
Avalanche� A Communication and Memory
Architecture for Scalable Parallel Computing

John B� Carter� Al Davis� Ravindra Kuramkote�

Chen�Chi Kuo� Leigh B� Stoller� Mark Swanson

UUCS�������

Computer Systems Laboratory

University of Utah

Abstract

As the gap between processor and memory speeds widens� system designers will inevitably incorpo�
rate increasingly deep memory hierarchies to maintain the balance between processor and memory
system performance� At the same time� most communication subsystems are permitted access only
to main memory and not a processor�s top level cache� As memory latencies increase� this lack of
integration between the memory and communication systems will seriously impede interprocessor
communication performance and limit e�ective scalability� In the Avalanche project we are re�
designing the memory architecture of a commercial RISC multiprocessor� the HP PA�RISC �����
to include a new multi�level context sensitive cache that is tightly coupled to the communication
fabric� The primary goal of Avalanche�s integrated cache and communication controller is attack�
ing end to end communication latency in all of its forms� This includes cache misses induced by
excessive invalidations and reloading of shared data by write�invalidate coherence protocols and
cache misses induced by depositing incoming message data in main memory and faulting it into
the cache� An execution�driven simulation study of Avalanche�s architecture indicates that it can
reduce cache stalls by ��	�
 and overall execution times by �����
�

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Avalanche� A Communication and Memory
Architecture for Scalable Parallel Computing

John B� Carter� Al Davis� Ravindra Kuramkote�

Chen�Chi Kuo� Leigh B� Stoller� Mark Swanson

Computer Systems Laboratory

University of Utah

� Introduction

Existing scalable� parallel architectures fail to address several critical design issues� Commercial
microprocessors o�er very impressive raw performance and would seem to be attractive options for
assembly into cost�e�ective parallel machines� However� the communication delay between tasks
on di�erent processors� regardless of whether they are using messages or shared memory� rapidly
becomes the bottleneck� At best� most I�O and communication subsystems are only permitted
access to main memory� Thus� e�ective end to end message passing latencies are large and getting
larger due to the cache misses required to load received data into the highest level of the cache
where it can be used� Similarly� existing shared memory implementations use hardwired coherence
protocols that induce a large number of cache misses as a side e�ect of keeping data coherent�
As deepening memory hierarchies cause main memory latencies to increase from ���s to ����s of
cycles� the avoidable cache misses caused by a lack of integration between the communication and
memory systems and in�exible cache controllers will seriously impede communication performance
and scalability�

To achieve e�ective scalability� all sources of interprocess communication latency must be at�
tacked� In doing so� it is important to measure the latency of communication events for the total
latency path� For message passing programs� latency includes software protocol overheads� the time
required to inject a message into the communication fabric� the propagation delay� and the time
spent handling the cache misses required to load the data from the recipient�s main memory to
its highest level cache� In shared memory programs� latency includes the time spent manipulating
the hardware data structures used to manage the shared address space� the e�ect of contention
between the local processor and remote processors for the local cache controller� and the time spent
servicing cache misses for data that has been invalidated as part of the coherence mechanism� Al�
though scalability has been an important research theme over the past �ve years� achievement of
this goal remains elusive� Evidence of this situation can be seen in the signi�cant di�erences be�
tween the peak performance of today�s fast multiprocessing systems and the achieved performance�
For example� even highly�tuned applications often achieve well under ��
 of peak performance
on multiprocessors such as the CM������ and Cray T�D���� despite their powerful communication
fabrics���� Even when the interconnection fabric is capable of very high speed communication� the
e�ects of the memory hierarchy and the parasitic in�uence of other overheads become the dominant
latency components�

For an architecture to scale e�ectively into the tera� and peta�op range� high latency cache misses
must be avoided� This implies the need for a communication architecture that is consistently

This paper is a draft that was submitted to ISCA ���� Do not distribute without permission�

�



integrated into the highest levels of the memory hierarchy and that can adapt to the current
state of the processor� However� always injecting data directly into the highest level cache can
potentially reduce performance by displacing useful cache lines of the currently active task on the
receiving node or contending with the receiving processor for access to the cache� It is therefore
necessary to recognize the task activity state of the receiving processing element in order to decide
the proper place for the message� For applications with a signi�cant amount of shared data�
conventional invalidation�based consistency protocols often exhibit high cache miss rates due to
excessive invalidations and subsequent reloading of write�shared �or falsely shared� data� Thus�
consistency protocols and cache controller designs that reduce the frequency of cache misses must
be developed�

In the Avalanche project� we are designing and evaluating a novel memory and communica�
tion architecture that addresses these problems� We are modifying the memory architecture of
a commercial RISC microprocessor� the HP PA�RISC ����� to include a new multi�level context
sensitive cache that is tightly coupled to the communication fabric �see Figure ��� Speci�cally� we
are splitting the processing and memory management subsystems into two components to create a
memory�less version of the ���� with the proper control signals and state information exported o�
chip� At the core of our system� we are designing a �exible communication and cache controller unit
�CCU� so that system components outside the processor� in particular the communication fabric�
are given �rst�class access to the complete memory system� A centerpiece of the CCU will be its
ability to exploit processor context information to support multiple cache consistency protocols�
avoid con�ict misses between active tasks and incoming data� and dynamically prefetch data to the
appropriate level of the memory hierarchy depending on the speculation level of the prefetch� An
execution�driven simulation study of Avalanche�s architecture indicates that it can reduce cache
stalls by ��	�
 and overall execution times by �����
�

The remainder of this paper is organized as follows� Section � contains a more detailed overview
of the Avalanche architecture� A description of the experimental setup used to evaluate the
Avalanche CCU design �e�g�� simulation environment� parameters explored� programs studied� and
limitations� and the results of our simulations on a variety of workloads are presented in Section ��
Section � compares Avalanche with a number of related research e�orts� Finally� in Section � we
draw conclusions and outline our future endeavors�

Interconnect

Controller
Communication

Context

Cache and

DRAM

Cache

PA-RISC
Modified

Figure � Overview of Avalanche Memory and Communication Architecture

�



� Avalanche Design

��� Basic Architecture

The goal of the Avalanche project is to develop a communication and memory architecture that
supports signi�cantly higher e�ective scalability than existing multiprocessors� Our approach for
achieving this goal is to design a �exible cache and communication controller that tightly integrates
the multiprocessor�s communication and memory systems� incorporates features designed speci��
cally to attack the problem of excessive latency in current multiprocessor architectures� and makes
provisions for exploiting processor context information or software guidance�

Figure � illustrates the high level view of the Avalanche architecture� Our design e�orts will be
centered on the two shaded regions� the cache and communication controller and the CPU itself�
The majority of our design e�ort will involve the design of the cache and communication controller
�CCU�� The goals of the design CCU include�

� supporting the ability for data to be transmitted from and received by any level of the memory
hierarchy� from L� cache to main memory�

� allowing the processor to guide the CCU�s behavior through the use of context information
and tag bits� and

� minimizing the impact of con�ict misses induced by interference between the local processor�s
memory accesses� speculative data prefetching� and the memory coherence mechanism�

A major issue that the CCU must be able to address is deciding into what level of the memory
hierarchy incoming data should be placed� In the case where the local processor is blocked awaiting
data� e�g�� a cache line loaded as a result of a read miss in the absence of multithreading� the
data obviously should be placed in the L� cache� However� in all other cases� a decision must be
made whether to place the data high in the memory hierarchy �meaning close to the processor��
which reduces the latency of access to the received data but increases the latency of access to the
displaced data� or low in the memory hierarchy� which avoids the displacement cost but increases
the latency of accessing the received data whenever it is eventually accessed� We call this problem
the injection problem� and discuss several techniques that we are exploring to address the problem
throughout the remainder of this paper�

One signi�cant di�erence between Avalanche and related research projects ���� ��� �� ��� is that
we are not treating the CPU as an unmodi�able black box� The HP PA�RISC ���� contains no
on�chip cache but does contain the cache controller logic� The interface between the cache controller
and the rest of the CPU is relatively straightforward� Hence� in conjunction with Hewlett�Packard�
we are designing a version of the HP PA�RISC ���� chip with the cache controller moved o� chip�
This approach is being taken for experimental expediency since our focus is on a redesign of the
cache controller rather than the CPU core� A minor change to the control path of the CPU will
be required to export the necessary context state information� Additionally� a minor modi�cation
to the existing pipeline stall blocks will be necessary to maintain proper pipeline synchronization
with the new requirements of the CPU� The functionality of the �����s cache control logic will be
subsumed by the new Avalanche CCU�

We do not anticipate modifying the core logic of the ����� Although modifying a complex chip
such as the ���� is not without its risks� the intent of this e�ort is to permit us to both explore
a wide set of design options and determine what small set of modi�cations are cost e�ective for
commodity microprocessor vendors should they desire to make their memory architectures support
highly scalable multiprocessing as well as their existing core uniprocessor markets�

�



The design of high performance parallel systems has been stylistically diverse� Many designers
have touted the bene�ts of the message passing model while others prefer the shared memory ab�
straction� Our approach is to accept the application community�s requirements and pursue both
message passing and distributed shared memory �DSM�� At the architecture level the di�erence
may not be as signi�cant as it is at the applications level� Both require e�cient low�latency com�
munication� The di�erence is in how a communication event is initiated� Because the architectural
requirements of e�cient message passing and e�cient DSM are so similar� we believe that it is
possible to support both communication models with the proper memory architecture� Although
many of Avalanche�s performance optimizations will improve the performance of both message
passing and shared memory programs� some aspects of the CCU design are speci�c to one or the
other type of program� The following two subsections describe these features�

��� Support for Message Passing

Our previous work on high speed networking ��	� made it clear that for high bandwidth intercon�
nects the software protocol overhead and the time spent handling the cache misses required to load
the data from the recipient�s main memory to its highest level cache were major sources of com�
munication latency� We are attacking these two problems �i� by developing a very low overhead
sender�based communication protocol and �ii� by allowing the CCU to transmit data from and
inject data into any level of the memory hierarchy�

Two important characteristics of sender�based protocols are that they are connection oriented
and that both the sender and the receiver reserve portions of their address space as bu�ers for a
given connection��	�� Based on its knowledge of the state of that bu�er space� a sender can transmit
a message to the receiver with the certainty that the message will be received into a known location
in the receiver�s memory� Maintenance of this knowledge� of bu�er state is the responsibility of
higher levels of the protocols� This overhead is only incurred on initial send�receive connection pair
setup and is therefore amortized over subsequent communications for that connection� For example�
in an RPC con�guration� the reply to the client could be de�ned to mean that the request bu�er in
the server is again available for the sender to use� A major bene�t is that a message can always be
copied directly from the sender�s address space into the network interface� and from the network
interface directly into the receiver�s address space� This mechanism avoids intermediate copies
of the data� which are a major source of ine�ciency in many existing protocols���� ���� and is a
prerequisite for successfully attacking the injection problem�

On a ��� MHz HP���� processor with an external I�O controller� our current protocol imple�
mentation takes ��� CPU cycles to write a DMA descriptor block using programmed I�O� It then
takes ��� cycles to DMA the �� word packet body into the network controller� Another ��� cycles
of DMA penalty is incurred on the receiving side when the packet body is written to main memory�
These high DMA penalties are an artifact of the location of the I�O controller on a low�bandwidth�
high latency I�O bus� In addition� the receiving side incurs a cache�miss penalty of �� cycles per
cache line for each of the � lines in the packet body� Thus� the total per packet latency is ��� cycles
plus interconnect fabric delay� While this number is a huge improvement over standard protocols
such as UDP and TCP�IP� it is also best case and can easily expand to three or four times this level
under realistic processor loads� Even this best case of ��� cycles dominates the propagation delay
of the high�speed interconnects in current multiprocessors ���� ���� which is a strong indication
that as much e�ort needs to be placed in improving the performance of the memory system and
the network controller�s access to the memory as is being spent developing higher bandwidth and
lower latency interconnects� This imbalance becomes an even more dominant factor as message size
grows� Speci�cally� with few exceptions����� conventional memory architectures require that mes�

�



sages always be transferred to or from main memory and that the cache be �ushed as appropriate
to maintain consistency����� Unfortunately this restriction guarantees that the receiver will incur
cache misses for the entire message body� Substantial improvement can be made by more tightly
coupling the communication fabric and protocol with the memory system and the context of the
processor� This improvement will increase as miss penalties grow due to the deepening memory
hierarchies required to balance CPU performance improvements�

The Avalanche CCU will provide us with the ability to place incoming data in any level of the
memory hierarchy� as illustrated in Figure ��� The CCU will incorporate a protocol processing
element �PPE� to support the DMA requirements and some of the protocol duties� Unlike the pro�
tocol processor in the FLASH multiprocessor����� Avalanche�s protocol processor will only perform
a very limited number of built�in operations � it is not a general purpose processor� To improve
performance� the key problem that will need to be solved is how to dynamically determine which
level of the memory hierarchy should receive the incoming data� When the processing element is
lightly loaded or is waiting for a particular message� direct delivery into the highest level cache is
the proper strategy� In cases where the processing element is heavily loaded with multiple runnable
threads on the run list� then it is unlikely that delivery to the highest level cache will be the proper
strategy since this delivery will cause con�ict induced misses in the cache by the active or soon to
be active contexts�� A study by Pakin et al� showed that the choice of where to inject incoming
data can have a tremendous impact on overall performance of an application����� Always injecting
data to main memory� as in the Intel Paragon����� results in a message latency too high for very
�ne grained applications� and the e�ect is getting worse as processor speeds increase� On the other
hand� always injecting data to the cache� as in the CM������� displaced so much active data that
the overall cache miss rate of the applications increased ������
� Hence the appropriate level in
the memory hierarchy for message placement will critically depend on the current context of the
processing element�

CPU

L1 Cache

L2 Cache

Memory

Main

Context information

Interconnect

Processor
Protocol

Avalanche

CCU

Message

Data

Figure � Message Passing Support in Avalanche

�The number of levels of cache in Avalanche has not been determined� Two levels are shown for purposes of illustration�
�We envision the need to support multiple tasks on each node to permit communication and computation to be

overlapped and to reduce the probability of an idle processing element�

	



