
Artistic Vision: Painterly rendering using computer vision techniques.

B ruce G ooch G reg C oom be P e te r Sh irley

U niversity o f U tah T echnical R eport N um ber U U C S -00-017

Category: research

Format: print

Contact: Bruce Gooch
Department o f Computer Science
University of Utah
50 S Central Campus Dr RM 3190
Salt Lake City, UT 84112-9205

phone: (801)585-0010
fax: (801)581-5843
email: bgooch@cs.utah.edu

Estimated # of pages: 8

Keywords: painting, skeleton

We present a method that takes a raster image as input and produces a painting-like image composed
o f strokes rather than pixels. Unlike previous automatic painting methods, we attempt to keep the
number of brush-strokes small. This is accomplished by first segmenting the image into features,
finding the medial axes points o f these features, converting the medial axes points into ordered lists
o f image tokens, and finally rendering these lists as brush strokes. Our process creates images remi
niscent o f modem realist painters who often want an abstract or sketchy quality in their work.

mailto:bgooch@cs.utah.edu

Artistic Vision: Painterly rendering using computer vision techniques.
Category: research

A b s t r a c t

We present a method that takes a raster image as input and produces
a painting-like image composed of strokes rather than pixels. Un
like previous automatic painting methods, we attempt to keep the
number of brush-strokes small. This is accomplished by first seg
menting the image into features, finding the medial axes points o f
these features, converting the medial axes points into ordered lists
of image tokens, and finally rendering these lists as brush strokes.
Our process creates images reminiscent o f modem realist painters
who often want an abstract or sketchy quality in their work.

C R Categories: 1.3.7 [Computing Methodologies]: Computer
Graphics— 2D Graphics

Keywords: painting, skeleton

1 In tr o d u c t io n

The art o f painting relies on representation and abstraction. In “re
alist" painting, the abstraction occurs when the detail o f real im
ages is approximated with limited spatial resolution (brush strokes)
and limited chromatic resolution (palette). Economy is a quality
o f many good paintings, and refers to the use o f only those brush
strokes and colors needed to convey the essence of a scene. This
notion of economy has been elusive for computer-painting algo
rithms. We explore an automated painting algorithm that attempts
to achieve economy, particularly in its use o f brush strokes. We
also allow the user to iterate with the system to improve the default
results. Paintings with economy may be useful for creating real
paintings using robots, creating physical painting “replicas".

There are two main tasks involved in the creation of a digital
painting. First is the creation of brush stroke positions. The second
is the "rendering” of brush strokes into pixel values. If the brush
stroke positions arc manually created by a user, then this is a classic
"paint" program. If the brush stroke positions are computed algo
rithmically, then this is an “automatic" painting system. In either
case, once the brush stroke geometry is known, the brush strokes
must then be rendered, usually simulating the physical nature of
paint and canvas [4, 16, 22].

The economy of painting is determined when brush stroke paths
and widths arc created. We present an algorithm that carefully
chooses brush stroke parameters in a way that we believe achieves
economy. This method is summarized in Figure 1. The digital im
age is first converted into a set o f “tokens” which are mini brush
strokes with position, orientation, width, and color. These tokens
are then collected into longer stroke-sets. Finally these stroke-sets
are each converted into a single brush stroke. We use a variation of
standard algorithms to render these brush strokes.

We review previous digital painting strategies in Section 2. Wc
give an overview o f our algorithm in Section 3. The conversion
from a single segment o f an image to a set o f planned brush strokes,
which is the core o f our contribution, is covered in Section 4. We
then show some resulting paintings in Section 5, and discuss possi
ble improvements to our method in Section 6.

Figure 1: A landscape painting o f Hovenweep National Monument.
This painting was made automatically using the system described
in this paper and a scanned vacation photograph.

2 B a c k g r o u n d

Two basic approaches to digital painting and drawing are used in
computer graphics. The first simulates the characteristics o f an
artistic medium such as canvas and paint. The second attempts to
automatically create drawings or paintings by simulating the artis
tic process. These approaches can be combined as they are dealing
with different aspects, one low-level and one high-level, o f paint
ing/drawing.

Work intended to simulate artistic mediums can be further di
vided into those which simulate the physics o f making a work of
art, and those which simulate the “look and feel” o f a particular
medium. Strassmann simulated the look o f traditional sumi-e paint
ing with polylines and a raster algorithm [22]. Pham augmented this
algorithm using b-splines and offset curves instead o f a polyline to
achieve a smoother brush path [16]. Williams provides a method
o f merging painting and sculpting by using the raster image as a
height field [24].

Smith points out that by using a scale-invariant primitive for a
brush stroke, multi-resolution paintings can be made [20]. Berman
et al. showed that multi-resolution painting methods are efficient in
both speed and storage [1]. Perlin and Velho used multi-resolution
procedural textures to create realistic detail at any scale or dimen
sion [15]. Their work emphasizes that digital paintings stored as
strokes may be useful for transmitting stylized images across a net
work.

