
ADA TO SILICON TRANSFORMATIONS:
THE OUTLINE OF A METHOD

by

Lawrence A. Drenan1 and E llio t t I . Organick

Dept, of Computer Science
University of Utah

Salt Lake City, Utah 84112

This research was sponsored in part by the Defense Advanced Research

Projects agency, DARPA contract No. MDA903-81-C-0414.

September 1982

"'Presently employed by Western D igital Corp, 2445 McCabe Way, Irvine, CA 92715

1

ABSTRACT

This report explores the contention that a high-order language specification of
a machine (such as an Ada program) can be methodically transformed into a
hardware representation of that machine. One series of well-defined steps
through which such transformations can take place i s presented in th is in it ia l
study.

The general method consists of a two-fold strategy:

1. Transform the h igh-level specification into a network of in ter­
communicating "state machine/data path pairs".

2. Through a catalogue method, map each sta te machine / data path pair
into a c ircu it rea lization .

Four representational lev e ls are u tilized in the transformation process. Each
in ter -lev e l transformation is discussed. The four lev e ls are:

1. Ada sp ec ifica tion of the algorithm.

2. Machine-description specification of the algorithm, consisting of a
control part and a data part. This version i s expressed in a
sty lized d ia lect of Ada developed for th is study.

3. P rotocol-definition specification of the algorithm, obtained by
inserting constructs that define inter-program unit communication.

M. Storage/Logic Array (SLA) specification of the algorithm, which can
be mapped d irectly to , and are regarded as equivalent to , c ircu it
representations.

The transformation strategy r e lie s upon exploiting a one-to-one correspondence
between Ada instan tiation s of generic packages introduced in the leve l 2
representation and SLA "modules", which are composed of primitive SLA c e l ls
introduced at lev e l 4.

The transformation methodology described in the paper has been demonstrated for
a non-trivial Ada program example.

1. Introduction

This report reviews elementary principles applicable for methodically

transforming a high-order language specification of a machine, such as an Ada

program, into a hardware representation of that machine. In th is in it ia l study,
we discuss one ser ies of well-defined steps through which such transformations

2

Research on automating Ada-to-Silicon transformations i s currently underway

at the University of Utah [9]. In th is report, which does not attempt to

document the sp ec ific s of the mainstream of that research, we outline a series

of mappings for transforming individual Ada program units to equivalent

integrated c ir c u its . Our emphasis is on the fe a s ib ility of these

transformations and i s not concerned with finding a series of optimal

transformation steps. Our purpose is to:

1. Demonstrate one (re la tiv e ly straightforward) approach by which an Ada
program can be mapped into a sp ecification of an integrated circu it
(IC) through adherence to rule-based techniques.

2. Examine the pros and cons inherent in the most straightforward,
unoptimized approach.

The method presented follows the general transformation strategy suggested

earlier [0]. The essence of th is strategy is to represent each Ada program unit

as a synchronous stored sta te machine part and a data path part. Circuits

derived by following th is approach have the general form pictured in Figure 1-1.

The pairing of a sta te machine and a data path (i . e . , an environment) is

referred to as an "engine". The hardware rea lization of an entire Ada program,

or of any subset of program units of that program, i s actually a network of

asynchronously intercommunicating engines, each having the form outlined in

Figure 1-1. For the convenience of th is report, individual Ada tasks are

considered to be program units.

A transformation methodology i s just beginning to be explored [11]. There is

need to develop a well-defined set of rules through which such transformations

can eventually become a mechanical process. Some guidelines that distinguish a

set of rules as having the potential for eventual automation have been suggested

[10].

can take p la ce .

3

Input
i

*******••••••••
• • • • • • • * • • • • • • • • • control • Local •
* State Machine *------------------------------ >* Environment *
* Part * * Part *
•••« ••••••* * * * * * • *••*•«***•*•*•*

" I I
i------------- feedback ! v
------------- ----- ---------------------------------- Output

Figure 1-1: An Engine and Its Two Principal Components

■ i
v

The transformations presented here are considered to be extensions of those

orig in a lly outlined in the following sense:

1. Not only i s the high-level specification of a program unit expressed
in Ada; intermediate lev e ls of representation are also expressed in
Ada. "Machine-description" and "Protocol-definition" sty le s of Ada
programming are proposed to express intermediate transformation
steps, permitting the algorithmic behavior to be checked through Ada
program execution at a l l intermediate le v e ls as well as the top
l e v e l .

2. NMOS Storage Logic Array (SLA) technology [15] [14] is chosen for the
low -level realization of the machine. (More practical versions of
SLAs, called PPLs have been developed to serve as a target for th is
transformation process [9] .) SLA "modules’* give us a set of building
blocks that f i t the sp ec ific needs of th is method. U tilization of
other semi-custom integrated c ircu it components offers an opportunity
for enrichment of th is methodology into the VLSI range.

A high-order language Ada program i s transformed in three steps to reach the

leve l of representation from which integrated c ircu its may be produced d irectly .

In th is report, the four lev e ls , counting the starting lev e l, are called

"stages". These stages are:

1. High-level Ada program

2. Machine-description Ada program

3. Protocol-definition Ada program

4. NMOS SLA program or equivalent

Characteristics of these stages and rules that guide the transformations

between them are presented in succeeding section s. A case study that was

performed following th is method on a non-trivial Ada program is presented

elsewhere [6].

[We again stress that c ircu it optimization (space or speed) is not a goal

addressed in th is paper. Thus, in situations where performance or c ircu it area

or both are c r i t ic a l , the approach presented is unlikely to yield c ircu its with

characteristics that are competitive with those produced by more custom methods,

esp ecia lly for many important, but special algorithms, e .g . , those that lead to

compact sy sto lic arrays.]

2. Stage 1: High-Level Ada Program

The machines specified and realized by our transformation process are viewed

as ensembles of interacting sta te machine/environment pairs (engines). The

programming language Ada i s w ell-suited for specifying such pairs. Thus, a

strong correlation ex ists between data abstractions in Ada and data abstractions

in certain views of integrated c ircu its ; indeed we exploit th is correlation.

