View metadata, citation and similar papers at core.ac.uk brought to you by 4

provided by The University of Utah: J. Willard Marriott Digital Library

CONSISTENCY AND CURRENCY IN FUNCTIONAL DATABASEsS]
by

Gary Lindstrom

Frances E. Hunt

uucCs-82-012
February 1982

Department of Computer Science
University of Utah
Salt Lake City, Utah 84112

Abstract

We consider a hybrid model of databases, in w hich a functional
component T is defined as an extension to an imperative component B. T
is loosely coupled to B through a highly parallel function network N,
w hich provides a simple failsafe test of whether an existing
assignment of values to a given view (subset) T' of T is consistent.
If this test fails, or when a "current"” view of T' is desired, N can
be requested to "refresh™ T1l so that its values become consistent with
respect to the current assignment to B. These requests are serviced by

N without danger of system deadlock.

1This work was supported in part by grant MCS-78-03832 from the N ational
Science Foundation.

https://core.ac.uk/display/276277893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Hybri
1.1.
1.2.
1.3.

Table of Contents

d Model of Databases
Functional Programming
Modeling Databases Functionally

Distributed Databases

Our Approach

2. 1.
2.2.

2.4.
2.5.

The Database Partitioning
Bottom End Behavior

2.2.1. Cells in B

2.2.2 Transactions on B

2.2.3 Lock Manager Mg

2.2.4. Consistency of Assignments to B
2.2.5 Currency of Assignments to B
Top End Behavior

2.3.1 Cells in T

2.3.2 Queries on T

2.3.3. Lock Manager MT

2.3.4 Consistency of Assignments to T
2.3.5 Currency of Assignments to T

System Objectives

An Example Application

Our Solution

3.1.
3.2
3.3.
System
4.1
4 .2.
4.3.
4 .4 .
4.5 .

Conclus

5.2.

Function Network

3.1.1. INPUT/OUTPUT Node States

3.1.2. Axiomatic Behavior

3.1.3. Details of Mechanism

Network Interfaces

3.2.1. Top end

3.2.2. Bottom end

An Illustration

Performance

Individual Cell Consistency and Currency
Consistency and Currency of Larger Views
Querying

Liveness

Damping

ion

Limitations

Possible extensions

[EE GG N

WO ~N~NOOOOOUICIUUI S B A A w NN

= =P
~ = © (©

12
12
13
15
15
15
17
18
18
18
19
19

20

Figu
Figu
Figu
Figu
Figu
Figu
Figu

re

re

re

re

re

2 -
2 -
2-
3-

3-
3-

N

[

A W N

List of Figures

Hybrid database model.

Bottom end in parts jobber example.

Top end in parts jobber example.
Function network placement.

Top end state transitions.

Bottom end state transitions.

Jobber example scenario.

o0 w

13
15
16

1. A Hybrid Model of Databases

I'n this work, we seek to bring together "traditional?” imperative (i.e.
assignment-based) database mechanisms and newer functional (i.e. object-based)
approaches. We postulate an imperative component augmented by a counterpart
capturing information which may be functionally derived from values resident
in various subsets of the imperative component's cells. Our objective in this
approach is a smooth integration of the two components with low overhead.
Moreover, we seek a formulation of this combination suitable for a highly
distributed parallel implementation.

1.1. Functional Programming

Functional programming is a computational framework based on the use of
functions, in the mathematical sense, to express the relationships on a set of
values [1, 6]. This supports a high level programming methodology, in which
systems are designed by refinement of function definitions, rather than by the

direct specification of operator sequences.

Functional programming systems lend themselves naturally to implementation
on distributed architectures, such as AMPS [83. Such architectures are very
attractive for database system s, since the multiple processors provide the
potential for a high degree of concurrency and distribution in query
processing. Moreover, with lazy evaluation [4, 5], as exemplified in the
execution model of AMPS, the distinction between im plicit and explicit data
representation softens, permitting higher levels of abstraction in database

programming.

1.2. Modeling Databases Functionally

Research in functional programming techniques applied to databases has been
primarily concerned with Jlanguage interfaces to conventional systems [2, 11].
Recently, however, increasing attention has paid to the problem of updating in

functional database systems [3. 9]. In general, updating is accomplished by

conceptually creating a new version of the entire database. Since physical
re-creation of the entire database is economically undesirable, update
functions must be written with considerable care and implementation awareness

to achieve acceptably low copying.