Several authors have simulated the interaction of paper/canvas
and a drawing/painting instrument. Cockshott simulated the sub
strate, diffusion, and gravity in a physically-based paint system [4].
Curtis et al. modeled fluid flow, absorption, and particle distribution

to simulate watercolor [6]. Sousa and Buchanan simulated pencil
drawing by modeling the physics and interaction of pencil lead, pa
per, and blending tools [21].

While the works discussed above are concerned with the low-
level interaction of pigment with paper or canvas, other authors aid
a user in the creation of an art work, or automate the process al
together. Hacbcrli built a paint system that re-samples a digital
image based on a brush, and then automated this system using a
second control image [8]. Wong built a system for charcoal draw
ing that prompts the user for input at critical stages of the artistic
process [25]. Meier produced painterly animations using a particle
system [14]. Litwinowicz produced impressionist-style video by
re-sampling a digital image and tracking optical flow [13]. Hertz-
mann refined Haeberli’s technique by using progressively smaller
brushes to create a hand-painted effect from a photograph automat
ically [10]. Shira et al [19] use image moments and a subdivision
scheme to build digital paintings automatically. Gooch et al. auto
matically generated technical illustrations from polygonal models
of CAD parts [7].

The algorithm described in this paper should be grouped with the
latter set of works that simulate the high-level results o f the artistic
process rather than the physics o f the painting process. Our work
uses computer vision algorithms to paint an image that is reminis
cent of the way an artist might paint it. Our technique results in a
resolution-independent list o f brush strokes which can be rendered
into raster images using any brush stroke rendering method.

3 A lg o r ith m

The steps o f the algorithm are as follows (Figure 2):

1. Decompose the images into segments.

2. Decompose each segment into brush strokes.

3. Render brush strokes in some order.

Recent work in computer graphics has shown that a first order
approximation to the tone mapping operator should probably be
achromatic [18]. Hence source images are segmented based on
pixel luminance, and color brush strokes using the color ratios sug
gested by Schlick [18], By allowing a user to set the number of
intensity thresholds the image will be segmented into. A set of
approximately perceptually uniform grey levels is created, and the
image is segmented using a flood filling algorithm. A similar tech
nique is sometimes used by human artists when they first produce
tonal sketches of the scene they are painting [20].

Each segment is independent; two segments o f the same lumi
nance are treated independently (i.e. the letters 7' and H in Fig
ure 2). A more sophisticated segmentation strategy could be used
without changing the rest o f our pipeline.

Brush-stroke path generation is the most complex part o f the sys
tem. First computer vision algorithms are used to smooth the seg
mented regions. The system next finds a discrete approximation to
the central axis of each segment, called the ridge set, which deter
mines a brush path. Elements o f the ridge set are pieced together
into tokens. These tokens can, at the users discretion, be spatially
sorted into ordered lists. In the final image this second sorting has
the effect o f painting a region with a single large stroke instead
of many small strokes. The system also estimates the “thickness"
along the central axis to control brush width. The details of the
brush stroke generation are the main contribution of this paper and
are covered in the next three sections.

Modified versions o f Strassman [22] and Pham’s [16] algorithms
are used to render brush strokes to the screen. Strassman and Pham
modeled sumi-e brushes which taper on and taper off to a point
during a brush stroke. I instead choose to model a Filbert brush

THE
CTZI

I
IT
J L

TH
Figure 2: The basic steps in the algorithm. First the image is
segmented using flood filling. Next each segment is independently
decomposed into brush strokes using vision algorithms and an ap
proximate medial axis transform. Each brush stroke is then “ren
dered" into a raster image.

Figure 3: Digitally simulated brush strokes modeled on a Filbert
brush.

used in oil painting. Filbert brushes are made as round brushes with
round lips, and then flattened. They are good all-purpose brushes
combining some of the best features o f flat and round brushes [20].
To model a Filbert brush, The “taper-on” is constrained to a circular
curve and the “taper-off" to a parabolic curve. Examples o f this
type of simulated brush stroke are shown in Figure 3.

4 S e g m e n ta t io n a n d s m o o th in g

The image is first segmented based on intensity. Then the seg
mented regions are filtered using computer vision algorithms to
smooth the region edges, and to any holes inthe regions. This pro
cess aids in the medial axis computation phase of the process by
reducing noise.

4.1 Segmentation

The software user is allowed to set the number of intensity thresh
olds the image will be segmented into. An array o f floats represent
ing these thresholds is created by recursively evaluating the expres-

2

Figure 4: An example of a segmented region. The region after the hole filling algorithm has been run. The region after being grown, the
region after having been shrunk.

