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Abstract
This report presents the design of a distributed parallel object system (DPOS) and its 

implementation using a graphical editing interface. DPOS brings together concepts of object- 
oriented programming and graphical programming with aspects of modern functional lan­
guages. Programs are defined as networks of active processes called “Process Objects” and 
interconnecting communications lines. These active objects are independent single threaded 
programs that employ much of the modularity, encapsulation of function, and encapsulation 
of data found in sequential object-oriented programming. The system defines a clear and 
simple approach to generating and managing parallelism and interprocess communication 
in a distributed parallel environment. DPOS contributes several new solutions to the prob­
lems of distributed parallel programming that are improvements over existing systems. The 
key improvements of this system include: a more complete and versatile means of dynamic 
process creation; the specification of complex network topologies in an intuitively clear and 
understandable way; seperation of the management of parallelism from the definition of com­
putation; automatic resolution of low level critical section issues; the ability to design and 
develop separate processes as traditional single threaded programs; the encapsulation and 
incremental development of programs subnetworks; application of graphical programming 
concepts to high level programming.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The need for computers that solve larger and more complex problems has moti­

vated a great deal of recent research. The technology to produce larger and faster 

computers at reasonable cost has advanced rapidly. A significant direction that 

these technological developments have taken is in the area of distributed parallel 

computer systems.

Within the research area, of distributed parallel computer systems the technology 

to develop software has not kept up with the advances in hardware development [27]. 

There are, however, recent software developments that hold great promise for 

distributed parallel software systems. Also, due to the impact of distributed parallel 

computer architectures on algorithm design, there is reason to believe that the 

characteristics of distributed parallel algorithms may be reasonably grouped for 

study. This research is directed specifically at distributed parallel computer systems 

which are refered to simply as distributed.

Object-oriented programming has developed over the years in sequential pro­

gramming as a means of encapsulating functionality and data in the development 

of computer programs. It has proven to be an excellent approach for managing large 

scale and complex programs. It has also been used for modeling various types of real 

world systems that are complex and concurrent in nature such as factory systems, 

human cognitive systems, communication networks and social systems. The encap­

sulation of functionality and data is a requirement of distributed computers and



the applicability of object-oriented programming for modeling concurrent systems 

make it a natural choice for extension to distributed systems.

Visual programming systems are a relatively new and controversial area of 

software design. The potential for the representation of complex networks in visual 

programming systems, however, make them especialh' suited for application to 

distributed programming systems.

Other relatively recent developments in software design also have utility in 

the framework of distributed computing. Among these are particular functional 

programming concepts such as first class status for functions and procedures and, 

most recently, the development of ‘lazy’ functional languages.

1.2 Purpose

This report presents the design of a distributed parallel object system (DPOS) 

and its implementation using a graphical editing interface, together with three 

surveys of background information. These include a survey of parallel algorithm 

characteristics, a survey of existing graphical programming technology, a discussion 

of sequential object-oriented characteristics and a survey of distributed object 

languages and systems. Finally, a programming methodology is presented and 

used in conjunction with the object system to develop and implement an example 

program.

1.2.1 Surveys of Background Information

The surveys describe fundamental characteristics of existing systems. In addition 

they discuss implications for new developments, including the distributed object 

system (DPOS). This document contains background surveys on:

1. Distributed parallel algorithm characteristics. This covers characteristics of 

distributed algorithms that are thought to be fundamental to many parallel 

algorithms and discusses reasons for believing that the algorithm characteris­

tics are representative of parallel programming in general.
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2. Distributed parallel object-oriented languages and systems. This survey dis­

cusses the characteristics of sequential object-oriented programming and com­

pares and contrasts them with the needs of distributed object-oriented pro­

gramming. The survey also discusses the qualities of a number of existing 

parallel object languages and systems.

3. Visual programming systems. This survey describes a number of existing visual 

programming technologies and graphical schemes used by computer scientists, 

discusses assets and liabilities of visual programming in general, and considers 

the application of visual programming technology to distributed programming.

1.2.2 Distributed Parallel Object System

The second goal of this project is to study the design and implementation of 

a distributed parallel object system (DPOS). The system adapts the concepts of 

sequential object-oriented programming and existing models of distributed pro­

gramming and it innovatively addresses the needs of the distributed algorithm 

characteristics studied. Specifically the system supports:

1. The use of algorithm characteristics that are germain to distributed program­

ming.

2. The management of concurrency issues foreign 1o sequential programming. 

In particular it should support high-level distributed programming with a 

minimum of understanding of lowr-level parallel programming.

3. Development of programs that are highly modular and that can be effectively 

designed as reuseable program components.

4. Development of programs employing the complex topologies typical of dis­

tributed algorithms.



5. The effective documentation of programs and the integration of document ation 

into the programming process.

The DPOS implementation generates and uses Butterfly Scheme source language 

code on a BBN Butterfly parallel processor [26].

1.2.3 Visual Parallel Programming

The third goal of this project is the application of visual, programming to the 

needs of DPOS. This includes:

1. The design of the object system itself. The system is designed to allow 

topological constructions of process networks in a way not easilj' manageable 

in a textual language system. The process networks are, however, easilj' and 

effectively manageable in a graphical programming environment.

2. Adaptation of an existing visual diagram system “Viper1 [29] to the needs of 

DPOS.

3. The implementation of a post processor for the visual diagram system that will 

interpret the diagrams correctly, attribute semantic meaning to the diagrams, 

and generate appropriate output in the target language.

1.3 Overview of this document

The following is a list of the remaining parts of this report:

Chapter 2 discusses the characteristics of distributed algorithms.

Chapter 3 compares and contrasts sequential object-oriented programming with 

the needs of distributed object-oriented programming.

Chapter 4 describes previous advances in visual programming systems and dis­

cusses the application of visual programming technology to distributed program­

ming.

Chapter 5 describes the design of DPOS.



Chapter 6 describes the application of a graphical programming interface to 

DPOS.

Chapter 7 compares the system with sequential and parallel closure style object 

implementations. A programming methodology is also presented and used to 

develop an example program. '

Chapter 8 discusses contributions and conclusions reached from this project.



CHAPTER 2

DISTRIBUTED PARALLEL 

ALGORITHMS

2.1 Introduction

There are several significant differences between distributed parallel program­

ming and traditional sequential programming. Distributed parallel programming 

differs from sequential programming in that there is no global environment for vari­

ables, hence no global data.. There are multiple threads of activity (processes) which 

may be simultaneously active on different processors or simply interleaved if on the 

same processor. It also differs in that it requires a semantics for communication 

between the processors (message passing). This semantics controls synchronization 

between the processes and is often unlike that in sequential programming. Finally, 

it also differs in that there is a significantly greater cost for communication between 

processors than for memory access on a uniprocessor. These differences affect the 

way programmers develop programs, the kinds of algorithms used, the portability 

of programs and the design of parallel programming systems[18,6].

The architecture of parallel computers has a greater impact on the characteristics 

of programs than does the architecture of sequential computers. This impact affects 

not only the performance of the programs, but their structure as well and in some 

cases dictates features of programming languages. As an example, the language 

OCCAM[23], a descendent. of CSP[13], was designed to work harmoniously with 

the architecture of the transputer chip and is the primary programming language



for transputer networks. Distributed parallel computing systems have a greater 

effect on program design than shared memory systems because of the necessary 

encapsulation of program and data units on different processors and also because 

of the potential for process networks of virtually unlimited size. In addition to the 

hardware, the programming language and system of a parallel computer affects the 

development of software. The programming language and operating system used 

on a parallel computer must reflect the demands and capabilities of the computer 

architecture and also the needs of the programmer.

2.2 Parallel Algorithm Characteristics

Independent of specific computer architectures and languages, several broad 

classifications of parallel algorithms have been studied that employ specific strate­

gies for the creation and management of parallelism. Attempts at classification 

of sequential algorithms have had only limited success at encapsulating the broad 

range of algorithm characteristics. There is reason to believe, however, that the 

classification of parallel algorithm characteristics may be more generally repre­

sentative of parallel algorithms. This is because of the common requirements for 

the creation and management of parallelism, and the encapsulation requirements 

of distributed memory parallel processors. The reconciliation of algorithm types 

with parallel architectures is an important consideration in the development of 

distributed parallel programming systems, and one that has only had limited success 

in the research to date.

2.3 Parallel Algorithms

Among those algorithm types studied are the “Compute, Aggregate, Broadcast,” 

pipeline (and systolic) and “Divide and Conquer” strategies['22,9]. Each has specific 

implications for the design of distributed parallel programming environments.

The “Compute, Aggregate, Broadcast” algorithm type is characterized by peri­

odic cycling between sequential global decision making and distributed parallelism.



Typically, some controlling process broadcasts messages to a group of server pro­

cesses that carry out tasks in parallel and periodically send their results to the 

controller (aggregation). It then decides what to do next and rebroadcasts to the 

servers the information necessary for the next cycle. The synchronization in this 

process may not be global to the whole program since it may only be localized to a 

part of the program. It also may not be complete if only partial results are needed to 

make the continuation decision. Almost all parallel algorithms have some attributes 

of this algorithm type, since they involve some kind of root decision making process 

that initiates the parallelism and then collects the results.

One implication of this algorithm type is the need for a “one to many” and 

“many to one” communication protocol. Few parallel programming systems sup­

port broadcasting or aggregation explicitly. Notable examples are “Broadcasting 

Sequential Processes” (BSP)[ll] and Petri Nets[8]. The Petri net model is a 

primitive programming model, not generally useful for modeling broadcasting in a 

high-level language. The BSP model is more like high-level programming language 

models, similar to CSP with broadcasting as the basic communication protocol. 

Petri Nets also support aggregation of a sort, but BSP does not. While broadcasting 

and aggregation are generally useful concepts in parallel programming, they are 

not without drawbacks. The major drawback of this type of communication is 

that it requires synchronization between groups of communicators thereby reducing 

parallel performance. Also, the overhead for communication is at best log(n), 

(when using a binary tree network structure) which can dominate the computation 

performance in fine-grain algorithms.

Pipeline and systolic algorithms are the most heavily researched type of parallel 

algorithms. Their distinguishing characteristic is one-directional, one-way data 

flow. Systolic algorithms are a special case of pipeline algorithms. The distinction 

between systolic and pipeline algorithms is that true systolic algorithms are fine



grained, synchronized computations with only local connections and regular process 

network structure.

In the simplest case, a pipeline algorithm takes advantage of the lengthy and re­

peated calculations present in a sequential algorithm. The sequence of calculations 

is broken into chunks which are each handled by a separate process. Sequences of 

data transmissions keep the pipeline full. The latency of starting and terminating 

the pipe is 0(length of pipe). Pipeline process structures do not have to be linear 

and can follow any kind of network pattern, including cycles. It is important for the 

maintenence of parallelism that the stages in the pipeline have similar granularity 

so that processes are not kept waiting; thus causing bubbles in the pipe. Buffering 

messages and asynchronous message passing can be useful in addition to replication 

of stages in the pipe to smooth out the flow and maintain parallelism. These 

algorithms are also notable in that the process network is often similar in structure 

to traditional data structures and abstract data types like trees, streams or arrays.

Divide and Conquer parallel algorithms are different from sequential divide 

and conquer algorithms. Sequential divide and conquer algorithms involve the 

solution of a large problem by combining the solutions of similar independent 

smaller problems. Parallel divide and conquer algorithms are characterized by 

multiple similar processes where each solves a similar problem, possibly including 

communication and cooperation between the processes. The process network here 

is freeform and may involve one-way or two-way communication between processes 

depending on the system implementation and program design. The topology of 

this algorithm type is a general graph. Two-way communication presents a special 

problem in a parallel environment. The sending process is required either to block 

immediately and wait for a response, or else define some sort of critical section 

semantics (as with futures [20]). Blocking is effectively synchronization and critical 

sections are an extra burden for programmers.



2.4 Conclusion

Types of programming algorithms as well as computer architectures have signifi­

cant implications for the design of distributed programming systems and languages. 

These implications include:

1 . Data. The data space must be partitioned between processes. Global data are 

impractical. A modular programming approach is implied by the architecture 

as well as algorithm types.

2 . Communication. Message passing paradigms must be included to facilitate 

communication between processes. These paradigms fall into several general 

types. Broadcast/aggregate, two-way (function call) and one-way (pipeline). 

Few if any existing parallel programming systems support all three. The 

integration of these paradigms with the modes of communication (such as 

guarded message passing) is also a problem that has not been adequately 

addressed by existing parallel programming systems.

3. Multiple Threads. Programs are partitioned into multiple processes. The 

processes require different kinds and amounts of communication. Processes 

may perform distinctly different functions or may perform identical tasks 

depending on the algorithm type.

4. Similarities to Data Structures. Parallel algorithm structures are similar in 

construction to data structures. This implies that similar constructs and 

concepts may be used in composing parallel programs similar to those used to 

define abstract data types.



CHAPTER 3 

DISTRIBUTED OBJECT-ORIENTED  

PROGRAMMING

3.1 Introduction

The characteristics of object-oriented programming make it particularly suitable 

for a distributed parallel programming environment. In particular, object-oriented 

programming involves separate computational objects with their own encapsulated 

data and functions. This level of encapsulation is not only desirable but necessary 

for efficient distributed parallel computing. The way in which objects communicate 

via message passing is similar enough to the requirements of distributed processing 

that it can be easily adapted. Object-oriented programming, because of its high 

degree of modularity and encapsulation, is well-suited to the building of large and 

complex systems. Its principals are even being applied to the design of large hard­

ware and software systems. In the sequential programming world, object-oriented 

programming techniques are often used to simulate parallelism.

3.2 Parallel vs. Sequential Programming

3.2.1 Communication

Object-oriented concurrent programming differs significantly from object-oriented 

sequential programming in several ways. In the sequential version, message passing 

always means transfer of control. Since there is only one thread of control, the 

initiator is active before communication, inactive during the interaction and active 

again after it is over. The responder is inactive before, active during and inactive



after communication. So even if the data flow is one directional the interaction 

is always two directional because the thread must return before the initiator may 

proceed. In distributed parallel programming this restriction is not present or 

desirable. Although programs that follow the convention can be used, they do not 

perform well because the suspension of the initiator process forces a synchronizat ion 

between the two processes; they behave as a single process even if on different 

processors.

In the general case of distributed parallel programming both parties may be 

active before, during and after the communication, so there is no notion of initiator 

and responder. There is the concept of information flow between processes. The 

freedom to have processes remain active at all times allows much more complex, 

data-flow based, object relationships. A great deal of research has been devoted 

to the handling of the problem of data flow between computational objects in 

sequential programming via data stream programming and lazy evaluation. These 

concepts, because of their close relation to parallelism and message passing, are 

very useful in conceptualizing about distributed parallel programming. There is 

also a great deal of research into data flow algorithms in parallel processing (i.e., 

systolic array and pipeline algorithms), although not necessarily in connection with 

object-oriented programming.