An Ada program is composed of one or more program units [5] [2]. A program

begins execution as a single thread of control in the main subprogram, but can

in it ia te tasks, each of which has associated with i t a separate thread of

contro l. A program unit in th is model i s analogous to a machine that is

in itia te d via a single "Go" button, but which i s capable of delegating work

among potentia lly concurrent sub-machines. In Ada, such sub-machines take the

form of tasks. Ada also offers f le x ib i l ity and control in specifying the

communication between program units, i . e . , in specifying the kind of interaction

between units. Data abstractions represented as Ada packages, another form of

program u n it , are also transformable into individual engines whose operators

either transform given instances of a data type or own and operate on individual

in stan ces. Shifting such an engine from id le to a particular active state

5

corresponds, at a higher lev e l of abstraction, to the activation of an Ada

package operation.

Information needed to represent an engine can be extracted from an Ada

program unit for use in representing the local environment (data path) and the

sta te machine (con tro ller). This information i s drawn both from the

sp ecifica tion part and from the body part of the program unit being mapped to

the next stage .

Stage 2 representation elaborates intra-program unit constructs while Stage 3

elaborates inter-program unit communication constructs. The language for Stage

2 i s a sty lized but lega l form of Ada.

3. Stage 2: M achine-description-level Ada program

3.1 . The Role of Stage 2

A Stage 2 program achieves two objectives:

1. Infers a co llection of needed hardware modules from the declaration
part of the program unit and id e n tifie s the needed modules through
instantiation of generic packages.

2. Transforms in fix expressions represented in the Stage 1 form into
prefix form. .

The d istin ction between the control flow and data flow of a program i s sharpened

by the transformation from Stage 1 to Stage 2. Thus, in i t s Stage 2 form, the

program takes the form of a sta te machine and the data path i t controls. The

declarative part of the Stage 2 form represents a co llection of hardware modules

(a "data path") inferred from the declarative part of the Stage 1 form. The

body part of the Stage 2 form represents a state machine whose structure is

inferred from both the declarative and body parts of the Stage 1 form. The

Stage 2 language sty le has two distinguishing features:

- extensive use of generic building blocks

6

- use of the "engine extension" s ty le of representing sta tes and sta te
tran sition s

The terms "building block" and "module" have sp ec ific meanings below. A

"building block" refers to a generic package instance introduced in Stage 2 to

model a particular component of the data path. A "module" refers to a

co llec tion of SLA c e lls fran which the fu ll c ircu it w ill be constructed. Every

generic package instance id en tified in the Stage 2 representation maps to a

corresponding Stage 4 SLA module.

3 .2 . Stage 2 Examples

Figure 3-1 i s an example of a generic package declaration for a building

block representing a counter. An instan tiation of th is package (e .g . , "package

C i s new Counter") corresponds to the module's "black box" representation (see

Figure 3 -2). The SLA program that corresponds to Figure 3-2 i s presented in

Figure 3-3.

generic
lo_value: integer;
hi_value: integer;

— allows one to instan tia te
— counters of various s iz e s

package Counter i s
— Function:
— a counter with load, lookup,
— increment, and decrement operations •

procedure Load(
load_value: in integer);

procedure Increment;
— Increment by 1 i s implied,

procedure Decrement;
— Decrement by 1 i s implied,

function Lookup return integer;
. — Returns the current value. .

end Counter;

Figure 3-1: Counter Building Block Package Specification

With a few exceptions (to be discussed below) a ll variables and operators in

the Stage 1 program unit are transformed into in stan tiation s of generic

7

Figure 3-2: "Black Box" Representation of a Counter Module

packages. The Stage 2 code I s then restr icted to describing actions through the

use of these instantiated packages. Stage 1 to Stage 2 transformations resu lt

in code that i s composed primarily of function and procedure applications. For

example, a lin e of code such as

A := B + C;

is trams formed into

A.Write(Add.Go(B.Read, C.Read));

where A, B, C, and Add are previously instantiated packages. Thus, i f the Stage

1 code includes the object declaration

A, B, C: integer;

the corresponding Stage 2 form would exhibit the instantiations

package A i s new Register(word_length => integer);

package B i s new Register(word_length => integer);

package C i s new Register(word_length => integer);

8

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

1 0 B 0 B 0 B O B 0 B |
2 ti tt tt n
3 ti tt tt tt
4 n tt n tt
5 F B F B F B F B 1$
6 + 1 +
7 + 1 +
8 1$ s+= 1$ •
9 :+ 1$" tt

10 tt tt tt
11 $R n tt tt tt tt tt tt 0 0 1 0$
12 $S ti ti tt tt tt tt tt 0 0 1 1$
13 $R it it tt tt tt 0 0 1 0$ i
14 $s n tt tt tt tt 0 0 1 1$ I
15 $R tt ti tt 0 0 1 0$ i
16 $S tt tt tt 0 0 1 1$ I
17 $R tt 0 0 1 0$!
18 $S tt 0 0 1 tt tt - _ = =1$i
19 $0 S II 1 0 0 tt "$i " « « tt
20 $0 S 1 R tt 1 0 0 tt "$! " n n n
21 $0 S 1 R 1 R tt 1 0 0 tt tt n n
22 $0 S 1 R 1 R 1 R tt 1 0 0 tt "$! " n n tt
23 $1 R 1 R 1 R 1 R tt 1 0 0 tt "$! " •t n n
24 $1 R tt 0 1 0 tt "$! " •t n n
25 $1 R 0 S II 0 1 0 tt "$! " n ti ti
26 1 R 0 S 0 S II 0 1 0 tt "$! * n tt n
27 1 R 0 S 0 S 0 s tl 0 1 0 It •»$ | « tt tt it
28 =0=S=0=s=0 =s=0=s tt=0 =1 =0 _ n "$ I " tt ti n

n tt tt ti

Figure 3-3: SLA Program for Counter Module Using the SCLED Notation

Furthermore, encountering "+" while parsing Stage 1 code would lead to the
inclusion of

package Add is new Adder;

in the corresponding declarative part of the Stage 2 code. Hence, the code '
presented in this example would eventually map into a hardware structure
abstractly presented in Figure 3-4.