Figure 5: An example o f varying the number of gray levels in the
segmentation and the resulting images. From top to bottom; the
source image, image segmented using 72 gray levels, image seg
mented using 48 gray levels. Note that the coulds have faded into
the sky in the 48 gray level image. The effects o f this type of seg
mentation artifact is reflected in the final painted image.

were r is the current threshold, Io is the initial intensity, and n is
the number of intensity levels [9],

Pixel values are sorted by intensity into an array. This allows the
use of the brightest pixel as a seed to flood fill regions of the image.
The flood filling algorithm proceeds by adding the seed pixel to a
region list, and setting a head pointer to the beginning of the region
list. Next a gray level pointer is set to the first entry of the intensity
threshold array. Flood filling begins by checking the neighbors of
the pixel pointed to by the head pointer. If any neighbor has a value
greater than the value pointed to by the gray level pointer it is added
to the region array. When the current neighbors have been checked
the head pointer is advanced, if no new data members exist in the
region list the process is complete and the region list is returned.

To fill a new region values are popped from the brightest pixel
queue, tested to see if they belong to a previously segmented region,
and if not used to seed the region. If this new seed pixel is below the
current gray level pointer the gray level pointer is adjusted down
ward.

In practice regions with fewer than twenty five pixels tended to
evaporate during processing by the vision algorithms. Therefore if
a region has fewer than twenty five pixels the region is recycled by
not forming a region with the pixels, then choosing a brightest pixel
as if a region had been formed. This allows pixels to be added to
another region.

4.2 Hole Filling

The first vision algorithm run on a segmented region is a hole filling
algorithm. Segmented regions are stored as boolean arrays with
true indicating membership of that pixel in the region. Each false
pixel is queried to find how many true neighbors it has, pixels with
more than five true neighbors are changed to true. Next each false
pixel is tested for having true values above, below, to the right,
and to the left o f it. If true values are found for cach of these the
algorithm next checks the pixels form the above value to the below
value to make sure that they all have true left and right values. Then
from the right value to the left value all the pixels are checked to find
if they have true above and below values. If all o f these values are
true the pixel is is set to true.

4.3 Expanding and Shrinking

Next expanding and shrinking algorithms are used on the region
to smooth the boundary o f the region and removing isolated noise

3

pixels in the region. First expand the region using the following
rule: change a pixel from false to true if any of its neighbors are
true. Next shrink the region using the rule: Change a pixel from
true to false if any neighbor is false. In practive it was found that
two applications of expanding followed by shrinking produces good
results. Expanding and shrinking operations may also be applied
to the approximate medial axis, described in the next section with
good results.

5 R id g e S e t E x t ra c t io n

Once a region is smoothed and in-filled the medial axis (skeleton)
is computed and used as a basis for the brush stroke rendering al
gorithm. The medial axis o f a region is essentially the “spine” of
an object. For example, the medial axis of a person would roughly
be the stick figure associated with that person. The medial axis was
first presented by Blum [2], and has been shown to be useful in
coarscly approximating 2D [12] and 3D objects [1 1], The medial
axis has also been shown to be a good approximation of the way the
human visual system perceives shape [3],

Previous automatic painting methods use a hierarchy of image
grids to segment the source image into strokes. We first attempted
to use a similar system but found that the results were highly sen
sitive to the underlying grid structure. The problems with grid arti
facts led us to the medial axis transform. The medial axis transform
yields scale and rotation invariant measures for a segment, and is
independent o f a grid structure. In addition the transform yields
width information along the medial axis.

While the medial axis is a continuous representation, there are
several types of algorithms for computing the medial axis in im
age space, including thinning algorithms and distance transforms.
The distance transform algorithms are not as sensitive to bound
ary noise and produce width information, but they tend to produce
double lines and often don't preserve the connectedness of the me
dial axis lines. Thinning algorithms, like Rosenfeld's parallel al
gorithm [17], preserve the connectedness of components and pro
duce smooth medial axis lines, but are sensitive to noise along the
boundary, which produces undesirable spikes (spurs). Although it
is possible to filter some o f the spurs, filtering often results in a loss
important information. Another drawback to thinning algorithms
is that they do not produce information about the distance to the
boundary, which is needed for brush stroke width estimation in the
application.

The positive aspects o f both techniques are combined in this the
sis to form a hybrid method. First apply the distance transform to
extract a discrete approximation of the medial axis called the ridge
set. I then thin the ridge set to remove spurs, caused by bound
ary noise, and double lines, caused when the medial axis falls be
tween pixels. The combination of techniques results in a ridge set
with distance information, and reduced sensitivity to noise along
the boundary.

5.1 Distance Transform

For each pixel in the image, compute the shortest distance to the
boundary using a distance transform [12|. On its first pass the dis
tance transform assigns a value o f one to each pixel in the region.
Subsequent passes o f the distance transform over the region approx
imate a Euclidean distance transform. By finding a single diagonal
zero valued pixel if such a neighbor exists, or the smallest non zero
neighbor of the current pixel. If this value is larger than the current
value of this pixel one is added to the current value of the pixel in
the case of a vertical or horizontal smallest neighbor, and the square
root o f two is added to the current pixel value in the case of a verti
cal smallest neighbor. The algorithm proceeds until no values in the
region are changed in a pass over the region. Notice in Figure 4.3

that any pixel affects only the next level of pixel values (analogous
to the next layer in an onion skin). Since the value at a pixel rep
resents the distance to the boundary, the number o f passes over the
image is proportional to the radius of the largest circle that touches
both boundaries.

