vari-

ables rather than a single global count reduces the

effective number of round trip message latencies re-

quired for ☛ threads to signal arrival from ✂✎✄✝☛✍✌ to

✂☎✄✑✏ ✌ .

Figure 5. Simple Queue-based Barrier

To determine when the barrier operation is com-

plete, the coordinator sweeps through the flag ar-

ray until it sees that all of the flags are set. This

sweep requires ✂☎✄ ✏✒✌ message round trips, because

although the coordinator will load ☛ cache lines

containing flags from the corresponding remote pro-

cessor caches, only the cache line load correspond-

ing to the last thread to signal its arrival at the bar-

rier impacts performance.

To determine when they are allowed to finish the

barrier operation, each participating thread spins on

a second private flag variable, which the coordina-

tor sets when all threads have arrived at the bar-

rier. The speed at which this release operation can

be performed is limited by how fast coordinator

can modify all of the private completion flags. At

first glance, this might appear to be an ✂✎✄ ✏✒✌ oper-

ation, since the writes are all independent and thus

can be pipelined. However, modern out-of-order

processors can only support a modest number of

outstanding memory operations. Processors have a
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limited number of Miss Handling Status Registers

(MSHRs); if the processor accesses a cache line not

present in its local cache when no MSHRs are avail-

able, the processor pipeline stalls. The impact of

this architectural limitation is that the coordinator

will only be able to pipeline � updates at a time, if

� is the number of MSHRs for that processor.

Referring back to Figure 5, if the processor in

question has only 2 MSHRs and thus can support

at most 2 outstanding remote writes at a time, then

the coordinator cannot issue the write request to P3

until one of the other updates (2a or 2b) completes.

As a result, in this case the signaling phase took

two round trip latencies (the time for 2a or 2b to

complete followed by the time for 3 to complete) In

general, on a system that can support k outstanding

remote writes, the coordinator needs at least
✁ ☛✂✁☎✄✄☎

round trip times to finish complete the signaling

phase. This hardware constraint on performance is

discussed in more detail in the following section.

The overall execution time of this queue-based

barrier scheme is the sum of the gather stage ( ✂✎✄✑✏ ✌ )
and the release stage ( ✂✎✄✝☛✂✁☎✄ ✌ ), where k is the max-

imum pending writes the system can support. Con-

sequently, due to the oft-overlooked restriction of

the number of outstanding memory operations a sin-

gle processor can have a time, the overall time com-

plexity of this algorithm is ✂☎✄✝☛ ✌ .
✢✤✣✝✆ ✞ ✩✤❅❇✧✟★ ✧✠✟ ✭ ✼ ✯✱✰✤✭✲✰ ✭ ✴✷✶✹✸ ✺❇✭✽✼ ✾ ✫✮❁✙❂ ❃ ✧✛❅ ❆❈★

Since the gather stage of our initial queue-based

barrier algorithm is already an ✂✎✄✑✏ ✌ operation, we

focus on reducing the time complexity of the re-

lease stage. Actually, our baseline algorithm is ✂ ✄ ✏✒✌
in terms of software operations, provided the coor-

dinator can scan the flag array in ✂☎✄✑✏✒✌ time. This

holds true as long as the time constant for round trip

message latencies dwarfs the time constant of local

memory reads, which is true for practical system

sizes.

As noted in the previous section, the problem

with employing a separate signal flag for each par-

ticipating thread is that the coordinator processor

can only issue in parallel as many invalidation re-

quests as it has MSHRs. After all participating threads

have arrived at the barrier in the algorithm described

above, the coordinator must modify each thread’s

private release flag so that the corresponding thread

will know that it can quit spinning. Before the co-

ordinator signals a thread, the thread will be sitting

in a tight loop repeatedly reading the value of its

release flag variable. All modern processors em-

ploy a write-invalidate-style MESI cache coherence

protocol. When the coordinator thread attempts to

modify a particular thread’s flag variable, its lo-

cal cache would detect that the coordinator’s copy

of the corresponding cache line was in SHARED

mode. In response to the write request, the coordi-

nator’s cache controller will issue a read-exclusive

operation to the corresponding thread’s cache con-

troller, asking it to invalidate its local copy of the

cache line containing the flag variable. Modern pro-

cessors have miss status handling registers (MSHRs)

to keep track of outstanding misses. When the pro-

cessor has no free MSHRs, subsequent cache misses

stall Without loss of generality, assume a particu-

lar processor has 8 MSHR entries. In this case, if

the coordinator attempts to write the flag of a ninth

thread before any of the first eight invalidates have

been acknowledged, it will stall. In this case the

coordinator can only pipeline 8 remote writes at the

same time and
✁ ☛✡✁☞☛ ☎ serial round trips are required

to finish the release stage.