The design of the building block set and the design of the SLA module set
must be coordinated. As a possible means of enforcing the design discipline, a
Stage 2 programmer is provided with one or more packages that specify the set of

9

Figure 3-4: Hardware Realization of "A :* B + C;"

generic packages available. The programmer can thereby be restricted to
expressing algorithms with instantiations and use of the pre-defined generic
packages.

3.3. The "Engine" Extension to Ada

The body part of a Stage 2 program is sub-divided into states denoted by
labels. To represent the mutually independent actions that can occur in the
same state of a state machine in standard Ada, one could use the "verbose form"
that declares (and then initiates) a set of dynamically created tasks. A more
succinct equivalent is possible if we were to include an "engine extension" for
Ada to specify a similar objective. Used at Stage 2, the engine extension
allows one to specify a sequence of Ada statements that can be translated into
concurrent actions. '

An engine clause has the structure illustrated in Figure 3-5. Within the
scope of an engine clause, the sequence of statements bounded by two state

10

begin
<<State_Start>> — initial actions

— executed in parallel

e n g i n e E x a m p l e i s .

«State_1» — actions to be
• «— executed in parallel

«State_2» — another set of actions which
— can be executed in parallel

<<State_stop» — final state
null;

end Example;

Figure 3-5: Structure of an Engine Clause for Representing "Transition Graph"
of a State Machine

labels, e.g., <<State_1» and <<State_2» above, are actions that can occur in
parallel. Execution of a "goto" statement within such a (labeled) sequence
terminates the actions within that state (i.e., triggers a state transition).
(To enhance readability, we follow the convention that the first node of every
engine clause be labeled "State_Start" and the final node be labeled
"State_J3top".)

Nesting of engines clauses follows Ada scoping rules. An engine may be
declared local to another engine just as one procedure can be declared local to
another procedure. Thus a local "sub-engine" may be called from its containing
"main-engine". The effect of such a call is to transfer control to the label
State_Start of the subengine at the time the subengine is called and to return
control to the main engine when the subengine completes.

Note that this technique does not imply a relationship between state
transitions and units of time. Although the particular SLA implementation
chosen for Stage 4 in this work is synchronous, a syntax comparable to the
engine extension has been be mapped to asynchronous implementations [4], An
algorithm used to determine the operations for which one can specify parallel
execution, i.e., multiple actions within the same state, is presented in Section

11

3.4. Building Blocks and Modules

For the purpose of this report, the following building blocks and modules
have been designed [6]: Equals, Less_eq, Bool^eq, Counter, Loop_Counter,
Register, Boolean_Register, Memory, and Two_D_Memory.

Building blocks and modules generally have parameters for specifying word
lengths. Such specifications are provided by the Stage 2 programmer as part of
an interactive design process. Thus, most generic package declarations contain
the formal generic parameter

type wor<L.length is range <>;

3.5. Three Intra-program Unit Communications Protocols

Three different intra-program unit protocols are defined, corresponding to
the "function", "procedure", and "procedurE" Stage 2 subprogram declarations.
These Stage 2 declarations convey assumptions about the number of states

required for an operation to "complete its job". Different protocols may be
utilized for invoking various operations within an implemented package. The
corresponding SLA implementation is invoked with whichever protocol is
appropriate. Protocols for communication between circuits representing separate
Ada program units are discussed in Section 6.)

Operations are divided into two classes: those that return a value (e.g., a
Read operation) and those that do not (e.g., a Write operation). Hardware
implementation of the former requires that the module includes storage elements
to hold the value of the output parameter (or function result). The protocols
presented below ensure that such storage elements are sampled only after the
correct values are loaded. In operations that do not return a value, the
protocols ensure that the module completes its job (for example, modification of
a global value) before a potentially conflicting operation can be initiated.

5 .

12

The distinguishing characteristics of operations adhering to each of the
three protocols are as follows:

- "Function11 protocol: The operation completes in the same state in
which a request for the operation reaches the containing module. Two
cases are implementable:

1. The function result is always available.

2. The request is received in phase Phi-1 of a given clock cycle,
and causes the result to be available in phase Phi-2 of the same
clock cycle.

A function operation (such as the Lookup operation on a Counter
module) does not need to issue an acknowledge to its requestor that it
has performed its duty, because it can be assumed that the correct
result will be available in a known state.

- "Procedure" protocol: The operation completes in the state immediately
following the one in which the request reaches the module. As in the
function protocol, it is not necessary for the procedure operation
(such as the Increment operation on a Counter module) to inform the
requestor that the desired action has been performed.

- "ProcedurE" protocol: For this operation, it cannot be assumed that
the job will be completed in the same state in which the request is
received, or even in the next state. Unlike the two previous
protocols, it is necessary for the containing module to inform the
requestor when execution of the desired action has been completed.
The scenario is as follows: a requestor initiates a procedurE
operation by issuing a "Go" signal; the procedurE in turn signals its
caller, upon successful completion, with an "I'm done" signal. We
call this convention the "Go/I'm done" protocol. Its use allows the
introduction of arbitrary delays in the state transitions for clocked
schemes that exhibit a single thread of control. The protocol, which
is enforced by construction, is implemented as follows:

* The requesting engine R sends a "Go" signal that invokes the type
procedurE operation P of a containing module M and then enters a
state where R waits for M to send an "I'm done" signal.

* The initial state of M is a wait state for a "Go" signal. A Go
for P causes the states the operation P to commence (transition
to P). After the operation P completes M emits an "I'm done"
signal before returning to its initial state.

The protocol permits representation of a single thread of control that
traverses from the requesting engine R to the host module M of the
procedurE operation P and back again. The sequence of state
transitions for every procedurE operation is local to one, and only
one, engine. Hence, there is no possibility for contention. It is

1 3

this fact that allows us to use the simple "Go/I'm Done" protocol
(instead of a somewhat more complex Request/Acknowledge) for intra­
engine communication. The Read and Write operations on the Memory
module are examples of the procedurE protocol.