3.2.2 Inheritance

A second major difference between sequential and parallel object-oriented pro­

gramming involves the concept of inheritance. In sequential programming inheri­

tance means sharing of behaviors and data associated with an object. In distributed 

parallel programming the sharing of data is a major problem, because of the 

difficulties associated with remote access of data. Controlling the sequence and 

atomic access of data structures and implementing shared data concepts requires 

that accesses to the data elements be handled as remote accesses and critical

12



sections. Both of these are undesirable because of the added burden they place 

on the programmer and their execution time-cost. Moreover, while the semantic 

meaning of inheritance is generally difficult to analyze for sequential programs, 

it is even more difficult for parallel programs. These semantic difficulties[5] have 

prompted many designers of object-oriented parallel languages to omit inheritance 

properties altogether. Inheritance is also unreasonable in an environment where 

objects do not usually return to a top-level dispatch function every time an incoming 

message is received, so it is unclear at what level the inherited behaviors would be 

implemented.

3.2.3 Active Objects

A third major difference between sequential and parallel object-oriented pro­

gramming is that since parallel objects remain active between incoming messages 

they do not need to save state information. This means that they are essentially 

independent functional programs. Information that would be saved in state vari­

ables in a sequential object may be passed on as parameter values in a recursive 

parallel process. This allows the desirable properties of functional programming 

(i.e., less specification of sequence of evaluation, ease of analysis) to be better 

maintained within the framework of individual objects. The possibility of non­

terminating activity also allows objects to be developed as perpetual processes 

similar to viewing streams as perpetual processes or infinite data structures in 

sequential programming. This brings with it the same potential benefits that exist 

in sequential programming; the programmer need not provide termination criteria 

to all processes. Termination criteria may be provided only at control points in the 

data flow network. Complex interactions of processes do not have to be explicitly 

provided by the programmer. They can be easily implemented because sequencing 

information for individual computations is implicit in the communication network 

as propagation in the data flow, and does not have to be provided explicitly by the

13



programmer.

3.3 Existing System s 

Several object-oriented parallel programming systems and languages have been 

developed during the last fifteen years to address the problems of distributed parallel 

programming. A partial list of these includes ABCL/1, ACTORS, ADA, CCS, 

concurrent Smalltalk, CSP and OCCAM [27,17,20,2,14,16,31], Figure 3.1 com­

pares various aspects of communication and process structure of these languages. 

Object-oriented parallel programming is defined here as a programming and design 

methodology (style) in which the system to be constructed is modeled as a collection 

of concurrently executable program modules, called objects, that interact with one 

another by sending messages [32]. All of these languages fall into this category. 

CSP is the oldest and with the exception of Concurrent Smalltalk, Petri Nets and 

CCS they are all extensions of the concepts of the original CSP as presented in 

1978. CSP and CCS are often not considered to be programming languages but 

only language fragments or denotational languages. The only languages that are 

used commercially are ADA and OCCAM.

Figure 3.1 is a table of object-oriented parallel programming systems and lan­

guage features employed by them. The following is a summary of the language 

features presented in Figure 3.1.

1. 1 or 2 way communication - does the system allow one way communication 
only or is there two way communication.

2. multicasting - does the system support multicasting or broadcasting

3. queues - does the system provide for buffered message sending as well as 
unbuffered

4. blocking out - is output required to block waiting for a receiver

5. blocking in - is input required to block waiting for a sender

6. trigger - can messages be constructed using more than two participating pro­
cesses

14



CSP ADA CCS S.T. OCC ABCL ACT1 Petri Nets

Communication Mechanism

2 way no yes no yes no yes yes no .

multicasting no no no no no no no yes

queues no no no no no no no yes

blocking out no yes yes yes yes y/n yes y/n

blocking in no no yes yes yes no no yes

trigger no no no no no no no yes

guarded in yes yes yes no yes yes no no

guarded out yes no yes no no no no no

multiple send. no yes yes yes yes yes yes yes

multiple rec. no no yes no no no no no

channels yes no yes no yes no no no

Processes

synchronized yes yes yes yes yes yes yes no

proc. topology stat . child n/a dyn. dyn. child child stai

Figure 3.1. Table of Language Features

7. guarded in - are input guards supported

8. guarded out - are output guards supported

9. multiple send - is there the possibility for nondeterministic receipt of a com­
munication by multiple processes

10. multiple rec. - is there the possibility for nondeterministic receipt of a com­
munication from multiple processes

11. channels - is communication direct between two processes or via a named 
intermediary (a channel)

12. synchronized - is message passing tightly synchronized

13. process topology - is the topology static or dynamic. Some systems allow 
only a tree structured topology (i.e. new children of existing parents may be 
created)



From Figure 3.1 it can be seen that several features are standard through most 

of the languages while others arc quite rare. One way communication is stan­

dard, two way communication either implies synchronization or creates semantic 

problems and is less commonly employed. Guarded communication is message 

passing where messages are screened for content (i.e., message type) before the 

transaction is accomplished. This allows a receiver to receive only a selected 

type of message. Guarded input is common but guarded output is rare except 

in denotational languages. It is a desirable feature but generally more difficult to 

implement. Multicasting is a process by which a single message is sent simulta­

neously to a number of recipients. The only model discussed in this chapter that 

supports multicasting is the Petri Net model, but multicasting is supported on 

other systems and is known to be very useful in “ Compute, Aggregate, Broadcast” 

algorithms. Allowing nondeterministic multiple senders or receivers is crucial for 

effective dynamic process creation and also for process replication. This is because 

it eliminates the requirement that processes in a process network be notified when 

a new link is established. Instead of notification, a new process can simply use 

the existing links. Multiple senders and receivers are rarely fully supported with 

the result that in most systems only parent/child relationships between dynamically 

created processes are possible. Without this, it is generally awkward to dynamically 

create a process that can communicate with two or more existing processes. The 

existence of named channels facilitates the implementation of both multiple senders 

and receivers and allows for completely dynamic process allocation. OCCAM 

succeeds only partially at this by having hardware channels between processors 

and allowing named channels on a single processor. Most of the systems require 

process synchronization at the time of communication; this is because, with the 

exception of Petri Nets, they do not support any message buffering.



3.4 Programming Extensions

3.4.1 Processes as First Class Objects

Several concepts of modern functional languages can be applied to distributed 

parallel programming systems. Among these is the ability to treat functions or 

objects as first class citizens in the language. Applying this to distributed object- 

oriented programming implies that processes, objects and communication connec­

tions might be composable as structures. This forms a direct relationship between 

the process network structure and data structures within the parallel programming 

language allowing the versatility and familiarity of abstract data types in defining 

process networks. This is an intuitive way of dealing with the network structure 

since many parallel algorithms view process networks as having a regular structure.

3.4.2 Lazy Evaluation

A second quality of modern functional languages is lazy evaluation. Lazy eval­

uation is the ability to specify arguments and a function to be applied without 

actually applying it, leaving a ‘delayed’ function call that can be ‘forced’ later 

upon demand. This is used in sequential programming to define infinite data 

structures and infinite sequential computations and is used as the basis of stream 

computation [1]. The concept of stream computation is directly applicable to dis­

tributed parallel processing and is the underlying model for pipeline processes and 

data flow networks. However, in parallel processing the stream does not need to be 

evaluated lazily but can be controlled by blocking of eager stream processes upon 

message sending. A second use of lazy evaluation is the composition of processes 

in a network to define virtual (lazily evaluated) process networks. The use of lazy 

evaluation allows programs to control the extent of computation from a single point 

that demands only the computations it needs rather than to have all parts of the 

program know in advance how much computation to do. This simplifies program 

control flow considerably by eliminating unnecessary and premature decisions in



low-level functions. In a parallel process network this allows the definition and 

analysis of the virtual process network topologically, separate from consideration 

of the program control flow.



CHAPTER 4 

VISUAL PROGRAMMING

4.1 Introduction

Historically, visual programming environments[28,24] have been used primarily 

in the sequential programming world and specifically in the areas of describing data, 

information about data, software design, visualization of program execution[19] 

and documentation. For data representation this has taken the form of information 

tables and menus, array or tree diagrams, list structure diagrams, object inheritance 

trees and others. Visual software design has involved flowcharts, pretty printing 

programs, Petri Nets, state diagrams, icon systems, and data flow diagrams. Vi­

sualization of program execution has involved information about data or control 

flow, representations such as flow charts, along with animation and snapshots of 

program state.

4.2 Visual Programming Tools

The various means of visually representing programming have individual strengths 

and weaknesses. Each generally focuses on one particular aspect of programming 

to the exclusion of others:

1. Flowcharts[10] illustrate fine-grain program control flow. They do not contain 

information about data representation or capture large-grain program struc­

ture effectively.



2. Petri Nets and related token systems show fine-grain network control flow. 

They are the only commonly used systems that address parallel activities such 

as critical sections and computational dependencies, but they are also typically 

only fine-grained and contain no information about data (except for tokens).

3. Data flow diagrams are generally larger grained diagrams that show data 

transfers and a level of program modularity and are useful in object-oriented 

types of systems[25]. They do not generally contain information about data 

representation or fine-grained control flow.

4. State diagrams[15] are an abstraction of both data and control flow that 

is effective for representing input parsing, data-driven systems and output 

generation where input or output controls the program. They are less effective 

in other applications where this kind of tight data/control relationship does 

not exist. Even when they are useful they may not accurately reflect the 

actual program structure but only an abstraction of it. Also, while they do 

show data and control flow relationships, they show very little about the actual 

data structure or program control structures.

5. Programming icon systems[l2] use icons to represent logical or control rela­

tionships and often contain aspects of flowcharts and state diagrams. They 

are essentially the descendents of these other approaches and suffer from 

similar limitations. However, they often make incremental improvements in 

certain areas such as the representation of recursion, the animation of program 

execution, or the increased ability to represent program abstraction.

6. Data diagrams and list diagrams effectively show information about abstract 

data structures. Both do this without showing anything at all about program 

structure or control flow.
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7. Menus and tables show information at a user level that is highly readable but 

not really representative of the internals of the programming. These may be 

associated with interaction methods, to implement a kind of graphical inter­

action reminiscent of object-oriented programming that is highly abstracted 

from the actual program structure.

4.3 Problems and Benefits *

A primary use of traditional visual programming systems has been in teaching 

beginning programming concepts. Visual systems such as flow charts or icon sys­

tems are very easily understood by beginners as well as experienced programmers. 

Relationships in control flow are more visually evident in the diagrams as compared 

to a textual system. The process is made less abstract by the two-dimensional 

images of the program elements and added visual clues (such as icon shapes or 

color). They aid the programmer in assembling the program from a set of concrete 

parts. The reduction of abstraction and the addition of visual clues while making 

the program easily readable are not perceived by experienced programmers as 

beneficial. One reason for this is that the experienced programmer does not need 

added visual information to understand the program relationships and control flow. 

Programmers typically perceive the extra information as visual clutter reducing the 

amount of information that can be manipulated on the screen. A second reason is 

that abstraction, while compounding an already difficult situation for the beginner, 

is an asset for the experienced programmer to whom anything that reduces his/her 

ability to abstract program elements is actually a limitation on effectiveness. Newer 

visual computing environments, such as window systems at the operating system 

level, are not perceived by experienced programmers as a limitation because they 

afford interaction at a very high-level and assist the programmer in more traditional 

low-level activities.
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A benefit of data diagrams is that they afford experienced, inexperienced and 

even non-programmers with views of complex data abstractions that are not directly 

evident in the program. For example, a tree structure can be represented as a list 

in a program text, but is not easily readable, and a list with a loop in it is not 

even easily representable (and is very difficult to understand) in text. A problem 

with this kind of visual program information is that it is usually distinct from the 

program and through the course of program development may become obsolete. 

This makes matters worse by providing a clear but incorrect view of the program 

data.

Data flow diagrams and Petri Nets have the same advantage that complex data 

diagrams possess. The program control structures represented are nonlinear, and 

may contain intersections and cycles that are not easily represented or evident in 

program text, but are easily seen in a diagram.

A general problem of visual programming systems is that there are traditional 

existing systems that accomplish the same thing with greater flexibility, more 

succinctly or in a way that is already clearly understood by the programmer. For 

instance arithmetic or the syntax of an IF-THEN-ELSE statement is very clearly 

stated in textual notation. Graphical programming systems that try to make a 

new symbolic system to accomplish the same thing invariably fail either to be as 

succinct or as clearly understood.

4.4 V isual P rogram m ing Goals

Visual programming systems offer real benefits to experienced programmers only 

where they can be used more effectively than existing systems. Thus those proper­

ties which allow topological information to be incorporated into the programming 

environment that cannot be accomodated in a purely textual environment are an 

important attribute for a useful visual programming system.
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One basic quality of visual programming systems is the topology of the two­

dimensional surface. Text is inherently one-dimensional and takes on limited two­

dimensional qualities (via indentation) when printed on a page. Graphical methods 

can make full use of the two-dimensional surface and by extension (such as layering) 

take on limited three-dimensional qualities. Qualities of programs that are multi­

dimensional such as network relationships, complex data or dynamic relationships 

offer the greatest opportunity for visual programming. This is born out by the fact 

that the primary visual systems regularly employed by experienced programmers 

are data diagrams, flow diagrams, Petri Nets and state diagrams all of which repre­

sent relationships that are multidimensional and often at a high level of abstraction 

(at least relative to flowcharts), whereas arithmetic and low-level program text are 

almost exclusively manipulated and presented as text.

Visual artifacts of the graphical system, such as icons, convey topological in­

formation beyond the concepts they represent. For example, relative size may 

convey a sense of relative importance. The introduction of new visual information 

is appropriate only where this facilitates increased programmer effectiveness and 

contributes meaningful information to the process.

Visual systems should preserve or extend the desirable qualities of textual sys­

tems such as ease of abstraction, encapsulation, and ease of manipulation. Abstrac­

tion and encapsulation may be accomplished through the topological qualities of 

the visual system such as blocks or nesting of icons.

People understand and retain visual information more readily then textual in­

formation. Visual programming can excel at providing easily readable information, 

multiple views of different aspects of a program or different views of the same 

program. This is accomplished by providing a graphical framework for the orga­

nization of the programming process, and by merging the documentation of the 

program with the program development.



4.5 Parallel Visual Programming

The extension of visual programming techniques to parallel programming has not 

been widely developed; however, its usefulness has been obvious to parallel language 

and system designers. Petri Nets are most often described visually and visual 

diagrams are often used to explain process networks in object-oriented concurrent 

programming research. There are several aspects of distributed programming that 

have nonlinear topology, are difficult to explain textually (in a linear system) and 

are very easy to explain diagrammatically. These include:

1. The encapsulation of data and computation within processes.

2. The connectivity within the process network itself.

3. The existence of multiple simultaneous activities.

A single line of text can describe the computation of a sequential program at any 

given point in time and the relationships between functions in the evaluation tree 

of a program can be described textually, though many more complex relationships 

may exist that are not easily seen in the text. In a distributed parallel network, 

however, there exist multiple simultaneous relationships and activities that are 

effectively beyond the limits of textual systems.

Distributed programming is inherently more complex than single threaded pro­

gramming. This fact makes the opportunity to combine documentation and pro­

gram development a potential asset in a parallel programming environment.

The topology of visual programming provides the potential for the effective 

topological analysis of programs by viewing them as sets and graphs. Thej' can be 

extended to visually analyze dynamic aspects of parallel programming such as data 

flow, critical path, critical section, process load distribution and deadlock situations. 

All of these are generally described graphically but not at present directly integra ted 

into program development.



CHAPTER 5

DISTRIBUTED PARALLEL OBJECT 

SYSTEM (DPOS)

5.1 Introduction

This section describes a Distributed Parallel Object System (DPOS) that inno­

vatively addresses several concerns of distributed parallel programming. A DPOS 

program is called a ‘virtual process network’ . A communicating process network 

model is used. A DPOS program is defined as a network of active processes called 

Process Objects (POs) and communication lines called Channels that are grouped 

into subnetworks called Network Modules (NMs).

Channels are predefined types in the system and are used for communication. 

Data are written to and read from channels by the Process Objects. The synchro­

nization between Process Objects that access channels is handled automatically by 

the Channel.

Process Objects are single threaded program functions with calling parameters 

identical to traditional program functions. The connection links (Channels) be­

tween Process Objects appear as functions passed in as calling parameters. The 

control flow of Process Objects is internal. The progress of computation, however, 

may be controlled by regulating message traffic into and out of the Process Object.

Network Modules (NMs) are subnetworks composed of Channels, POs, and other 

NMs. The NMs have locally defined variables that contain data, Channel instances, 

NM instances or PO instances. These local variables constitute the local scope of



the NM. The topology of a Virtual Process Network may not be flat. Subnetworks 

having local scope may be nested, recursive and mutually recursive.

The DPOS environment stratifies a parallel program into two layers; object layer 

and system layer. The object layer is composed of individual discrete process objects 

(PO ’s). The process objects are defined using a text editor. The system layer 

contains the NM definitions and specifies instances of POs, Channels and NMs. The 

system layer encapsulates parallel programming issues such as multiple threads of 

control, process distribution, limited data sharing and interprocess communication 

protocols. Network Module and Process Object definitions are the user-defined 

types of DPOS and networks are made of instances of these types. The program 

network is defined topologically as a network diagram. The semantics of DPOS at 

the system level is declarative rather than procedural or functional. The definition 

of the network is analogous to the definition of abstract data types such as trees 

and graphs in high-level programming languages.

The implementation of DPOS discussed here uses a visual editing system to 

generate NM definitions. Channel type definitions are predefined. Process Object 

definitions are created by the user with a text editor. Butterfly Scheme is the target 

language and all examples are written using this language.

5.2 Classes, Instances and Inheritance

Traditional object-oriented systems are often categorized in terms of the system 

attributes of classes, instances and inheritance. The DPOS system is discussed in 

terms of the concerns of parallel programming rather than in traditional object- 

oriented terms and priority has been given to parallel programming issues over 

object-oriented programming issues in the system design. In DPOS the func­

tionality of objects and classes has been extended to encapsulate parallel pro­

gramming semantics as well as the functionality of object-oriented programming. 

The definitions of process objects and network modules in DPOS correspond to
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class definitions in traditional object-oriented programming. The identifiers for 

process objects and network modules specify both a class name and an instance 

name that is unique within the local scope. Inheritance of data slot types and 

functionality in DPOS is accomplished in terms of the NMs and POs encapsulated 

within each NM class definition. If an NM definition includes other NM and PO 

definitions then it inherits the behavior and data of the encapsulated instances. 

Sharing of data slots is often possible in traditional object-oriented programming 

systems. Because of the inherent synchronization problems of shared variables in 

distributed programming systems, it is not supported in DPOS. Instead, DPOS 

incorporates ‘ channel’ definitions. Channel definitions allow common access to 

data values and sharing of data values between process objects only in a framework 

of strict synchronization control as data messages. In traditional object-oriented 

programming systems, methods encapsulate functionality and structure interaction 

with objects. In DPOS, channel communication structures interact with process 

objects at specified points in computation. The relationship between methods and 

channels is discussed under programming methodology and development in Chapter 

8.

5.3 The Producers and Consumers Problem

The Producers and Consumers example in Figures 5.1 and 5.2 shows the basic 

elements of the virtual process network as graphically defined network modules 

and process objects. The ‘prod’ and ‘con’ POs are contained within network 

modules ‘producers’ and ‘consumers’ respectively (see Figure 5.1). The parameters 

to the ‘producers’ NM are shown in Figure 5.3. ‘Producers’ and ‘consumers’ 

NMs are contained within the virtual process network ‘producers-consumers’ . The 

text output corresponding to the process objects is also shown in Figure 5.4. 

This example uses an asynchronous one-way communication channel between the 

producers and consumers. The network modules are nested such that the ‘prod’
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Sample Program: PRODUCERS AND CONSUMERS

PROCESS OBJECT DEFINTIIONS FOR PROD AND CON 

PROCESS OBJECTS

;; The producer 'prod' type:

;; parameters: channel - a communication channel

;; state-data - numeric data

;; function: recurse until not-quitting-time returns nil

;; sending results of (product state-data) to channel

(define (prod channel state-data)

(if (not-quitting-time state-data)

(begin (channel 'send (product state-data))

(prod channel (update state-data)))))

;; The consumer 'con' type:

;; parameters: inchannel - a communication channel 

;; state-data - numeric data

;; function: recurse until no more input data arrives 

; ; reading input from inchannel and updating state-data

(define (con inchannel state-data)

(let ((new-data (inchannel 'recieve)))

(print (new-results state-data new-data))

(con inchannel (update-results state-data new-data))))

;undefined functions here are:

; produce-update-state - returns a pair of (product new-state)

; not-quitting-time 

; update-results

Figure 5.4. Prod and Con Process Object Definitions



and ‘con’ POs are within network modules ‘producers’ and ‘consumers’ respectively. 

‘Producers’ and ‘consumers’ are nested within ‘producers-consumers’ .

In addition several advanced aspects of this example will be explained in follow­

ing sections. These aspects include:

1. The asynchronous channel is defined within ‘producers and consumers network 

module’ and is a parameter channel to both ‘producers’ and ‘consumers’ .

2. The channel is shared nondeterministically by both producers and consumers. 

This use of channels is equivalent to nondeterministic merge and join. Since 

the granularity of the use of this channel is small it is reasonable to share it in 

this way.

3. The control flow of the consumers is shown without any termination condition. 

The control of these processes is indirect via the receipt of messages from the 

producer processes, (see Section 5.9)

5.4 The Object Layer (Process Objects)

Process Objects in this system are defined as independent processes or programs 

in the parallel environment. A Process Object (PO) is simply an active program 

in the programming environment. The definition of a PO is a class definition in 

the traditional object-oriented sense and may be instantiated many times within a 

process network. In the underlying model there is a single thread of control and 

program scope associated with each process object. It may contain procedures and 

global data (global only to the Process Object itself) and may be programmed in any 

style that the programmer wishes, including traditional, sequential, object-oriented 

programming. A PO may follow a bounded sequential computation or may be 

an unbounded cyclical computation (like an operating system process) that is I/O  

driven via its communication channels (see Section 5.9.)
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Providing that the underlying language allows it, process objects may employ 

multiple threads of control and share data with other process objects in ways other 

than those defined within DPOS. This, however, violates the intent of the system 

which is to encapsulate all of the parallel issues at the system level. Programs 

which only use DPOS and the sequential features of the underlying language are 

referred to as consistent All POs discussed in this report are consistent

Multiple POs are simply multiple separate programs. They may or may not 

reside on the same physical processor. Unless the programmer explicitly uses 

an inconsistent PO it will be a a single threaded program on a single processor. 

Multiple POs may be allocated to the same processor without conflict. The text for 

individual POs is defined by the programmer outside of the DPOS system and is 

integrated into a DPOS program via the visual editing system. In DPOS, POs do 

not have direct knowledge of each other and may be treated as completely isolated 

units. Constraints between POs are handled at the system level as arguments to 

the PO definitions or at the object level as messages between POs.

Communication between POs is done via channels which encapsulate the se­

mantics of the communication protocol being used. Different channels use different 

semantics whenever appropriate.

The instantiation of Process Objects may be delayed or constrained in exactly 

the same manner as Network Modules. Delays and constraints are discussed in 

Section 5.8.

5.5 Channels

5.5.1 Channel Concepts

Communication between POs is done via channels. Channels are independent 

entities within the system and are the only means of communication between POs. 

Channels are defined at the system level and are made accessible to the object layer 

as parameters to top-level invocations of POs. Channels may be viewed either as
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shared data objects with strictly synchronized access for use by multiple POs or 

as conduits between Process Objects with synchronization protocols. From either 

view the effect of channels is to provide communication between Process Objects 

via shared access to computed values. A channel in its simplest form is similar to 

a pipe in UNIX or the channels defined in CSP. In both of these systems a channel 

is a simple communication link shared by two processes.

A DPOS channel has several additional attributes that differ from other par­

allel programming systems. Unlike the other object-oriented parallel program­

ming systems discussed previously, DPOS channels completely encapsulate process 

communication protocols. This means that neither definition of the PO nor the 

language of the PO necessarily needs to incorporate the semantics of parallelism and 

interprocess communication. In other systems the semantics of interprocess com­

munication is incorporated into the programming language itself. Not incorporating 

communication semantics into the programming language allows the programmer 

several options not available in existing systems. It allows the target language level 

implementation of Process Objects to be very similar to individual programs in a 

sequential programming environment. Access to channels can be viewed at this level 

as syntactically and semantically similar to external 1 /O stream access in sequential 

programming. The programmer using this system can program PO definitions 

entirely using the standard elements of sequential Scheme and the DPOS system 

without using any Butterfly Scheme extensions. Encapsulated communication 

protocols also allow the system to include a variety of protocols in much the same 

way as high-level, sequential, programming languages allow a variety of control flow 

constructs. This means that the program at the system level may take advantage 

of the communication protocol that is most applicable to a given program.

Within the PO, channels are treated as first-class Scheme procedure objects 

and thus can be assigned to variables, passed in parameter lists, and applied to
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arguments. A channel in its simplest form appears in the PO somewhat like a 

traditional sequential programming object. A PO interacts with a channel by 

applying the channel to a list of arguments. For example, given a channel ‘ch1 

a PO might read a message from the channel into a variable ‘ result’ using the 

expression: '

(set! result (ch 'receive))

OCCAM and the 1985 version of CSP also allow named channels. However, 

they must be treated as literals within the program so they are not composable 

and in OCCAM all channels accesssed from a process must exist on the same 

processor node. Channels in these systems do not encapsulate communication 

semantics but only specify a relationship between the channel users. The semantics 

of communication is a part of the base language and only a single communication 

protocol is provided.

A PO is completely encapsulated by its communication channels. Since all 

communication between POs is done via channels, POs are defined without any 

direct knowledge about each other. This also allows a higher degree of modularity 

than is possible within traditional object systems. A subnetwork of a parallel 

program may be completely isolated from the rest of the network by enclosing 

it in a contour that cuts through all of the channels that communicate with it. 

This facilitates reasoning about subparts of programs and incremental modular 

development. The subnetwork may be developed, tested, and debugged by defining 

it and the surrounding channels and interacting with it by communication through 

the channels.

Individual PO definitions may be debugged and tested on a uniprocessor in 

traditional Scheme by replacing the encapsulating channels with user interaction 

functions functions written in standard scheme. This is possible because POs are
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single threaded, completely encapsulated by channels, and channel interaction is 

similar to stream input and output.

Dynamic process creation in the existing distributed programming systems dis­

cussed in this report requires the propagation of information about newly created 

processes to any existing processes that require access to them. This propagation 

may require substantial programmer effort. It may also require a substantial 

amount of interprocess communication. In DPOS, PO and NM instantiations may 

be delayed. This means that the NM or PO is not instantiated when the parent 

environment is instantiated, but is delayed until a triggering event takes place 

during program execution (See section 5.6.2). In DPOS dynamic process creation, 

when a delayed NM or PO is instantiated, it uses existing channels to communicate. 

These channels are already known by the existing POs and NMs and act as ‘stubs’ 

in the virtual process network. In this way, delayed instantiation may be used to 

dynamically create NMs without requiring additional propagation of information 

or additional interprocess communication.

Multiple POs may simultaneously compete to ‘send to’ or ‘ receive from’ a chan­

nel. Competition for any channel interaction is resolved nondeterministically. An 

example use of this feature is the replication of identical POs for identical tasks in 

a pipeline. A pipeline link with above average task granularity may be replicated 

allowing multiple instances of the link to execute simultaneously and balance the 

load across the link. Nondeterministic branch or merge operations can be imple­

mented very simply using a rudimentary channel with multiple senders competing 

to send or multiple receivers competing to receive.

5.5.2 Channel Types

Several communication protocols are supported in DPOS. The semantics of these 

protocols support one and two-way communication, guarded communication and 

buffered communication in the process network.
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1. A synchronous 1 way. This is really a single message buffer. The receiver 

blocks and waits if no message is in the channel. The sender may proceed after 

a message is received by the channel (but not necessarily the receiver process). 

If there is already a message in the channel then the sender will block until 

it is removed by some receiver. The ‘read’ message type will return a copy of 

the message without removing the message from the channel.

messages: output (ch ' send message) 

input (ch 'receive) 

read (ch 'read)

2. B uffered A synchronous 1 way. Similar to Asynchronous 1 way but with 

a bounded buffer size greater than 1. This channel type requires that a buffer 

size be specified when it is defined.

messages: output (ch 'send message) 

input (ch 'receive)

3. Synchronous exchange. Two parties are involved in the exchange. Both 

parties play the role of both sender and receiver. Message types ‘a-trans’ and 

‘b-trans’ are defined. Whenever both a ‘b-trans’ and an ‘a-trans’ message are 

being sent to the same channel the transaction or ‘rendezvous’ takes place and 

messages are exchanged. If only one message type is being sent, the sender 

blocks until a message of the other type arrives. This channel type is an 

extension of those used in CSP and OCCAM. In these systems, however, the 

communication protocol is a part of the language itself and the flow of data 

is one way. This channel type may be used to effect CSP-like communication 

if one of the parties does not make use of the information it receives and the 

other sends no useful information.
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messages: (ch 'a-trans message)

(ch 'b-trans message)

4. Synchronous, 1-way guarded input (b lock ing  ou tpu t) w ith optional 

default continuation. This channel type implements guarded input. The 

channel is defined with a list of potential message types. Output processes 

specify message type and message. Inputting processes specify a list of ac­

ceptable message types. Input and output processes block until a match is 

found between a message type of an output process and an entry in the input 

process guard list. A single input process may interact with a channel at a 

time and will block other input processes until its input request is satisfied. If 

a default continuation is specified then the input process is nonblocking. This 

means that if no output message is waiting that matches one of the guard list 

types, the input process continues without blocking. The input process receives 

a pair which consists of the message type and message or simply ’continue in 

the default continuation case.

messages: output (ch 'writeguard type message) 

input (ch 'readguarded typelist)

Typelist is a list of types, where a type is a simple integer. Definition of this 

channel type requires a list of types.

5. Synchronous, 1-way guarded output (b lock ing  input) w ith  optional 

default continuation. This channel type implements guarded output. The 

channel is defined with a list of potential message types. Inputting processes 

specify message type. Output processes specify a guard list of acceptable 

message types and list of corresponding messages. Output and input processes 

block until a match is found between a message type in the input process



and the output process guard list. If a default continuation is specified the 

output process is not blocked. This means that if no input message is waiting 

that matches one of the guard list types the output process continues without 

blocking and no message is sent. The output process receives a return value 

that consists of the message type or ’continue in the default continuation case.

messages: output (ch 'writeguarded typelist messagelist) 

input (ch 'readguarded type)

Typelist is a list of types, where a type is a simple integer. Definition of this 

channel type requires a list of types.

6. 1-way /  2-way interface This allows an interface between one-way and 

two-way message traffic. The channel is interfaced as a one way channel by 

one PO and as a two-way channel by another. From the two-way side two-way 

communication is carried out as a single step. Parameters are passed in and 

a result is received. The process on this side initiates the transaction. The 

two-way side is blocking. The process executing a two-way message is blocked 

until a return value is received. From the one-way side communication is 

carried out as two separate steps as in the ‘asynchronous 1 way’ channel. First 

a receive and then a send through the same channel.

messages: 2 way side (ch 'two-way message)

1 way side (ch 'receive)

(ch 'send message)

5.6 A dditional A ttribu tes o f  Channels

In addition to having a ‘type’ as described above, channels may have several other 

attributes. The additional attributes do not modify the communication properties 

of the channel types as described above. The additional attributes are used in the 

definition and dynamic instantiation of the Virtual Process Network.
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5.6.1 Parameter Channels

The formal parameters of Network Modules correspond to data values and to 

channel instances (see Section 5.7). A channel instance used as an actual parameter 

to a nested Network Module instance is referred to as a parameter channel within 

the scope of the NM instance. It is not referred to as a parameter channel outside of 

the Network Module instance unless it also corresponds to an actual parameter to 

the outlying NM. Thus the term parameter channel is used for any channel instance 

visible within a NM but defined at an outlying scope.

5.6.2 Delay Channels

The instantiation of NMs may be delayed (see Section 5.8). If a PO or NM 

instance is delayed then one of the channel instances used as an actual argument to 

the PO or NM must be a ‘delay’ channel. The delayed PO or NM is not instantiated 

until the first message is sent to the ‘delay’ channel from some NM or PO (See 

Subsection 5.9.2). The ‘delay’ attribute may only be specified in the definition of 

the NM that defines the channel instance. Thus, a parameter channel may not be 

used as ‘delay’ channel.

5.6.3 Streams of Channels

Multiple channels may be defined simultaneously as a stream of channels. A 

channel stream is similar to a Scheme object stream where the components of the 

stream are channels. Streams of channels are defined within the Network Module 

definition and may be of any channel type. Channels that are elements of a stream 

of channels may not have the ‘delay’ attribute. Access to elements of a stream 

of channels may be made within the process object or within the network module 

environment. Elements of a stream of channels or the entire stream may be used 

as actual parameters to NM and PO instances. Streams of channels are accessed 

via the functions ‘head’ and ‘tail’ if provided within the Scheme implementation 

or with the functions ‘h-strm’ and ‘t-strm’ provided by the DPOS system. For
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example a send through the second element of a stream of asynchronous channels 

would be:

((h-strm (t-stnn channel-strm)) 'send message)

5.7 Virtual Process Network (VPN )

A DPOS program is a virtual process network composed of network modules, 

process objects and channels. Briefly, process objects (POs) are individual pro­

cesses, channels are communication links between process objects, and network 

modules (NMs) are components for composing subnetworks of process objects 

channels and other Network Modules. A program is run by invoking a virtual 

process network as you would invoke a Scheme function call. The process network 

is virtual in that components of the network may not initially exist (and they 

may never exist during the execution of the program) but are instantiated as the 

program progresses. The process network includes the definition and connectivity 

of all potential POs in the program as well as all potential channels and NMs. 

The invocation of a Virtual Process Network is similar to a function call and may 

include input parameters which are used as constants in the scope of the Virtual 

Process Network. Invoking a Virtual Process Network does not block the process 

that invokes it and also does not return a meaningful value. It should be viewed as 

a side effecting event.

The Process Objects within a Virtual Process Network generally have no direct 

knowledge of the VPN or of any of the network modules, channels, or other process 

objects contained within it. The exceptions to this are the parameter channels to 

the PO and any values passed into the PO from the Network Module in which it 

is created.

The virtual process network has several properties germane to high-level pro­

gramming languages. These include declarative definition of the network, recursive



network definitions, lazy instantiation of the network and constrained instantiation 

of the network.

5.8 Network Modules

Network Modules (NMs) are subnetworks used for defining a Virtual Process 

Network. Network Modules are composed of Process Objects, Channels and other 

Network Modules. Network Module definitions have formal parameters that cor­

responding to data values and channel instances. The distinction between an NM 

and a Virtual Process Network is that the NM has parameters that correspond to 

channels (parameter channels) for input and output and a VPN has no parameter 

channels. NMs are not visible to POs. Network Modules have local environment. 

This allows local variables and recursive NM definitions. Invoking an NM requires 

actual parameter arguments to be provided. The arguments are the access channels 

that connect to the NM as well as any values computed within the scope of the 

invoking environment. Network Modules may be nested and recursively or mutually 

recursively defined. In the traditional object-oriented framework a network module 

definition constitutes a class definition and may be instanced numerous times in 

the definition of a process network.

A Network Module instance may not be instantiated when the parent NM or 

VPN is instantiated. The instantiation of the NM may be delayed until a message 

is sent to a designated ‘delay’ channel (see Section 5.9.2). Also, the instantiation 

may be conditional in which case a constraint condition is evaluated to determine 

whether or not the instance is instantiated (see Section 5.9.1). Constraint conditions 

and instantiation delays are specified when the NM instance is specified in a VPN 

or NM definiton.

5.9 Control Flow

Several means of control flow exist in virtual process networks. Mechanisms 

exist for the control of the dynamic creation of the network as well as the control
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5.9.1 Constrained Instantiation

The instantiation of a Process Object or Network Module may be constrained. 

This is accomplished by defining a constraint condition upon its creation. When a 

parent NM is instantiated the constraint condition is evaluated. The constrained 

PO or NM is instantiated only if the result of the constraint is true. Constraint 

conditions may access constants, parameters, or channels in the parents scope 

and can communicate between the system and object layers. The specification 

of constraint conditions is described in Chapter 6.

5.9.2 Delayed Instantiation

Delaj'ed Network Module or Process Object instances and corresponding ‘delay’ 

channels may be used to control the dynamic instantiation of the Virtual Process 

Network. The delayed instance is instantiated when the corresponding ‘delay’ 

channel is first accessed for communication by an existing PO. This first access 

of the ‘delay’ channel is interpreted by DPOS as a demand for the instantiation 

of the delayed instance. The system creates the instance and then processes 

the message as a normal message. Controlling VPN instantiation using delayed 

instantiation is similar to demand-driven, lazy evaluation in sequential, functional, 

programming. Demand-driven, lazy VPN instantiation shares the same advantages 

that demand-driven, lazy evaluation, programming has. The criterion for process 

creation does not need to be defined until the processes are actually needed and 

control can be via demand propagation. This makes the programmer’s job simpler 

because demand propagation allows a single demand to serve as an implicit control 

for the creation of many elements and also postpones the actual decision until 

the program has the maximum information available. The programmer can define 

potentially infinite networks that become partially instantiated at run time the same
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way that programmers in sequential lazy languages can define and use infinite data 

objects.

5.9.3 Blocking

Each PO in a virtual process network is an active process with its own active 

thread of control. POs may be defined by the programmer to have a bounded limit 

of computation typical of single-threaded user programs, or as server or generator 

processes that perform infinitely repeated computation typical of operating system 

programs. Whichever program type is developed, the progress of the program 

is regulated by its pattern of communication through its channels. Regulating a 

Process Object by its message passing behavior means that a Process Object only 

progresses in response to incoming messages and/or only progresses so long as it 

is able to send messages. Thus, blocking while waiting for a message to be sent 

or received is an effective means of control. Blocking does not consume CPU time 

except for the scheduling and descheduling of the process when it becomes blocked 

and unblocked. Process Objects that block waiting for input from channels are 

called ‘ lazy’ . Programming with ‘ lazy’ POs is similar to demand-driven, stream 

processing in sequential, lazy, functional programming. Process Objects that block 

while attempting to output to channels are called ‘eager’ . Programming with 

‘eager’ POs is an effective means of generating parallelism without specificall}7 using 

parallel branching at the PO level. This programming paradigm supports data flow, 

pipeline and “compute, aggregate, broadcast” algorithms.

5.9.4 Nondeterminism

The access to a given channel is nondeterministic. This is to say that multiple 

process objects may simultaneously attempt to access a single channel for input or 

output. The winner of the competition for access is resolved nondeterministically. 

This results in nondeterministic merge and fanout of message streams.
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CHAPTER 6

DPOS VISUAL ENVIRONMENT

6.1 Introduction

The intent of using a visual programming environment in the implementation of 

DPOS is to facilitate the programmer in the topological definition of the Virtual 

Process Network. This allows topologically and interactively complex groupings 

of parallel processes to be designed in an intuitively clear manner. The design of 

the system layer of DPOS was intended to be implemented graphically from its 

inception and to encapsulate the parallel programming issues of network topology, 

synchronization control and dynamic process creation.

The primary components of the DPOS system, Process Objects, Network Mod­

ules and channels are graphically interfaced and are manipulated in constructing 

process networks. The primary use of the graphical interface is for building Network 

Module definitions composed of Channel, Process Object and Network Module in­

stances. The channel definitions are an integral part of the system and channel type 

definitions are not modifiable by the programmer. The Process Objects are single 

threaded and are designed outside of the visual programming environment and 

incorporated into it. The programmer uses NMs, POs and channels as black boxes 

within the visual programming environment. The user defines Network Modules 

using other nested Network Modules, Process Objects and Channels by visually 

arranging them on the screen and specifying channel types, connections, Network 

Module nesting, delayed instantiation, delay channels, constraint conditions and 

static parameters to process objects and domains.



The choice of details of the icons used for the elements is highly subjective. It is 

important not to over-illustrate either minor qualities of the system or unnecessary 

information in order to avoid visual clutter. It is also necessary to show enough 

information to convey the essential structure of the program relationship's. Ab­

straction is a primary concern in visual line programming for two reasons. Firstly, 

it allows the programmer to define relationships without unnecessary specificity. 

Secondly, it provides the programmer with a means of reducing the visual clutter by 

encapsulation of low-level details within groupings. Using abstraction, the program­

mer can manipulate the program without being immersed in details. This system 

operates at a high level of abstraction (the Process Object and its parameters is the 

lowest level involved). The programmer also has the facility to define abstractions 

in the form of Network Modules.

6.2.1 Choice of Graphical Representations

Several decisions influenced the choice of graphical representation for different 

features of the DP OS system. The basic building blocks of the underlying system 

are blocks, connection lines and text. In order to allow more information to be 

represented within the image with the least additional clutter several different 

representational devices were employed. These include dashed lines, outlines, area 

filling and text concatenation.

The graphical features rely on the different perceptual elements of shape, area, 

texture, line and text. This allows the user to scann an image for visual cues rather 

than utilize the more detailed comparison required to differentiate text strings that 

are visually similar to one another. This is the same principal used in the design of 

traffic symbols that allow drivers to easily identify road conditions and regulations. 

For example, if the user is looking for information concerning the dynamic creation 

of objects he or she quickly scans the image for dashed outlines which indicate

6.2 Representation Issues



delays and constraints. More detailed textual information may then be obtained 

for the object in question.

Text representation has been limited to labels for Network Module and Process 

Object instances, connection stream accessor functions, and to separate parameter 

menus. Comments are encouraged within the graphical image but are not manda­

tory. The choice of and use of comments is dependent on the complexity and level 

of visual clutter of individual windows.

6.3 Overview

The DPOS graphical editor is built upon a pre-existing graphical editing system 

called VIPER developed by Todd Spencer[29]. The existing system has been revised 

and extended to accomodate the specific needs of the DPOS system. The editing 

environment uses windows and mouse cursor inputs as well as text interaction (see 

Section 6.7).

The graphical editor is a block diagram manipulating system. The components 

of the system include Network Module, Process Object, and channel blocks. The 

tasks performed by a programmer using the graphical editor include:

1. Definition of Process Object blocks which are the graphical block images to 

be used to represent Process Objects within the graphical environment. As a 

by product the system also creates a Scheme source template to be used as 

the function definition header when the user defines the Process Object text.

2. Definition of Network Module blocks which are the graphical block images used 

to represent Network Modules within the graphical environment. These are 

composed of Process Object instances, channel instances and Network Module 

instances. Definition of a Network Module block creates as a by product a 

Scheme source file which may be executed interpretively or compiled and run 

in the parallel programming environment. When this code is executed, NM
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definitions create the processes and subnetworks incorporated within Network 

Module.

The graphical editor is window oriented. The programmer opens one or more 

windows onto graphical data files (one data file per window). The programmer 

creates Process Object blocks and Network Module blocks by duplicating and 

then modifying existing templates. The edited templates are then ‘script’ed out to 

produce three file types. These include the block template which may be reedited, 

the block image which may be incorporated as a component in other Network 

Module definitions, and the Scheme source file which is the Scheme definition 

corresponding to the Network Module (or the Scheme template in the case of a 

Process Object definition).

6.4 Block Diagram Definitions

This section describes the components and symbols of block diagrams generated 

using the DPOS graphical editor. Corresponding diagrams are shown in Figures

6.1 and 6.2. Legends of symbols used by the graphical editor are listed below 

with a short discussion of each. Note that the ‘DOMAIN’ parameter shown in 

the legends is to be used for the specification of locality of the Process Object 

or Network Module in a distributed environment for Concurrent Utah Scheme[30] 

output. However, Concurrent Utah Scheme is not incomplete as of the date of this 

report.

1. Basic Blocks: The basic blocks legend shows three instances of Network Mod­

ule components. From top to bottom are: ‘pl:p-sieve’ Network Module in­

stance p i of class p-sieve, ‘pul:p-unit’ Process Object pul of class p-unit, and 

an asynchronous channel instance. The distinguishing features are the reversed 

image characteristic of Network Modules, simple rectangle of the Process 

Object and the round shape of channel instances. Port locations defined for
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the particular class are indicated as small rectangles at block perimeters. Ports 

represent those formal parameters in the Process Object and Network Module 

definitions that correspond to channel instances. Port locations are used to 

form connections between channel, NM, and PO instances. (See Figures 6.1 

and 6.2.)

2. Channel Types: The channel types legend lists the individual channel icons in 

single and stream form for channel types: a-channel (Asynchronous 1 way), b- 

channel (buffered asynchronous 1 way), sync-channel (synchronous exchange), 

two-way-channel (1 way /  2 way interface), input-guard-channel (synchronous 

1 way guarded input), output-guard-channel (synchronous 1 way guarded 

output). The functionality of the channel types is discussed in Chapter 5.

3. Network Modules: The Network Modules legend lists Network Modules of an 

arbitrary class type ‘filter-strm’ with names ‘f l ’ .. lf4’ connected to buffer 

channels. Delay relationships are indicated by an outer dashed outline and a 

rectangle at the connection point (to indicate which connected channel is the 

delay channel). Constraint conditions are indicated by an inner dashed line. 

The ports for the ‘filter-strm’ class are TC, BC, LC. These refer to top center, 

bottom center and left center respectively. Only LC is connected.

4. Network Module Parameters: Shows the parameter menu for the Network 

Module ‘filter-strm.’ The parameter ‘DOMAIN’ is set to ‘false’ indicating 

that there is no separate environment needed to instantiate the NM (this is 

true for all NMs). ‘NAME’ the instance name (see Network Modules above) 

of this Network Module is ‘f4.’ ‘CONSTRAINT’ indicates that a constraint 

condition has been placed on the creation of this module ( <  min-val 4) where 

‘min-val’ must be lexically visible in the scope of the environment creating 

‘ f4.’ The parameters DOMAIN, NAME and CONSTRAINT are common to



all Network Modules. The only user defined parameter for the Network Module 

‘max-val’ is the computed value (+  min-val 1).

5. Process Objects: Is similar to the Network Modules legend. The significant 

difference here is that the block images are not reversed. This Indicates that 

they have an associated domain (process) and is typical of all Process Objects. 

The ports for the ‘ob-type’ class are RC and LC.

6. Process Object Parameters: Shows the parameter menu for the Process Object 

‘P 0 2 ’ of type ‘ob-type.’ ‘DOMAIN’ is true (for all Process Objects). ‘CON­

STRAINT’ is set to ‘nil’ indicating no constraint on this Process Object and it 

has no user defined parameters. This legend is similar to the Network Module 

Parameters legend which shows different parameter options. The ‘DOMAIN’ 

and ‘CONSTRAINT’ parameters are system parameters and are not visible 

within the PO definitions.

7. Block Legend and Block Legend Showing Port Labels: Show empty templates 

for Network Modules (similar for Process Objects). This is the inside of a 

Network Module but without any inner constituents.

8. New Network Module Legend: The New Network Module Legend shows the 

template used for defining new Network Module classes. The user should delete 

the block ‘newl:new-nm’ and install new PO, channel, and NM instances as 

required (see Section 6.5).

9. New Process Object Legend: The New Process Object legend shows the 

template used for defining new Process Object classes. It is similar to the New 

Network Module Legend. The user deletes connections and adds connections 

as required for the channel connections for the class being defined. The user 

should not delete the block ‘user-code.’ (see Section 6.5)
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6.5 Editing Command Summary

This section enumerates a subset of the commands available for the DPOS 

graphical editor. Additional commands may be found in the VIPER[29] thesis.

1. window: Creates a new editing window and environment. Placing the mouse 

in the window enables editing in the new window.

2. new-nm: Loads in a copy of the blank Network Module for editing.

3. new-po: Loads in a copy of the blank Process Object for editing.

4. script: Enters the scripting sequence for generating Scheme executable output 

(also generates block image files). The user answers a series of questions:

(a) Model name ?: Enter the new class name or default if no change.

(b) Model parameters menu appears.

(c) Insert parameter ?: User may enter a user defined parameter for the 

class type. This does not include port definitions (those are generated 

automatically).

(d) Delete parameter ?: User may delete a user defined parameter.

(e) Continue editing parameters ?: User may loop again through insert, delete 

and continue.

(f) Save current block diagram ?: This is identical to the save command listed 

below.

If there are irregularities in the Network Module definiton, then the user is 

asked other questions also. These include specifying unedited parameters or 

names to instances within the window.
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5. save: Saves the window contents for the graphical editor only. This does not 

produce Scheme executable files, only graphical image files for Process Object 

or Network Module definitions. The user is asked to specify a new name for 

the image.

6. exit: Exit system (or window if not root window).

7. zoom: Scales the window image (i.e., zoom .8 .8) will scale to .8x.8 scale.

8. read: Read in a Network Module of Process Object class template for editing 

(i.e., read filter-strm).

9. delete: Delete object under the cursor. The object may be a Network Module, 

Process Object, connection or a comment.

10. move: Move object under the cursor

11. edit: Edit object under the cursor. In the case of a Network Module or Process 

Object block this brings up the edit menu for the object. If it is a connection 

the user edits only the accessor function for the connection. This is useful 

only for a stream of channels and the accessor must be one of: h, t, ht, htt, 

tt. For head, tail, head of tail, head of tail of tail or tail of tail of the stream 

of channels.

12. ctrl C-l: Redraw window.

13. connect: Establish a connection between a Network Module or Process Object 

and a channel or port. The ‘ source’ must be a Network Module or Process 

Object. The ‘destination’ must be a channel or port of the surrounding 

Network Module. This does not indicate direction of traffic flow. If a channel 

is selected as the destination then the user is queried whether the connection 

is to be a ‘delay’ connection.
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14. copy: Copy the object under the cursor. The user postions the new copy with 

the mouse cursor.

15. get: Get a Network Module instance, Process Object instance or channel 

instance for inclusion in the Network Module currently being edited, (i.e., 

get a-channel) (i.e., get filter-strm)

16. parameters: Opens the help window with the parameter list for the Network 

Module or Process Object currently being edited.

17. resize: Resize a block in the current NM being edited.

18. help: Opens the ‘help’ menu.

19. clear: Clears the work space in the root window.

6.6 Editing Operations Summary

This section defines a set of common operations for generating programs using 

the DPOS graphical editor. Each item gives the operations to use in performing 

each task.

1. Creating a new Process Object class:

(a) Use ‘new-po’ to get an instance of the blank PO template.

(b) Edit the template by connecting ‘user-code’ to the desired ports.

(c) Edit connections to specify accessor functions if the port represents a 

stream of channels.

(d) Use ‘ script’ to generate the Scheme executable file, parameters (other than 

port connections) and block images for use in other NM definitions. Be 

sure to change the name from ‘new-po’ or ‘new-nm’ to some other class 

name.
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(e) Use the Scheme executable ‘class-name.std’ when editing the Process Ob­

ject definition on a text processor. This file will contain a template showing 

the necessary calling sequence for the PO definition.

2. Creating a new Network Module class:

(a) Use ‘new-nm’ to get an instance of the blank NM template.

(b) Use ‘delete’ to remove the instance of ‘new-nm’ included. The ‘new-nm’ 

instance is a dummy instance to indicate how connections and instances 

should look within an NM definition.

(c) Use ‘get’ to get instances of channel types, Process Object types and 

Network Module types for inclusion into the Network Module class.

(d) Use ‘ connect’ to connect included NMs and POs to channels and ports.

(e) Use ‘move’ and ‘resize’ to configure the contained POs and NMs.

(f) Use ‘edit’ to edit PO parameters, NM parameters and connection accessor 

functions (for stream channels only).

(g) Use ‘script’ to generate the Scheme executable file, parameters (other than 

port connections) and block images for use in other NM definitions. Be 

sure to change the name from ‘new-nm’ to some other class name.

3. Editing an old Process Object or Network Module class: Use ‘read class-name’

to input the Network Module or Process Object class diagram for editing.

Then proceed as in creating a new PO or NM after the initial ‘new-nm’ or

‘new-po’ step.

4. Attaching channel instances:

(a) Use ‘connect’ to establish a connection from a PO or NM to a channel 

instance. Only one channel may be connected to any NM or PO port



(with the exception of stream channels). Any number of POs or NMs can 

be connected to a channel or template port. An NM or PO port must 

be selected as the source and a channel or template port must be the 

destination. Delays are specified at this time.

(b) Use ‘edit’ to edit the connection accessor function in the case of stream 

channels.

5. Editing channel instances: Use ‘edit’ to edit the channel definition menu. The 

user must specify the name of each channel instance in a class definition. In 

the case of buffer channels the user must specify the maximum size of the 

buffer. In the case of input and output guard channels the user must specify a 

guard list (list of integers) to be used as identifiers for guards (the list is 0...n) 

for the list of guards.

6. Editing instances of Network Module or Process Object: Use ‘edit’ to edit 

the Network Module or Process Object instance parameter menu. The user 

must specify a name for each instance. The user defined parameters must be 

specified. The parameters DOMAIN and CONSTRAINT have default values. 

The DOMAIN default value should not be edited.

7. Editing parameters of Network Module or Process Object classes: This is done 

when editing the Network Module or Process Object class by using the ‘ script’ 

command. (See Item 1 above.)

6.7 Existing VIPER System Base

The existing VIPER system supports a wide range of graphical programming 

facilities for object-oriented programming and simulation. The VIPER system is 

written in Common Lisp using the Frobs object system[2l], the X window system 

and Gnu Emacs for interfaces.
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In VIPER, objects are represented as rectangular blocks and connection relation­

ships (methods or physical links in the case of circuit simulation) are represented as 

arrows between blocks. Among the most advanced features is the system’s ability 

to handle abstraction of groups of objects which may be contracted into icons 

or expanded as groups (groups, constractions and expansions). It is also capable 

of handling multiple connections to an object, to incorporate textual files as the 

object definitions, and to represent multiple levels of nesting with multiple display 

windows. Connections are represented as directional arcs and strict directionality 

of connections is enforced. Any connection may output to several others but may 

only input from a single source and only a single connection is allowed to any port 

on an object. Facilities are provided for text and numeric parameters to be applied 

to objects.

6.7.1 Modifications to VIPER

Modifications of the VIPER environment were necessary for several reasons. It 

was neccesary to accommodate nested lexically scoped network topologies, three 

types of blocks (Network Module, Process Object and channel), and specialized 

block attributes such as delays, constraints and stream channels.

The following is a list of modifications to the VIPER system.

1. The facilities for editing groups, expansions and contractions were found to 

be specialized for groupings within a flat network topology. Rather than work 

with these constructs the ‘window’ command was added to allow multiple 

editing windows to be used each with its own environment. This is more 

directly applicable to the nested scoping of the DPOS network topology.

2. Blocks were differentiated into the three primary types Process Objects, Net­

work Modules and Channels.
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3. Icon representations for Process Objects, Network Modules, Channel types,

stream channels, constraints and delays were added.

4. Generic parameters were added to block definitions. These include:

(a) NAME: for instances of all three types of objects. ‘

(b) DOMAIN: for instances of all three types of objects.

(c) CONSTRAINT: for Process Object and Network Module instances.

(d) BUFFER SIZE: for buffer channel instances.

(e) GUARD LIST: for input and output guard channel instances.

(f) STREAM: for all channel type instances.

5. Connections were modified in several ways for the DPOS environment.

(a) Directionality of data flow is no longer defined within the environment.

(b) Connections are restricted. ‘Source’ is restricted to Network Modules and 

Process Objects. ‘Destination’ is restricted to channel types.

(c) Multiple ‘destinations’ are no longer supported. This means that only one 

channel may be connected to any one Process Object or Network Module 

port.

(d) Multiple ‘sources’ are now supported. This means that multiple Network 

Modules or Process Objects may be connected to a single channel port.

(e) Accessor functions for accessing stream channels has been added to con­

nection definitions.

(f) Delay was added as a property of connections.

(g) Differentiation between ports in channel objects has been removed. This 

means that it does not matter to which port of a channel that a PO or 

NM connects. (The reverse is not true.)
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6. Recursion in definitions of Process Objects and Network Modules is now 

supported.

7. Scheme post processing was added to generate Scheme output files along with 

the graphical block files. This attributes lexical scoping semantics to the 

network topology and allows mutual recursion in NM definitions.

8. Unmodified features of the VIPER system were generally not deleted. Several 

features were thought to be obsolete and not useful in editing DPOS networks 

and were left as is. These leftover features may not be completely compatible 

with the DPOS environment include ‘Group’ , ‘Contract’ and ‘Expand’ opera­

tions. These are tailored to working with a flat network topology and do not 

generate nested scoping or allow modifications of port connections or multiple 

port connections. The utility of these features is replaced by the multiple 

windowing capacity and recursively nested scoping possible in the the DPOS 

environment.

9. Help Menus for information and accessing Scheme objects were added.

10. Systid features and help menus were deleted. These included Systid post 

processing and library functions.
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CHAPTER 7

PROGRAMMING METHODOLOGY AND 

DEVELOPMENT

7.1 Introduction

This chapter presents a comparison between object program development using 

the DPOS system with sequential object definition in Scheme and with parallel 

object definition using explicit low-level parallel constructs (locks and futures) in 

Butterfly Scheme[26].

This chapter also describes a programming methodology (Dynamic Program­

ming) and shows how the methodology may be extended to develop virtual process 

networks. The Sieve of Erasthones algorithm is used as an example program. The 

basic algorithm is developed using parallel dynamic programming methodology and 

implemented as a Network Module.

7.2 Implementation Comparison

This section discusses the implementation of a hypothetical closure style object 

as a single-threaded object in a sequential programming environment, as a paral­

lel object that uses explicit synchronization and parallel constructs in ‘Butterfly 

Scheme’ and as a DPOS process network. The object has features and parallel im­

plementation requirements typical of object definitions employing several methods 

with requirements for partially or fully sequential execution of methods.

This object is a component in a hypothetical network of objects. A description 

of the operation of the object is nested cycles of activities.

In each cycle the steps are:
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1. Initialize object slot ‘ initvals’ .

2. Inner cycle. Cycle number-of-updates times through update methods of types 

update-a and update-b with the stipulation that update-a and update-b must 

cycle in pairs. Either update-a or update-b may occur first but both must 

occur exactly once in each inner cycle. These methods propagate subresults 

to other objects.

3. Method ‘result’ is then used to claim results and reset the object.

In a single threaded environment it is assumed that the correct order of evalua­

tion leads to an appropriate cycling of update methods.

(define (sequential-net-obj next-a next-b)

(let ((initvals #f)

(update-lst #f))

(lambda (op . vals)

(cond ((eq? op 'init) (set! initvals (car vals)))

((eq? op 'update-a)

(let ((newval (process-a (car vals))))

(set! update-lst (cons newval update-lst))

(next-a 'update-a newval)))

((eq? op 'update-b)

(let ((newval (process-b (car vals))))

(set! update-lst (cons newval update-lst))

(next-b 'update-b newval)))

((eq? op 'result)

(final-processing

number-of-updates initvals update-lst))))))

In a parallel implementation the order of incoming methods is nondeterministic 

so the object must provide synchronization control for the sequence of method 

execution. This may be accomplished using locks (semaphores) and futures and 

retaining the same ‘passive’ object role.

(define (parallel-net-obj next-a next-b)

(letrec



((make-lock! init-lock) (make-lock! update-lock)

(make-lock! update-a) (make-lock! update-b)

(make-lock! result-lock) (number-of-updates #f)

(update-count-a 0)(update-count-b 0)

(update-count 0) (initvals #f) (update-lst #f)

(unlock-test .

(lambdaO <

(if (= update-count-a update-count-b)

(begin (set! update-count (+ update-count 1))

(if (< update-count-a number-of-updates)

(begin (unlock-lock! update-a)

(unlock-lock! update-b)

(unlock-lock! update-lock))

(unlock-lock! result-lock)))

(unlock-lock! update-lock))))))

(lock-lock! update-lock) (lock-lock! result-lock)

(lock-lock! update-a) (lock-lock! update-b)

(lambda (op . vals )

(cond ((eq? op 'init) (lock-lock! init-lock)

(set! number-of-updates (car vals))

(set! initvals (cdr vals))

(unlock-lock! update-a)

(unlock-lock! update-b)

(unlock-lock! update-lock))

((eq? op 'update-a)

(lock-lock! update-a)

(lock-lock! update-lock)

(future (let ((newval (process-a (car vals))))

(set! update-lst (cons newval update-lst)) 

(next-a 'update-a newval)

(set! update-count-a (+ update-count-a 1)) 

(unlock-test))))

((eq? op 'update-b)

(lock-lock! update-b)

(lock-lock! update-lock)

(future (let ((newval (process-b (car vals))))

(set! update-lst (cons newval update-lst)) 

(next-b 'update-b newval)

(set! update-count-b (+ update-count-b 1)) 

(unlock-test))))

((eq? op 'result)

(lock-lock! result-lock)
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(let

((res (final-processing

number-of-updates initvals update-lst))) 

(unlock-lock! init-lock) 

res))))))

Modifying object descriptions this way requires a great deal of synchronization 

control to be added to the object definition. This approach also mixes parallel 

synchronization issues with the functionality issues of the object obscuring both.

Using Process Object semantics the object may be treated as a single threaded 

program using channels as surrogates for the methods of the above implementations. 

The Process Object definition uses guarded input channels IN-AB, OUT-A, OUT-B 

and asynchronous channels RESULT and INIT. Note the use of ‘meth-list’ and 

‘new-meth-list’ with the guarded input channels to handle the nondeterminstic 

inner cycle by passing the appropriate guard type list to IN-AB.

(define (net-obj INIT RESULT IN-AB OUT-A OUT-B)

(letrec

((update-cycle (lambda (count update-lst meth-list)

(if (> count 0)

(let* ((method (IN-AB 'readguard meth-list))

(meth-type-a (if (eq? (car method) 'update-a) #T)) 

(newval ((if meth-type-a process-a process-b)

(cadr method)))

(new-meth-list (remove (car method) meth-list)))

(if meth-type-a (OUT-A 'update-a newval)

(OUT-B 'update-b newval))

(update-cycle (if new-meth-list count (- count 1))

(cons newval update-lst)

(if new-meth-list new-meth-list

'(update-a update-b))))

update-lst))))

(let* ((vals (INIT 'receive))

(number-of-updates (car vals))

(initvals (cdr vals))

(results

(update-cycle

number-of-updates initvals '(update-a update-b))))
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(RESULT 'send (final-processing

results number-of-updates initvals))))

(net-obj INIT RESULT IN-AB OUT-A OUT-B))

Using Process Object semantics greatly reduces the length and complexity of 

the object definition. The issues of managing parallelism and object functionality 

are separated. The Process Object definition contains no critical sections and may 

be developed and tested as a single threaded program on a uniprocessor using 

sequential channel definitions. The potential blocking points within the program 

are explicitly evident as accesses to the channels (shown capitalized).

7.3 Dynamic Programming

Dynamic Programming is a computational technique that converts multistage 

multivariable computational problems into a series of single or few variable prob­

lems. It is a methodology for developing algorithms based on the compositions 

of solutions of subproblems. The term Dynamic Programming does not refer to 

computer programming but to the fact that the computation is a series of discrete 

steps. This methodology has a wide range of uses in mathematics, engineering, 

business and science.

The use of a single methodology is not meant to imply that this is the only 

applicable approach. But only to present an example approach that has wide 

application and yields programs that work efficiently.

7.3.1 Properties of Dynamic Programming

There is not a specific algorithm used in dynamic programming, rather, it is a 

problem solving methodology. Dynamic programs are composed of a sequence 

of computation ‘ stages’ . Each stage is composed of a set of computed states. 

Several properties distinguish Dynamic Programming from other problem solving 

methodologies.



1. A sequential decision problem with n decision variables is converted into n 

subproblems each with a single variable. These subproblems are called ‘stages.’

2. The sum of computed states output from a stage plus the input data (sum of 

all output data from previous stages) are the complete information needed for 

all computated states at the next stage.

3. The principle of optimality is used to produce an optimal solution from com­

position of optimal subsolutions.

4. Bottom-up design is used. This distinguishes dynamic programming from 

divide and conquer strategies. Problems need not have a final result but may be 

continuous processes. Composition of subresults is not simply recomposition 

of the divided parts as in divide and conquer (i.e., the results may be used in 

several combinations at successive stages).

Many dynamic programming problems can be performed within a structured 

tableau and this is the approach used here. The tableau for a stage consists of 

a sequence of frames corresponding to stages. Each stage frame contains input 

data (from some previous stage), start data (aggregation of accumulated data), 

and a description of the states to be computed. The development of dynamic 

programming algorithms may be described as undertaking the following steps:

1. Define stages and states.

2. For each stage define decision variables, constraints and functions using only 

the input data and start data.

3. For each stage define output functions for generating results (optimal values) 

to be used in successive stages.
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7.3.2 Application to Parallel Processing

Dynamic programming stages have the property that the computational outputs 

at one stage are the complete information needed for all computation at the next 

stage. Because of this, all computations for a stage are data and logic independent 

and may be carried out in parallel. Once a problem has been expressed as a dynamic 

program the potential parallelism at each stage is evident. The issue to be resolved 

in expressing it as a parallel dynamic program is the partitioning of each new stage 

into parallel processes. The criterion for this partitioning is to minimize the amount 

of data passed between processes from stage to stage. If the same processes can 

be reused in successive stages then the amount of data passed between stages can 

often be greatly reduced or eliminated.

7.4 Prime Number Sieve Program

The compution of prime numbers is commonly expressed as the generation of 

a list of primes by filtering successive odd numbers through the list of already 

computed primes. Numbers are tested for divisibility and against their square 

roots. For example the number 11 would be filtered through the list (3 5 7). The 

number 3 is less than the square root of 11 and 11 is not divisible by 3 so it must 

be compared against the next prime. The number 5 is greater than the square root 

of 11 so we know at that point that 11 is prime and should be added to the end of 

the list. The number 13 is then filtered through the resulting list and so on. This 

approach leads to implementations with two nested loops where neither loop has 

guaranteed logic of data independence between successive iterations.

Expressing the algorithm as a dynamic program takes a different form. Assuming 

that some number of primes has been previously computed, stage(i-l) will compute 

a subsequent set of primes and this subsequent set is input data to stage(z). The 

start data for stage(z) is the set of previously computed primes plus all odd integers 

not yet considered.
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In general for any stage(i) the tableau is:
Start data: odd integers >  m , all primes <  I
Input data (computed in stage i — 1): I <  primes< m
States(s): The filtering of all odd integers j :  m <  j  <  m2

For example given stage(i) where / =  4 and m =  9:
Start data: odd integers >  9, primes: (3)
Input data: (5 7)
States(s): The filtering of all odd integers j :  9 <  j  <  81

The states s may now be partitioned into p independent processes each filtering 

a consecutive subrange of the odd integers j .  In between stages, the stage results 

of the p processes must be broadcast to all p processes so that the next stage 

computation may take place.

The parallel stage tableau for stage i is then:
Start data: odd integers >  m, primes <  I 
Input data( from stage(i — 1) ): I <  primes <  m
States(s) are processes sl..sp each of which filters l/p of the range of odd 
integers from m to m2.

A diagram for this process network is shown in Figure 7.1. Figures 7.2,7.3 and

7.4 show the implementation of the process network. The processes f-obj:l .. f-obj:p 

correspond to the state processes sl..sp. In the network shown, ‘ sieve-c’ initializes 

the ‘f-obj’ processes with start parameters including a list of starting primes and 

range limits for filtering. Each f-obj filters its range of integers and returns the 

results to the sieve-c. Sieve-c then broadcasts the aggregation of the results along 

with new subrange limits to the f-obj processes and the cycle repeats.

The aggregation phase of the stage cycle causes a synchronization of the program 

while the sieve-c process concatenates the p result vectors and broadcasts them. 

During this time the f-obj processes must wait idle.

In the following subsection further refinement of the algorithm eliminates this 

synchronization by subdividing the dynamic program stages into substages.



67

f-obj: processes each process 1 segment of the rang* of 
integers from in to m *m.

aieve-c: broadcasts and aggregates aubrasults 
from f-obj procassas

Figure 7.1. Sieve Network
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The synchronization of the previous algorithm is due to the data dependencies 

between subsequent stages in the dynamic program. The f-obj processes must wait 

for the aggregation and broadcast of all results from stage(i) before proceeding to 

stage(i -f 1). "

The optimization of the previous dynamic program algorithm involves the sub­

division of each stage into substages in such a way that there is no direct data 

dependency between consecutive substages. That is to say that the data from 

substage(i) is not needed for substage(i -f 1) but is needed in some future substage.

In stage(i) the results of f-obj :1 is the computation of all primes between m 

and some number m l. If this data alone were used as the input to stage(i -f 1) it 

would allow the computation of all primes between m2 and m l2. In stage(z) process 

f-obj:2 computes all primes between m l and m2. If this data alone were used as 

input to stage(i -f 2) it would allow computation of all primes between m l2 and 

m22. In this case the computations of stage(i -f 2) are not dependent on the results 

of stage(i -f 1) but only on results of segment 2 of stage(i).

Redefining the input data for stages in this way eliminates the synchronization at 

stage boundaries. If stages are numbered using base p then input data for stage(z) 

comes from state(z mod p) of stage( truncate(z‘/p ) ). The dynamic programming 

tableau for this modified algorithm is the same except for this change and the same 

process network sketch is appropriate.

The total cost of computation of all primes up to n (without overhead) is 

between O(n) and 0 (n §). The total overhead cost of broadcasting all primes up 

to y/n is less than 0(py/n). Using constant p -C y/n and the knowledge that the 

number of primes less than y/n is much less than the y/n we can see that the ratio 

of granularity/overhead and thus the computational efficiency is a continuously 

increasing function which is much greater than ©(y^z).
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7.4.2 Im plem entation  o f  Prim e N um ber Sieve

The implementation of the refined sieve algorithm is shown in Figures 7.2, 7.3 

and 7.4. The stages followed in implementation of the Sieve algorithm follows:

1. Analysis and development of the algorithm as a parallel dynamic program.

2. The parallel dynamic program is sketched and the decision to use buffered 

communication channels is made in order to store substage results for future 

use. It is also decided to allow a variable number of f-ob j filters represented 

by the parameter ‘fil-cnt’ .

3. Individual Process Object blocks for sieve-c, f-ob j are designed using the 

graphical interface from Process Object templates (see figure 7.4).

4. The list of f-ob j processes is designed as Network Module f-ob j-list  as a 

recursive Network Module definition with parameter ‘fil-cnt’ determining the 

length of the list.

5. The f-ob j-list  and sieve-c are incorporated into a Network Module definition 

p-sieve that encapsulates the entire definition of the parallel sieve program.

6. The f-ob j process class is developed on a text editor by filling in templates 

output from the graphical interface and are tested independently on a unipro­

cessor.

7. The sieve-c process is developed on a text editor by filling in templates output 

from the graphical interface and are tested independently on a uniprocessor.

8. The final program is then tested on a parallel processor.
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7.4.3 Incremental Testing

Before the entire program is tested on a parallel processor, the individual pieces

are first tested on a sequential processor in standard ‘Scheme.’ This is done by using 

sequential definitions of channels. These sequential channel definitions interact with 

the user instead of with other Process Objects. The following steps are taken:

1. The channels necessary to completely encapsulate the Process Object to be 

tested are created:

(define chi (channel 'chi))

(define ch2 (channel 'ch2))

(define ch3 (channel 'ch3))

2. The Process Object definition to be tested is invoked with channels as param­

eters and other parameters as necessary.

(class-name chi ch2 ch3)

3. The communication necessary for the operation of the Process Object is now 

effected between the user and the Process Object. The channels query the 

user for input and print output to the screen.

computer> channel chi requests input 

user> 7

computer> channel ch2 receives output 

computer> ....

This level of testing is a complete test of individual PO definitions and does not 

differ in any semantic way from the actions of the PO in a parallel environment.

After sequential testing of all Process Objects is finished, testing of Network 

Module definitions on a parallel processor begins. This process is similar to the 

testing on the sequential processor.
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1. The channels necessary to completely encapsulate the Network Module to be 

tested are created:

(define chi (channel))

(define ch2 (channel)) .

(define ch3 (channel))

2. The Network Module definition to be tested is invoked with channel parameters 

and other parameters as necessary. In the parallel Scheme dialect used here 

this entails creation of a ‘future’ with the Network Module definition as its 

argument:

(define testl (future (class-name chi ch2 ch3)))

3. The communication necessary for the operation of the Network Module is now 

effected between the user and the Network Module by sending and receiveing 

messages through channels. The channels are communicated as within the 

Process Object definitions:

user> (chi 'send 7) 

user> (ch2 'receive) 

computer> ....