Increasing the number of MSHRs, and thereby

increasing the number of outstanding remote misses

that can be tolerated, would clearly help alleviate

this problem. However, Palacharla et al. [17] note

that further increases in windows size, issue queue

length, and the number of MSHR entries is not com-

plexity effective.

Given the limited number of MSHRs in real pro-

cessors, we must reduce the number of remote writes.

Using a single global release variable for all partic-

ipating threads eliminates the MSHR problem. A

single write by the coordinator causes the coordina-

tor’s memory controller to issue ☛ pipelined inval-

idation requests before the coordinator can modify

the flag, which are quickly followed by ☛ pipelined

read requests as each participants re-reads the (now

modified) flag variable.

Figure 6 illustrates how the optimized algorithm

works. After all participating threads have arrived

at the barrier, they spin on local copies of a shared

global release variable contained in their local caches.

All the copies are invalidated before coordinator

8



Figure 6. Optimized Queue-based Barrier

updates the value of the release variable. Then each

thread reloads a copy of the release variable after

the update has completed. Since all round trips

related to read contention for the single global re-

lease variable are automatically pipelined by mod-

ern MESI protocols, the time complexity of the re-

lease stage drops to ✂ ✄ ✏✒✌ in our optimized algo-

rithm, again assuming protocol handling time on a

given node is dwarfed by message latency.

Combined with the algorithm ✂✎✄✑✏✒✌ for the gather

stage described in Section 3.1, the resulting barrier

time is reduced to ✂☎✄✑✏✒✌ round trip message laten-

cies.

✢✤✣☎✢ ✦✤✧✛★✪✩✬✫✮✭✁� ✩ ✼✳✸ ❅ ✭ ✾❀✫✛❁ ❂✙❃❄✧✮❅❇❆❈★

The algorithm described in Section 3.2 provides

an ✂☎✄✑✏ ✌ round trip latency solution to the barrier

problem, but its constant coefficients are not as low

as (say) a hardware wired-AND barrier. In par-

ticular, during the gather phase, each participating

thread suffers a remote write miss when it attempts

to update its flag variable (resulting in ☛ read- -

exclusive messages and ☛ corresponding acknowl-

edgements). During the release phase, the coordi-

nator invalidates all ☛ copies of the shared release

flag variable (resulting in ☛ invalidation messages

and ☛ acknowledgement messages), and then each

of the ☛ participating threads suffers a read miss

(resulting in ☛ read-shared messages and ☛ data-

return messages). Even though these coherence pro-

tocol messages are pipelined so that they are per-

formed as three sets of ☛ concurrent (pipelined)

messages, the protocol described in Section 3.2 re-

quires a minimum of three round trip message la-

tencies per barrier synchronization. As round trip

latencies approach 1000 processor cycles, this over-

head limits barrier performance, especially for small

configurations where the benefit of protocol mes-

sage pipelining is small. In Sections 3.1 and 3.2 we

developed algorithms that improved barrier latency

by aggressively overlapping (pipelining) coherence

message traffic. The problem we address in this and

the following section is how to reduce the number

of non-overlapped round trip message latencies that

remain to signal arrival at the barrier and/or com-

pletion of the barrier operation and how to reduce

the number of coherence operations performed by

the coordinator’s memory controller.

We first consider how to reduce the performance

impact of the two sets of round trip message laten-

cies required for the coordinator to signal barrier

completion. Recall that these two sets of round

trip messages are for (i) the coordinator to invali-

date all ☛ shared copies of the barrier completion

flag and then (ii) for each of the ☛ participating

threads to reload a shared copy of the flag. In con-

junction with researchers at SGI, we are investigat-

ing the value of write update coherence protocols in

scalable shared memory multiprocessors. The write

update protocol we are investigating allows threads

to perform either explicit coherent GET/PUT oper-

ations on cacheable shared data or to designate par-

ticular regions of memory as ones that should be

kept coherent using a hardware write update coher-

ence protocol. Our proposed directory controller

tracks coherence at the cache line level, as is the

norm in existing scalable shared memory systems.