5.2 Extract Approximate Medial Axis

This distance transformed region can be tested in a manner that
yields a set o f ridge points, which are points that arc further away
from the boundaries than the surrounding points. These ridge points
form a discrete approximation to the medial axis. The distance
transform also gives us an approximate width at each ridge point.
These widths are used as offsets when rendering brush strokes.

A very conservative test is used in the search for a ridge set. Pix
els are part of the ridge set only if they are greater than or equal
to the value of all o f the pixels in their eight neighborhood. This
strict test necessitates some of the grouping algorithms performed
later by leaving gaps in the ridge set. However, in practice using a
less conservative test results in noisy line segments which tend to
produce nervous uncontrolled brush strokes. In addition the thin
ning algorithms tend to work faster, and to produce smoother line
segments when presented with sparse ridge sets.

5.3 Thin Axis

To address the problem of double lines in the distance transform, we
treat the ridge set as a binary image and run a thinning algorithm
over the set. We use Rosenfeld’s parallel thinning algorithm [17],
which runs over each point in an image and removes the point if it
is not 8-simple. A pixel is called 8-simple if it cannot be removed
without destroying the 8-connectivity o f the set. Rosenfeld’s algo
rithm and the connectivity problems associated with the 8-simple
test, as well as the details o f our implementation o f the algorithm
arc discussed in the appendix. This thinning algorithm eliminates
double-lines and most other noise from the ridge set. The algo
rithm typically requires 2-3 passes over the binary ridge set data.
Another advantage o f the thinning algorithm is that points in the
ridge set are gauranteed to be at most 3-connected, that is given any
point in the ridge set that point has at most three neighbors in its
8-neighborhood.

At the core o f Rosenfeld’s parallel thinning algorithm is a test
for the 8-simpleness of a pixel. We present a fast method for deter
mining whether a pixel neighborhood is 8-simple.

input for each pixel c in image, N = {i | i € 8nbd of c, i € 6'}

ou tpu t boolean simple, not-simple

More completely, let S = set o f pixels in the current segment.
Adjacency refers to 8-connectedness (pixels on sides or diagonals).

• An 8-neighborhood is a collection o f all pixels that arc adja
cent to a center pixel.

• p € S, q 6 S are 8-connected if they arc adjacent.

• An 8-neighborhood is 8-simple if Vp € S , the removal o f the
center pixel does not change the 8-connectedness o f p (i.e. the
center pixel is a redundant path).

Construct a graph G (V, E) as such: let V = { v | v 6 8-nbd}
and let E = { e^ | [|i — j | | < \/2 } . This is illustrated in Figure 7.

The graph G represents the 8-connectedness paths o f the neigh
borhood. The intersection o f our input set N with the graph G re
sults in a new graph, G' (V, E). Now our test for 8-simpleness
just becomes a test for the connectedness o f the planar graph G '.

4

Figure 6 : An example o f a distance transform on a region. First all pixel values inthte region are initilized to one if they are in the segmented
regionn, zero if they are not. Next multiple passes are made over the region. At each pass if a pixels neighborhood is nonzero, and contains
values that are all less than or equal to the current value of that pixel a value is adde to the contents o f the pixel. This example shows the
increasing value o f the pixels by changing their color values to wanner values.

Figure 7: The graph representation o f an 8-neighborhood.

This means that we can use Euler's Theorem for connected planar
graphs, which states that v + r — 2 = e, where v denotes vertices.
r denotes regions of plane, e denotes edges. Rearranging the terms
yields two conditions for 8-simpleness in a pixel 8-neighborhood:
I) there can be no isolated pixels; 2) v — 1 < e.

The method for this is to represent C (V, E) as E , =
{ j I II* - il l < \/2 } . Then. Vi 6 N {

if (Ei n N = <j>) return not_simple; // isolated pixel
else edges += degree(E,C\ N)\

}
if (edges > v — 1) return simple:
else return not-simple
The E, can be encoded in binary, resulting in a fast test. The only

storage requirements are the eight sets E i, which can be stored as
eight integers. Most previous thinning algorithms in the computer
graphics literature enumerate and store every case, resulting in a
large overhead.

6 R id g e S e t T o k e n iz in g a n d G r o u p in g

The combination of the distance transform and thinning algorithms
yields a set o f approximate medial axis points and a set o f width
values associated with cach point. Next group spatially coherent
points into tokens, as shown in Figure 5.3. These tokens can next
grouped into strokes, and finally strokes from different segmenta
tion regions may be grouped together.

Tokens are formed by classifying the points in the ridge set based
on 8-connectedness of the points with other members o f the ridge
set. Local searches for connected points are then used lo group the
points into tokens.

We explored two methods for grouping tokens. The first involves
taking the moments of the tokens using the width values as weights
at each point. All tokens are then compared, and merged together

using a variant o f Prim’s minimum spanning tree algorithm [5]. The
second involves creating a cone of acceptable values at the begin
ning and end of each token. If two tokens cones intersect the tokens
are merged into a single larger token. The methods differ in com
plexity, speed, and in the manner in which the grouped tokens can
be rendered as brush strokes. Both methods are discussed in detail
and their merits are compared.

Strokes from different segmentation regions can be grouped us
ing the same methods used for merging tokens. Merging strokes
however, comes with a large memory overhead because all o f the
data structures involved in processing a region must be saved off for
later comparison and merging instead of being reused in processing
the next segmented region.

6.1 Forming Tokens

The first step in tokenizing the ridge set is to classify the mem
bers o f the set based on their 8-connectedness with other members
of the ridge set. Points are classified as follows; points with no
neighbors in their 16-neighborhood (two pixel rings out from the
given point) are classified as orphans, points with one neighbor in
their 16-neighborhood are classified as seed points, points with two
neighbors in their 16-neighborhood are classified as line points, and
points with 3 neighbors are classified as branch points. During clas
sification queues for each type o f point in the region are instantiated
and filled with the given points. In addition a binary array the same
size as the ridge set is instantiated and its members set to true. The
binary array will be used to find if any member o f the ridge set has
been added to a token. Orphan points are considered to be tokens
with a single point.

Grouping of tokens proceeds as follows. Points arc popped from
the seed queue and added to token objects if the entry in the binary
array corresponding to the popped seed is true, else a new seed is
popped. The entry in the binary array corresponding to the seed is
set to false. Seeds have only one point in their 16-neighborhood,
find this point. If the point is a seed; add the point to the current
token, set the binary array position to false, make a new token, pop
a new seed from the seed array. If the point is a line point; add
the point to the current token, set the position in the binary array to
false, find the 16-neighbor o f the line point. Note that finding the
16-neighbor is assumed to be dependent on the state o f the binary
array. If the point is a branch point; add the point to the token
object, reclassify the point as a line point, create a new token object
and pop a new seed from the seed array.

Now that the ridge set is grouped into tokens as in Figure 5.3
This token set can be grouped into strokes.

5

Figure 8: An example of ridge set extraction, thinning and grouping. Frist the ridge set is extracted from the distance transformed image.
Next our thinning algorithim is applied. The resulting ridge set is next grouped into tokens, and these tokens are merged into a stroke.

6.2 Grouping Tokens via Moments

The first method we explored for grouping tokens into strokes was
to take the moment o f the token using the width values associated
with the token points as weight values. The first moments yield
the center o f mass for the token which is used as the position o f the
token. While the second moments allow us to construct a major and
minor axis for the token which is used for the length and width of
the token, and an angle o f orientation. Al this time we also sample
the color o f the token points from the original image.

The original image is sampled in a rectangular box correspond
ing to the width value at the given ridge point. Color values are
added together and averaged. The color value o f orphan tokens are
sampled in a similar manner. The color value for the token is then
computed by taking a weighted average of all o f the points in the
token. The average for the token is weighted by the width values of
the token points.

Once all o f the points are grouped into tokens. The information
in the current set o f tokens is used to create a set o f strokes. This
process is a variant o f Prim’s minimum spanning tree algorithm [5].
A list o f edges connecting every pair of tokens that are within a dis
tance tolerance is created. Next an edge cost is computed for each
edge by summing the differences of the token properties position,
orientation and color. For every token other than the orphan tokens
a priority queue is used to select the lowest cost edge e jj. The algo
rithm then attempts to merge these tokens into a stroke. Strokes are
represented as an ordered set o f tokens S = { t o , . . . , t n }- A merge
is successful if vectors from the position o f both tokens along the
major axis of the tokens point toward each others positions and the
angle formed by the vectors is less than forty five degrees. This pro
cess is repeated by continuing to prioritize and attempt to merge to
kens and strokes until all the tokens are merged into a single stroke,
or until all possible combinations of token merges have been at
tempted with negative results.

Next attempt to merge the orphan tokens into the existing
strokes. Edge costs are computed in a similar manner as for reg
ular tokens. Merges are successful if the orphan token lies within a
forty five degree cone formed by the position o f the token in the di
rection of the major axis, and two lime the length o f the hypotenuse
of the major and minor axis of the token.

The merging process generates a set of strokes which cover the
original set of tokens. Each token in the stroke has a width given
by the minor axis o f the moment o f the token. By using a spatial
b-splinc to connect token positions and a scalar b-spline to inter
polate widths, This process creates a smoothly varying form which
approximates the shape of the segment and forms the basis for a
brush stroke.