4. Stage 1 to Stage 2 Transformations

4.1. Transforming Simple Expressions

Simple expressions are transformed in a straightforward way. Registers
replace variables, comparators replace relational operators, adders replace plus
signs, etc. Such transformations are syntax driven.

This style of transformation leads to the allocation of possibly redundant
modules. Clearly, circuits produced by this method tend to be wasteful of "real
estate". However, timing and communications are simplified in activating
individual modules, since each Stage 2 call on a subprogram operation of a
generic instantiation then corresponds to a unique control line in the hardware
level. Some simple optimizations are possible within this framework; for
example, use of counters where adders are not needed, and use of shift logic,
where suitable, for multiplication or division.

4.2. Transforming Control Statements -

The interpretation of control statements (e.g., loop, case, if, subprogram
calls and task entry calls) lead to control flow changes. We discuss the
required transformations for such constructs in this subsection on a case by
case basis. In general, these transformations mimic well-understood strategies
used by compilers [1].

Procedures. functions. and tasks The initial action to be performed in the
body parts of procedure, function, and task entries with in parameters is the
loading of the actual parameter values into the Registers that implement the
corresponding formal parameters. Statements directing such actions must be

14

i n s e r t e d i n t o t h e S t a g e 2 p r o g r a m .

Out parameters also require instantiation of Register packages so their
values can be loaded into these Registers as if they were local parameters and
hence mimic the "copy-restore" parameter passing mechanism demanded (for the
normal case) by Ada semantics. A similar treatment is required so that function
values can be properly returned.

Building blocks that represent formal parameters of program units are derived
in Stage 2. For example, if procedure P and function F are specified as:

procedure P(
xx: integer;
yy: integer);

function F(
zz: integer)

return real;

then four generic packages are instantiated:

package xx is new Register(word_length => in integer);

package yy is new Register(word_length => in integer);
— For P.

package zz is new Register(word_length => in integer);

package f_result is new Register(worcULength => real);
— For F.

IF-STATEMENTS In the simplest case, if-statements are manifested in Stage 2
as structures of the form:

<<State_for_if» if condition then
goto State_X;

else
goto State_Y;

end if;

Missing but implicit else clauses are explicitly inserted. For example:

else
goto State_<the_state_where_the_2_branches_join>;

15

It is certainly possible, and in many cases advisable, to include actions in
the branches before the goto statement, thereby reducing the total number of
states specified in the machine description. For example,

Notice the use of the boolean variable "equals_result" to represent the value of
the condition. The rule followed is that the use of identifiers with "..result"
as a suffix specifies Stage 4 routing to a storage element that is located
within the module specified by the prefix (e.g., Equals). The storage element
is loaded with the result of the operation. Every relational operator building
block has such a "buddy" boolean variable. Out parameters in procedures and
procedurEs, such as the value returned from a memory Read procedurE, are also
treated this way.

BLOCKS A block is treated as a parameterless procedure.

FOR-LOOPS A generic Loop_Counter package that computes and holds the loop
parameter value is instantiated for each Stage 1 for-loop. This package also

if mem_val ue = 0 then
pointer := p_find;
exit;

end if;

is transformed into

<<State_4» Equals.Test(
Menj_value.Lookup(), 0, equals_result);

goto State_5;

<<State_5» if equals_result then
Pointer.Write(P_find. Lookup());
goto State_6;

else
goto State_7;

end if;

— Goes to exit.
— Else is now explicit

16

stores the value of the upper limit of the discrete range. In case the upper
bound is a previously declared variable, e.g., Lim, a module that stores Lim's
value already exists, so the extra storage element is redundant. This
redundancy is accepted because, at the hardware level, the simplicity of
consnunication and saving of extra communications lines appears to outweigh the
use of extra storage space. Figure 4-1 shows the Stage 1 to Stage 2
transformation paradigm used for for-loops.

STAGE 1

for parameter in A..B

loop
Statement_1;

Statement_2;

Statement_N;
end loop;

STAGE 2

— Declaration part
package Parameter is new LoopjCounter;

— Instantiation.

— Body part
<<State_X» Parameter .Load (A, B);

— Load loop values.
— A is initial value.
— B is upper limit.

«State_Y» if Parameter .Test () then
— Test the parameter
— versus upper bound.

goto State_Y+1;
— Go to the sequence
— of statements,

else
goto State_Z+1;
— Exit from loop,

end if; .
«State_Y+1» Statement_1;

«State_X+2» Statement_2;

«State_Y+N» Statement_N;

«State_Z» Parameter. Increment();
goto State_Y;

— Go back to the test.
«State_Z+1»

— Continue with the
— rest of the program.

F i g u r e 4 - 1 : A P a r a d i g m F o r - L o o p T r a n s f o r m a t i o n

17

ItfHILE-LOQPS While-loop transformations require the instantiation of as many
building block packages as required to evaluate the while-loop condition. The
Stage 2 expression of a while-loop whose condition is a simple equality test is
modeled in Figure 4-2.

<<State_Y» Equals. Test(
first_operand, second_operand, equals_result);

goto State_Y+1;
«State_Y+1» if equals_result then

goto State_Y+2;
else

goto State_Z+1; — Exit the loop,
end if;

«State_Y+2» Statement_1; — Begin loop body.
t

«State_Y+N» Statement^; — End loop body.

«State_Z» goto State_Y;

<<State_Z+1» — ...rest of program

Figure 4-2: Stage 2 Representation of a While-Loop

5. Thoughts towards a compiler

The method just presented informally emulates a multi-pass compiler that
accepts as input a Stage 1 Ada program (i.e., a "normal" program confined only
by restrictions we may choose to impose on the use of Ada) and produces a Stage
2 program, which is also legal, though "stylized" Ada code. This method is
"compiler-like" in the sense that it is syntax driven and in that the
transformations are viewed as production rules.