1.3* Distributed Databases

Distributed database systems refer to multiple site and/or multiple copy

systems. The latter approach uses redundancy to reduce communication overhead
incurred when processing queries from physically separate locations.
Reliability is also a factor for choosing a distributed system, since the

malfunction of one site may be circumvented by rerouting requests through
other working sites in the distributed network. Such systems may introduce
extra levels of programming complexity, however, unless there exists an
underlying support system which makes the distribution mechanisms transparent

to the wuser [12].

Our approach concerns databases with a very special sense of distribution,
namely that the imperative and functional components are logically separated
and mediated by a mechanism well suited for either a teleprocessing protocol
connecting the two, or a highly parallel local computer system. The principal
novelty of the approach will be a derived sense of consistency and currency in
the functional component, and a mechanism for efficiently updating cells in
that component without resorting to special update functions.

2. Our Approach

We now outline our particular approach to the hybrid database model,
emphasizing the external interfaces to the database presented by each of the
tw o components. Section 3 will present an implementation of the desired

connection between these two interfaces.

2.

1.

The Database Partitioning

Figure 2-1 depicts our hybrid model. The key components are:

B: a "bottom end" comprising imperative cells ch, 1<=i<=n, and a
lock manager Mg controlling read/write access to these cells by

transactions, and

T: a "top end" comprising functional cells fj, 1<=j<=m, and a lock
manager MT controlling read-only access to these cells by queries.
(read only)
queries
transactions

(read/write)

Figure 2-1: Hybrid database model.

2.2. Bottom End Behavior

The bottom end should be viewed as a conventional database supporting
concurrent transaction processing through a lock manager guaranteeing
serializability of all permitted transaction interleavings (e.g. as per [13]

section 10. 3).

2.2.1. Cells in B

At any moment each cell ¢~ in B possesses a 3tate and a value.
. States for each c” are selected from {unlocked, scheduled, queried,
acknowledged} . Initially each ¢~ is wunlocked.

- A value binding for each ¢~ in B is termed an assignment for B.

2.2.2. Transactions on B

Transactions on B are each sequences of read and write actions on the c¢”

cells. The transactions are assumed to perform reads or writes on each c¢c”
cell only after that cell has been appropriately locked (WLOCK for writes, and
RLOCK or WLOCK for reads). Moreover, we assume a "shadow” wupdate technique,
whereby all writes done by a transaction at*e buffered until the transaction
completes, at which time a unitary UNLOCK is performed. This causes all cells

WLOCKed by the transaction to become simultaneously unlocked and updated.

2.2.3. Lock Manager Mg

The exact strategy and implementation of the bottom end lock manager Mg is

unimportant to us here. We assume Mg maintains its own internal table of
which cells are WLOCKed and RLOCKed. However, in support of our functional
extension, we require Mg to coordinate its actions with our postulated cn

states as follows:

1. Mg will grant a WLOCK on a cell ch only when it is in state
unlocked. This causes the cell's state to become scheduled.

2. Mg will permit a transaction to terminate (i.e. perform its UNLOCK)
only when all its WLOCKed c¢c” are in state acknowledged. When this

condition is fulfilled, the following actions transpire

indivisibly:

- all cells WLOCKed by the transaction are updated, and

- all locked cells ¢~ are put into state wunlocked.
Note that RLOCKs are handled directly by Mg, and require no cell state
changes. (The role of state queried w ill become evident in section 3.2.2.)

2.2.4. Consistency of Assignments to B

W hile we have left the exact nature of the transactions on B unspecified,
we do assume they preserve all essential consistency constraints on B,
whatever these may be. I f we assume the initial assignment to B is

consistent, we have directly a sense of consistency on later assignments to B:

Definition 1: Let b be an assignment to B. If b can be obtained

through a serial application of transactions to B, b is a consistent
assignment.

2.2.5. Currency of Assignments to B

In the obvious sense, we say the assignment of values to B existing at any

given moment is the current one.

Theorem 2: The current assignment to B is always consistent.

Proof: Follows immediately from the transaction serialization

effect of Mg, and the shadow update effect.

2.3. Top End Behavior

2.3.1. Cells in T

Each fj has an associated function FA determining its desired value in
terms of assignments to some minimal subset ("view") B~ of B. We term B~ the
support of f .. We assume each f . is initialized to the functional image under

J J

Fj of the initial assignment to B.