Incremental expansion of the subnetworks being tested may be accomplished 

by testing successively outer scoped NM definitions or adding individual Process 

Object definitions and channels. The only requirement for this method of testing is 

that the subnetwork begin tested must be completely encapsulated in the necessary 

channels.
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CHAPTER 8

CONCLUSIONS

8.1 E v a lu a tio n

In practice the comparison of distributed parallel programming systems is diffi­

cult at best, because of the scarcity of models and implementations for comparison 

and the lack of definitive test criteria. A variety of evaluation results are presented 

in this report including:

1. Discussions of the semantic improvements of DPOS over existing programming 

systems in this chapter.

2. A comparison between closure object implementation in sequential program­

ming and in parallel programming using traditional methods and using Process 

Object semantics in Chapter 6.

3. A comparison between three implementations of alpha beta search is given in 

Appendix A.

4. Performance statistics for several implemented programs are given in Appendix

B.

5. A program design methodology for developing efficient DPOS programs in 

Chapter 6.



The distributed parallel object system (DPOS) brings together concepts of object- 

oriented programming and graphical programming with aspects of modern func­

tional languages.

The system defines a clear and simple approach to generating and managing 

parallelism and interprocess communication in a distributed parallel environment. 

It contributes several new solutions to the problems of distributed parallel program­

ming that are improvements over existing systems:

1. Stratification: The DPOS system is stratified in order to allow the sequential 

and parallel aspects of distributed programming to be clearly and uniformly 

defined with a minimum need for proficiency at low-level parallel programming.

(a) In the Process Object layer, the programmer develops sequential com­

ponents of the parallel program in traditional sequential programming 

styles without the need to deal with concurrency issues such as critical 

sections. Communication between processes is syntactically similar to file 

accessing. In addition, the programmer can produce Process Objects that 

are regulated by interprocess communication (this is stream processing 

at a very high-level) reducing the need for limit control information and 

programming in the individual Process Object.

(b) The Network Module Layer manages the concurrency issues of full dy­

namic process creation and interprocess communication (critical sections) 

at a high-level in a graphical environment tha t accurately and clearly 

reflects program topology.

2. Graphical Representation:

8.2 C ontributions
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(a) Provides abstraction at the process network level, thus allowing program­

mers to develop programs abstractly rather than concretely as in other 

visual programming systems.

(b) High-level semantics of the graphical representation rather than a one 

to one correspondence between icons and language elements makes the 

visual programming aspect of the system a more powerful tool. The high- 

level semantics includes: concurrency issues of process creation, Network 

Module abstractions, delayed and recursive Network Modules.

(c) Allows programmers to develop complex topologies visually (and two- 

dimensionally) rather than textually.

(d) Serves as visual program documentation of process topology not easily 

described textually.

3. Lazy Evaluation and First Class process status have been incorporated into the

DPOS system to provide the programmer with a wider range of programming

options including:

(a) Stream and delayed evaluation programming techniques.

(b) Process structures that are similar to abstract data structures.

4. Encapsulation of Process Objects and Network Modules:

(a) Allows more flexible dynamic process creation than is achieved by the 

other systems studied.

(b) Encourages the analyses of programs and program fragments using graph 

theory and data flow analysis by defining a clearly defined network of 

processes.

(c) Encourages modularity and reusability by establishing a clearly defined 

interface between the modules.



(d) Allows the incremental development and testing of modules which can 

be defined as isolated units along with their surrounding channels and 

communicated with by the tester via the surrounding channels.

5. Channel Semantics:

(a) Encapsulates the semantics of communication allowing the existence of 

multiple communication paradigms within the same program, permitting 

the programmer to program in a sequential style at the Process Object 

level as the semantics of communication are not incorporated into the base 

language.

(b) Consistent approach to the critical section issues of data sharing and com­

munication relieves the programmer of resolving critical section problems.

8.3 L im ita tio n s

While the research goals of this project were met, several restrictions within the 

system were found to limit programming flexibility. In addition several potential 

extensions to the basic goals became obvious during implementation and testing.

At present the output from the graphical interface is limited to the single 

source language ‘Butterfly’ Scheme although programs have been translated into 

Concurrent Utah Lisp. Since the implementation is dependent only on common 

low-level parallel constructs there is reason to believe that output modules can be 

adapted to many existing language systems.

Program text editing for Process Objects and the editing source text for network 

modules have not been integrated into the graphical interface. Their inclusion would 

provide a more complete programming environment.

The semantic system constructs were designed for medium to large granularity 

programming. All example programs and discussions are limited to medium to 

large grain algorithms. Several small grain applications were tested and their
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performance was found to be unsatisfactory. Smaller grain applications may be 

designed with this system in the cases where simplicity of implementation is the 

dominant requirement rather than parallel performance.

Several nonworking features of the preexisting graphical interface were not ad­

dressed in the implementation of the graphical interface for DPOS. The set of 

implemented features though has been found to allow a range of flexibility in 

programming. ■

The system layer has been restricted to the management of parallelism and 

program topology and has only minimal provision to do other types of computation. 

In addition the system has been designed with a minimal interaction between the 

system and Process Object layers. The ability for Process Objects to interact more 

freely with the system layer and for the system layer to carry out computations 

may be desirable in certain circumstances.

Passive objects have been limited to the channel types and no provision has been 

made for user defined passive objects.

8.4 F u r th e r  R esearch

In the development of this project several possible directions for future research 

and refinement have arisen.

The stratification of DPOS gives the system high potential for isolating partitions 

of DPOS programs. This encapsulation has already been beneficial in incremental 

program development. However, the encapsulation also has good potential for 

monitoring and recording program performance statistics by monitoring the be­

havior of channel objects. This could be applied to statically anatyzing program 

structure, collecting runtime statistics and monitoring runtime performance for 

program debugging. Coupled with the graphical interface there is the potential for 

graphical debugging as well as graphically analyzing or replaying runtime monitor 

data. .
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Because of the high semantic level of DPOS network module definitions and 

the reliance on a simple and relatively common set of parallel primitives. Network 

module definitions could be adapted to output several source languages from a 

single network module definition.

Passive object types have been limited to predefined channel class definitions. In 

certain situations it would be desirable to have user specified passive object types. 

This might require a substantial addition to the existing semantics to resolve critical 

section communication issues in order to maintain the clarity and simplicity of the 

system.

As actual program development experience increases, possible beneficial refine­

ments in the basic system semantics to support specific programming paradigms 

have become evident. For instance in ‘data flow’ type programming, channel 

instances are used as one-directional communication. Indicating graphically and 

semantically-enforcing directionality of channels would add clarity to the network 

module definitions and also help to avoid high-level race and potential deadlock 

conditions in this type of programming.
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APPENDIX A

ALPHA BETA SEARCH

A .l  In tro d u c tio n

In this appendix the alpha beta search algorithm and parallel alpha beta search 

algorithm are discussed. A uniprocessor alpha beta program is presented and 

compared with two parallel versions. The first parallel program [3,4] uses explicit 

process creation. It employs semaphores and shared variables to manage interpro­

cess communication. The second parallel program uses a DPOS virtual process 

network with asynchronous one-way channels for communication.

It is assumed throughout that the rudiments of alpha beta search are understood 

by the reader. It is also assumed that the reader is familiar with traditional 

methods of parallel programming using explicit process creation and semaphores 

and unfamiliar with programming using DPOS.

A .2 S equen tia l A lp h a  B e ta  Search

Function node-1  below outlines an alpha beta search algorithm in Scheme. The 

function node-1  searches a single node in the search tree. If the node is a leaf 

node then the board is evaluated. If the node is not a leaf node then node-1  

is called recursively to evaluate the next ply level and return the result. After 

searching at the present branch, the function either recursively searches the next 

sibling branch or returns the resulting values (tab le ) from the present level. The 

function p ru n e -it?  is used to determine whether to continue searching at this level 

or if the remaining branches at this level should be pruned.
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1 (define (node-1 ply board-set table)

2 (let ((board (car board-set)) (return-valueO) (prune-result 0))

3 (if (= ply *maxply*)

4 (set! return-value (static-eval-update board ply table))

5 (let*

6 ((next-boardset (new-move-list board ply))

7 (next-branch (node-1 (+ ply 1) next-boardset

8 (make-new-table table))))

9 (set! return-value (value-of next-branch))))

10 (set! prune-result (prune-it? ply table return-value))

11 (if (or prune-result (not (cdr board-set)))

12 (make-return-value board table ply)

13 (node-1 ply (cdr board-set)

14 (update-result ply table return-value board)))))

A .3 P a ra lle l Im p lem e n ta tio n  G oals

Figure A .l shows a complete four-level search tree. The tree shows leaf node 

values and return values for the nodes evaluated. The evaluated branches are shown 

in bold lines. The branches searched constitute the ‘minimum set’ of branches that 

must be searched for a tree of this configuration regardless of the returned node 

values. The remaining branches may need to be searched if the return values 

indicate that the leftmost branch does not yield the maximum value at the root 

node. Results of the leftmost branches cannot produce branch pruning until after 

the ‘minimim set’ of branches have been evaluated. The remaining branches may 

use earlier return values to determine the extent of further searching.

In the parallel implementations of alpha beta search, processes are created that 

correspond to the individual nodes in the search tree. Child processes of each node 

share a common value table that contains search limit values to be used in pruning 

and updating the parent process with final results.

Figure A.2 shows the previous search tree with the nodes labeled as type A, B or 

C. All children of type C nodes are type B. The leftmost children of type A and B 

nodes are type A and all others are type C. The type labels correspond to searching 

behaviors associated with nodes at various points in the tree. The searching
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Figure A.I. Alpha Beta Search Tree Showing Minimum Branch Set

Figure A.2. Alpha Beta Search Tree Showing Node Types

behaviors determine the operation of processes in the parallel implementations. 

Once the process a t a node is begun and it is determined not to be a leaf node, its 

child processes are evaluated according to the following rules:

1. All children of a type A or B  node may be evaluated in parallel.

2. The tables used for pruning of the children of type A and B  nodes may be 

accessed immediately after creation of the children.

3. The children of t.vpe C  nodes must be evaluated sequentially.

4. The tables used for pruning of the children of type C nodes must not be 

accessed until the parents leftmost (type A) sibling completes. This enforces 

the use of later pruning information at type C nodes.



The evaluation rules stated above allow the ‘minimum set’ of branches to be 

evaluated in parallel. After the ‘minimum set’ of branches is searched, the remain­

ing B siblings of each C parent are evaluated in sequence (there is still parallel 

evaluation between cousins). The evaluation of successive layers of the search tree 

follow the same rules. .

The parallel programs outlined make use of several functions and variables that 

are not shown. These include: .

1. p ru n e -it? : This function returns true if searching at the present root node 

should be terminated. In the parallel programs the return value is the result 

value from the present node.

2. s ta tic -ev a lu a te : This function evaluates the current board configuration.

3. u p d a te -re su lt:  This function updates the limit table for this node.

4. s ta tic -e v a l-u p d a te : This function evaluates the current board configuration 

and updates the current table.

5. *m axply*: This constant indicates the maximum search level.

6. m ake-new -tab le : This function takes a current table and makes a new table 

to be used at subsequent ply levels.

7. new -m ove-list: This function takes the current board and makes a list of 

subsequent board positions.

8. copy-value-if-app licab le: This function compares a parent-process table 

with a child-process table and updates the parent-process table as appropriate.

9. copy-tab le-values: Returns a copy of values in a table.

10. m ake-sem aphore : This function creates a semaphore and initializes its count 

to zero.
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A .4 S h ared  M em o ry  A lp h a  B e ta  S earch

This section discusses a parallel alpha beta search function node-2. N ode-2  

explicitly creates processes using the process creation function fu tu re . Synchro­

nization control between processes employs semaphores and shared variables. It is 

assumed that the reader is familiar with this form of parallel communication and 

synchronization control.

1 (define-process '

2 (node-2 board myturn A-or-B-type parentleft ply parent-table

3 Done Left-sibling-done Parent-table-free)

4 (let ((result ()) (move-list ()) (num-moves()) (quitO)

5 (Left-offspring-doneO) (mytable()) (New-table-free())

6 (cutoffO) (cnt()) (Offspring-done()) (My-table-free()))

7 (set! My-table-free (make-semaphore))

8 (set! Offspring-done (make-semaphore))

9 (set! Left-offspring-done (make-semaphore))

10 (set! mytable (copy-table parent-table Parent-table-free))

11 (set! New-table-free (make-semaphore))

12 (if (= ply *maxply*)

13 (set! result (static-eval-update board ply mytable))

14 (if A-or-B-type

15 (begin

16 (set! move-list (new-move-list board ply))

17 (set! num-moves (length move-list))

18 (do ((cnt 1 (+ cnt 1)))

19 ((eq? cnt num-moves))

20 (future

21 (node-2 (car move-list) (not myturn) (eq? cnt 1)

22 left (+ ply 1) mytable Offspring-done

23 Left-offspring-done New-table-free))

24 (set! move-list (cdr move-list)))

25 (do ((cnt 1 (+ cnt 1)))

26 ((eq? cnt num-moves))

27 (U Offspring-done)))

28 (do ((cnt 1 (+ cnt 1)))

29 ((or cutoff (eq? cnt num-moves)))

30 (future

31 (node-2 (car move-list) (not myturn) (eq? cnt 1)

32 left (+ ply 1) mytable Offspring-done

33 Left-offspring-done New-table-free))
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34 (set! move-lst (cdr move-list))

35 (U Offspring-done)

36 (U Left-sibling-done)

37 (V Left-sibling-done)

38 (if (and (odd? ply) (<= (get-result mytable)

39 (get-result parent-table)))

40 (set! cutoff #t)

41 (if (and (even? ply) (>= (get-result mytable)

42 (get-result parent-table)))

43 (set! cutoff #t)))))) _

44 (result-to-parent parent-table my-table Parent-table-free)

45 (if (and A-or-B-type parentleft) (V Left-sibling-done))

46 (V done)))

4 7 (define (result-to-parent parent-table my-table Parent-table-free)

48 (U Parent-table-free)

49 (let ((result (copy-value-if-applicable my-table parent-table)))

50 (V Parent-table-free)

51 result))

52 (define (copy-table parent-table Parent-table-free)

53 (U Parent-table-free)

54 (let ((result (copy-table-values parent-table)))

55 (V Parent-table-free)

56 result))

If the node process is type A or B it creates all of its children immediately (see 

lines 15 thru 24). It then enters a loop (lines 25 thru 27) where it repeatedly blocks 

decrementing semaphores until all of the children are completed. If the process 

is type C it creates its children and allows each to run in turn (lines 28 thru 43). 