The Stage 1 to Stage 2 transformation involves several passes over a program
unit. Backtracking within a given pass is sometimes necessary. For instance, a
pass may begin by scanning the program unit and declaring the instantiation of
all generic package objects that can be determined at that time, and may end
with the declaration of more package objects that have been determined to be
necessary while scanning the code. The passes can be organized as follows:

16

- Pass 1 - Transforms the declaration part of the program unit and the
simple statements. Declares and instantiates packages that correspond
to formal parameters and inserts code to write the actual parameter
values into these packages.

- Pass 2/Part A - Transforms compound statements, that is, loops, if
statements, accept statements and blocks. (Simple statements
"exposed" in this step are also transformed.) Records situations that
require backtracking. Also records situations that require new
packages to be instantiated.

- Pass 2/Part B - Backtracks and replaces "temporary" state markers with
appropriate state numbers.

- Pass 3 - Instantiates new packages whose need has been previously
recorded. Transforms expressions that involve relational operators
and expressions that similarly involve an increase in the number of
states.

5.1. Determining concurrency within a state

Determining which actions may take place in parallel is an important part of
the methodology. Reasoning can be applied to specific cases based on the
function, procedure, and procedurE specifications. However, a general rule is
desirable. The following principles (constraints) are adhered to:

1. At the Stage 2 level no two operations of a given package instance
may be called within a given state. This applies both to multiple
calls on a single subprogram contained in a generic package instance
and to single calls on different subprograms of the same package.
Thus, the calls

Point.Load;
Point .Test;

must be invoked in separate states, whereas

Point.Load;
Slot.Test;

or .
Point.Load;
Slot.Load;

may be initiated concurrently.

2. After receiving an appropriate "Go" signal, a module M (executing a
type procedurE operation) will not recognize another "Go" signal sent
from a module N until after M raises the matching "I'm done" signal.
If a module N were to send such a signal, its "Go" signal will be

1 9

ignored and the action that N requests of M would never take place.
Furthermore, N runs the risk of mistakenly viewing the "I'm done"
signal M sends upon completion of the previous operation as intended
for N and will therefore proceed in error.

.3* The hardware modules developed in this report have no underlying
storage resource management: they allow for only one "activation
record" at a given time. Thus, overlapping invocations will result
in undefined behavior.

The rule is sufficient for our purposes to ensure proper behavior but no
claim is made that it is always necessary. (Note that Ada semantics permit
concurrent activations of operations within a package, although such
permissiveness can lead to non-deterministic behavior.) The fact that a unique
module is created in hardware for every variable, every computation (e.g.,
addition), and every comparison, suggests that control line conflicts will be
avoided as long as no module is presented with more than one command at a time.

6. Stage 3: Protocol-definition Ada program

An Ada task defines a distinct thread of control. Ordinary subprogram calls
by a task T are regarded as traversals along this thread of control. Since
contention for subprogram activation has been eliminated by the constraints we
have imposed, Go/I'm done protocols can be used safely in such cases. Inter­
task communication is more complex since two separate threads of control are
involved and since contention is possible. Such communication is, therefore,
implemented with a four-cycle Request/Acknowledge protocol. Implementation
details for both kinds of communication are introduced in the transformation
from Stage 2 to Stage 3.

6.1. Motivation for Stage 3

Like its predecessor, the Protocol-definition stage is specified in legal Ada
code. The discipline introduced in Section 3 is extended. The Protocol-
definition stage realizes two goals:

1. wew states are inserted and "Line" packages are instantiated to

20

specify protocols for communication between the program units
expressed in the Stage 1 code.

Note that the transformations presented thus far have been concerned
with communications within a given Stage 1 program unit. Since each
of the original program units maps into a unique state machine/data
path pair (engine), task entry calls, procedure calls, and function

• calls between these units cannot be represented by simple control
line assertions. Instead, such communication must be implemented
either using Request/Acknowledge or Go/I'm Done protocols.

2. State label numbers are converted to binary numbers, primarily to
facilitate the encoding of the Stage 3 body part as an SLA state
machine, which takes place in Stage 4.

In the transformation to Stage 3, the list of declared hardware modules is
completed and the state machine is reduced to a sequence of if-statements, goto
statements, and subprogram calls representing control line assertions.

6.2. Implementing Inter-Program Unit Communications Protocols

Stage 3 inserts protocols only for those program units that are originally
specified in Stage 1. Protocols are already defined (in Stage 2) for program
units that are introduced as a result of building block generic package
instantiations. -

In hardware representation each inter-engine communication requires two
communications lines. Each line (i.e., wire) is realized by the instantiation of
the generic package named "Line". The specification part for Line is:

generic
package Line is

procedure Lift;
. — Function:

— Assigns the logical value 1. .
procedure Lower;

— Function:
— Assigns the logical value 0.

function Test return boolean;
— Function:
— Returns true if wire has logical value 1,
— else returns false,

end Line;

21

An instance of this package corresponds to a physical line whose level may be
lowered, raised, or tested.

6.2.1. Transforming Procedure and Function Calls

A procedure or function X is mapped from Stage 2 to Stage 3 as follows:

1. Line packages X.Go and X.Done are instantiated.

2. The decision "if X_Go.Test()" is inserted as the initial state. (The
machine remains in this state until XjGo.Test becomes true. Lines are
always initialized to the logical value 0, regarded here as false.)

3. "X_Done.Lift" is made the action of the final state. The state
machine of X takes the necessary actions to allow the caller to "see"
the return values at the same time X_Done is sensed true.

Program units that contain procedure and function calls to other program units
must also be transformed to reflect the calling protocol. For example, the
action:

«State_1» X(some_arguments); — Call on X
goto State_2;

is transformed into:

«State_l» X_Go .Lift;
X(some_arguments); — The original action,
goto State_2;

<<State_2>> if X_Done.'Test then
— Load the out parameters/function result
— into proper register(s).
goto State_3;

else
goto State_2;

end if;

Notice that the original invocation of X is left in the code.

6.2.2. Transforming Task Entry Calls and Accept Statements

The transformation of tasks is similar to that for subprograms. The scheme
outlined in the previous subsection is followed, although "X_Req" is substituted
for "X_Go" and "X_Ack" is substituted for "X_Done". Additionally, a Line

22

package is instantiated for each entry statement of the task. This Line and the
X_Req Line are "raised" concurrently by the calling task (via a calls to the
respective Lift procedures). Each accept alternative in the receiving task
tests the tasks request line and the corresponding entry statement line before
performing the desired operation. As an example, consider the task named
"Storage" that models a Read/Write memory. Storage is specified in Stage 1 as:

task Storage is
entry Read(

address: integer;
value: out integer); .

entry Write(
address: integer;
value: integer);

end Storage;

The instantiations

package Storage_Req is new Line;
package Storage_Ack is new Line;
package Storage_Read is new Line;
package Storage_Write is new Line;

must be visible to Storage and all tasks which can call it.

The body of Storage is realized as:

2 3

«State_0000>> if Storage_Read.Test() and
Storage_Req.Test() then

goto State_0001;
elsif Storage_Write.Test() and

Storage_Req.Test() then
goto State_0100;

end if;
<<State_0001>> accept Read(

address: integer;
value: out integer)

do
— Perform read operation.
— This may take several steps
— in the general case but here
— we simplify to one step,

end Read;
goto State_0010;

«State_0010» Storage_Read.Lower();
goto Stat e_0110;

«State_0100» accept Write(
address: integer;
value: integer);

do
— Perform write operation .

end Write;
goto State_0101;

<<State_0101» Storage_Write.Lower();
goto State_0110;

<<State_0110>> Storage_Ack.Lift();
— Raise the acknowledge line,

goto State_0111;

«State_0111» if Storage_Req.Test() then
— Keep Ack high until Req is lowered.

. Storage_Ack.Lift();
goto State_0111;

else
Storage_Ack.Lower();
goto State_<some_next_state>;

end if;

2 4

«State_4» Storage .Write(
1,
Some_Value.Read());

goto State_5;

is realized in Stage 3 as: •

<<State_1000» Storage_Req.Lift(); — Raise request line.
Storage_Write.Lift(); — Raise write accept line.
Storage.Write(

1,
Some_Value .Read ());

goto State_1001;

<<State_1001» if Storage__Ack.Test() then
Storage_Req.Lower(); — Test acknowledge line,
goto State_<some_jiext_state>;

else
Storage_Req.Lift();
goto State_1001;

end if;

A S t a g e 1 c a l l o n t h e S t o r a g e w r i t e o p e r a t i o n s u c h a s

Note that the effects of these transformations are to:

1. Force tasks to follow standard Request/Acknowledge protocol.

2. Create an implicit case statement which directs the proper accept
alternative choice (e.g., State_0000 above).

6.3* Transformation to Binary Numbers

In Stage 4, states are encoded as a series of "0" and "1" cells that are
connected to SR flip-flops. For example, «State_0110» is realized by placing
"0", "I", "1", and "0" cells in the same row (AND plane) in adjoining columns a
matrix called and SLA. The level associated with this row is "raised" whenever
that sequence of values 0110 is stored collectively in the flip-flops. We
regard raising this row's level as equivalent to being in State 0110.

To facilitate this encoding, state label numbers are transformed to binary
representations as the last action of Stage 3* With the completion of the state

2 5

expansions outlined earlier in this section, the state machine is fully
specified.

In summary, Stage 2 to Stage 3 transformations can be performed in two
passes. The first pass inserts the necessary state and package instantiations
to specify the communications protocols. The second pass converts the state
label numbers to binary numbers.

7. Stage 4: SLA Program

This section discusses SLA programs and their derivation from Stage 3*

7.1. Background and Use of SLA Programs

SLA is an acronym for Storage Logic Array. SLA methodology lends itself to
the realization of interacting state machine/environment pairs; they are used to
describe both the state machine and the data path components. The SLA concept
was originally conceived by S. Patil [15] [14], extended by Patil and
Welch [12] [13], and further extended by K. Smith [18]. Simply put, SLAs are
"folded" Programmable Logic Arrays (PLAs) in which column and row breaks in both
the AND and OR planes allow the design of independent arrays in the same
circuit. "Programming" an SLA involves the placement of symbolic elements (with
the help of an editor) in a manner that may result in representing an arbitrary
number of independent finite state machines whose interconnection is specified
by the SLA program. These symbolic elements may then be automatically
translated into IC layout masks in the appropriate circuit technology. The
translation of the SLA program into an integrated circuit can be viewed as the
actual placement of finite SLA machines onto the active area of the chip. SLA
programs make it easy for the designer to visualize the physical layout of the
circuit from its logical description. A designer who thinks primarily in terms
of the functional description effectively specifies the physical layout as well.

pSmith and co-workers have designed SLAs in I L, NMOS, and CMOS technologies
[16]. More recent work by Smith's group has extended the SLAs based on a new

26

concept for cell set design. The new circuits, called PPLs, are being primarily
applied in the design of asynchronous state machines [4].

Our method uses SLAs in two ways:

1. The SLA modules previously developed are treated as hardware
components that replace the Stage 3 generic packages. Note that no
formal method is employed for the design of the SLA modules.
However, each module has been simulated independently to test its
correctness.

2. The state machines, including control and feedback lines, are encoded
as SLAs [133.

We use SLA cells to build a library of composite "macros", which are the
Stage 4 modules described in Section 3. These modules comprise the data path
and are inserted using a cell substitution approach. In this sense our use of
SLAs is similar to the use of macro cells [33 and Associative Logic [7].

The particular cell set employed in this work was the 5 micron NMOS set
described in [17]* An SLA editor (SCLED [20]) and a SLA simulator (NSIM [19])
were built and tested at Utah; both were used extensively in this study.