When the home memory controller of a particular

variable receives a GET request, it returns a coher-

ent value of the target variable loaded either from

local memory or a remote processor cache, depend-

ing on the state of the cache line. In response to a

GET operation, the requesting node is not added to

the cache line’s list of sharers, and hence will not

be informed of future modifications of the cache

line. In response to a PUT operation, the home

memory controller sends an update request to lo-
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cal memory and every processor that has a copy of

line containing the target variable, where the mod-

ification is applied1. In our simple update algo-

rithm, we have the coordinator use PUTs to up-

date the global release variable after the last thread

reaches the barrier. This eliminates one of the two

round trips required to perform a release in the op-

timized queue-based algorithm described above. A

secondary benefit of the use of PUTs is that they re-

quire smaller protocol messages (e.g., 8-bytes ver-

sus 32-128 bytes plus overhead to send a full cache

line). As we report in Section 4.3 this bandwidth re-

duction provides additional performance benefits.

✢✤✣✁� ✞ ✩✤❅❇✧✟★ ✧✠✟ ✭ ✼ � ✩ ✼✳✸ ❅ ✭ ✾ ✫✛❁✙❂ ❃ ✧✮❅❇❆ ★

In this section we consider how to improve the

performance of the gather phase of our queue-based

barrier implementation using PUTs. Recall that dur-

ing the gather phase, each participating thread will

suffer a remote write miss when it attempts to up-

date its flag variable, which will result in the cor-

responding cache line being invalidated from the

coordinator’s processor cache. When the coordina-

tor subsequently tests the flag to determine if that

thread has arrived at the barrier, it will suffer a read

miss and be forced to reload the cache line across

the network. As described in Section 3.2, the round

trip overhead of independent invalidate requests can

be pipelined, but invalidation requests can queue

up at the coordinator’s directory controller. Since

coordinator is in the critical path of our central-

ized barrier implementation, every delay it experi-

ences impacts barrier performance. As such, high

controller occupancy on the coordinator node in-

duced by the ☛ invalidations and subsequent ☛
reloads performed during the gather phase can in-

crease barrier latency by a non-negligible constant

factor, especially in large configurations. This over-

head can be reduced by having participating threads

use PUTs to update the value of their private flag

on the coordinator node, thereby eliminating an in-

validation and reload cycle. As we report in Sec-

tion 4 the judicious use of cache-coherent PUTs for

signaling reduces the number of protocol messages

1Details of how coherent GET and PUT are physically im-

plemented are beyond the scope of this paper.

that pass through the coordinator’s network inter-

face by 70%, which results in an additional 7.3X

speedup compared even to our optimized queue-

based barrier implementation.

✢ ✣✄✂ ✦ ✰❈★✪★ ✸ ❃✆☎

Figure 2(a) shows a naive barrier implementa-

tion, where num procs is the number of partici-

pating threads. This implementation is inefficient

because it spins on the the gather variable directly,

which as discussed in Section 1 can lead to sig-

nificant contention problems and even in the best

case requires ✂☎✄✝☛ ✌ round trip message latencies to

complete because the updates are effectively serial-

ized.

A common optimization to this barrier imple-

mentation is to use a separate release flag, as shown

in Figure 2(b). Instead of spinning on the barrier

count variable, the optimized version loop spins on

a separate release variable that is only updated when

the last thread arrives at the barrier. Programmers

need make sure the gather variable and release vari-

able do not reside in the same cache line to avoid

contention due to false sharing. This implementa-

tion performs one more write per barrier operation

than the naive implementation. This extra write to

the release flag causes copies of the shared flag to

be invalidated from all ☛ nodes, who in turn issue

☛ read requests to load the updated flag variable.

Nikolopoulos et al. [16] report that spinning on a

separate variable improves barrier performance by

25% over an implementation that spins directly on

the barrier count for a 64-node barrier.

In our two basic queue-based barriers, pseudo-

code for which appear in Figure 7, an array of cache-

line-aligned flags (one per thread) is allocated in the

physical memory of a coordinator node. To sig-

nal arrival at the barrier, participating threads up-

date their private slot in this array. The coordina-

tor repeatedly sweeps through the array to deter-

mine when all participating threads have arrived at

the barrier, which induces ☛ remote read misses

as it reloads the updated flag variables. However,

in practice these misses and the induced message

traffic are effectively pipelined. Our two queue-

based algorithms differ only in how the coordinator

signals barrier completion to the waiting threads,
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atomic_inc( &gather_variable );

spin_until( release_variable);

Participating processors:

Coordinator :

    

spin_until(Forall i: gather_variable[i]==TRUE);

Set_Update_Protocol(release_variable);

atomic_inc(release_variable);

Figure 7. Queue barrier pseudo-code

either via private signal flags (S-Queue) or via a

shared signal flag (O-Queue).

Finally, we discussed how the judicious use of

a proposed update protocol could improve the con-

stant coefficients of our queue-based barrier algo-

rithm. To support this optimization, we assume a

system where software can specify on a per-page

basis whether the shared memory coherence hard-

ware should employ a write invalidate or write up-

date protocol. If software wishes to employ an up-

date protocol for a particular data structure, it in-

vokes the Set Update Protocol system call,

which is supported by our simulator [22] and shown

in Figure 7.

4 Evaluation

In this section we present details of our experi-

mental methodology and results. We describe the

simulation environment we employ for all experi-

ments in Section 4.1 and compare the results of the

various barrier implementations described earlier in

section 4.2

� ✣✛✥ ✦✤✧✛★ ✰❈✫✛✸ ❅ ❂✗❃✁�✄✂✆☎✤✧✟❃❄❂✝✂❈★ ✭✞✂ ❅

We use a cycle-accurate execution-driven simu-

lator, UVSIM, in our performance study. UVSIM

models a hypothetical future-generation Origin 3000

architecture that we are investigating along with re-

searchers from SGI. The simulated architecture sup-

ports a directory-based coherence protocol that sup-

ports both write invalidate and write update coher-

ence protocols. The hardware write update proto-

col is implemented using implicit “GET/PUT” op-

erations as described in Section 3.3. Each simu-

lated node contains two next-generation MIPS mi-

croprocessors connected to a future-generation sys-

Parameter Value

Processor 4-issue, 48-entry active list, 2GHz

L1 I-cache 2-way, 32KB, 64B lines, 1-cycle lat.

L1 D-cache 2-way, 32KB, 32B lines, 2-cycle lat.

L2 cache 4-way, 2MB, 128B lines, 10-cycle lat.

System bus 16B CPU to system, 8B system to CPU

max 16 outstanding L2C misses, 1GHZ

DRAM 16 16-bit-data DDR channels

Hub clock 500 MHz

DRAM 60 processor cycles latency

Network 100 processor cycles latency per hop

Table 2. System configuration.

tem bus. Also connected to the bus is a next-generation

HUB chip, which contains the processor interface,

memory controller, directory controller, network in-

terface and IO interface.

Table 2 summarizes the major parameters of our

simulated system. The DRAM back end has 16

20-bit channels connected to DDR DRAMs, which

enables us to read an 80-bit burst every two cy-

cles, 64 bits of which are data. The remaining 16

bits are a mix of ECC bits and partial directory

state. The simulated interconnect is based on SGI’s

NUMALink-4, which uses a fat-tree structure with

eight children on each non-leaf router. The minimum-

sized network packet is 32 bytes and we model a

network hop latency of 50nsecs (100 cpu cycles).

We do not model contention within the routers, but

do model port contention on the hub network in-

terfaces. We have validated our simulator by con-

figuring it with parameters that match an Origin

3000 system and found that all predicted results for

a wide set of tuning benchmarks are within 20%

of the real machine, most within 5%. Key perfor-

mance metrics, e.g., elapsed cycle counts and cache

miss rates, are typically within 1%.

� ✣ ✆ ✟ ✭ ✺ ✰❈✫✮❅ ✺

In this section we report the relative performance

of seven barrier implementations for 4-256 proces-

sors. All the programs in our study are compiled

using the MIPSpro compiler version 7.3 with an

optimization level of -O2. We use OpenMP’s bar-

rier implementation for the SGI Origin 3000 as the

baseline against which we compare all other bar-

rier implementations. OpenMP’s barrier is imple-
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mented using LL/SC instructions on the Origin 2000

system.

We compare the performance of six other barrier

implementations against the baseline OpenMP im-

plementation. The first two alternative implemen-

tations replace the LL/SC instructions with conven-

tional processor-side atomic fetch-and-inc instruc-

tions (Atomic) and SGI-specific memory-side atomic

instructions (MAO). The Atomic version simply re-

places the LL/SC instructions with more efficient

atomic instructions, whereas the MAO version ex-

ploits the optimization proposed by Nikolopoulos

et al. [16] for MAOs.

In addition to these three conventional implemen-

tations of barriers, we consider four queue-based

barriers: our basic queue-based barrier that uses

separate flags for both signaling arrival at the bar-

rier and completion of the barrier operation (S-Queue),

a version that uses a single variable to signal bar-

rier completion (O-Queue), and versions of both

algorithms that employ updates (S-Update and O-

Update, respectively).

All results reported herein correspond to 1001

barrier operations per thread. The first barrier is

used simply to synchronize the start time of our

measurements. The barrier time is measured as the

time from when the first barrier operation completes

until the last thread leaves the ✏✁�✂�✄�✆☎✞✝ barrier.

Table 3 presents the normalized speedups of the

six optimized barrier implementations compared to

the baseline OpenMP LL/SC-based barrier imple-

mentation. We vary the number of threads that syn-

chronize from 4 (i.e., 2 nodes) to 256 (i.e., 128

nodes). Columns 2 through 7 of Table 3 present the

speedups of various optimized barrier implementa-

tions.

All the implementation show noticeable improve-

ment compared to the baseline version. Of the algo-

rithms that require only the basic hardware support

that could be expected on any scalable shared mem-

ory multiprocessor (baseline, atomic, S-Queue, and

O-Queue), our optimized queue-based algorithm (O-

Queue) performs 7.85 times faster than the baseline

and approximately 5 times faster than any other al-

gorithm for 256 processors. This demonstrates the

importance of being aware of every source of pro-

tocol overhead and the problem of MSHR-induced

stalls when designing a scalable barrier mechanism.

Figure 8. Sources of Performance Im-

provement for 32P Barrier

S-Queue O-Queue S-Update O-Update
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Figure 9. Bandwidth effect on Algorithm

All three of the algorithms that require special

hardware support (MAO, S-Update, and O-Update)

perform well, although the value of avoiding MSHR-

induced stalls (S-Update vs O-Update) is particu-

larly important when protocol overhead is reduced

by the use of update protocols. Overall, the O-

Update algorithm significantly outperforms all other

algorithms, outperforming the baseline by almost a

factor of 94 and its next closed competitor (MAO)

by a factor of 6.5.

Figure 8 breaks down the source of performance

improvement for the O-Update algorithm. Over half

of the improvement comes from using updates. The

remainder comes from having participating threads

signal independent variables ✂☎✄ ☛✍✌✠✟ ✂✎✄✝☛✂✁☞� ✌ ),
using a single variable to signal barrier completion

( ✂☎✄✝☛ ✁ � ✌✡✟ ✂☎✄✑✏✒✌ ), and eliminating extraneous

invalidates.
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CPUs Speedup over Baseline

Atomic MAO S-Queue O-Queue S-Update O-Update

4 1.15 1.21 0.58 0.65 0.95 5.43

8 1.06 2.70 1.23 2.02 2.73 18.04

16 1.20 3.61 1.11 2.56 3.98 25.04

32 1.36 4.20 1.16 3.14 4.44 31.71

64 1.37 5.14 1.01 4.23 5.92 43.59

128 1.24 8.02 1.13 5.06 6.54 44.39

256 1.23 14.70 1.58 7.85 9.61 93.96

Table 3. Speedup of various barrier implementations versus the OpenMP barrier baseline