Finally the process updates the parents table and enables potentially blocked sibling 

and parent processes by incrementing semaphore Left-sibling-done and Done (lines

44 thru 46).

A .5 D P O S  A lp h a  B e ta  S earch

This section outlines a parallel alpha beta search program using DPOS. A

discussion of the NM definitions and Process Object anod e is included to illustrate
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the use of message passing, delayed instantiation and blocking to control parallelism. 

Figure A.3 shows the NM definitions superimposed on an alpha beta search tree 

and figure A.4 shows the network module definitions.

The network tree structure is defined by the NM definitions a tre e , c ist and b lst 

in figure A.4. A tre e  defines the children of type A and B nodes. C is t defines 

the siblings of type A nodes. B lst defines the children of type C nodes. Channels 

between an o d e  type POs are used to communicate board configurations, pruning 

tables and to return final results to parent processes. Delay channels and blocking 

are used to manage the parallel evaluation.

1 (define (anode PARENT PARBOARD CHILD SIBLING CH-SIBLING ply ntype)

2 (let ((board-set ())(board ())(move-list ())(prune-result ())

3 (old-table ()) (result ()) (mytable ())

4 (num-moves ()) (nodecount()) (ch-result())

5 (TABLE-CH (if (c? ntype) (table2 PARENT) (tablel PARENT))))

6 (set! board-set (PARBOARD 'receive 1))

7 (set! board (car board-set))

8 (if (not (b? ntype)) (PROPOGATE SIBLING (cdr board-set)))

9 (if (= ply *maxply*)

10 (begin

11 (set! ch-result (static-evaluate board ply))

12 (set! mytable (TABLE-CH 'receive)))

13 (begin

14 (set! move-list (nev-move-list board ply))

15 (set! num-moves (length move-list))

16 (CH-SIBLING 'send move-list)

17 (set! old-table (TABLE-CH (if (c? ntype) 'read 'receive)))

18 ((tablel CHILD) 'send (make-new-table num-moves old-table))

19 (set! ch-result ((CHILD-RESULT CHILD) 'receive))

20 (set! mytable (if (c? ntype)(TABLE-CH 'receive) old-table))))

21 (set! result (update-result ply mytable ch-result board))

22 (set! nodecount (get-nodecount mytable))

23 (set! prune-result (prune-it? ply mytable ch-result))

24 (cond (prune-result ((CHILD-RESULT PARENT) 'send prune-result))

25 ((= nodecount 1) ((CHILD-RESULT PARENT) 'send result))

26 (#t (((if (not (b? ntype)) table2 tablel) PARENT)

27 'send (add-nodecount (- nodecount 1) result))))

28 (if (b? node.type) (PROPOGATE SIBLING (cdr board-set)))))
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Figure A.3. Alpha Beta Search Tree Showing Superimposed Network Modules
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Figure A.4. Alpha Beta Search Network Module Definitions
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29 (define CHILD-RESULT h-strm)

30 (define (PROPOGATE SIB mess) (if mess (SIB ’send mess)))

31 (define (tablel str) (h-strm (t-strm str)))

A .5.1 D elayed  In s ta n tia tio n  of A N O D E  P ro cess  O b jec ts

The SIBLING channel of each anode PO is used to input board configurations. 

Board configurations are propagated from the leftmost to the rightmost sibling 

(see Figure A.4.) The SIBLING channel is a delay channel. A child process will 

propagate the tail of its board set only if there are remaining configurations. This 

limits the instantiation of the child processes to the number of board configurations. 

Also, since B type processes are to execute in sequence rather than in parallel, B 

type processes do not propagate their board set until after they have completed 

computation, thus insuring that type B siblings proceed in sequence (see lines 8 

and 28).

anode type receives from table sends to table 

A tablel table2

B tablel tablel

C table2 table2

Figure A.5. Table Channel Usage

A .5.2 B lock ing  of A N O D E  P ro cess  O b jec ts

The PARENT channel of each anode PO is a stream of channels (see Figure 

A.4.) Three elements of the stream are instantiated. These are called ta b le l ,  

tab le 2 , and child-done. Channels ta b le l  and tab le2  are used to communicate 

table information. C h ild -done  is used to return results to the parent node. The 

parent process blocks receiving from ch ild -done until a child sends the final result



of all children to the channel. T a b le l is initialized by the parent process. Figure

A.5 shows the pattern of usage of ta b le l  and tab le2  by child processes. Type 

C processes receive from tab le2  rather than ta b le l .  For any type C process, 

T ab le2  will be initialized by the leftmost type A sibling, thus insuring that rule 4 

is satisfied. .

A .6 C o m p ariso n  an d  C onclusions

The sequential alpha beta search algorithm is a depth-first pruning tree traversal. 

The parallel alpha beta search is a pruning tree traversal that combines aspects of 

depth-first and breadth-first search. This added complexity accounts in part for 

the increased length of the parallel programs.

In the DPOS program the tree network structure is encapsulated in the NM 

definitions. This encapsulation is reflected in the simplified structure of the DPOS 

Process Object definition an o d e  when compared with the other function definitions 

presented. Both sequential function node-1  and the shared memory function 

node-2  define the tree traversal recursively. N ode-2  also uses loop constructs for 

control flow. The DPOS function ano d e , however, is reduced to a simple sequence 

of statements without looping or recursion.

In the shared memory function node-2  critical sections are used to insure 

mutually exclusive accesses to shared data. In node-2  semaphores are also used 

to regulate the progress of child processes, and explicit process creation is used 

to create parallelism. In the DPOS program, the management of parallelism 

is encapsulated within the NM definitions. This reduces the need for control 

mechanisms within the Process Object definition anode . The only parallel control 

mechanism used by an o d e  is the sequence of access to its parameter channels.

The cost of nonlocal memory accessing is a primary concern in evaluating parallel 

program design. The shared memory alpha beta search function shown makes 

numerous accesses of shared data and semaphores and assumes that the cost of
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these accesses is low. The critical section operations of the co p y -p aren t-tab le , 

re su lt- to -p a re n t functions (lines 47 thru 56) of function node-2  must be seen as 

detrimental to performance even on a semishared memory processor such as the 

B B N  B u tte r f ly  where each semaphore and copy step involves nonlocal memory 

accessing. The DPOS program is more efficiently implementable on semishared and 

nonshared memory processors. The implementation of DPOS channels encapsulates 

the synchronization and copying operations within the channel. This encapsulation 

eliminates the need for repeated nonlocal memory accesses.

A .6.1 C onclusions

The visual editing system provides a simple means of designing parallel process 

networks. The encapsulation of network structure and many parallel issues within 

the DPOS system makes the creation and management of parallelism largely au­

tomatic. This encapsulation shows several improvements over more traditional 

methods of parallel programming.

1. Simplified control flow.

2. Simplified parallel control.

3. Reduced dependence on shared memory in program design.
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APPENDIX B

EXAMPLE PROGRAMS

B .l  In tro d u c tio n  ‘

This appendix includes three example programs. An example of the dining 

philosophers program is shown. A matrix multiplication program and a merge sort 

program are also shown along with corresponding performance statistics. Perfor­

mance statistics are also shown for the prime number sieve program in Chapter

7.

B .2  E x am p le  P ro g ram s

Figures B .l, B.2 and B.3 show the a DPOS implementation of the dining philoso­

phers problem. The dining philosophers program shows the use of guarded output 

channels to control nondetermine contention for access to fork  process.

Figures B.4 and B.5 show a DPOS implementation of a matrix multiplication 

program. The matrix multiplication program is a network of server processes. The 

network is reused for successive matrix multiplications. The network receieves and 

multiplies streams of matrices. Right hand matrices are converted into columnar 

representation by m a tb  Process Object. A list (m u ltip lie rs  Network Module) of 

vector multipliers (row -m ul Process Objects) multiplies the matrices. R e su lta n t 

Process Object collects and outputs the results. A sequential single processor 

version used for comparison is shown in Figure B.6. Performance statistics are 

shown for the multiplication program on the BBN butterfly using Butterfly Scheme. 

Running times are shown for the parallel program and for the single processor 

version.
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Figure B .l. Dining Philosophers Network Module

Figures B.7, B.8 and B.9 show Network Module and Process Object definitions 

for a Split Merge Sorting program[3,4,7]. Performance statistics are shown for Split 

Merge Sort compared with Quick Sort on a single processor node.

B .3  P erfo rm an ce  S ta tis tic s  

Figures B.10, B .l l ,  B .l2 show performance statistics for several programs pre­

sented in this thesis. The statistics presented are for DPOS programs implemented 

on the BBN Butterfly. Sequential programs were developed as a testbed for com­

parison purposes. Sequential program performance statistics are indicated by **’. A 

minimum of three tests were run for each measurement. Several statistical measures 

were used:

1. Average Time: The average real running time of the program.

2. P: The number of BBN processor nodes used to execute the program.

3. Speedup: Sequential-run-time /  Parallel-run-time

4. Efficiency: Speedup /  Number-of-processors

5. Linear-percent: The ratio of the actual time saved to the maximum time saved 
if efficiency were 1.0.
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;; message types

(define grab 0) (define transmit 1) (define release 2)

(define (ph OUTPUT LEFTFORK RIGHTFORK id )

(letrec
((guardlist (list transmit))

(max 10)
(self 
(lambda (cnt)

(if (< cnt max)

(begin
;;first grab left and right forks 

(LEFTFORK 'writeguard grab #f)
(RIGHTFORK 'writeguard grab #f)

; now do any interaction desired 

(OUTPUT 'send 
(list 'phil id

(+ (cadr (LEFTFORK 'readguard guardlist)) 

(cadr (RIGHTFORK 'readguard guardlist))))) 

;now release forks 

(LEFTFORK 'writeguard release #f)

(RIGHTFORK 'writeguard release #f)

(self (+ cnt 1)))))))

(self 0)))

Figure B.2. Philosopher Process Object



; the fork Process Object 
(define (fork PHILOSOPHER )
(letrec (

(count 0)

(self 

(lambda ()
(begin

;vait to be grabbed 
(PHILOSOPHER ‘readguard (list grab))

;after being grabbed interact with grabber only 

(PHILOSOPHER 'writeguard transmit count)

;then wait to be released 
(PHILOSOPHER 'readguard (list release))

(set! count (+ count 1))

(self)))))
(self)))

Figure B.3. Fork Process Object





;; Process Object definition for row-mul' vector multipliers 

;; receive a vector 'a-row' and a matrix (row by row)
;; multiply vector by matrix rows and send result 

;; to TO-RESULTANT

(define (row-mul FROM-MATB TO-RESULTANT idnum)
(let* ((a-row (FROM-MATB 'receive 1))

(xdim (car a-row))

(avec (caddr a-row))

(mat-row (FROM-MATB 'receive 1))

(zdim (cadr bmat)))

(TO-RESULTANT 'send (cons xdim (mat-multiply bmat avec zdim))) 

(row-mul FROM-MATB TO-RESULTANT idnum)))

;; receive rows of the matrix to multiply by row-vec

(define (mat-multiply mat-row row-vec z FROM-MATB)
(if mat-row 

(mat-multiply

(FROM-MATB 'receive 1)

(vector-multiply row-vec mat-row)
FROM-MATB)

(list z row-vec)))

Figure B.5. Matrix Multiplication Process Objects



;; Sequential matrix multiplication program 
(define (matrix-multiplier matlst)

(matrix-multiply-list (car matlst) (cdr matlst)))

(define (matrix-multiply-list rovmat matlst)

(if matlst
(matrix-multiply-list

(mat-multiply (make-vector (length rowmat))

(length rowmat) 

rowmat

(convert-to-columns (car matlst)))
(cdr matlst)) 

rowmat))

(define (mat-multiply result-mat place rowmat column-mat)
(if (>= place 0)

(begin

(vector-set! result-mat place

(vector-multiply (vector-ref rowmat place) 

column-mat))
(mat-multiply result-mat (+ place 1) rowmat column-mat)) 

result-mat))

Figure B.6. Sequential Matrix Multiplier

J  U  Î J L T  n
end: merge-di str i b

7

buffer

□ n
h n___ □___ □_____ □
network-roodule: split-merge 

parameters: list-size 
description: sorting network

Figure B.7. Split Merge Network Module
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network-modu1e : 6p1i t-mun i t-1i st 

params:max-uni t,unit-num

Figure B.8. Split Merge Unit List (split-munit-list) Network Module



(split-munit

CONTROL LEFTOUT LETin RIGHTout RIGHTin max-unit unit-num) 
(letrec

((merge-iterations (- max-unit 1))

(odd-unit (odd? unit-num))

(self (lambdaO (begin (merge-once) (self)))) •

(last-unit (- max-unit 1))
(merge-iter

(lambda (cnt siza lsta sizb lstb) .

(if (< cnt merge-iterations)
(let* ((res (merge-split lsta lstb siza 0))

(lst2 (merge-all (cadr res) (caddr res)))

(lstl (car res)) (lst4 #f) (lst3 #f))

(begin
(if (> unit-num 0) (LEFTOUT 'send lstl))

(if (< unit-num last-unit)
(let ((res2 (merge-split lst2

(RIGHTin 'receive 1) sizb 0)))
(begin

(set! Ist4 (merge-all (cadr res2) (caddr res2))) 
(set! Ist3 (car res2))

(RIGHTout 'send lst4)))

(set! Ist3 lst2))

(merge-iter (+ cnt 1) siza
(if (> unit-num 0) (LETin 'receive 1) lstl) 

sizb lst3)))
(if (< unit-num merge-iterations)

(last-merge lsta lstb RIGHTin)
(merge-all lsta lstb)))))

(merge-once 

(lambda ()

(let* ((pair-of-lists (CONTROL 'receive 1))

(id (car pair-of-lists))
(lenl (car(cadr pair-of-lists)))

(lst2 (quick-sort (cadr(caddr pair-of-lists)) #f)) 

(lstl (quick-sort (cadr(cadr pair-of-lists)) #f)) 

(len2 (car(caddr pair-of-lists))))

(LEFTOUT 'send

(let ((res (merge-iter 0 lenl lstl len2 lst2)))

(if (< unit-num 1) (list id res) res)))))))

(self)))

Figure B.9. Split Merge Sort Process Object Definition



Average Time Processors Speedup Efficiency linear-percent
196.000 1 -  1.00 1.000
62.604 4 3.118 0 .78 0.906
36.400 8 5.385 0.67 0.930

Figure B.10. Matrix Multiplication Statistics

Average Time Processors Speedup Efficiency linear-percent 
155.35 1 - 1 .0  1.0

13.65 12 11.38 0.948 0.995

Figure B .l l .  Prime Number Program Statistics

Average Time Processors Speedup Efficiency linear-percent 

58.33 1 -  1.00 1 .0
19.10 4 3 .05  0.76 0.897

Figure B.12. Split Merge Sorting Statistics
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