7.2. Encoding of State Machines

The Stage 3 specification of a state, say, State 0110, results in the
connection of the appropriate SLA cells such that the row corresponding to State
0110 goes high at the proper time. Further, in each state the levels on columns
"connected" to the row of a given state are raised when the SLA is in that
state. These columns are the sources of the control lines, which correspond to
the operations to be initiated in that state. A two-pass method is employed to
accomplish the desired encoding. This technique is presented by referring to a
simple example. Consider the Stage 1 if-statement construct:

2 7

if A = B then
C := C + 1;

else
A := B + 1;

end if;

With the assumptions that "A" maps into a Register while "Bn and "C" map into
Counters, this construct could be specified in Stage 3 as:

«State_0000» Equals.Go(A.Read, B. Lookup, equals_result);
goto State_0001;

«State_0001» if equals_result then
goto State_0010;

else
goto State_0011;

end if;

«State_0010» C.Increment;
goto State_0110;

«State_0011» B.Increment;
goto State_0100;

«State_0100» A. Write(B. Lookup);
goto State_0101;

«State_0101» B.Decrement;
goto State_0110;

«State_0110» null;

In the first pass, the states of Stage 3 are scanned sequentially. Every
function and procedure call on a generic package instantiation in Stage 3 is
transformed into the raising of a control line when the row corresponding to the
given state "goes high". If-statements are transformed into two rows, one for
each possible result of the if. The state machine layout rules employed are:

1. For simplicity, columns representing test inputs and control line
outputs that are used to communicate with other state machines
(program units) are placed on the left of the state machine and those
that communicate to local modules are placed on the right.

2. Rows and columns are annexed as needed as the Stage 3 states are
scanned. When a new Stage 3 subprogram call is discovered, a column
is designated to carry the corresponding control line.

2 8

Figure 7-1 presents the result of the initial encoding pass over the Stage 3
code presented above.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

1: F F F F 0 B 0 B 0 B 0 B
2:
3:
4:
5:
6:
7: 0 0 0 0 S + + +
8: 0 0 0 s 1 R 0
9: 0 0 0 s 1 1
10: 0 0 S 1 0 +
11: 0 0 s 1 R 1 R +
12: 0 1 0 0 S + +
13: 0 1 0 s 1 R +
14: 0 1 1 0

i— > B.Decrement
! ------- >
--------->
--------- >

------------------->
------------------- >
 — > Equals.Go
— result from Equals

A.Write
B.Increment
C .Increment
B .Lookup
A.Read

Figure 7-1: First Pass Stage 4 Encoding

Note how state 0000 (row 7) raises columns 10, 11, and 12. This row
corresponds to the "Equals.Go(A.Read, B.Lookup,...)" operations specified for
state 0000 in the Stage 3 code above. State 0001 (rows 8 and 9) corresponds to
the if-statement. Row 8 "goes high" if the result from the comparator carried
in column 9 is false (i.e. a /= b). Row 9 goes high if the result is true (a =
b). Note how new columns are added on the right as new procedure and function
calls are scanned in the Stage 3 code. Note also how the B.Lookup (column 12)
is raised in State 0000 (row 7) and in State 0100 (row 12). The second time
"B. Lookup" is scanned in the Stage 3 code we remember that a column was already
dedicated to this control line; we don't dedicate another. Since this simple
circuit does not communicate with other state machines, all control line firings
are on the right side.

2 9

In the first pass the "+", "1", and ”0" cells are placed only as the need for
them is discovered. A dispersed layout often results. The second manual pass
re-arranges the control lines to group lines that are directed to the same
module. Thus, the second pass merely clusters the control lines, arranging them
according to their destination. The effect of the second pass is to simplify
routing of the control lines to the modules. Figure 7-2 presents the result of
re-arranging of the columns of Figure 7-1. Note how commands going to the same
module are now on adjacent columns.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

1: F F F F 0 B 0 B 0 B 0 B
2:
3:
4:
5:
6:
7: 0 0 0 0 s + + +
8: 0 0 0 S 1 R 0
9: 0 0 0 S 1 1
10: 0 0 S 1 0
11: 0 0 S 1 R 1 R
12: 0 1 0 0 s + +
13: 0 1 0 S 1 R
14: 0 1 1 0

I I ! ! I !— > C.Increment
! I I ! I----> B.Decrement
| | } |------ > B.Increment
I I !-------- > B. Lookup
! !---------- > A.Write
!------------ > A.Read

-------------- > Equals.Go
------ result frcxn Equals

Figure 7-2: Second Pass Stage 4 Encoding

7.3. Layout, Routing and Busing Issues

An algorithmic method for cell layout and routing has not yet been
incorporated into our method. Reference [6] discusses a simple manual routing
method that utilizes the fact that the declaration part of a given Stage 3
program unit specifies the modules utilized by that unit.

3 0

As mentioned earlier, engines that are physical representations of tasks
communicate through the use of the Request/Acknowledge protocol. In the
hardware realm, such engines communicate via buses. A circuit derived by our
method may include several buses, which may be private (non-contention) or
public (with potential for contention between the users). Both types support
the Request/Acknowledge protocol. It is well-known that a Request/Acknowledge
protocol strategy will not work on a contention bus without some sort of
arbitration mechanism. The Request/Acknowledge protocol implemented here
closely follows the scheme outlined by Seitz [16], and appears to be adaptable
to his arbitration scheme. Bus issues are detailed further in [6],

8. Conclusions

The transformation methodology described in the preceeding sections was
developed and exercised in conjunction with am extensive and non-trivial case
study [6]. The algorithm developed for that exercise is a possible model for
the behavior of the Ada selective wait statement, itself initially specified as
an Ada program consisting of a set of intercommunicating Ada server and
requestor tasks. The transformation rules were only applied to a subset of the
program. Application of the rules resulted in two SLA programs whose behavior
was tested with the simulator NSIM.

The case study [6] provided a "real" example of rule-based transformations
which covers the significant portion of the Ada-to-Silicon "spectrum". No
theoretical stumbling blocks were encountered in this process, which suggests
that there is nothing in principle to invalidate the concept that such
transformations may be automated. On the other hand, we have not yet formalized
these transformation rules as concrete algorithms. There is the additional
challenge of reaching practical and competitive circuits with this approach.

We have experimented the intriguing concept of using Ada itself as an
intermediate language in the mapping process. For this purpose we have found

31

important ways to exploit Ada's abstraction features:

1. In mapping Ada program variables to instantiations of generic
packages to pre-defined IC modules.

2. In mapping Ada subprogram and task calls to specific hardware
protocols.

The end result of successful research in this area can be that the
traditional hardware logic design activity will become increasingly a
programming activity that is keyed to the use of high-order programming
languages for system specification. Such an evolution will progress, however,
only as rapidly as we succeed in evolving a new class of high-quality compilers
for hardware.

3 2

REFERENCES

1. Aho, A., and Ullman, J., Principles of Compiler Design. Addison-Wesley,
Reading, Mass., 1977.

2. Barnes, J., Programming in Ada. Addison-Wesley Publishers Ltd., 53 Bedford
Square, London, WC1B 3DZ, International Computer Science Series, 1982.

3. . Carey, J. and Blood, B., "Macrocell Arrays-An Alternative to Custom LSI,"
Proceedings Semi-Custom Integrated Circuit Technology Symposium. Institute
for Defense Analysis, Science and Technology Division, May 1981, pp.
19-37.

4. Carter, T., "ASSASSIN: An Assembly, Specification and Analysis System for
Speed-Independent Control Unit Design in Integrated Circuits Using Path
Programmable Logic (PPL)," Master's thesis, University of Utah Computer
Science Dept., June 1982.

5. U.S. Department of Defense, Military Standard AM. Programming Language.
U.S. Department Of Defense, Washington D.C., 1980.

6. Drenan, L., "On Transforming Ada to Silicon," Master's thesis, University
of Utah Computer Science Dept., August 1982.

7. Greer, D., "An Associative Logic Matrix," IEEE Journal of Solid State
Circuits. Vol. SC-11, October 1976, pp. 679-691.

8. Organick, E., "Programmer's Introduction to Hardware Design", unpublished
course notes used at the University of Utah

9. Organick, E., " Semiannual Technical Report: Transformation of Ada
Programs Into Silicon," Tech. report UTEC-82-020, University of Utah
Computer Science Dept., March 1982, DARPA Order No. 4305.

10. Organick, E. ; Boll, S.; Davis, A.; Griss, M. ; Hayes, A.; Hollar, L.;
Huber, R.; Lindstrom, G.; Rushforth, C.; Smith, K.; and Subrahmanyam, P.,
"Transformations of Ada Programs into Silicon : A Research Proposal to
Defense Advanced Research Projects Agency," University of Utah, March
1981.

11. Organick, E., and Lindstrom, G., "Mapping High-Order Language Units Into
VLSI Structures," Proc. COMPCON 82. IEEE, Feb. 1982, pp. 15-18.

12. Patil, S. and Welch, T., "A Programmable Logic Approach for VLSI,"
IEEETrans. Vol. C-28, Sept 1979, pp. 594-601.

13. ' Patil, S., "On Testability of Digital Systems Designed with Storage/Logic
Arrays," IEEE International Conference £& Circuits M C,QfflPUt<?r.S., 1980,
IEEE, New York, 1980.

14. Patil, S., "Micro-control for Parallel Asynchronous Computers," 1975
Proceedings Euromicro. Eurcmicro, 1975, North-Holland Publishing Company.

33

15. Patil, S., MAn Asynchronous Logic Array," Tech. report TM-62, MIT, May
1975, Project Mac.

16. Seitz, C., "Ideas About Arbiters ,w LAMBDA. Vol. 1, No. 1, First Quarter
1980, pp. 10-14.

17. Smith, K., "Design of Integrated Circuits with Structured Logic Using the
Storage Logic Array (SLA) Definition and Implemantation," PhD
dissertation, University of Utah, March 1982.

18. Smith, K.; Carter, T.; and Carter, T., "Structured Logic Design of
Integrated Circuits Using the Storage/Logic Array (SLA)," IEEE
Transactions & L Electron Devices. Vol. ED-29, No. 4, April 1982, pp.
765-776.

19. Nelson, B., NSIM User’s Manual: University jqL Utah VLSI Research Group.
1981.

20. Nelson, B., SLED User's Manual; University s iL Utah VLSI Research Group.
1981.

i

1. Introduction 1
2. Stage 1: High-Level Ada Program 4
3. Stage 2: Machine-description-level Ada program 5

3.1. The Role of Stage 2 5
3.2. Stage 2 Examples 6
3.3. The "Engine" Extension to Ada 9
3.4. Building Blocks and Modules 11
3.5. Three Intra-program Unit Communications Protocols 11

4. Stage 1 to Stage 2 Transformations 13
4.1. Transforming Simple Expressions 13
4.2. Transforming Control Statements 13

5. Thoughts towards a compiler 17
5.1. Determining concurrency within a state 18

6. Stage 3: Protocol-definition Ada program 19
6.1. Motivation for Stage 3 19
6.2. Implementing Inter-Program Unit Communications Protocols 20

6.2.1. Transforming Procedure and Function Calls 21
6.2.2. Transforming Task Entry Calls and Accept Statements 21

6.3. Transformation to Binary Numbers 24
7. Stage 4: SLA Program 25

7.1, Background and Use of SLA Programs 25
7-2. Encoding of State Machines 26
7.3. Layout, Routing and Busing Issues 29

8. Conclusions 30

T a b l e o f C o n t e n t s

3
6
7
8
9

10

16
17
28
29

i i

An Engine and Its Two Principal Components
Counter Building Block Package Specification
’•Black Box" Representation of a Counter Module
SLA Program for Counter Module Using the SCLED Notation
Hardware Realization of "A := B + C;n
Structure of an Engine Clause for Representing "Transition
Graph" of a State Machine
A Paradigm For-Loop Transformation
Stage 2 Representation of a While-Loop
First Pass Stage 4 Encoding
Second Pass Stage 4 Encoding

L i s t o f F i g u r e s