Each cell f. has a state selected from {evaluated, retracted, locked
J

f or

demanded} . Initially each fj is in state evaluated.

2.3.2. Queries on T

In contrast to the bottom end where direct updating is supported, we assume
the top end is dedicated to read-only querying and reporting. Hence a query

on T involves simply reading an assignment of wvalues to a subset (again,

"view ") T of T. Following the model of shadow updating on B, we assume
queries on T' do not actually read the fj until the query is completed, at
which time a block containing the existing values assigned to T' is delivered.
For simplicity, we assume further that queries on T are handled sequentially.

2.3.3. Lock Manager Mj

Under these assumptions, it would seem no lock manager is needed for T at
all. However, in preparation for our implementation of the interface between

T and B, we define a top end lock manager MT nevertheless.

Each top end query comprises a sequence of RLOCK fi requests, terminated by
J

a unitary UNLOCK. M~ services these requests as follows:

- on RLOCK fj requests:

* if f . is evaluated, M_ puts it into locked.
J *
* if fj is retracted, M” puts it into demanded.
- on UNLOCK requests: M_ waits wuntil all cells in the query view are
locked. It then reads the values of RLOCKed <cells and delivers

their values in a block.

2.3.4. Consistency of Assignments to T

The functionality of T induces a sense of consistency on assignments to its

cells in terms of consistent assignments to B.

Definition 3: Let T' be a view of T. We say an assignment of values

to T' is consistent if it is the functional image (under the F .’'s

associated with the cells in T’) of a consistent assignment to B. J

2.3.5. Currency of Assignments to T
Definition 4: A value assigned to an f . is said to be current if it
equals Fj applied to the current assignment to its support.
Definition 5: Let T' be a view of T. We say an assignment of values
to T' is current if the value of each fj is current.

Note that a current assignment to any top end view is always consistent.

2.4. System Objectives
Having established the basic properties of the top and bottom ends of our
hybrid model, we now pose the behavioral objectives for our composite system.

Top end consistency test: We desire a simple test for consistency
of existing top end view assignments. This test should be:

* local, i.e. involve only the states of cells in T, and

* fail-safe, in the sense that if the test is positive,

consistency of the existing view assignment is guaranteed.

Top end currency test: Similarly, there should be a local and fail-
safe test for the currency of any existing assignment to a view Tl
of T.

Finite time querying: If an existing assignment to a view T is
judged to be inconsistent, or a current (and consistent) new
assignment to 71 is desired, this should be obtainable after finite
delay, no matter how busy the bottom end may be at the time.

Overhead damping: | f activity at either the top or bottom end
subsides, the time overhead incurred at the opposite end due to

their functional relationship should approach =zero.

Liveness: It should be impossible for either end to become
deadlocked.

Loose coupling: The functional linkage between the two ends should
be message based, and permit a highly distributed, parallel

implementation.

2.5. An Example Application

As an illustration, we consider a rudimentary parts jobber application.
The bottom end of our model corresponds to the Shipping Dock, where parts are
received and shipped. The top end corresponds to the Executive Suite, where

various inventory and sales reports are produced.

For simplicity, we assume only two parts are kept in stock, and they are
received and shipped in single units. Repricing is limited to a unit
increase. Bottom end transactions comprise Receive_part®, Ship_partn, and
Reprice_part” (see fig. 2-2). Top end queries include cumulative revenue,
current price list, biggest seller to date, and value of inventory on hand

(see fig. 2—3).

cells
pbot 1: Price of Part 1
Pbot'2: Price Part 2
A on-hand quantity of part 1
on- on-hand quantity of part 2
N~ quantity of part 1 previously shipped
N2 : quantity of part 2 previously shipped
Rbot* revenue generated from parts shipped thus far
transactions
Ship _Yyah tite. ® Receive padrlt.
wrLock N. ; wrock O.;
N. = N™M1 g, 2= 0%“:
WLOCK 01 UkLOCK
0, := Oi-T,
RLOCK Pbot i’ Reprice pamh,:
WLOCK R ! WLOCK P 3
R, :="BY .p ; P otpl’ 1y
*~ “bot bot,i’ i °7 "bot,i '
uRbck ' uRebek '
Figure 2-2: Bottom end in parts jobber example

3. Our Solution

An implementation of this hybrid model meeting our system objectives can be

obtained through use of a special variety of function network interfacing the

cells

Jtop ~ pbot
ptop,1 " pbottl
~top.2 _ , then 1 else 2
Vv = 0 _»P. .) 0 . »P. .
1" bot,1 * "2” bot,2
queries
Revenue: 12top”
Price List: fP P >
Biggest Seller: <bsoP'1’ top'2
Inventory Value: {V}
Figure 2-3: Top end in parts jobber example,

3.1. Function Network

We place a function network N between the <cells ¢~ on the bottom end and
the cells f. at the top end. Associated with each c. is an INPUT node in N,
A

and with each fj an OUTPUT node in N (see fig. 3-1).

C1 c2

Figure 3-1: Function network placement.

We can think of the function network N as a conduit for messages which pass

between INPUT nodes and OUTPUT nodes. When evaluated, the OUTPUT nodes

reflect a functional image of the values the INPUT nodes held at the time of

10

the computation of the OUTPUT values. The actual computation may be

envisioned as a two-phase process. OUTPUT nodes transmit demand messages

downward through N in order to obtain the values needed for their computation.

In response, INPUT nodes pass value messages upward through N to the OUTPUT

nodes which demanded them.

3.1.1. INPUT/OUTPUT Node States

For the purposes of this discussion, we will ignore the inner workings of N

in order to concentrate on the dependency relationships between INPUT and

OUTPUT nodes.

An INPUT node has a state selected from {evaluated, retract-requested,

retract-acknowledged, demanded} . Initially all INPUT nodes are in evaluated.

Each INPUT node cycles through these states as follows:

- evaluated to retract-requested: an external request has been made to

change an INPUT value. A "retract-request” message is sent through
N to notify all OUTPUT nodes dependent on the given INPUT node.

“ retract-requested to retract-acknowledged: N has routed the
"retract-request"” message to all nodes potentially affected by ¢this
change, and has received "retract-acknowledged™ messages from all
such nodes.

- retract-acknowledged to demanded: a demand for this INPUT node has

been routed through N as a result of a demand on an OUTPUT node.

- demanded to evaluated: a value is released from this INPUT node.
An OUTPUT node has a state selected from {evaluated, retracted, demanded}.
Initially all OUTPUT nodes are evaluated. Each OUTPUT node <cycles through

these states as follows:

~ evaluated to retracted: a retract-request"” message was received
from N as a result of a proposed change to one of the INPUT nodes
upon w hich this OUTPUT node is functionally dependent. This
transition also causes a "retract-acknowledged" message to be sent
back through N.

- retracted to demanded: an external request has been made for the

value of this OUTPUT node. This causes a demand to be routed

11

through N.

- demanded to evaluated: a value has been computed and received from N

thereby satisfying the demand.

3.1.2. Axiomatic Behavior

The essential properties of N can be characterized by the following

propositions, which we take here to be axioms:

Proposition 6: When an OUTPUT node makes the transition from
demanded to evaluated, the value received is a functional image of the
values resident in the set of INPUT nodes wupon which the OUTPUT node
is functionally dependent. Furthermore, those INPUT nodes w ill be

either evaluated, or retract-requested.

Proposition 7: When an INPUT node wundergoes retract-requested to
retract-acknowledged, none of the OUTPUT nodes depending on it may be

evaluated.

Proposition 8: A demand for a value at an OUTPUT node w ill be

satisfied after a finite delay.

Proposition 9: Demand has priority over retraction in N. That is,
suppose an INPUT node undergoes a transition to retract-requested at
approximately the same time a functionally related OUTPUT node
undergoes a transition to demanded. Then the OUTPUT node w ill reach

evaluated before the INPUT node reaches retract-acknowledged.

Proposition 10: A damping effect occurs at the OUTPUT (INPUT) end
of N when the messages passing through N are primarily demands
(retracts). This happens as a result of a demand (retract) being
satisfied immediately upon encountering an already evaluated

(retracted) node within N.

3.1.3. Details of Mechanism
The message passing behavior of the network is based on the concept of
incremental recomputation on data-flow graphs as developed in [10]. Formal

details and proofs about the retraction mechanism w ill be available in [7].

3.2.

12

Network Interfaces

The INPUT and OUTPUT nodes described in the previous section have a direct

relationship with the bottom end and top end database <cells, respectively.
These cells act as the external influences which <create demands at OUTPUT
nodes and cause retraction at INPUT nodes.