Figure 9: The medial transform algorithm is very susceptible to
noise, and therefore can generate a large number of strokes in a
single segmented region. The connect strokes algorithm attempts
to link these small strokes into larger smooth strokes. This example
shows a region painted with, left image 62 strokes, and without,
right image I stroke, the use o f the connection algorithim.

6.3 Grouping Tokens via Search Cones

We also explored a second method for grouping tokens that involves
searching a cone of possible values for the beginning of another
token. For each token search cones are created at the end points of
the token in the direction of a vector formed by the first two points
o f the token and the last two points o f the token and out to a distance
o f seven pixels. Then the cones of every token are tested to see if
they intersect the cone of any other token. Tokens with intersecting
cones are merged into strokes and the process is repeated until no
further merges are possible. Unmerged tokens are made into single
token strokes. Next the algorithim attempts to merge the orphan
tokens into the existing strokes by testing their positions verses the
search cones.

The major advantage of this method over the moment method is
speed, the cone intersections can be hard coded, and merging gener
ally takes less than log n passes over the data were n is the number
of tokens. In addition in order to render this type of stroke the ridge
set points are used directly without the over head of computing b-
spline curves. The disadvantage is that this stroke representation
may lack smoothness, and may self intersect causing artifacts when
rendered with alpha blending.

6.4 Grouping Strokes

In addition to grouping tokens and strokes inside a single segmented
region strokes and tokens from different regions can be merged.
An example o f why this may be beneficial is shown in Figure 6.4.
The improvement to the system is purely esthetic and may not be
suitable in every case. Stroke merging however incurs a huge cost
in memory for the system.

Stroke merging can be accomplished using either the moment

6

method or the search cone method. The memory overhead come
form the fact that all o f the tokens and strokes form all o f the re
gions need to be saved and checked after each region is segmented
for a given gray level. In practice this slows the system down by
between one and two orders o f magnitude depending on the mem
ory requirements o f the images used and the available memory of
the machine on which the system is being run.

7 R e n d e r in g I m a g e s

7.1 Stroke Representation

The final phase of the algorithm is rendering an image from the
brush stroke representations. Brush stroke rendering depends on
the method of token grouping used in the previous phase of the al
gorithm. Next modified versions of Strassmann [22] or Pham's [16]
algorithms arc used to render brush strokes.

Strokes made up of tokens that are grouped using the moment
method are rendered by using the positions of the moments as the
control points o f a b-spline curve. This list o f control points is
known as the control polynomial. As seen in Figure 7 The stroke
rendering process begins by adding additional control points to the
beginning and end o f the control polynomial in order to ensure ade
quate length for the brush stoke. These points are found by applying
and offset to the first and last control points o f the control polygon.
The offset used is the same offset as between the last and next to
last points, and the first and second points respectively.

A spacial B-spline curve, described by this control polynomial,
which smoothly interpolate a curve along the edge of a brush stroke
are computed. As well as a b-spline curve that blends the width
values at each of the control points to give the strokes a smoothly
varying width. Finally offset curves in both directions normal to the
spacial curve are computed using the width spline values.

Two integer arrays are filled with points calculated along both
offset curves in a pairwise fashion. These arrays o f points yeild list
of quads which are filled using standard line drawing. The color
of each line may be perturbed to yield an effect similar to a brush
artifact.

Strokes that are grouped using the search cone method are ren
dered using a simpler method. The token points are entered in or
der into integer arrays representing the (X , Y) coordinates o f the
points. Next for each X , Y point a local normal direction is calcu
lated by assuming that the given point is a point in a line segment
composed o f itself and its closest neighbor in the token. Lastly for
each X , Y point two edge points arc calculatcd in either direction
normal to the point at a distance equal to the stored width at that
point.

This method has the advantages o f speed, and a great deal less
computational and coding complexity than the B-splinc method.
However, this method can create visible artifacts when used with
alpha blending. The normal directions calculated for each of the
stroke points can intersect, causing what Strassmann called the
"Bow Tie” effect. This effect is demonstrated in Figure 7. When
a low Alpha value is use. cause the brush stroke to appear opaque,
the brush stroke may contain these self intersections causing areas
o f the stroke to appear darker. In practice this effect is generally not
noticeable with alpha values higher than 0.75.

8 B r u s h E f fe c ts

Painting effects such as brush artifacts, paint mixing between lay
ers, and stroke connection are common to both rendering methods.
Strassmann’s algorithm is modified by adding rounded end caps to
the brush strokes. Alpha blending is used to simulate paint mixing
on a per stroke basis.

Figure 12: Depending on the viscosity o f the paint a ridge arti
fact of varying height can be created when the paint is allowed to
dry. This effect is simulated by adding light and dark bands to the
stroke. A dry brush effect is simulated by halting the drawing o f the
brush stroke in a random manner. In our system these effects are
adjustable by the user.

Figure 13: Alpha blending is used to simulate paints o f various
opacity. Paints with a high opacity will show the underlying sub
strate while paints with a low opacity will block the view of the sub
strate. The user adjustable Alpha parameter controls the percentage
of blending between the under painting and the brush strokes.