� ✣☎✢ ✦ ✭ ✂ ✺ ✧✛❅ ✧ ☎✤✧✮❅ ☎ ❅ ❂ ✶ ✸✝✂ ✼✁� ✧✛✼ ❅❇❆ ✞ ✂✄✂ ✞✆☎ ❅❇❆ ✭
✝ ❂ ❂✙❃❇✼✬✧ ✂✤✸ ❅ ❂✗❃✟✞ ❂ ✼❈✭

As described in Section 3.4, controller occupancy

at the coordinator can limit the performance of the

queue-based barrier implementations. Essentially,

when occupancy is high enough, the assumption

that the overhead of handling individual protocol

operations is negligible compared to a round trip

message latency is not completely accurate. When

this happens, the ✂☎✄✝☛ ✌ protocol operations per-

formed at the coordinator begin to lose their in-

significance compared to the ✂ ✄ ✏✒✌ round trip mes-

sage latencies, resulting in a less scalable algorithm.

When the fraction of time spent handling proto-

col messages becomes significant compared to the

inter-node communication overhead, a more pre-

cise formula for the performance of the various al-

gorithms is ✠☛✡✌☞✎✍✏ , where ✠ is the round trip mes-

sage latency, ✑ is size of a single request packet, ✄
is the number of packets handled by the coordina-

tor node, and
�

is the network bandwidth on/off the

coordinator node. We use bandwidth as our met-

ric for coordinator controller occupancy because in

practice it is is the delimiting factor for the rate at

which the controller can handle the simple protocol

messages induced by our barrier algorithms.

To investigate the extent to which controller oc-

cupancy impacted performance, we tested the sen-

sitivity of our queue-based algorithm to cache line

size, which in our experiments was the primary fac-

tor in determining how many bytes were sent on/off

the coordinator node. For this experiment, we sim-

ply compared how the performance of the various

algorithms changed when we reduced the L2 cache

line size from 128 bytes to 32 bytes, which effec-

tively decreases ✑ by a factor of 4. As can be

seen in Figure 9, reducing the L2 cache line size

improves the performance of S-Queue, O-Queue,

and S-Update by factors of 1.15, 1.43, and 1.40,

respectively. The performance of O-Update algo-

rithm was essentially unchanged. These results tell

us that network bandwidth, and thus controller oc-

cupancy, was not a major factor in performance even

for the 256-processors barrier case.

5 Conclusions and Future Work

Efficient synchronization is crucial to the perfor-

mance and scalability of applications running on

large scale share memory multiprocessors. In this

paper, we analyze a variety of existing barrier so-

lutions and identify sources of unnecessary perfor-

mance overhead when run on real shared memory

hardware.

We propose a family of novel queue-based bar-

rier algorithms that eliminate most sources of se-

rialization in existing barrier implementations. By

aggressively exploiting pipelining and being aware

of the limitations of modern processors (especially

in terms of the limited number of misses that can

be outstanding from any given processor), the re-

sulting algorithms can perform an N-thread barrier

operation in ✂☎✄✑✏ ✌ message round trip latencies. For

practical machine configurations, e.g., up to 256

processors, the ✂✎✄✑✏✒✌ message round trip latencies

dominate the ✂ ✄ ☛✍✌ protocol operations performed

by the memory controller on the coordinator node.

For systems large enough for the ✂☎✄✝☛ ✌ factor to

be significant, the queue-based barrier algorithms

presented herein can be used as the base barrier al-

gorithm in an ✂☎✄✓✒✕✔✗✖ ✄ ☛✍✌ ✌ barrier tree.

On a 256-processor system, our O-Update algo-

rithm demonstrates a 94X speedup compared to the
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baseline LL/SC-based OpenMP barrier algorithm.

Compared to other algorithms that exploit special-

ized machine features, O-Update outperforms algo-

rithms that use memory-side atomic ops (MAO) by

a factor of 6.5X and ones that employ processor-

side atomic operations (Atomic) by a factor of 75X.

The best queue-based algorithm that does not ex-

ploit special hardware features (O-Queue) outper-

forms the baseline OpenMP barrier implementation

by a factor of 7.9X on 256 processors.

As part of our future work, we plan to determine

the extent to which queue-based barrier algorithms

can be combined with MAOs and barrier tree. Also,

we plan to test the sensitivity of our algorithm to

network latency and investigate what minimal set

of hardware primitives is ideal to support efficient

synchronization.
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