3.2.1. Top end -

Let the OUTPUT node associated with a top end cell f~ be denoted O]j.
state transitions which fj wundergoes (see fig. 3—2) are related to those
as follows:

evaluated to retracted:

* caused by: Oj undergoing evaluated to retracted.

* causes: (No direct effect.)
The OUTPUT node associated with this <cell has received a "retract-
request” message signifying that the value contained in this cell is

based on one or more INPUT values about to become outdated.

evaluated to locked:

* caused by: RLOCK granted by Mj.

* causes: (No direct effect.)
A query has been made involving f .. The cell is prohibited from
honoring subsequent retraction requests wuntil it once again becomes
unlocked (i.e. evaluated) .

retracted to demanded:

* caused by: RLOCK granted by MT<

* causes: Oj to undergo retracted to demanded.

A query has been made involving the value in this cell. Since the

value in residence is outdated, a new value must be computed.

demanded to locked: []

* caused by: Oj undergoing demanded to evaluated.

of

The

O/\

*

13

causes: (no direct effect, unless this is the final f in the
query view to become locked - see next transition.) n
A value has been computed by the network, and installed in the
OUTPUT node associated with this top end cell.
- locked to evaluated:
* caused by: All f~ in the query view being locked, and UNLOCK
granted by M~
* causes: assignment of value of 0., to f~, and delivery of query
value block.
All cells involved in the query have current values and the query
has been satisfied. Locks granted for that query are thereby
relinquished.
N signals
getractcedT)
<
end of currency
query query query
conrpleted initiated initiated
N delivers
current value
Figure 3-2: Top end state transitions.
3.2.2 Bottom end
Similarly, let the INPUT node associated with a bottom end cell c~ be 17.
The state transitions which ¢~ undergoes (see fig. 3-3) are related to those
of 1~ as follows:
- unlocked to scheduled:
* caused by: WLOCK granted by Mg.

* causes:

The lock manager

INPUT node (if

retract-request™”

is in evaluated, it

has requested a WLOCK on
becomes

N.

evaluated)

message through

becomes

retract-requested

retract-requested.

this cell. The

and sends

associated

a

14

” scheduled to acknowledged: -

caused by: 1~ being retract-acknowledged.
* causes: (No effect, unless this is the final transition
permitting MB to grant an UNLOCK - see below.)
The associated INPUT node is or has become retract-acknowledged,
signifying that all dependent OUTPUT nodes have' been 'notified of the

impending change.

“ acknowledged to unlocked:

* caused by: mO performing an UNLOCK.
* causes: (No direct effect on 17.)
The cell is given a new value.

“ acknowledged to queried:

* caused by: 1a undergoing retract-acknowledged to demanded.
* causes: Assignment of the value of ¢~ to 1~ 1~ undergoing
demanded to evaluated, and then to retract-requested. Cell cn

then undergoes querfed to scheduled.

A demand has arrived from the network N as a result of a request for
current information at the top end. The outdated value is returned,
and the retraction process to confirm the WLOCK on ¢~ must be re-

initiated

| f 1~ undergoes retract-acknowledged to demanded when ¢~ s unlocked, an
assignment of ¢~ to 1~ occurs without ¢~ changing state. This is accompanied

by 1n undergoing demanded to evaluated.

Since priority is given to the requests for current information at the top

end of the network, there may be some delay in allowing bottom end cells to be

updated. Note that when a cell ch undergoes acknowledged to unlocked the
associated INPUT node remains in the retract-acknowleged state wuntil a demand
arrives from N. This allows many updates to the bottom end <cells, without

interaction with N, until the next currency request arrives.

Figure 3- 31

3.3. An lllustration

We illustrate the

transactions

interaction

15

Bottom end state transitions.

the top end queries and bottom end

between

through a brief scenario taken from the part3 jobber example (3ee

fig. 3-4). In this illustration, we assume all top end cell3 are evaluated
except V, which we assume to be retracted. Two special effects are worth
noting:

- The immediate transition of 0 from scheduled to acknowledged in
transaction t". Thi3 results from” (the only top erici cell
dependent on 0”) being already retracted.

- The transitions of PbQt 1 from acknowledged to queried to scheduled
to acknowledged again, 'reflecting the deferral of tp due to the
higher priority access of Pbofc 1 by N in the service of g~

4. System Performance

We that our

now argue

interactions between T and B,

4.1. Individual Cell

Lemma 11:
retract-requested,
cell c”.

Whenever
it3 value equals that of

composite system design, with N mediating the

achieves our objectives as enumerated in section

Consistency and Currency

n i3 evaluated or
it3 associated bottom end

an INPUT node

16

I\ - H H - H H
LA Ship_partj : Reprice_partj qr {Ptop,l* Ptop,2}

ty N uto S

1=

| A B: E to R

12: pbot,r u t0 s
™ NN S to A

\ Ptop,I: Eto R
Pbot,l: St0 A
ql : Ptop,1* Rto D
ql ; Ptop,2: E to
\% PbOt,I: At0 Q
ql : Ptop,l; Dto L
V pbot,r Q tO s
ql : Etop,l L to E
top,2
t2: Ptop,l: E to R
\Y Pbot,l: s t0O A
\Y, Pbot,I: AtO u
Vv Rb0Ot: Ut0 S
\Y Rtop: E to R
tl: Root: St0 A
tl:
A to U
bot
u unlocked E evaluated
S scheduled R retracted
Q queried D demanded
A acknowledaed L locked

Figure 3-H: Jobber example scenario.

17

Proof: By the provisions of section 3.2.2, whenever in enters
evaluated its value is "refreshed" by c¢ .. This is the only occasion
for the value of 1j to change. Hence in retract-requested ~ has the
same value it possessed in its preceding evaluated state (recall the
states of |I. are ~cyclic). If the value of c. is constant until 1~
becomes retract-acknowledged, we are done. But this is clear, since
c. changes value only when it undergoes acknowledged to unlocked,

wnich can only occur when 1~ is in retract-acknowledged.

Theorem 12: The existing value in any individual top end cell f~
is always consistent.

Proof: Let the OUTPUT node associated with f . be O]j. The value at
f. clearly arose from 0 .. By Proposition 6, when that value was
delivered at O. it was ttre functional image of values existing at the
INPUT node associated with the support of f.=. By the same
Proposition, each of those INPUT nodes were in s'tates evaluated or
retract-requested at that time. Hence by Lemma 11 each of those INPUT

nodes possessed values wequal to that of their associated bottom end

cells. Therefore that value is consistent as an assignment to fj.

Theorem 13: I f a top end cell f. is evaluated, its value is
current. J

Proof: By the reasoning in the proof of Theorem 12, whenever 07"
receives a new value it is current. But f . receives a new value only
when it becomes evaluated, which occurs only when O. receives a new
value. Now consider when that value becomes no longer current. A
bottom cell in its support must have undergone acknowledged to
unlocked, which implies its associated INPUT node must have undergone
retract-requested to retract-acknowledged. By Proposition 7, 0. must
be no longer evaluated at that moment, which implies f is no ionger
evaluated. n

Consistency and Currency of Larger Views

Theorem 14: Let T1 be a view of T I f all f, in T’ are in state

evaluated, the existing assignment to Tl is current (and consistent).

Proof: Since every cell in T’ is in evaluated, they all are
current. Hence the overall view Tl is current.

Theorem 15: Let T’ be a view of T. An existing consistent
assignment to T' remains consistent until a f . in T’ undergoes a

transition from demanded to evaluated.

Proof: Trivial, since no change is made to an existing assignment

to T until one of its fij receives a new value, which only occurs

a

of

18

during the transition specified.

Querying

Theorem 16: Let T* be a view of T. Every read query on T* results

in a current assignment to T* in finite time.

Proof: Follows from Propositions 8 and 9, and the fact that INPUT
cell transitions from demanded to evaluated take place without

interference from Mg.

Liveness

Theorem 17: The overall hybrid database system is deadlock free.

Proof: By Theorem 16, the top end cannot become deadlocked.
Similarly, the bottom end cannot become deadlocked since the only
effect of its connection to T is the occasional "forced” transition of
a c. from acknowledged to scheduled. But this simply has the effect
of aeferring the transaction involved, and does not introduce new

locking interactions among the bottom end transactions.

Damping

Theorem 18: I f top end queries cease, bottom end transactions

eventually incur no delays due to the presence of the top end.

Proof: Eventually all INPUT nodes will stabilize at
retract-acknowledged, by Proposition 10, and bottom end cell
transitions from scheduled to acknowledged w ill be immediate, without

reversion to scheduled due to queries arriving from above.

Theorem 19: I f bottom end transactions cease, top end queries

eventually incur no delays due to the presence of the bottom end.

Proof: Similar.

We note informally that the implementation of N described in [10] provides

form of continuity between these two extremes, whereby the more active

the database tends to receive proportionally lower overhead.

end

19

5. Conclusion

We have presented a hybrid model of database system s, combining a
traditional imperative component with a more modern functional component. A
notion o f consistency and currency in the functional component has been
presented, as well as a querying mechanism ensuring currency. The updating of
cells in the functional component s achieved through a distributed form of

incremental recomputation on data-flow graphs, and requires no special update

functions.

If an active function net N is not available, the method may be adapted to
a conventional two-way communication channel. Under this variation, the
network would represent identity functions between top and bottom <cells, and a
special form of multiple copy distributed database model would result. A ll
functional computation would then be placed in the top end view consumption;
nevertheless, all system objectives would s till be met. Moreover, a highly
efficient communications protocol would be obtained, whereby the traffic over
the channel would be limited to messages known to be essential to currency

requests at the top end.

5.1. Limitations

This approach favors querying on the functional component, at the expense

of transaction delay on the imperative component. A special, but familiar,
two-phase locking protocol is required on the imperative component. System
reliability is not considered, nor are distributed implementations of the two
database components themselves. Query processing on the functional component

is handled serially.

20

5.2. Possible extensions

Future research is needed on weakening some of these lim itations. For
example, it seems clearly possible to adapt the functional component to permit
overlapped query processing. Another possibility might be to introduce top

end value time stamping, which would associate with each value a pair of times

~low * fchigh~ bracketing the interval over which the value was known to be
current. Non-current existing multiple cell views could then indicate
consistency by possessing non-null time bracket intersections.

A more challenging goal would be to establish greater processing symmetry

between the two components, e.g. by permiting the functional component to do

direct updating of imperative cells. A related extension would be to support

individual cell unlocking in the imperative component, perhaps while retaining

the two-phase protocol. However, preliminary investigations indicate that

either of these last tw o extensions seems to invite either undetectable

inconsistency in the functional component, or system deadlock.

21

REFERENCES

[1] J. Backus.
Can programming be liberated from the von Neumann style? A functional
style and its algebra of programs.

Communications of the ACM 21(8):613—6’211, August, 1978.

[2] P. Buneman and R.E. Frankel.
FQL - A functional query language.
In ACM Sigmod, pages 52-58. May-June, 1979.
[3]_ R. Doany.
Implementation of a network database wusing a function graph language.
M aster’s thesis, University of Utah, Dept, of Computer Science, June,
1981.
[4] D.P. Friedman and D.S. Wise.

CONS should not evaluate its arguments.

Edinburgh University Press, 1976, pages 257-284.

[5] P. Henderson and J.H. Morris, Jr.
A lazy evaluator.

In Proc. Third ACM Conference on Principles of Programming Languages,

pages 95- 103. 1976.
[6] P. Henderson. n
Functional programming.
Prentice-Hall, 1980.
L7] Frances E. Hunt.

Applicative Updating and Provisional Computation in Functional
Programming.
PhD thesis, Computer Science Dept., Univ. of Utah, 1982.

forthcoming.

[8] R.M. Keller, G. Lindstrom, and S. Patil.
A loosely-coupled applicative multi-processing system.
In AFIPS, pages 613-622. AFIPS, June, 1979.

[9] R. M. Keller and G. Lindstrom.

Toward function-based distributed database systems.
Technical Report UUCS-82- 100, University of Utah, Computer Science

Department, Jan., 1982.

[10] G. Lindstrom and R. Wagner.
Incremental recomputation on data-flow graphs.
In Homstrom, et al. (editors), Symposium on functional languages and
computer architecture, pages 472-489. Laboratory on Programming
Methodology, Department of Computer Sciences, Chalmers University of

Technology and Goteborg University, June, 1981.

[11]

[12]

[13]

22

D.W. Shipman.
The functional data model and the data language DAPLEX.

ACM TODS 6(1):140- 173, March, 1981.

l.L. Traiger, J.N. Gray, C.A. G altieri, B.G. Lindsay.

Transactions and consistency in distributed database systems.

Technical Report &J2555, IBrf Ttesearch"'Lab'.’ San Jose,

J.D. Ullman.
Principles of database systems.

Computer Science Press, 1980.