Visual effects o f the grouping algorithms discussed in the previ
ous section are demonstrated in Figure 8.2. The medial transform
algorithm is very susceptible to noise, and therefore can generate a
large number of strokes in a single segmented region. The connect
strokes algorithm attempts to link these small strokes into larger
smooth strokes.

Alpha blending is used to simulate paints o f various opacity.
Paints with a high opacity will show the underlying substrate while
paints with a low opacity will block the view of the substrate. The
Alpha parameter controls the percentage o f blending between the
under painting and the brush strokes.

8.1 Under Painting

Under painting is simulated by allowing the user to render strokes
on top of another image. Meyer [14], Hertzmann [10] and Shira et
al [19] discuss under painting in their work. Meyer rendered brush
strokes on an a background image. Hertzmann and Shira et al. blur
the source image and render strokes on top of the blurred image.

The system allows the user to import separate source images and
under painting images. In this way strokes can be rendered onto a
background image like Meyer, or onto blurred images like Hertz
mann and Shira. In addition the under painting can be used for
artistic effect as in Figure 8.1. One can also use the output o f the
system as the input to another image allowing a painting to be built
up in layers.

8.2 Effects of Segmentation

As discussed in Section 4 varying the number of gray levels in the
segmentation can greatly vary the way in which the segmented im
age is perceived. This difference in the segmentation of the source
image also has an effect on the painted image as seen in Figure 8.2.

8.3 User Directed Enhancement

One weakness in the system is the fact that human artists will at
tempt to make brush strokes in a manner that communicates the un-

7

Figure 10: An example o f our method for drawing strokes based on moment tokens. First, points are grouped into tokens and the moment of
the group is taken Second, points are replaced by the moment centroid and additional points are added to the beginning and end of the token
list Third, the points are used as the control polygon o f a B-spline curve Forth, offset curves are computed to find the with of the stroke. Last,
the stroke is rendered. Note that this stroke is smoother thatn the stroke that results form the method demonstrated below.

Figure 11: An example o f our method for drawing strokes based on line lists. First, points are grouped into tokens. Second, tokens are
grouped into a list o f points. Third, for every point a normal line is found. Forth, based on the normal directions and the width at each point
edge points for the stroke are computed. Last, a brush stroke is rendered. Note that while this stroke contains some artifacts the rendering
lime is significantly lower than for the stroke rendered using the above method.

Figure 14: Under painting is a method used by artists to block in
colored regions o f a painting. We simulate under painting by al
lowing the user to render strokes on top of another image. This
example shows a source image. Next we see a painting made from
this image and suing the source image as an under painting. The
third image is an under painting made by changing the color gamut
o f the original image and then blurring the image. The final paint
ing was made by painting strokes, using the first image as a source,
onto the modified underpainting. This tecnique can be expanded
upon to create images with multiple layers.

Figure 15: An example o f varying the number of gray levels in the
segmentation and the resulting paintings. All paintings used the
Yosemite Vacation Image as a source image. From top to bottom
the images were segmented using; 12, 48, 72, and 150 gray levels
respectively.

9

Figure 16: An example of user directed enhancement. The Feyn
man portrait is deemed by the user to lack detail in regions sur
rounding the eyes, mouth, and hand. The user selects these regions,
and raise the segmentation level. New higher frequency strokes are
drawn over the original strokes, hopefully improving the result.

derlying three dimensional structure o f the subject. Because there
is no additional information about the source image two semi suc
cessful work arounds have been implemented. The first, and sim
plest work around is to start brush strokes at the widest end of the
stroke. This way any taper or dry brush effect proceeds in a manner
consistent with physics.

The second method allows the user to select areas o f interest
in the image and re segment these areas with a higher number of
gray levels in the segmentation. This allows the user to direct the
placement o f high frequency information in the image, and in many
cases improves the visual appearance o f the painting. An example
of this process is shown in Figurereffig:enhancement.

9 C o n c lu s io n a n d F u tu r e W ork

Our method achieves the basic goal o f keeping the number o f brush
strokes small compared to previous methods. The method is suit
able for a variety of image types as shown in the previous section.
However, there are a variety o f image types where the method is
poorly suited. These include images that require sophisticated seg
mentation, and images where viewers are highly sensitive to spe
cific features o f the image, such as detailed portraits.

We think productive future work would include improvements
10 every stage of the algorithm. Better segmentation, such as that
given by anisotropic diffusion [23], would give immediate improve
ments in linking brushstrokes to salient features o f the image. The
computation of medial axes could be made less sensitive to noise
if a continuous medial axis algorithm based on Voronoi partitions
were used. This would simplify the job o f the token-merging step in
our algorithm which currently must account for noisy input. A sim
ple improvement would be more sophisticated ordering of brush
strokes, such as optimizing order based on edge correlation with the
original image. Once brushstroke order is known, more physically-
based paint-mixing would give a look more reminiscent o f oil paint
ing. Our system could benefit from a user-assisted stage at the end
to improve brushstroke-ordering. An estimate o f foveal attractors
in the image could allow brushstroke size to be varied with proba
ble viewer interest. Most challenging, our method could probably
be extended to animated sequences, using time-continuous brush
stroke maps to ensure continuity. However, it is not clear what
such animated sequences would look like, or to what extent they
are useful. The most exciting potential future effort is to create ac
tual stroke-based hardcopy using robotic or other technology.

[1] B e rm a n , D. F., B a r t e l l , J. T., a n d S a le s in , D. H.
Multiresolution painting and compositing. Proceedings o f
SIGGRAPH 94 (1994), 85-90.

[2] B lu m . H. A transformation for extracting new descriptions
of shape. Models fo r the Perception o f Speech and Visual
Form (1967), 362-380.

[3] BURBECK, C. A., a n d P iz e r , S. M. Object representa
tion by cores: Identifying and representing primitive spatial
regions. Vision Research 35, 13(1995), 1917-1930.

[4] COCKSHOTT, T. Wet and Sticky: A Novel Model fo r
Computer-Based Painting. PhD thesis, University o f Glas
gow, 1991.

[5] C o rm e n , T., L e is e r s o n , C „ a n d RiveST. R. Introduc
tion to Algorithms. MIT Press, 1990.

[6] C u r t i s , C. J.. A n d e r s o n . S. E., Seim s, J. E., F le i s
c h e r . K. W., a n d S a le s in , D. H. Computer-generated
watercolor. Proceedings o f SIGGRAPH 97 (August 1997),
pages 421-430.

[7] G o o c h , B., S lo a n , P.-P. J., G o o c h , A ., S h i r le y , P..
a n d RiESENFELD, R. Interactive technical illustration. 1999
ACM Symposium on Interactive 3D Graphics (April 1999),
31 -38 .'

[8] H a e b e r l i , P. E. Paint by numbers: Abstract image represen
tations. Proceedings o f SIGGRAPH 90 24, 4 (August 1990),
207-214.

[9] HEARN, D.. AND B a k e r , M. P. Computer Graphics.
Prentice-Hall, 1986.

[10] H e r tz m a n n , A. Painterly rendering with curved brush
strokes of multiple sizes. Proceedings o f SIGGRAPH 98 (July
1998), 453-460.

[11] H u b b a rd , P. M. Approximating polyhedra with spheres
for time-critical collision detection. ACM Transactions on
Graphics 15, 3 (July 1996), 179-210.

[12] Ja in , R., K a s tu r i , R ., ANDSCHUNCK, B. Machine Vision.
McGraw-Hill, 1995.

[13] LITWINOWICZ, P. Processing images and video for an im
pressionist effect. Proceedings o f SIGGRAPH 97 (August
1997), 407—414.

[14] M e ie r . B. J. Painterly rendering for animation. Proceedings
o f SIGGRAPH 96 (August 1996), 477^*84.

[15] P e r l i n , K., a n d V e lh o , L. Live paint: Painting with pro
cedural multiscale textures. Proceedings o f SIGGRAPH 95
(August 1995), 153-160.

[16] P ham , B. Expressive brush strokes. Computer Vision,
Graphics, and Image Processing. Graphical Models and Im
age Processing 53, 1 (Jan. 1991), 1-6.

[17] R o s e n f e ld , A. A characterization o f parallel thinning algo
rithms. InfoCoturol 29 (November 1975), 286-291.

[18] SCHLICK, C. Quantization techniques for visualization of
high dynamic range pictures. Proceedings o f the 5th Euro
graphics Workshop (June 1994), 7-20.

References

10

[19] S h ir a is h i , M ., an d Ya m a g u c h i, Y. Image moment-
based stroke placement. Tech. Rep. skapps3794. University
of Tokyo, Tokyo Japan, May 1999.

[20] SMITH, A. R. Varieties o f digital painting. Tech. rep., Mi
crosoft Research, August 1995.

[21] S o u s a , M. C ., a n d B u c h a n a n , J. W. Computer
generated graphite pencil rendering o f 3d polygonal models.
Computer Graphics Forum 18, 3 (September 1999), 195-208.

[22] S t r a s s m a n n , S. Hairy brushes. Siggraph 20. 4 (Aug.
1986), 225-232.

[23] T u m b lin , J., a n d T u r k , G. Lcis: A boundary hierar
chy for detail-preserving contrast reduction. Proceedings o f
SIGGRAPH 99 (August 1999), 83-90. ISBN 0-20148-560-5.
Held in Los Angeles, California.

[24] WILLIAMS, L. 3D paint. 1990 Symposium on Interactive 3D
Graphics (1990), 225-233.

[25] Wo n g , E. Artistic rendering of portrait photographs. Mas
ter's thesis, Cornell University, 1999.

11