We are employing a number of techniques to make this decision� Our software protocol will be
extended upward� to the user level to allow the program to communicate compiler or programmer�
generated knowledge of data use patterns to the lower levels of the protocol� The protocol will be
extended downward� to the network interface to provide information to the interface to enable
it to make more intelligent decisions about placement of data into the memory hierarchy� We
currently envision providing incoming connections with context information such as the process
identi�er of the receiving process� and limited scheduling information such as context identi�er of
the currently running process� newly scheduled process identi�ers� etc� The PPE will be informed
by the CPU on a context switch� which can be used to determine if the incoming data is destined
for the executing process� Similarly� state will be added to the CCU to determine the heat� of
the cache� similar to the way in which the CAML bu�er detects the heat� of a particular set
of pages in a direct�mapped cache�	�� We also plan to support more explicit software control of
data placement in the form of directives in the incoming connection descriptors specifying message
placement within the hierarchy�

��� Support for Shared Memory

Spurred by scalable shared memory architectures developed in academia ��� ���� the next generation
of massively parallel systems will support shared memory in hardware �e�g�� machines by Convex�
Cray� and IBM�� However� current shared memory multiprocessors all support only a single� hard�
wired write�invalidate consistency protocol� and do not provide any reasonable hooks with which
the compiler or runtime system can guide the hardware�s behavior� Using traces of shared memory
parallel programs� researchers have found there are a small number of characteristic ways in which
shared memory is accessed ��� �	� ���� These characteristic patterns� are su�ciently di�erent from
one another that any protocol designed to optimize one will not perform particularly well for the
others� In particular� the exclusive use of write�invalidate protocols can lead to a large number
of avoidable cache misses when data that is being actively shared is invalidated and subsequently
reloaded� The in�exibility of existing machines� cache implementations limits the range of programs
that can achieve scalable performance regardless of the speed of the individual processing elements
and provides no mechanism for tuning by the compiler or runtime system�

These observations have led a number of researchers to propose building programmable multi�
processor cache controllers that can execute a variety of caching protocols ��� ���� support multiple
communication models ���� ���� or accept guidance from software ���� ���� Programmable con�
trollers would seem at �rst glance to be an ideal combination of software�s greater �exibility and
hardware�s greater speed� As such� we are investigating CCU options which will implement a variety
of caching protocols� support both shared memory and message passing e�ciently� accept guidance
from software to tune its behavior� and support e�cient high�level synchronization primitives� Our
goal is to signi�cantly reduce the number of messages required to maintain coherence� the number
of cache misses taken by applications due to memory con�icts� and the overhead of interprocess
synchronization� We propose to do this by allowing individual data items �at page or cache line
granularity� to be maintained using the consistency or synchronization protocol best�suited to the
way the data is being used� For example� data that is being accessed primarily by a single processor
would likely be handled by a conventional write�invalidate protocol ���� while data being heavily
shared by multiple processes� such as global counters or edge elements in �nite di�erencing codes�
would likely be handled using a delayed write�update protocol ���� Similarly� locks could be handled
using conventional distributed locking protocols� while more complex synchronization operations

�Except in the case of the Cray� which does not cache shared data�

�



like barriers and reduction operators for vector sums could be handled using specialized protocols�
By handling data with a �exible protocol that can be customized for its expected use� we expect
the number of cache misses and messages required to maintain consistency to drop dramatically�

By reducing the amount of communication required to maintain coherence� multiprocessor de�
signers can either use a commodity interconnect��� and achieve performance equal to that of a
static controller and a fast special purpose interconnect like that found in the CM��� or use the
faster interconnect to support more processors� However� this greater power and �exibility in�
creases hardware complexity� size� and cost� To determine if this added complexity and expense is
worthwhile� we must determine the extent to which it can improve performance� We performed a
detailed execution�driven simulation study of this question� and present the results in Section ��	�

��� Potential Pitfalls

The Avalanche project involves a number of risks that result from the inherent complexity in
the approach� Modifying a modern commercial microprocessor that is tuned for performance to
integrate a new subsystem as critical as the cache controller may result in reduced performance�
However� the absolute speed of our prototype design is not the central issue since our desire is to
investigate memory organizations that will impact the multiprocessor performance capability of
future designs� These future designs clearly will integrate the design of the CPU and the CCU on
the same chip� Hence our intent is to create a CCU design that is consistent with the commercial
microprocessor core strategy but in its initial implementation may not be perfectly balanced for
performance�

Providing �exibility in hardware often incurs a performance penalty� For mainline microproces�
sors� performance is everything� Our focus is to determine which protocol and message injection
options are cost�e�ective� While this paper is an early status report of work in progress� our pre�
liminary results indicate that for a relatively small increase in the complexity of the CCU� the
performance of certain applications can be enhanced signi�cantly� Further study is required to
quantify both the scope of this advantage and the exact cost increment of the CCU�

While there are risks in this approach� we feel that the payo� is signi�cant� Multiprocessor
performance scalability utilizing the highly cost�e�ective workstation processor technology is an
important enough goal to justify these risks� Fortunately Hewlett�Packard is an active partner in
this e�ort� We would have little chance of succeeding if this were not the case�

� Performance Evaluation

Avalanche is a large ongoing project with many aspects� as outlined in the previous section� Thus�
for the purposes of this paper we will concentrate on one aspect of how Avalanche�s novel com�
munication and memory architecture impacts performance� Speci�cally� we report the results of
a detailed architecture simulation study in which we explored the impact of using a number of
coherence protocols� both individually and in an optimal� combination�

��� MINT Multiprocessor Simulator

We used the Mint memory hierarchy simulator ���� running on Silicon Graphics and Hewlett�
Packard workstations to perform our simulations� Mint simulates a collection of processors and
provides support for spinlocks� semaphores� barriers� shared memory� and most Unix system calls�
We augmented it to support message passing and multiple processes per node� Mint generates

�



multiple streams of memory reference events� which we used to drive two system simulator models�
one for message passing programs and one for shared memory programs� Depending on the number
of processors and the complexity of the cache controllers being simulated� our simulation runs took
between twenty minutes and �ve hours to complete�

��� Network Model

To accurately model network delays and contention� we have developed a very detailed� �it�by��it
model of the Myrinet fabric���� We use Myrinet as the basis for our network model because even
though it has a relatively high latency when compared to proprietary interconnects such as that
found in the CM��� the Myrinet interconnect is the fastest commercially available interconnect
suitable for our needs� The Myrinet fabric is mesh�connected� with one crossbar at the core of
each switching node� To ensure that the results of our architecture evaluation experiments are not
excessively biased by the relatively high latency of the Myrinet interface� we also measured the
performance of Avalanche for a network with one�tenth the latency of Myrinet �fast Myrinet��� In
this network model� we account for all sources of delay and contention within the network for each
�it of data� including per�switching�node fall through times� link propagation delays� contention
for the crossbar in switching nodes and for FIFOs at the input and output ports of both compute
and switching nodes� The parameters that we use are presented in Table ��� in terms of ��ns CPU
clock cycles�

With this model� we were able to perform very detailed measurements of the amount of con�
tention in the interconnect� Unfortunately� this network model was so detailed that the network
simulation code represented approximately ��
 of the execution cost of simulation� which restricted
the size of the problems that we could simulate in a reasonable amount of time� Thus� we chose to
implement a simpli�ed version of the network model in which the end�to�end latency for a message
was determined strictly by the distance between the communicating nodes� We used the results
of our detailed simulation model to determine the average amount of contention delay induced by
the di�erent workloads� and combined this with the minimum end�to�end latency to derive the
end�to�end latencies used in the simpli�ed model� shown in Table ���� Due to the accuracy of the
model from which we derived the simple model�s parameters� the impact on simulated performance
of our simple model was small� although we will reexamine this problem as we scale up the problem
and machine sizes that we simulate�

��� Memory Model

Figure � illustrates the high�level organization of Avalanche�s CCU� The three major components
of the CCU are the cache controller� the directory controller� and the network controller� The

Network Characteristics

Parameter Myrinet Fast Myrinet

Link Delay �� �
Fall Through �� �
Bu�er size per stage �� ��
Topology ��� ��� switch nodes same

Table � Parameters Used In Network Models �in ��ns CPU clock cycles�

�



Simpli�ed Model

Parameter Myrinet Fast Myrinet

One hop 	� �
Two hops ��� ��
Three hops �	� �	

Table � End�to�end Latency Used In Network Approximation

cache controller is responsible for handling the local CPU�s requests for data and cooperating with
the directory controller to ensure that data in the local cache hierarchy is kept coherent� The
directory controller maintains the memory state information associated the local physical memory
and handles coherence requests sent by remote nodes� in cooperation with the cache controller� The
network controller is responsible for handling incoming and outgoing interconnect tra�c� including
the DMA and o�oaded protocol processing operations described in Section ���� In particular� for
incoming coherence messages� it is responsible for forwarding them to the directory controller or
the cache controller� as appropriate�

We used the following model in our architecture simulations� We assume that each of the three
control units can handle only one request at a time� which introduces contention� For example� if
the directory controller receives a remote data request from a remote node for data that resides in
the local cache� it sends a request to the cache controller to invalidate that cache line� While the
cache controller is performing this invalidation� memory requests from the CPU stall� Similarly�
if the local CPU accesses a word of local memory that is not in the cache� the cache controller
sends a request message to the local directory controller to ensure that coherence is maintained
�i�e�� it does not read the data from the local DRAM until it is assured that a remote node is not

state buffer)

engine)

state

(and write

control

CPU

Network

information)

(and directory

Controller

Directory

Controller

Cache

SRAM

To/From

DRAM

To/From

DRAM

To/From

Controller

Network

(and protocol

Figure � High�Level Cache Controller Design

��



caching a dirty copy of the data�� While the directory controller is handling this request� it will not
handle additional requests� In addition to these queueing delays� we also measured the contention
between the cache controller and the directory controller for access to the DRAM bus� the former
for processing local requests and the latter for processing remote requests� Between each pair of
the controllers is a pair of FIFOs that are used to store requests for some action �e�g�� invalidate
a cache line� send a message� or update a directory entry�� When requests are pending in both of
a controller�s input FIFOs� it handles them in a round robin fashion� The operations performed
by each controller depend on which coherence protocol is being used� as brie�y described in the
following section� Table ��� lists the delay characteristics that we used in our model� We based
these times on the existing PA�RISC ���� implementation and our estimate of the time to perform
operations within the CCU�

��� Protocols Investigated

We evaluated the performance of four basic coherence protocols� �i� a sequentially consistent mul�
tiple reader� singler writer� write invalidate protocol �sc�wi�� �ii� a no�replicate migratory protocol
�mig�� �iii� a release consistent ���� implementation of a conventional multiple reader� single writer�
write invalidate protocol �rc�wi�� and �iv� a release consistent multiple reader� multiple writer� write
update protocol �rc�wu�� We selected these four protocols because they covered a wide spectrum
of options available to system designers� In all of our experiments� we simulated an implementation
that used a conventional directory�based management scheme� with a �xed home node per cache
block based on a function of the block�s address� Due to space constraints� we have not included
a detailed description of the protocols in this paper� but instead refer the interested reader to an
accompanying tech report�� For each application program� we explored the potential of allowing
software to specify the coherence protocol to be used to maintain shared data for an application by
evaluating the performance of each individual protocol on the application� In addition� we explored
the implication of allowing software to specify the coherence protocol of individual pages or cache
lines by using an o��line algorithm to determine the optimal protocol for each block of data� The

Operation Delay

Local read hit � cycle
Local write hit � cycle�

DRAM read setup time 	 cycles
DRAM write setup time � cycles
Time to transfer each subsequent word to�from DRAM � cycle
DRAM refresh �time between DRAM requests� � cycles
Enqueue a message in a FIFO between controllers � cycle
Dequeue a message from a controller�s input FIFO � cycle
Update directory entry � cycles

Table � Delay Characteristics

�However� the cache controller remains busy for a second cycle updating state information� Therefore� if the processor

performs a second memory request immediately after the �rst write� it will be delayed an extra cycle�
�Although we cannot do so now without eliminating any pretext of anonymity

��



opt pseudo�protocol represents the performance achievable if the optimal protocol is used for each
data block �cache line or page��

The sc�wi protocol represents a direct extension of a conventional bus�based write�invalidate
consistency protocol to a directory�based implementation� A node can only write to a shared cache
line when it is the owner and has the sole copy of the block in the system� To service a write miss
�or a write hit when the block is in read�shared mode�� the faulting node sends an ownership request
to the block�s home node� If the block is not being used or is only being used on the home node�
the home node gives the requesting node ownership of the block� If the data is dirty in a remote
cache� the home node sends a message to the owner� and the owner sends the dirty cache line back
to the home node� which in turn forwards a copy of the data to the requesting node� If the block is
read shared� the home sends invalidate messages to all other nodes that still have cached copies of
the block� collects the invalidations� and forwards a message to the requesting node indicating that
all of the nodes that had a copy of the data have now invalidated it� To service a read miss� the
local processor requests a copy of the block from the block�s home node� If the home node has a
clean copy of the block� it responds directly� If not� the home node sends a message to the current
owner requesting an up to date copy of the data� which it forwards to the requesting node�

Cache blocks being kept consistent using the mig protocol are never replicated� even when read
by multiple processors with no intervening writes� Thus� both read and write misses are treated
identically� When a processor misses on a cache block� it requests a copy of the block from the home
node� If the home node has a copy� it returns it directly� otherwise it requests the data and forwards
it to the requester� This protocol is optimal for data that is only used by a single processor at a time�
such as data always accessed via exclusive RW locks� because it avoids unnecessary invalidations
or updates when the data is written after it is read�

For the two release consistent protocols �rc�wi and rc�wu�� we assume the presence of a write
state bu�er that contains a small number of entries� Each entry is associated with a local dirty
cache line and is used to keep track of which words are dirty in that line� Write state bu�er entries
are allocated on demand when the local cache writes to a shared cache line� Unlike a conventional
write bu�er����� which contains the modi�ed data as well as its address� the write state bu�er
contains only an indication of what words have been modi�ed� The modi�ed data itself is stored
in the cache� This state information is used to improve the performance of writes to shared data�
albeit in di�erent ways for each protocol�

The rc�wi protocol performs identically to the sc�wi protocol on reads� but the write state
bu�er improves write performance� When a processor writes to shared memory� it may continue
executing as soon as an entry has been allocated in the write state bu�er� without waiting to
receive ownership from the home node� The entry cannot be �ushed until the local node has
received ownership of the cache line� In the mean time� reads to the dirty words can be satis�ed
from the local cache� and reads to other words in a dirty cache line can be performed if the line
was present in the cache before the write occurred� Only if the write state bu�er becomes full�
which is infrequent� or the processor reaches a release� point and the controller has not received
ownership of the cache lines in the write state bu�er� does the processor need to stall� This can
signi�cantly reduce the overhead of handling shared writes� This optimization assumes that the
program is written using su�cient synchronization to avoid data races� which is most often the
case� The details of why this results in correct behavior is beyond the scope of this paper � a
detailed explanation can be found elsewhere �����

The rc�wu protocol uses the write state bu�er in a di�erent way� When a node writes to a word
of shared data� it allocates an entry in the write bu�er for the associated cache line and marks
that word as dirty� When the processor reaches a release point or the number of entries in the

��



write bu�er exceeds some threshold �in this case� four out of the eight entries�� the local cache
controller �ushes the dirty words to the home node� Until that point� the processor delays the
sending of the update� The home node forwards the update message to other nodes with a copy
of that cache line� which incorporate the changes on a word�by�word basis� In this way� multiple
processors can simultaneously modify a single cache line as long as they do not modify the same
words� which would represent a race condition and likely a bug in the program� The rc�wu exploits
release consistency�s �exibility by bu�ering writes to shared data� thereby mitigating the normal
problem of write update protocols and excessive bandwidth requirements� Furthermore� the use of
a write update protocol can signi�cantly reduce the number of read misses that a write�invalidate
protocol induces as a side e�ect of maintaining coherence when the degree of sharing is high���� For
example� if processors a and b are both reading and writing data from a particular cache line� a
write invalidate protocol will result in a large number of invalidations and subsequent read misses
when the invalidated processor reloads the data that it needs� The invalidations are relatively
cheap� because they can be pipelined� but the read misses can seriously degrade performance�
because while the data is being fetched� the processor must either stall or context switch� Both
rc�wu and rc�wimust perform memory consistency operations when the program arrives at release
points� which can degrade performance if the application synchronizes frequently�

Finally� we also measured what we will refer to as the opt or optimal pseduo�protocol� In the
previous experiments� we assumed that the CCU could support multiple coherence protocols� but
that only a single coherence protocol was used by any given program� In Section ��	 we show that
the choice of coherence protocol has a large e�ect on performance for the di�erent applications� We
also explored the potential additional bene�t that could be derived by allowing software� e�g��the
compiler or programmer� to specify to the CCU the base protocol that should be used for individual
blocks of data� rather than for the entire program� This experiment measures the value of adding
two additional protocol state bits per page table and TLB entry �for page�grained speci�cations� or
cache line �for cache line grained speci�cations�� We measure the performance of the opt pseudo�
protocol by determining o��line which protocol induced the least cache overhead per data block�
and using this optimal protocol for that block when calculating total cache stall and execution
times� opt represents a near best case measurement of the potential value of the adding protocol
bits because it assumes that software is able to perfectly specify in advance how each block of
memory should be handled� although it does not measure the potential value of changing the
choice of protocol dynamically during runtime� While it is probably not reasonable to assume that
this performance is achievable in general� it provides us with some insight into the value of allowing
software to specify the coherence protocol at a small grain�

��� Benchmark Programs

We used �ve programs from the SPLASH benchmark suite ���� in our study� mp�d� water� barnes�
LocusRoute� and cholesky� Table � contains the inputs for each test program� mp�d is a three�
dimensional particle simulator used to simulated rari�ed hypersonic air�ow� Its primary data
structure is an array of records� each corresponding to a particular molecule in the system� mp�d

displays a high degree of migratory write sharing� water is a molecular dynamics simulator that
solves a short range N�body problem to simulate the evolution of a system of water molecules� The
primary data structure in water is a large array of records� each representing a single water molecule
and a set of forces on it� water is fairly coarse�grained compared to mp�d� barnes simulates the
evolution of galaxies by solving a hierarchical N�body problem� Its data structures and access
granularities are similar to that of water� but its program decomposition is quite di�erent� locus
evaluates standard cell circuit placements by routing them e�ciently� The main data structure

��



is a cost array that keeps track of the number of wires running through the routing cell� locus

is relatively �ne�grained� and the granularity deviates by no more than �
 for all problem sizes�
Finally� cholesky performs a sparse Cholesky matrix factorization� It uses a task queue model of
parallelism� which results in very little true sharing of data� although there is a moderate degree of
false sharing when the cache lines are fairly large�

��� Experimental Results

We simulated the performance of the �ve application programs running on a detailed model of
an eight�processor Avalanche system� Figures �� 	� and � are for the Myrinet interconnect� while
Figures �� �� and � are for the fast Myrinet� interconnect� To avoid cluttering the graphs with
irrelevant data� we factored out non�shared memory references� which add negligible overhead due
to the large cache size relative to the working set size�

Figures � and � show the total cache stall times for each of the protocols as a percentage of
the conventional sc�wi protocol� The height of each vertical bar represents the relative number
of cycles that the processor spends stalled waiting for memory requests to be satis�ed� Note
that the mig protocol graphs have been scaled down for barnes� locus� and water so that mig�s
poor performance on these program did not overwhelm the other results� The performance of
the individual coherence protocols varied dramatically from application to application� For the
Myrinet interconnect �Figure ��� the rc�wu protocol performed best for every application except
mp�d� which is known to have mostly migratory data� rc�wu performed particularly well for barnes
and locus� removing over 	�
 of the cache stall time compared to the conventional sc�wi protocol
and over ��
 compared to rc�wi protocol used in FLASH� For the faster interconnect �Figure ���
the results were more varied� rc�wu continues to perform very well for barnes and locus� while
mig continues to perform best for mp�d� but with the use of a faster interconnect� FLASH�s rc�wi
protocol performs best for cholesky and water� The large variance in each application between
the most e�cient protocol and the other protocols and the fact that the protocol that performs
best di�ers from application to application is strong evidence that Avalanche�s ability to support
multiple coherence protocols will result in a signi�cant performance payo��

Each bar is subdivided into the individual components that account for the overall cache stall
time� read represents the overhead of read misses� which accounts for the majority of the cache
stall time for the write�invalidate protocols �sc�wi� mig� and rc�wi�� The large reduction in read
miss penalties accounts for rc�wu�s signi�cant performance bene�ts for barnes and locus� which
contain a high degree of write sharing� write represents the time spent stalled due to writes�
which comes from a number of sources depending on the protocol� including the time to acquire

Program Input parameters

mp�d ������ particles� �� time steps� test�geom

water LWI��� ��� molecules� 	 time steps

cholesky bcsstk��

barnes sample�in

locus bnrE�grin

Table � Programs and Problem Sizes Used in Experiments

��



ownership and the time to free up a write�state entry� The write�state bu�er allows write times
to be largely masked for the release consistent protocols� except in barnes and water� where the
write time represents ��
 of the cache stall time even for the release consistent protocols� The
reason that the write stall time is signi�cant in these two applications is that they perform a
large number of writes to shared data between synchronization points� which overwhelms the small
�eight�entry� write�state bu�er used in the simulations� Finally� synch represents the time spent
stalled at synchronization points while �ushing the write�state bu�er� This delay component was
only signi�cant for the two release consistent protocols� rc�wi and rc�wu� where it represents the
time spent �ushing the write�state bu�er entries �acquiring ownership or propagating updates for
rc�wi and rc�wu respectively��

Tables � and 	 present the average read� write� and synchronization times �measured in CPU
cycles� for the various protocols on the di�erent applications� These results include local reads and
writes� which are almost always satis�ed in a single cycle� Ideally the average read and write times
would be one cycle� and the average synchronization time would be zero� However� the impact
of coherence can dramatically increase the average memory access times� mp�d�s reputation as a
poorly structured program is borne out by the fact that its average read cycle time varies from
� to �� cycles� The reason for rc�wu�s good performance in most of the applications is apparent
� its average read cycle time is always the lowest of the four protocols measured� Since read
misses account for the largest component of the overall cache stall time for most applications� this
is an important bene�t� However� the tradeo� is rc�wu�s high synchronization time� when it is
required to �ush the write�state bu�er by performing or completing pending update operations�
Thus� for programs with very frequent synchronization� rc�wu�s good read miss performance can
be overwhelmed by its high overhead at synchronization points�

Average read cycle time

Protocol mp�d water barnes cholesky locusroute

rc�wi ���� ��� ��� ��� ���
rc�wu ��� ��� ��� ��� ���
mig ���� 	�� ���� 	�� ����
sc�wi ���	 ��� ��� ��� ����

Average write cycle time

Protocol mp�d water barnes cholesky locusroute

rc�wi ��� ��� ��	 ��� ���
rc�wu ��� ��� ��	 ��� ���
mig ��� ��� ��	 ��� ���
sc�wi ���� ��� ��� ��� �	��

Average synch cycle time

Protocol mp�d water barnes cholesky locusroute

rc�wi ����� ����� �	��� ����� �	���
rc�wu 	���� ����� ����� ������ �	���
mig ��� ��� �	��� ���� �����
sc�wi n�a n�a n�a n�a n�a

Table � Average operation cycle time �Myrinet�

��



Average read cycle time

Protocol mp�d water barnes cholesky locusroute

rc�wi ���� ��� ��� ��� ���
rc�wu ��� ��� ��� ��� ���
mig ���� ��� ���� ��� ����
sc�wi ���� ��	 ��� ��� ���

Average write cycle time

Protocol mp�d water barnes cholesky locusroute

rc�wi ��� ��� ��	 ��� ���
rc�wu ��� ��� ��	 ��� ���
mig ��� ��� ��	 ��� ���
sc�wi ���	 ��� ��� ��� ����

Average synch cycle time

Protocol mp�d water barnes cholesky locusroute

rc�wi ����� 	��� ����� ����� �����
rc�wu ����� �	��� ����	 ������ �����
mig ��� ��� ��	�� ���� �����
sc�wi n�a n�a n�a n�a n�a

Table � Average operation cycle time �fast Myrinet�

Figures 	 and � show the overall execution times for each of the protocols as a percentage of
the conventional sc�wi protocol� which follow the same trends observed above�

Figures � and � show the bandwidth consumed by each of the protocols as a percentage of the
conventional sc�wi protocol� For the most part� they follow the same trends as before with the ex�
ception that the rc�wu protocol tends to consume more bandwidth than the other protocols despite
its good performance in terms of stall cycles� For the programs that we examined� the bandwidth
requirements were a small fraction of the bandwidth provided by the Myrinet interconnect� so it is
not an issue� However� for applications with higher bandwidth requirements or lower bandwidth
interconnects� this might be an important issue�

Figures �� and �� present an approximation of the performance that can be obtained by adding
hardware support� in the form of extra state bits per page table entry or cache line� and handling
each block of data with the protocol best suited to the way it is being used� These results are
only approximate in that they do not accurately account for synchronization and secondary e�ects�
but they are su�cient to provide an estimate of the value of providing this extra hardware� As
expected� the impact is limited� but for locus and cholesky even the simple page�level support can
reduce the cache stall time by over �
� Thus� while it is not clear that the performance gains are
worth the added hardware complexity� minor though it may be� these results indicate that further
study is worthwhile�

The results presented in this section provide strong evidence that the �exible memory controller
being designed for Avalanche can lead to signi�cant performance improvements� even for relatively
�ne�grained applications such as the ones that we studied� We are continuing to evaluate our
design and are in the process of adding more applications to our application benchmark suite and
modifying our simulation environment to allow larger working sets to be evaluated�

�	



� Related Work

There are a number of ongoing e�orts whose goal is to design a scalable high�performance multipro�
cessor� Our approach di�ers from the approaches taken in these systems in a number of important
aspects� as described below�

The Stanford DASH multiprocessor ���� uses a novel directory�based cache design to intercon�
nect a collection of ��processor SGI boards based on the MIPS ���� RISC processor� The Convex
Exemplar employs a similar design based around the HP���� PA�RISC� Avalanche will employ
a similar directory�based cache design� However� our cache controller will be tightly integrated
with the communication controller� support a variety of consistency protocols and synchronization
primitives� exploit a limited degree of context sensitivity� and allow software to tune the cache con�
troller�s behavior� A second generation DASH multiprocessor is being developed that introduces
a limited amount of processing power and state at the distributed directories to add �exibility to
the consistency implementation� This machine� called FLASH ����� is currently being designed to
support both DASH�like shared memory and e�cient message passing� However� their plans for
exploiting the �exibility of their controller�s operation have not been revealed�

The MIT Alewife machine ��� ��� also uses a directory�based cache design that supports both low
latency message passing and shared memory based on an invalidation�based consistency protocol�
Alewife incorporates a limited amount of �exibility by allowing the controller to invoke special�
ized low�level software trap handlers to handle uncommon consistency operations� but currently
the Alewife designers are only planning to use this capability to support an arbitrary number of
replica� pointers�

The MIT M�Machine work ���� contains a context cache similar to previous designs such as the
HP May�y system ����� This context cache provides dynamic binding of variable names to register
contents to permit rapid task switching and promote the interesting processor coupling mechanism
of the M�machine� However� it does not provide the tight integration of communication fabric
and protocol into a realistic memory hierarchy� nor does it exploit context sensitivity to tune its
behavior�

The Motorola and MIT �T machine ��� has many interesting components that o�er excellent
support to exploit data�ow style parallelism� The �T architecture provides tight coupling between
the processor registers and the interconnect fabric� but isolates the memory hierarchy by placing the
CPU between the interconnect fabric and the memory� The result is that the CPU must mediate
message and�or DSM communication events� The level of primary processor cycle stealing that
this implies will seriously impede scalability on conventional style applications based on DSM or
message passing that do not exploit the �T�s powerful support for data �ow languages�

Like Avalanche� the user level shared memory in the Tempest and Typhoon systems ���� will
support cooperation between software and hardware to implement both scalable shared memory and
message passing abstractions� Like the Alewife system� will support low level interaction between
software and hardware to provide �exibility� As such� it currently requires extensive program
modi�cation or user e�ort to achieve scalable performance� although the designers are working on
a number of compilation and performance debugging tools to help automate this process� The
tradeo�s between the software and hardware approaches are being studied�

The SHRIMP Multicomputer ��� employs a custom designed network interface to provide both
shared memory and low�latency message passing� A virtual memory�mapped interface provides a
constrained form of shared memory in which a process can map in pages that are physically located
on another node� Since the network controller is not tightly coupled with the processor� the cache
must be put into write�through mode so that stores to memory can be snooped by the network

��



interface� which results in added bus tra�c between the cache and main memory� In addition�
incoming messages are placed into main memory via a DMA engine� using invalidation to maintain
consistency� which results in cache misses that would not occur if the network controller was more
tightly coupled with the memory system�

The Thinking Machines CM�� ���� did not directly support DSM or a multilevel external memory
hierarchy� and as such the excellent communication fabric of the CM�� is not well integrated into
the memory architecture� Thus� the on�chip cache miss penalties discussed earlier have proven
problematic in terms of achieving a reasonable percentage of the impressive peak performance of
the CM�� on real applications� Another commercial scalable supercomputer of interest is the Intel
Paragon ����� The interconnect is a high performance mesh routing device� The fabric does not
support direct DMA into the Paragon�s memory hierarchy but utilizes a second i�	�XP CPU for
this purpose on each processing element� In addition� the interconnect is not tightly integrated into
the memory hierarchy� so messages are only placed into main memory rather than the processor
cache�

� Conclusions

We have motivated the need for a multiprocessor architecture that supports higher e�ective scal�
ability than existing architectures by tightly integrating the communication and memory systems�
Our approach towards achieving this goal is embodied in the �exible cache and communication
controller being designed at the core of the Avalanche project� The goal of Avalanche is to develop
a communication and memory architecture that attacks the problem of the high e�ective end�to�
end communication latency present in conventional designs� both for message passing and shared
memory programs� Among the techniques that we are employing are the use of very streamlined
sender�based message passing protocols� the ability for the communication controller to inject in�
coming data to any level of the memory hierarchy� and support for multiple coherence protocols�
We showed via a detailed simulation study that even supporting four coherence protocols can dra�
matically improve application performance� Thus� we are encouraged by the preliminary results of
our evaluation of Avalanche�

However� much work remains to be done before the Avalanche prototype is constructed� We are
currently working with Hewlett�Packard to create a version of the PA�RISC ���� which exports an
interface for a new CCU which will be fabricated as a separate chip� We also are improving our
simulation environment� testing the high�level CCU design on more and larger applications �both
shared memory as reported upon in this paper and a variety of message passing programs�� develop�
ing a set of protocol veri�cation tools to reduce the debugging time needed to implement the CCU�
and considering compiler�based techniques for fully exploiting Avalanche�s �exibility� In summary�
although the challenges that face us are considerable� we believe that the Avalanche design outlined
here will result in the development of a memory architecture for commercial microprocessors that
will signi�cantly improve their performance utility in scalable multiprocessor con�gurations�

References

��� A� Agarwal and D� Chaiken et al� The MIT Alewife Machine� A large�scale distributed�memory
multiprocessor� Technical Report Technical Memp ���� MIT�LCS� �����

��� J� Archibald and J��L� Baer� Cache coherence protocols� Evaluation using a multiprocessor
simulation model� ACM Transactions on Computer Systems� ������������� November ���	�

��



��� David Beazley� ����� Member of ���� Gordon Bell Prize winning team� personal communica�
tion�

��� M� J� Beckerle� An Overview of the START ��T� Computer System� MCRC Technical Report
MCRC�TR���� Motorola Cambridge Research Center� �����

��� J�K� Bennett� J�B� Carter� and W� Zwaenepoel� Adaptive software cache management for
distributed shared memory architectures� In Proceedings of the ��th Annual International
Symposium on Computer Architecture� pages �������� May �����

�	� B� Bershad� D� Lee� T� Romer� and J�B� Chen� Avoiding con�ict misses dynamically in large
direct�mapped caches� In Proceedings of the �th Symposium on Architectural Support for

Programming Languages and Operating Systems� pages �������� October �����

��� M�A� Blumrich� K� Li� R� Alpert� C� Dubnicki� E�W� Felten� and J� Sandberg� Virtual memory
mapped network interface for the SHRIMP multicomputer� In Proceedings of the ��st Annual

International Symposium on Computer Architecture� pages �������� April �����

��� N�J� Boden� D� Cohen� R�E� Felderman� A�E� Kulawik� C�L� Seitz� J�N� Seizovic� and W��K�
Su� Myrinet � A gigabit�per�second local�area network� IEEE MICRO� ���February������	�
February �����

��� J�B� Carter� E�cient Distributed Shared Memory Based On Multi�Protocol Release Consis�

tency� PhD thesis� Rice University� August �����

���� D� Chaiken and A� Agarwal� Software�extended coherent shared memory� Performance and
cost� In Proceedings of the ��st Annual International Symposium on Computer Architecture�
pages �������� April �����

���� D� Clark� V� Jacobson� J� Romkey� and H� Salwen� An analysis of TCP processing overhead�
IEEE Communications Magazine� pages ������ June �����

���� Cray Research� Inc� CRAY T�D System Architecture Overview� hr������ edition� September
�����

���� C� Dalton� G� Watson� D� Banks� C� Calamvokis� A� Edwards� and J� Lumley� Afterburner�
IEEE Network� pages �	���� July �����

���� A� L� Davis� May�y� A General�Purpose� Scalable� Parallel Processing Architecture� Lisp and
Symbolic Computation� ������������ May �����

���� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons� A� Gupta� and J� Hennessy� Memory
consistency and event ordering in scalable shared�memory multiprocessors� In Proceedings of
the ��th Annual International Symposium on Computer Architecture� pages ����	� Seattle�
Washington� May �����

��	� A� Gupta and W��D� Weber� Cache invalidation patterns in shared�memory multiprocessors�
IEEE Transactions on Computers� �������������� July �����

���� M� Heinrich and J� Kuskin et al� The performance impact of �exibility in the Stanford FLASH
multiprocessor� In Proceedings of the �th Symposium on Architectural Support for Programming
Languages and Operating Systems� pages �������� October �����

��



���� Intel Supercomputer Systems Division� Paragon XP	S Product Overview� �����

���� N�P� Jouppi� Cache write policies and performance� In Proceedings of the �
th Annual Inter�

national Symposium on Computer Architecture� pages �������� May �����

���� J� Kuskin and D� Ofelt et al� The Stanford FLASH multiprocessor� In Proceedings of the ��st
Annual International Symposium on Computer Architecture� pages �������� May �����

���� D� Lenoski� J� Laudon� K� Gharachorloo� W��D� Weber� A� Gupta� J� Hennessy� M� Horowitz�
and M� S� Lam� The Stanford DASH multiprocessor� IEEE Computer� ������	����� March
�����

���� P� Nuth and W� J� Dally� A Mechanism for E�cient Context Switching� In Proceedings of the
IEEE International Conference on Computer Design� pages �������� �����

���� S� Pakin and A� Chien� The impact of message tra�c on multicomputer memory hierarchy
performance� Technical Report Concurrent Systems Architecture Group Memo� University of
Illinois at Urbana�Champaign� ����� available from http���www�csag�cs�uiuc�edu��

���� S�K� Reinhardt� J�R� Larus� and D�A� Wood� Tempest and Typhoon� User�level shared mem�
ory� In Proceedings of the ��st Annual International Symposium on Computer Architecture�
pages ������	� April �����

���� J�P� Singh� W��D� Weber� and A� Gupta� SPLASH� Stanford parallel applications for shared�
memory� Technical Report CSL�TR�����	�� Stanford University� April �����

��	� M�R� Swanson and L�B� Stoller� PPE�level protocols for carpet clusters� Technical Report
UUCS�������� University of Utah � Computer Science Department� April �����

���� Thinking Machines Corporation� The Connection Machine CM�� technical summary� �����

���� J�E� Veenstra and R�J� Fowler� A performance evaluation of optimal hybrid cache coherency
protocols� In Proceedings of the �th Symposium on Architectural Support for Programming

Languages and Operating Systems� pages �����	�� September �����

���� J�E� Veenstra and R�J� Fowler� Mint� A front end for e�cient simulation of shared�memory
multiprocessors� In MASCOTS ���� January �����

���� A� Wilson and R� LaRowe� Hiding shared memory reference latency on the GalacticaNet
distributed shared memory architecture� Journal of Parallel and Distributed Computing�
�����������	�� August �����

��



100

44.3

55.7

0.0

69

15.5

47.0

6.9

1371

16.0

1349.7

5.4

39

15.4

11.5

12.3

100

34.9

65.1

0.0

68

6.0

53.6

8.3

115

5.8

109.1

0.4

61

5.3

30.0

25.7

100

41.0

59.0

0.0

64

2.1

50.7

11.3

230

3.3

220.5

5.8

36

1.8

17.3

17.2

100

36.7

63.3

0.0

76

1.2

46.9

27.9

61

1.1

60.1

0.2

74

0.8

23.8

49.2

100

42.7

57.3

0.0

74

14.7

44.9

14.7

337

14.9

322.0

0.0

68

14.2

9.0

44.6

sc-wi

rc-wi

Barnes

mig

rc-wu

sc-wi

rc-wi

Cholesky

mig

rc-wu

sc-wi

rc-wi

Locus

mig

rc-wu

sc-wi

rc-wi

MP3D

mig

rc-wu

sc-wi

rc-wi

Water

mig

rc-wu

WRITE

READ

SYNCH

-
-
-
-
-
-
-
-
-
-

0

20

40

60

80

100

C
a
c
h
e
-S

ta
ll
-C

y
c
le

-T
im

e

Figure � Cache stall time �Myrinet�

100

10.9

89.1

89

8.8

80.0

485

8.8

475.8

76

8.7

66.8

100

34.2

65.8

78

26.0

52.3

97

26.0

70.8

75

27.4

47.7

100

17.0

83.0

75

14.8

59.7

132

14.8

117.3
69

14.7

54.3

100

29.9

70.1

80

26.5

54.0

72

26.5

45.7

79

26.7

51.8

100

38.8

61.2

95

38.6

56.4

143

38.6

104.8

99

43.8

54.8

sc-wi

rc-wi

Barnes

mig

rc-wu

sc-wi

rc-wi

Cholesky

mig

rc-wu

sc-wi

rc-wi

Locus

mig

rc-wu

sc-wi

rc-wi

MP3D

mig

rc-wu

sc-wi

rc-wi

Water

mig

rc-wu

seq

parallel

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0

20

40

60

80

100

120

140

160

180

200

E
la

p
s
e

d
-T

im
e

Figure � Execution time �Myrinet�

100

45.0

55.0

0.0

70

20.8

43.2

5.7

1277

21.7

1249.5

6.3

46

20.7

11.7

14.0

100

28.3

71.7

0.0

68

9.4

52.6

6.1

121

9.2

111.7

0.4

73

8.4

33.5

31.6

100

36.9

63.1

0.0

62

2.8

50.0

9.1

230

3.5

221.4

4.7

33

2.5

17.2

13.1

100

31.3

68.7

0.0

67

1.8

44.0

21.2

61

1.6

58.7

0.1

69

1.1

25.4

42.1

100

39.4

60.6

0.0

69

23.2

40.5

5.7

356

23.5

332.5

0.0

76

22.3

9.7

43.6

sc-wi
rc-wi
Barnes

mig
rc-wu

sc-wi
rc-wi
Cholesky

mig
rc-wu

sc-wi
rc-wi
Locus

mig
rc-wu

sc-wi
rc-wi
MP3D

mig
rc-wu

sc-wi
rc-wi
Water

mig
rc-wu

WRITE

READ

SYNCH

-
-
-
-
-
-
-
-
-
-

0

20

40

60

80

100

C
a

c
h

e
-S

ta
ll
-C

y
c
le

-T
im

e

Figure � Cache stall time ����Myrinet�

100

10.9

89.1

90

9.8

80.6

398

9.8

387.9

82

9.3

72.2

100

38.0

62.0

83

31.7

51.0

99

31.7

67.1

85

32.7

52.1

100

20.1

79.9

78

18.6

59.9

131

18.6

112.0

72

18.3

53.4

100

36.1

63.9

78

33.5

44.2

75

33.5

41.1

78

33.6

44.8

100

41.6

58.4

96

41.6

54.4

132

41.6

90.8

100

44.5

55.1

sc-wi

rc-wi

Barnes

mig

rc-wu

sc-wi

rc-wi

Cholesky

mig

rc-wu

sc-wi

rc-wi

Locus

mig

rc-wu

sc-wi

rc-wi

MP3D

mig

rc-wu

sc-wi

rc-wi

Water

mig

rc-wu

seq

parallel

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0

20

40

60

80

100

120

140

160

180

200

E
la

p
s
e
d
-T

im
e

Figure � Execution time ����Myrinet�

��



100

74

1245

53

100

114

150
155

100

75

173

64

100

73 73

87

100

88

343

114

sc-wi
rc-wi
Barnes

mig
rc-wu

sc-wi
rc-wi
Cholesky

mig
rc-wu

sc-wi
rc-wi
Locus

mig
rc-wu

sc-wi
rc-wi
MP3D

mig
rc-wu

sc-wi
rc-wi
Water

mig
rc-wu

Bandwidth

-
-
-
-
-
-
-
-
-
-

0

20

40

60

80

100

T
o
ta

l-
M

e
s
s
a
g
e
-B

a
n
d
w

id
th

Figure � Bandwidth �Myrinet�

100 100 100 100

90

96

100

88

94

100
99 100 100 100 100

rc-wu

Barnes

cache

page

rc-wu

Cholesky

cache

page

rc-wu

Locus

cache

page

rc-wu

MP3D

cache

page

rc-wu

Water

cache

page

Stall-Cycle

-

-

-

-

-

-

-

-

-

-

0

20

40

60

80

100

C
a
c
h
e
-S

ta
ll
-C

y
c
le

-T
im

e

Figure �� Optimal� protocol
performance �Myrinet�

100

74

1249

52

100

114

153150

100

73

166

60

100

73 72

86

100

88

354

113

sc-wi
rc-wi
Barnes

mig
rc-wu

sc-wi
rc-wi
Cholesky

mig
rc-wu

sc-wi
rc-wi
Locus

mig
rc-wu

sc-wi
rc-wi
MP3D

mig
rc-wu

sc-wi
rc-wi
Water

mig
rc-wu

Bandwidth

-
-
-
-
-
-
-
-
-
-

0

20

40

60

80

100

T
o
ta

l-
M

e
s
s
a
g
e
-B

a
n
d
w

id
th

Figure 	 Bandwidth ����Myrinet�

100 99 100 100

87

95

100

91

96

100
98 100 100 100 100

rc-wu

Barnes

cache

page

rc-wu

Cholesky

cache

page

rc-wu

Locus

cache

page

rc-wu

MP3D

cache

page

rc-wu

Water

cache

page

Stall-Cycle

-

-

-

-

-

-

-

-

-

-

0

20

40

60

80

100

C
a
c
h
e
-S

ta
ll
-C

y
c
le

-T
im

e

Figure �� Optimal� protocol
performance ����Myrinet�

��


