
C A O S

A n A p p r o a c h t o R o b o t C o n t r o l

Nils Thune and Bir Bhanu
Computer Science Department

University of Utah
Salt Lake City, Utah 84112, USA

UUCS-87-007
31 March, 1987

A b s t r a c t

Control systems which enable robots to behave intelligently is a major issue in todays process of

automating factories. This thesis presents a hierarchical robot control system, a programming language

for goal achievement, termed CAOS for Control using Action Oriented Schemata, with ideas taken from

the neurosciences. The system uses action oriented schemata (neuroschemata) as the basic building

blocks in a hierarchical control structure. Serial versions in C and LISP are presented with examples

showing how CAOS achieves goals. Moreover, a partial implementation of a parallel version of the

system is discussed.

This woric was supported in part by NSF Grants DCR-8506393, DMC-8502115, ECS-8307483 and

MCS-8221750.

i

Table of Contents
1 . F r o m N e u r o n t o N e u r o s c h e m a 4

1.1 Introduction 4
1.2 The Neuron 4
1.3 The Schema 6
1.4 The Neuroschema 7

1.4.1 The Activation Section 7
1.4.2 The Event Section 8
1.4.3 The Learning Section 10

1.5 Conclusion ' 10
2 . C A O S : A H i e r a r c h i c a l C o n t r o l S y s t e m 1 2

2.1 Introduction 12
2.2 Action Oriented Control . 13
2.3 The Global Knowledge Base 13
2.4 The Global Data Base 15

3 . E x p l o i t i n g P a r a l l e l i s m i n C A O S 1 7
3.1 Introduction 17
3.2 Parallelism in the Human Brain 18
3.3 Parallelism in the Control System 18
3.4 Parallelism in Programs 19
3.5 Processor Utilization 19

4 . C A O S V e r s u s E x p e r t S y s t e m s 2 0

5 . A n O v e r v i e w o f C A O S 2 2
5.1 Introduction 22
5.2 Syntax and Meaning of CAOS clauses 28

5.2.1 AND clauses 28
5.2.2 OR clauses 28
5.2 J Function clauses 30
5.2.4 Expected pre- and post-inputs clauses 31
5.2.5 Output clauses 31

5.3 CAOS Commands 32
5.3.1 Achieve 32
5.3.2 Consult 32
5.3.3 Display 32
5.3.4 Erase 33
5.3.5 Help 33
5.3.6 Reconsult 33
5.3.7 Trace-on 33
5.3.8 T race-off 33

5.4 Example: The Cube of a Number 34
5.5 Example: Graphics Demo 36

6 . C o n c l u s i o n s a n d F u t u r e W o r k 3 9

7 . A p p e n d i x A , 4 0

8 . A p p e n d i x B 4 1

9

5
6
8
9

12
14
15
16
20
22
24
25
27
29
29
30
35

ii

List of Figures
The Basic Structure of a Neuron
The Schema Components
The Neuroschema Components
The Neuroschema Depicted as a Neuron
The CAOS System Structure
Hierarchy of Goals and Subgoals
Structure of Node and Leaf Objects/Nodes
Data Base Objects
The Structure of an Expert System
Goal: (put-on (a b))
Goal: (get-space (a b))
Goal: (find-space (a b))
CAOS’s Knowledge Base After The Consult Command
AND nodes
OR nodes
Leafs
Different ways of obtaining the goal, (cube (x))

1

Preface
As computers become cheaper and more compact, and the availability of high quality sensors increases,

it becomes attractive to create intelligent robots for use in automated environments for recognition, as

sembly, inspection, and manipulation of objects [16]. Due to safety hazards, repeatability of tasks, or

economic constraints, it is an attractive notion to replace humans with robots in many of the tasks men

tioned. The availability of hardware for intelligent robots creates a need for designing control programs

which have the capability of intelligent goal seeking. The control needs to be concerned with goal

achievement guided by diverse information from multiple sensors such as TV cameras, range finders, and

tactile-, force-, and torque-sensors. Control becomes crucially important as the tasks, enabled by mul

tisensors, becomes more complex and involved. Consequently, a control system needs to be flexible,

adaptable, and able to learn from experience.

The processing involved in a control system used for robots in automated environments often needs to

be done in real time, and it is therefore natural to bring parallel processing into the picture, enabling

considerable speedup in execution time when compared to sequential processing on conventional proces

sors. For example, low level image processing, involving large amounts of data, is often accomplished in

real time using parallel processors. Furthermore, the control can also experience speedup by achieving

independent subgoals in parallel.

Many existing robot control systems assume a very restricted operational environment [1,4, 10] limit

ing the usefulness of the system to a small domain or to tasks which follow a particular pattern in a

repetitive fashion. In many cases, for example spray-painting, this is quite adequate. For many other

tasks in less structured environments the robots need to be more sophisticated.

Knowledge about the intelligent aspects of a control system can be drawn from the neurosciences

where studies of the most intelligent system we know, the brain and nervous system, indicate some

important and basic factors of our intelligence [1, 19]. These factors are also important for a robot control

system:
• The brain is made of basic building blocks, called neurons.

• The brain is structured in a hierarchical manner.

• The brain operates in parallel.

The neurons process and produce information which is used to make intelligent decisions about tasks to

be done. Even though there are many categories of neurons, such as motor neurons and sensory neurons,

2

almost all of them have the same general structure [19, 2 0]: multiple dendrites carry the input to the cell

body where the information is processed, and a single axon carries the output to other neurons in the

nervous system. AH of the neurons, with their dendrites and axons, are organized into a complex network

which is probably the key to our intelligence, since it provides the necessary links between parts of our

brain [1,2, 19, 20].

It is believed that the neurons, with their complex network of interconnections, are organized in a

hierarchical fashion [1], Commands are issued at the top, and are split into subgoals as they propagate

down the hierarchy. In addition to the hierarchical organization, the brain makes extensive use of paral

lelism in carrying out its tasks [1, 2, 9, 11]. Many neurons operate in parallel, receiving input, processing

it, and propagating the results to many other neurons. The brain is quite slow compared to digital com

puters, being able to carry out only about 100 serial time steps per second [9, 11]. The normal reaction

time for a human being is approximately 0.5 to 1.0 seconds, and the tasks which the brain carries out

during this time often requires a substantially higher number of computations than 10 0 , leading to the

conclusion that parallelism is essential for our ability to react as fast as we do.

In developing an intelligent control system for robots, it is desirable to include the three important

aspects of the brain already discussed: basic building blocks, hierarchical organization, and parallel

processing. With this in mind, an approach to robot control called Control using Action Oriented

Schemata or CAOS is presented in this thesis. The action oriented schemata are termed neuroschemata

because of their similarity to neurons, which are the basic building blocks of the brain, and

schemata [3, 14, 24] which are a basic kind of representation. Each neuroschema is able to activate

several other neuroschemata in parallel, and they are the basic building blocks of the control system. The

neuroschemata are organized in a hierarchical manner for each goal the system can achieve. Hence, three

of the main aspects of the brain have their analogs in CAOS: basic building blocks, hierarchical organiza

tion, and parallel processing.

The puipose of CAOS is to achieve high level goals, specified by a user, through planning and action.

The goals which can be achieved depend upon the system’s knowledge base, and are restricted by exist

ing rules, facts, and procedures which the system can consult.

Two serial versions implemented in C and LISP respectively is presented. The C version [8] is the

preliminary version and its knowledge is sufficient to locate and recognize simple polyhedral objects in

range images. Due to implementation difficulties with the C version and the prospect of a LISP compiler

for the BBN Butterfly Parallel Processor, the next version was written in LISP [7].

Both the C and the LISP serial versions of CAOS was developed keeping in mind that they should be

easily transportable to the BBN Butterfly.

3

4

1. From Neuron to Neuroschema

1 . 1 I n t r o d u c t i o n

To enable robots to interact intelligently with their environment, we need an artificial brain that can

control the robot. Such a "brain" can be modeled after the human brain.

The human brain and nervous system controls the activities of the human body. It coordinates the

various activities, receiving thousands of bits of information from multiple sensor organs and inter

neurons [12,17, 19]. Computational responses to the environment, which the body exists in, originates

from sensory experience enabled by various tactile, auditory, and visual receptors. Neurons, the fun

damental units of the nervous system, encode and decode complex information through a network of

interconnections between millions of other neurons. The interconnections and processing between

neurons forms the intelligent system that permeates the whole body. In developing an intelligent control

system it is natural to use ideas found in studying the brain. Hence, some kind of basic building block for

the robot control system is sought.

1 . 2 T h e N e u r o n

Neurons exist in millions, arranged in regular patterns and grouped in functional divisions, in the brain.

They are analog computing devices that can take on any number of inputs, and produce an output that can

function as one input to hundreds of thousands of other neurons. Neurons are structured in a hierarchical

manner using extensively their ability to process signals in parallel [17,19]. They are richly intercon

nected, each receiving inputs from several other neurons or receptor cites throughout the body.

The basic structure of a neuron is shown in Figure 1-1. There exists several different types of neurons,

but they all have the same general structure.

The denrites provides the informational input to the neuron. They branch out to other neurons and/or

receptors and receive signals which they carry back to the cell body of the neuron. The dendrites can

provide the neuron with both inhibitory and excitatory signals.

The cell body provides the "function" of the the neuron. It encapsules the nucleus and provides the

necessary energy to keep the neuron alive. The cell body monitors input from its denrites and it produces

an output routed through the axon. The function performed in the cell body can be as simple as summing

up the different inputs at a particular moment and producing that as an output, or as complex as a non-

5

C e l l B o d y

N u c l e u s D e n d r i t e

Figure 1-1: The Basic Structure of a Neuron

linear function that take into account signal levels and time differences for each input before any output is

produced.

The axon is responsible for carrying the output of the neuron to other parts of the brain and nervous

system. The dendrites usually receive their signals from the axons via the cell body (axo - axonal, dendro

- axonal, and dendro - dendritic connections also exist). Depending on the type of neuron the axon can

extend micrometers out from the cell body, inside the brain, to a meter in length « hen branching out to

receptor sites on the human body.

Each neuron is functioning by itself. The neuron can be viewed as constantly bein? in a particular goal

state. It receives input from multiple receptors and/or intemeurons, and the ccli hody processes this

information and computes an output, a goal state.

6

1.3 The Schem a

A schema can be viewed as an abstract data type with sensory processing, action, and possibly learning

elements [3,14, 24], It is, in theory, similar to the neuron and its functionality.

A schema monitors certain aspects of the current situation and becomes active when the situation

matches an expected state. It is both a process and a representation. The major components of the

schema are shown in Figure 1-2. The actions and sensing performed by schemata include modifying and

monitoring the internal state of the system as well as the environment. Schemata can serve as building

blocks for both representations and programs. At the highest level of control, schemata are used for

planning, and at the lowest level they provide servo control with sensory processing at all levels.

Activation Section
- Sensory Monitors
- Goal Monitors
- Activation Level

Calculation

Event Section
- Sensing
- Action
- Serial and Parallel

Activity

Memory Section

Figure 1-2: The Schema Components

The activation section is the control center of the schema. It activates the schema when a certain level

is calculated and exceeds a predefined threshold for actioa It monitors the current state of the schema

and the surrounding environment to turn the schema on and off. The event section specifies the action

and sensing to be performed when the schema is active. The memory section is intended to be an

adaptation mechanism for the schema.

Clearly, the schema can not be used for implementation purposes with present software and hardware

technologies. Each schema’s activation section is supposed to constantly monitor the current situation,

which implies that it needs to occupy a single processor alone. In a control system for a robot where one

7

would incorporate thousands of schemata to enable stable control, it is clear that schemata are not imple-

mentable. For practical purposes another type of basic building block is needed which does not rely on

unlimited parallel processing capabilities.

1 . 4 T h e N e u r o s c h e m a

Due to the lack of parallel processing being available to the extent needed to fully simulate all the

neurons in the brain, a more rigid approach to control is needed. Some processing can be done in parallel

on existing computers, but not enough compared to the amount needed for simulating the brain, and hence

a different basic building block is expected for the control system if it is to be functionally implemented

on todays existing parallel processors.

The neuroschema provides this basic building block. It is a strict processing element for controlling

input and output of a specific function. The neuroschema can be viewed as corresponding to the cell

body of the neuron, with the difference that it only becomes active in certain situations, contrary to the

neuron which is active constantly.

The neuroschema consists of three sections: an Activation Section, an Event Section, and a Learning

Section. Each neuroschema is a LISP method, simulating the general functions of a neuron by receiving

input, processing it, and producing output based upon the function (goal) it controls. Figure 1-3 shows

the major components of the neuroschema.

A neuron can take on any number of inputs and produces an output. The same is true for the neuros

chema. In addition, any type of input and output can flow through it, making it flexible. The neuros

chema is activated with a goal (a LISP object) and uses the information in this goal to determine how to

process the input and output. An active neuroschema with its goal in the robot control system is the

counter part to the neuron of the human nervous system. Figure 1-4 shows the neuroschema in a neuron

like fashion.

1.4.1 The Activation Section

Information flowing in the control system is provided by the user, multi sensors [22], and computations

done internally by the neuroschemata. In contrast to neurons, which constantly monitors its dendrites

(inputs), the neuroschema only becomes active when a particular goal state is requested. To achieve this

particular goal state a neuroschema is activated with a goal object which contains information about how

to obtain this goal. The activation section of a neuroschema becomes active at the moment the neuros-

8

Activation Section
- Check Pre-Inputs
- Activation Level

Calculation_____________

Event Section
- Sensing
- Serial and Parallel Action

Learning Section
- Update Run Time

and Probabilities
- Check Post-Inputs
- Produce an Output

Figure 1-3: The Neuroschema Components

chema is activated. Along with the goal object the neuroschema is also activated with some particular

input which we call pre-input (as opposed to post-input discussed later). Using the information found in

the goal object the neuroschema checks the pre-input for acceptable range and type. Depending on this

result the event section of the neuroschema is activated.

1.4.2 The Event Section

The Event Section of the neuroschema uses the information in the goal object to determine how the goal

is to be achieved. The neuroschema, activated with a goal, obtains this goal by achieving its subgoals.

The subgoals are obtained by either activating a new neuroschema for each of them, or if the subgoal

simply is a program/function, it is executed. Subgoals of a goal can be directly compared to intemeurons

of the brain while programs/functions are the same as motor neurons in the nervous system controlling

receptors and joints.

One particular goal can sometimes be obtained by achieving either one of several different, alternative

subgoals (an OR-node). Using statistics and average run time from previous succcsses in obtaining the

different goals, the goal with highest expectation of success is chosen. Success means that the (sub)goal

has been obtained with satisfactory output and failure indicates that the (sub)goal was not achieved. This

Figure 1-4: The Neuroschema Depicted as a Neuron

is comparable to the function of the cell body of a neuron which produces an output when necessary input

satisfies it (the goal state is met).

10

If a (sub)goal has never been active before, the expectation of obtaining it is said to be 0.0 (NOTE:

E(s) is defined over the range 0.0 - « where 0.0 denotes the highest expectation for obtaining the goal).

In all other cases we have:

E(s) = (Average run time of goal)/P(s)

The average run time of a goal is given as the total sum of all run times for the goal, when the goal

were achieved, divided with S (the number of successes for obtaining this goal). P(s) is given by S

divided with N (the total number of trials for this goal).

If there is more than one alternative for obtaining a goal, the control system choses the subgoal with the

highest expectation of success. If the expectation values are equal, the leftmost branch is chosen, or in a

parallel version, both would be pursued when the expectation values are within a specified threshold.

1.4.3 The Learning Section

The third section in the neuroschema, the Learning Section, is activated when no information about

how to obtain the main goal can be found in the knowledge base, indicated by the scheduler. It is also

activated each time a neuroschema has obtained all its subgoals or has executed its procedure to update

the average run time and probability of success. Finally, this section checks the post-inputs and produces

the output of the goal based on these. Post-inputs are the output of the neuroschemata controlling the

subgoals of a goal. Hence, post input and pre-inputs together is comparable to all the input received

through the denrites of a neuron.

1 . 5 C o n c l u s i o n

The structure of the neuroschema resembles the schema of Arbib, Iberall and Lyon, and

Overton [3, 14, 24], but is very different in functionality. In contrast to their schemata, which have

preconstructed plans for achieving a goal, the neuroschema is a control environment which can be ac

tivated with any plans for goal achievement from the knowledge base. Another difference is found in the

approach to learning, which, in the case of schemata, is done by instantiating new schemata which better

fit a new situation. When this system is learning, new information about how to achieve the goal is used

to update the knowledge base. This new information takes the form of probability and average run time

measures, and is used to achieve the goal the next time. Furthermore, neuroschemata is implemen-

tationally possible on current equipment, using parallel processing as available, while schemata are

directly restricted in operation depending on processor availability.

Overall, the neuroschemata provide the functionality of neurons, incorporating parallelism as it is avail

able, and is easily implementable with no requirements to the system it is implemented on.

11

12

2 . C A O S : A H i e r a r c h i c a l C o n t r o l S y s t e m

2.1 Introduction
An intelligent control system for a robot needs to be able to achieve multisensory coordination.

Moreover, for a control system to act intelligent it needs the power of perceiving, learning, knowing, and

reasoning. Hence, to make a robot intelligent it must be capable of the following: .
• It must be able to perceive. That is, it should be able to become aware of things through

receptors (multisensors) and previous knowledge.

• It must be able to learn and know; It should have the capability to leam by receiving infor
mation from the environment and use this as knowledge later.

• Finally, it must be able to understand and reason. That is, it should understand the meaning
and/or nature of a problem and be able to use logic to solve it.

The ability to process sensory data in a consistent way is important and to fully utilize the resulting

information it must be integrated into the control of the robot.

A control system for a robot can be viewed as having two parts. First, the structure which controls the

sensory and motor behavior of the robot and secondly the processing and representation of the sensor}'

and Control data.

CAOS is a framework for developing goals and representing knowledge and is able to coordinate such

goals based on multisensor information and basic environmental knowledge. The overall system structure

of CAOS is shown in Figure 2-1.

Hierarchical Control *
Scheduler for Input From User

Input From Multisensors

Global Knowledge Base Global Data Base

Figure 2-1: The CAOS System Structure

13

With CAOS, one is able to represent a dynamic world in which the robot interacts with the environment

through planning and action based upon goals the robot is capable of performing. The approach used in

CAOS provides control at all levels extending from specifying low level motion, position, velocity, and

force commands on joints and end effectors to high level planning.

2 . 2 A c t i o n O r i e n t e d C o n t r o l

As control programs grow exponentially in complexity with the number of sensors and branch points in

the plan for achieving a goal, the choice of using hierarchical control with action oriented schemata

(neuroschemata) enables the system to be partitioned into levels of limited complexity. Each level in the

hierarchically organized tree have goals which decrease in complexity with decreasing level in the hierar

chy. Each level in the tree produces "a jump in the intelligence" of the the system. Figure 2-2 shows an

example of this.

Direct evidence of the hierarchical subdivision of control is found in the brain and is called the

Neuronal Hierarchy [1], At the bottom, neuronal computations are concerned with only a single muscle

group. Moving one level up, the computation now involves several muscle groups. Several levels above

this again the motion of an entire limb, and action between limbs, are computed. Finally at the highest

level of the neuronal hierarchy, the entire human body is coordinated towards future goals.

CAOS is structured in a hierarchical way and is action oriented (the systems goals knows which sub

goals to activate to achieve a specific goal state). It is based upon basic building blocks, neuroschemata,

which incorporate mechanisms for planning, stable control, sensory processing, and representation of the

world.

The CAOS shell controls the user interface and goal achievement. It enables the user to describe goals

which the system should be able to achieve.

2 . 3 T h e G l o b a l K n o w l e d g e B a s e

The knowledge base is a part of the world model of the control system, and can be viewed as an analog

to the long term memory [4] of the human brain. This is in contrast to the short term memory, which uses

information found in long term memory to obtain a goal, and then disappears.

The knowledge base contains three goal types. They are LISP objects classified as and-nodes,

or-nodes, and pro gram-leafs. These three types represent goals that CAOS can achieve. They are

14

(Assemble (Car))

(Assemble (Engine)) (Assemble (........))

(Fetch (Eng

(Reach-For (Engine-Block))
(Grasp (Engine-Block))

(Move-to (Assembly-Board))

(Release (Engine-Block))

Figure 2-2: Hierarchy of Goals and Subgoals

directly comparable to the goal states neurons in the brain can be in. The main difference is that each

goal/subgoal (neuron) of the brain is constantly active, monitoring its environmental input, while the

goals/subgoals of the CAOS control system are passive until a particular goal state is wanted which

involves activating neuroschemata with these goals/subgoals.

Each node and leaf has slots for storing information about the syntax of the goal, the arguments of the

goal, the expected type and range of pre-inputs and post-inputs, the average run time to achieve the goal,

the probability of success of obtaining the goal, and an output function. Figure 2-3 shows the node and

leaf structures.

Information found in these node and leaf goals are specified by the user. This is similar to specifying

15

A N D /O R n o d e L e a f

Goal-Syntax Goal-Syntax
Goal-Arguments Goal-Arguments
Expected-Pre-lnputs Expected-Pre-lnputs
Total-Run-Time Total-Run-Time
Successes Successes
Failures Failures
Output-Function Output-Function
SubGoals Procedure

Figure 2-3: Structure of Node and Leaf Objects/Nodes

rules in an expert system. The goal-syntax specifies the goal state and the pre-input (if any) needed to

obtain this goal state.

The goal arguments are simply the pre-input that the goal was activated with (needed input for achiev

ing the goal state). Expected pre-inputs are functions (if any) which are used for checking the range and

type of the pre-input that the goal was activated with. The total run time is the run time that the goal uses

to achieve the goal state. Successes and failures are just what they say, the total number of successes and

failures in trying to obtain the goal state. The output function is used to produce the output of the goal

which implies that the wanted goal state has been achieved. Finally, the subgoals are the goals needed to

be obtained for achieving the wanted goal state. This is usually referred to as goal/problem reduction. In

the case of a leaf the subgoals would have been replaced with a single function.

2 . 4 T h e G l o b a l D a t a B a s e

The data base contains the known set of facts associated with a particular domain and is the model of

the "world". The database used in the C implementation of CAOS was very simple, only containing

information about polyhedral objects. Figure 2-4 shows an example of the information stored in the data

base.

With each polyhedral object known to the data base, its three-dimensional CAGD model and current

position and orientation in the environment are stored. In the LISP version of CAOS, frames will be used

to represent information known to the system.

16

0BJECT1 OBJECT2
3D CAD MODEL
POSITION (X.Y.Z)
ORIENTATION

3D CAD MODEL
POSITION (X.Y.Z)
ORIENTATION

Figure 2-4: Data Base Objects

3 . E x p l o i t i n g P a r a l l e l i s m i n C A O S

3 . 1 I n t r o d u c t i o n

The serial C version of the robot control system was partially transported from a VAX 11/780 to a

Butterfly Parallel Processor [25]. The Butterfly is a multiple instruction, multiple data (MIMD) machine,

and is connected to a host machine, a VAX 11/780. The Butterfly may have up to 256 processor nodes

interconnected by a switching network called the Butterfly Switch. Each processor node has a co

processor called the Processor Node Controller (PNC) which is responsible for all memory references and

transfers. The local Butterfly at The University of Utah has 19 Motorola MC68020 processor nodes, each

having a Motorola MC68881 co-processor and 1 Mbyte of memory, except two, which have 4 Mbyte of

memory. The processors operate at 16 MHz, due to a frequency doubler. References over the Butterfly

Switch, to remote memory, usually takes about 4 microseconds round trip.

All code for the Butterfly is developed and compiled on the host machine. The executable code is then

downloaded to the Butterfly, where it is run. There are two approaches we use to program the Butterfly:

Chrysalis functions [21] and Uniform System [26] functions.

Each processor runs one copy of the operating system Chrysalis. This operating system is mainly

written in C and supports communication and synchronization between processes running on different

processors. This is done by means of dual queues which pass messages between these processes, and an

event mechanism (similar to signals in UNIX). Chrysalis does not provide automatic resource allocation,

load balancing or process migration, however [9]. Each user-developed program has to set up the data,

create all necessary processes, and decide on which node(s) they will run. Five analogs to UNIX’s seek-,

open-, close-, read-, and write-functions enable access to files residing on the host machine.

Compared to Chrysalis, the Uniform System approach to programming the Butterfly provides the user

with easier resource management. The Uniform System is built on top of Chrysalis and consists of

several subroutines which take care of, for example, allocation of memory and processors, and generation

of new tasks (processes). The user does not allocate memory space or processors explicitly, since the

Uniform System takes care of the distribution of tasks on processors and provides special memory alloca

tion routines. The Uniform System is especially suitable for homogeneous problems often found in low

level computer vision programs.

17

18

3 . 2 P a r a l l e l i s m i n t h e H u m a n B r a i n

Information (input) to the brain arrives through a number of different pathways: Sound, Sight, Smell,

Taste, and Touch Theses are senses that reach the conscious part of the brain. Examples of subconscious

senses for joints and muscles are: Position, Force, Velocity, and Motion. These conscious and subcon

scious senses provide the brain with a constant inflow of information. They are all monitored and con

trolled by different segments of the brain in parallel. Each monitoring segment has millions of neurons

where each neuron operates in parallel. The ability for the brain to process and control the complex

human body as reliable and fast as it does relies heavily on the neurons’ ability to operate in parallel.

Even though the computer is able to operate much faster than a neuron when computing functions and

relaying the result, no single processor can compete with the processing capabilities of the brain. Parallel

processing is required if simulation of the brain, even only a simulation of a fractional part of it, is to be

reality.

3 . 3 P a r a l l e l i s m i n t h e C o n t r o l S y s t e m

Exploiting parallelism in the control system involves activating several neuroschemata on different

processors, requiring complex communication and synchronization between various processes. This is

implemented using Chrysalis. The control system uses the neuroschemata in the hierarchically organized

tree, described earlier , to decide if subgoals can be started up in parallel. This occurs when different

alternative subgoals can achieve the same goal with approximately the same expectation of success. In

addition, subgoals can be started up in parallel when all needed inputs are provided, and any use of end

effectors will not result in conflicts.

One of the advantages of using multiple processors to simultaneously execute alternative goal paths, is

to prevent time delay due to an alternative’s failure to obtain the goal. If one of the alternatives fails, or

the results are not satisfactory, the result of another can be used instead. If the alternatives were not

executed in parallel, and the most promising one failed, it would take longer to achieve a goal; the next

alternative would be executed only after the first had failed.

When the hierarchical control allows parallelism, the parent neuroschema has to check if there are any

processors available on which to start up "child processes" (new neuroschemata). If this is the case, the

parent must also set up all the necessary data on the respective processors before it can initiate any child

processes. The parent and child communicate using a dual queue, on which messages are posted. When

a child is done, a special message informs the parent [6]. If no processor is available, however, the child

»

19

process must be started up on the same processor as the parent. Moreover, if there is only one way of

obtaining a goal, the child will always be started on the same processor node as the parent, since there are

no alternatives which can be started up in parallel.

The possibility of executing several alternative or independent neuroschemata simultaneously, can

speed up the system considerably compared to executing it on a uniprocessor. How much faster it will

actually run, depends on how well parallelism can be exploited in each particular case.

3 . 4 P a r a l l e l i s m i n P r o g r a m s ■

In addition to parallelism in the control system, inherent parallelism can be exploited in programs such

as low level image processing. These programs deal with image data which requires extensive and time

consuming operations. Implementing such programs has no complex control aspects because the process

ing is homogeneous, enabling the processors to run the same code on different data. This implies that the

Uniform System is the best programming approach. One example is edge detection. In this case, the data

(the image) can be split into several "chunks" and put onto the available processors, which all run the

same edge detection program on their part of the image [26] (a homogeneous problem). There is no

complex control aspects involved, like starting up different programs on different processors and taking

care of dual queues for message passing between the processes.

3 . 5 P r o c e s s o r U t i l i z a t i o n

The two categories of parallelism in the system, discussed above, could use as many parallel processors

as there are possible processes. However, there is a limit on the number of processors, 19 in our case, and

therefore the problem of processor utilization arises. There has to be a balance between the number of

processors the two categories are allowed to occupy. Obviously, the most time consuming processes

should use the maximum number of processors, thus reducing the number of "bottle necks" in the system.

Since programs such as low level image analysis will be the most expensive part with regard to execution

time, it is preferable that these processes occupy most of the processors on the Butterfly, so as to prevent

unnecessary serial execution. The total execution time for achieving a goal will then be minimized. If the

hierarchical control programs occupy just a few nodes, this will not hurt the overall performance sig

nificantly, since even the serial version of the control does not take much execution time.

20

4 . C A O S V e r s u s E x p e r t S y s t e m s

The difference between expert systems and programs are that the knowledge in an expert system is a

separate entity while in programs it is implicit. Moreover, expert systems manipulate knowledge while

programs manipulate data. Expert systems organize its knowledge in three levels:
• Data

• Knowledge

• Control

A system organized in this way is said to be a knowledge based system. An expert system is a

knowledge based system but the opposite is not necessarily true. An expert system is capable of learning

from its errors. In contrast to knowledge-based systems an expert system must also be capable of

explaining its behavior and decisions to the user. The structure of an expert system is shown in Figure

4-1.

Knowledge Base

^ E x p e r t S y s t e m S h e l l

Figure 4-1: The Structure of an Expert system

There are many ways of representing knowledge. Some of the most used are predicate logic, frames,

and semantic nets [5]. The knowledge for achieving a goal (solving a problem) in an expert system

comes from the knowledge it possesses and not only form the formalism and inference schemes it

employs.

In developing CAOS it was important that it had similarities to the human brain and also knowledge

*

21

based (expert) systems [13, 15, 23, 28], The similarities to the brain are evident in that CAOS has basic

building blocks (neuroschemata), is controlled in a hierarchical manner, is goal driven, and exploits paral

lelism if available. As in an expert system, CAOS has a knowledge base and a data base with facts and

rules (rules for obtaining goals). Furthermore, like the inference engine (interpreter and scheduler), our

neuroschemata contain the general problem solving knowledge. Moreover, in order to do anything

"intelligent", both expert systems and our control system need a domain expert to provide them with

knowledge on how to obtain goals.

The neuroschemata in CAOS provide a consistent way of interpreting how goals should be obtained.

They use metarules in the form of probabilities and average run time when deciding which subgoals to

pursue to achieve a main goal. Making CAOS goal driven (backward chaining) prevents problems with

generating too many hypotheses, but does not avoid the problem of restricting the hypotheses to too

narrow a range. In both systems the knowledge is permanent and consistent, and can be goal directed.

One main difference between CAOS and expert systems in general, is that our system can easily

receive sensory information from the environment provided programs exist in its knowledge base ena

bling interaction with sensors. Implementing the system in LISP or C and using the neuroschemata as the

basic building blocks, enable us to easily acquire this sensory information, and also control end effectors.

In addition, the system can more easily be exported to the BBN Butterfly Parallel Processor than a system

written using expert system tools, since this machine currently support only C and soon will support

LISP.

The conventional expert system relies on symbolic information provided by the user to achieve a goal,

and usually cannot interact with the environment through sensors. This seems to be the most important

difference. But this does not mean that an expert system with the right expert-system-building tool could

not provide this capability. We conclude that although CAOS is similar to expert systems, essential

differences are found in the use of basic building blocks, neuroschemata, and easy sensor integration due

to implementation in LISP and C.

5 . A n O v e r v i e w o f C A O S

5 . 1 I n t r o d u c t i o n

This chapter reviews the basic mechanisms of CAOS through examples. All currently working features

of CAOS is presented. As describe earlier, CAOS is an action oriented hierarchical control system, a

programming language for goal achievement. It is a language designed for enhanced human control

interaction. CAOS is specially well suited for representing high level goals for systems such as robots.

Knowledge about goals which CAOS is to achieve is provided by the user through clauses. A clause is

defined as a list with a head (car of the list) and a body (cdr of the list).

(head body)

The head of the clause specifies a goal and its input. The body specifies how to obtain this goal,

((put-on (a b)) (and (get-space (a b)) (put-at (a si))))

22

(p u t - o n (a b))

(g e t - s p a c e (a b)) (p u t - a t (a s 1))

Figure 5-1: Goal: (put-on (a b))

In the above example, shown in Figure 5-1, the head is (put-on (a b)). The goal is to put an object a on

top of another object b. To obtain this goal, the body has to be satisfied:

(and (get-space (a b)) (put-at (a si)))

23

The information in the body specifies that the subgoal get-space AND the subgoal put-at both must be

achieved if the main goal, put-on, is to be satisfied. In completing the knowledge for how to achieve the

goal (put-on (a b)) the following clauses are added.

((g e t - s p a c e (a b))
(o r '

(f i n d - s p a c e (a b))
(m a k e -sp a c e (s i a b))
)) .

((f i n d - s p a c e (a b))
(f u n c t i o n

(lam b d a (a b) (l i s t 1 0 . 0 0 . 0 2 2 . 3))
))

((m a k e -sp a c e (d a b))
(a n d

(g e t - r i d - o f (d))
(f i n d - s p a c e (a b))
))

((g e t - r i d - o f (d))
(an d

(f i n d - s p a c e (d d))
(p u t - a t (d s i))
))

((p u t - a t (a b))
(an d

(g r a s p (a))
(m o v e -o b je c t (a b))
(u n g ra s p (a))
))

((g r a s p (a))
(f u n c t i o n

(lam b d a (a) 'g r a s p e d))
)

((m ove-ob j e c t (a b))
(f u n c t i o n

(lam b d a (a b) 'm o v e d))
)

((u n g ra s p (a))
(f u n c t i o n

(lam b d a (a) 'u n g r a s p e d))
)

As one can see, two new clause types appear in the above program. These are the or and function

clauses. The or clause has the same syntax as the and clause, but with the symbol or as the first element

of the body. An example is shown in Figure 5-2.

((get-space (a b)) (or (find-space (a b)) (make-space (si a b))))

24

(g e t- s p a c e (a b))

(f in d -s p a c e (a b)) (m a k e -sp a c e (s i a b))

Figure 5-2: Goal: (get-space (a b))

To achieve the goal of getting some space for a on top of b, the subgoal find-space OR the subgoal

make-space must be achieved. Which goal to pursue first is taken care of by CAOS. It uses previous

experience about the subgoals when considering which one has the best chance of success, as described

earlier.

The other new clause type that was presented in the above program was the function type, shown in

Figure 5-3.

((find-space (a b)) (function (lambda (a b) (list 10.0 0.0 223))))

The meaning of this clause is that to obtain the goal of finding some space for a on top of b the function

expressed in the body has to be executed (applied to the given arguments). The function can be any LISP

lambda expression. Refer to [18] for an introduction to LISP.

25

(f in d -s p a c e (a b))

Figure 5-3: Goal: (find-space (a b))

The above are some simple goals written in CAOS clauses and we are ready to test them out. But,

before we do that we must let CAOS now about the goals. This is done using the command (consult

clauses). For the above example the following command would be given. The resulting knowledge of

CAOS can be depicted as in Figure 5-4.

(c o n s u l t ' (

((p u t - o n (a b))
(a n d

(g e t - s p a c e (a b))
(p u t - a t (a s i))
))

((g e t - s p a c e (a b))
(o r

(f i n d - s p a c e (a b))
(m a k e -sp a c e (s i a b))
))

((f i n d - s p a c e (a b))
(f u n c t i o n

(la m b d a (a b) (l i s t 1 0 . 0 0 . 0 2 2 . 3))
))

((m a k e -sp a c e (d a b))
(an d

(g e t - r i d - o f (d))
(f i n d - s p a c e (a b))
))

26

((g e t - r i d - o f (d))
(an d

(f i n d - s p a c e (d d))
(p u t - a t (d s i))
))

((p u t - a t (a b))
(an d

(g r a s p (a))
(m o v e -o b je c t (a b))
(u n g ra s p (a))
))

((g r a s p (a))
(f u n c t i o n

(lam b d a (a) ' g r a s p e d))
)

((m o v e - o b je c t (a b))
(f u n c t i o n

(la m b d a (a b) 'm o v e d))
)

((u n g ra s p (a))
(f u n c t i o n

(lam b d a (a) 'u n g r a s p e d))
)

))

After executing this command, CAOS will respond with "Causes consulted", which mean that the

program is loaded into the global knowledge base. Finally, we can now test some of the goals. This is

done by using the command (achieve goal). Achieve tells CAOS that it should try to achieve the goal

given to it. If we now gave the following command to CAOS

(achieve ’(put-on (red-cube blue-cube)))

the result would be

UNGRASPED

So what exactly happened here ? A tracing of the achievement of the goal is shown below and should

make it clearer. The numbers on the left hand side of each trace statement indicates their order in the

(f in d -s p a c e (d d)) (p u t-a t (d s i))

Figure 5-4: CAOS’s Knowledge Base After The Consult Command

sequential execution.

1 A c t i v a t i n g :
2 A c t i v a t i n g :
3 A c t i v a t i n g :
4 R e t u r n in g :

5 A c t i v a t i n g :
6 A c t i v a t i n g :
7 R e t u r n in g :

8 A c t i v a t i n g :

(p u t - o n (r e d - c u b e b l u e - c u b e))
(g e t - s p a c e (r e d - c u b e b l u e - c u b e))
(f i n d - s p a c e (r e d - c u b e b l u e - c u b e))
(f i n d - s p a c e (r e d - c u b e b l u e - c u b e))
- > (1 0 . 0 0 . 0 2 2 . 3)

(p u t - a t (r e d - c u b e (1 0 . 0 0 . 0 2 2 . 3)))
(g r a s p (r e d - c u b e))
(g r a s p (r e d - c u b e))
-> g r a s p e d

(m o v e -o b je c t (r e d - c u b e 1 0 . 0 0 . 0 2 2 . 3))

28

9 R e tu r n in g : (m o v e -o b je c t (r e d - c u b e 1 0 . 0 0 . 0 2 2 . 3))
-> m oved

10 A c t i v a t i n g : (u n g ra s p (r e d - c u b e))
11 R e t u r n in g : (u n g ra s p (r e d - c u b e))

-> u n g r a s p e d
12 R e t u r n in g : (p u t - a t (r e d - c u b e (1 0 . 0 0 . 0 2 2 . 3)))

-> g r a s p e d
13 R e t u r n in g : (p u t - o n (r e d - c u b e b l u e - c u b e))

-> U n g ra sp e d

5 . 2 S y n t a x a n d M e a n i n g o f C A O S c l a u s e s .

This section gives a systematic treatment of the syntax and semantics of CAOS clauses. Topics in

cluded are:
• AND clauses

• OR clauses

• FUNCTION clauses

• Expected PRE- and POST-INPUT clauses

• OUTPUT clauses

5.2.1 AND clauses

As seen in section one, an AND clause has the following syntax

(head (AND subgoals))

This clause type represents an AND node. Figure 5-5 shows an example. The goal (the head of the

clause) is satisfied if and only if all of its subgoals are satisfied. The subgoals are processed left to right.

The result of an AND node is the result of the last subgoal, if nothing else is specified (see output

clauses). A goal fails (is not satisfied) when the result is nil. Any other result implies success. Note that

the default result of an AND node is identical with the result of an and in LISP.

5 . 2 . 2 O R c l a u s e s

An OR clause is similar in syntax to the AND clause.

(head (OR subgoals))

The OR clause represents an OR node, as shown in Figure 5-6. The goal (the head of the body) is

satisfied if any one of the subgoals are satisfied. The result of the OR node would then simply be the first

subgoal to be satisfied if nothing else where specified (see output clauses), which is the default.

Figure 5-5: AND nodes

Figure 5-6: OR nodes

Which subgoal to try to achieve first (which path to follow in the tree) is taken care of by the CAOS

system, or more specifically the neuroschema controlling the goal. It uses the average run time of the

subgoal (run time is only registered if the goal succeeded) and its probability of success to compute the

The subgoals are processed in sequential order, starting with the smallest E(s) (indicating best chance

of success), until one subgoal succeeds. If none of the subgoals succeed, the main goal of the OR node

will fail.

5 . 2 . 3 F u n c t i o n c l a u s e s

The function clauses represent the leafs of a tree, as seen in Figure 5-7. The syntax of this clause type

is as follows:

((goal (input args)) (function (lambda (input args) function-body)))

30

expectation of success for that subgoal as explained in detail in earlier chapters.

Figure 5-7: Leafs

The result of the goal in this clause type is the result of applying the function to the given arguments.

This is the default result if nothing else is specified (see output clauses). As one can see, the function is

nothing but a lambda expression in LISP, and hence, the function clause can be any lambda function

expressible in LISP.

31

5.2.4 Expected pre- and post-inputs clauses

Pre- and post-input clauses enable us to specify what domain the input should be in. Pre-input is the

input given as information to the goal when it is activated (it is the cdr of the head).

(put-on (red-cube blue-cube))

In the above example, (red-cube blue-cube) is the pre-input. Post-input is the result of the subgoals of

the goal. Pre- and post-input is the total input to the goal and acts as the input to the output function of

the goal (see output clauses). The syntax of the pre- and post-input clauses are similar.

((put-on (a b)) (a (function (lambda (a) (objectp a)))))
((put-on (a b)) (b (function (lambda (b) (objectp b)))))
((put-on (a b)) (si (function (lambda (si) (pointp si)))))

In the above example we have specified that both a and b, the pre-input to the goal, must be of the type

object. If any of them fails this requirement, the goal fails immediately. I also specified that the result of

subgoal one (si; the result of subgoal two would be s2 etc.), the post-input to the goal, must be a point. If

this is not true, then the goal also fails.

5.2.5 Output clauses

This clause type enables the user to specify a function that will use the pre- and post-input to return the

output/result of the goal. If no output function is specified for a goal then the default output is used as

discussed earlier. The syntax (as a LISP example) is as follows:

((put-on (a b))
(output
(function (lambda (a b si)
(format t "Placed ~A on ~B at point ~A~%" a b si)))))

32

5 . 3 C A O S C o m m a n d s

In this section we will go through the commands which the user has available when using CAOS. The

following commands are discussed:
• Achieve

• Consult

• display

• erase

• help

• reconsult '

• trace-on

• trace-off

5.3.1 Achieve

Syntax: (achieve ’(goal-nam e (in pu tl input2 ...)))

With this command the user can achieve a goal specified in the goal base. The result of this command

will be either nil (indicating that the goal failed) or any other result when the goal succeeds. To add new

goals to the goal base, use the commands (consult clauses) or (reconsult clauses).

5.3.2 Consult

Syntax: (consult clauses)

With this command the user can add new goals to the goal base. This is done by making a list of goals

expressed as CAOS clauses, and then consulting them. Consult will not modify a goal if the same goal is

defined in more than one clause. Refer to (reconsult clauses) for this.

5.3.3 Display

Syntax: (display) or (display goal-name)

With this command the user can display the information stored in the goal base for all the goals, or for

one particular goal. The information shown is the average run time of the goal, failures and successes,

33

5.3.4 Erase

Syntax: (erase) or (erase goal-name)

With this command the user can erase all the goals in the goal base or only one particular goal.

5.3.5 Help

Syntax: (help) or (help command)

With this command the user can get short help on all the commands at one time, or more extensive help

on a particular command.

5.3.6 Reconsult

Syntax: (reconsult clauses)

Same as consult, but will modify a goal if defined more than once in a goal listing, or if consulted

previously.

5.3.7 Trace-on

Syntax: (trace-on)

With this command, CAOS will print out messages concerning what goal(s) has (have) been activated

when you are using the achieve command. It will also print out messages about which goal is being

consulted when using the consult functions.

5.3.8 Trace-off

Syntax: (trace-off)

goal syntax, and input and output information.

Turns the trace mode off (turned on by trace-on).

34

5.4 Example: T h e C u b e of a N u m b e r

This example shows how CAOS works and how the user can program in a goal directed way with

CAOS. Five different ways of computing the cube of a number is presented.

(cube-1 (x)) is a goal (a leaf) that can not be divided down further, as shown in Figure 5-8. The cube is

simply returned by a function call on the argument x. (cube-2 (x)) returns the cube of x by dividing itself

into one subgoal, (cube-1 (x)). (cube-3 (x)) is a bit more complicated. It returns the cube of x by dividing

itself into two subgoals in which both must be obtained. The result of the first subgoal, (mult (x x)), is si

= x*x. The result of (mult (s i x)) is s2 = si * x, which is also the result of cube-3, the main goal, (cube-4

(x)) is a bit funny. It only returns the cube of x if it is either raining or blowing. The result of the goal in

this example is returned using the option of specifying an output function for the goal. The result in this

case is x*x*x, as specified in the output function of cube4. (cube-5 (x)) is another version of cube-4, but

the cube of x will only be returned if the pre-input x is > 0 and the post-input, the result of cube-4 in this

case, is < 1000. If these conditions are met, the result is formated using the output function of the main

goal cube-5, in this case: X cubed = ’x*x*x’. The following listing and Figure 5-8 shows the goals

discussed above.

(consult ' (
((cube-1 (x))
(function (lambda (x) (* x x x))))

((cube-2 (x))
(and
(cube-1 (x))

))

((cube-3 (x))
(and
(mult (x x))
(mult (si x))
))

((mult (x y))
(function (lambda (x y) (* x y))))

((cube-4 (x))
(or
(raining-? ())
(blowing-? ())

))

((cube-4 (x))
(output (function (lairibda (x) (* x x x)))))

36

((cube-5 (x))
(output
(function
(lambda
(si) (format t "X cubed = -A" si)))))

))

5.5 Example: Graphics D e m o

This example shows some graphics routines (written using Starbase) which was intended for showing a

robot moving in a scene (path planning and object recognition). Due to limited time, we was only able to

do a simple graphics interface, leaving the path planning for later. This example displays two windows

on the screen. In window 2 (the smallest) the scene is shown from the front. In window 1 the scene is

repeatedly shown at different viewing angles, starting with front view and then moving up, to the left and

into the scene. AH the necessary routines for actually simulating a robot moving in the room, looking

through its camera, is presented here.

(consult ' (
((show (xp yp d))
(and
(set-up-graphics-device ())
(draw-scene-in-w2 ())
(draw-scene-in-wl ())
(show-time (xp yp d))
(close-graphics ())
))

((draw-scene-in-wl ())
(and
(current-window-1 ())
(draw-scene ())
))

((draw-scene-in-w2 ())
(and
(current-window-2 ())
(draw-scene ())

))

((show-time (xp yp d))
(and
(not-done-? (d))
(fun-draw (xp yp si))

))

((not-done-? (d))

37

(function
(lambda (d) (if « d 10) (+ 1 d) nil))))

((fun-draw (xp yp d))
(and
(get-perspective-transforxnation ())
(set-transformation-to (si))
(modify-x (xp))
(modify-y (yp))
(get-transformation (s3 s4 d))
(set-transformation-to (s5))
(gclear ())
(draw-scene ())
(pop-matrix ())
(pop-matrix ())
(show-time (s3 s4 d))
))

((modify-x (x))
(function (lambda (x) (- x 0.02))))

((modify-y (y))
(function (lambda (y) (- y 0.015))))

((close-graphics ())
(function (lambda () (gend))))

((gclear ())
(function (lambda () (gclear))))

((set-up-graphics-device ())
(function
(lambda () (set-up-graphics-device))))

((pop-matrix ())
(function
(lambda () (pop-transformation-matrix))))

((get-transformation (xp yp d))
(function
(lambda (xp yp d)
(get-transformation xp yp d))))

((get-perspective-transformation ())
(function
(lambda () (get-perspective-transformation))))

((draw-scene ())
(function
(lambda () (draw-scene))))

((set-transformation-to (m))
(function

38

(lambda (m) (set-transformation-to m))))

((current-window-1 ())
(function
(lambda () (current-window-scene))))

((current-window-2 ())
(function
(lambda () (current-window-camera))))

))

For more information about CAOS, a complete source code listing in both C and LISP are presented in

the appendices.

6. Conclusions a n d Fu t u r e W o r k

This thesis is divided into five chapters, a preface, this conclusion, and two appendices. In chapter one

we discussed, compared, and contrasted neurons, schemata, and neuroschemata as basic building blocks

in control systems. Chapter two presented the theoretical aspects of CAOS, and chapter three elaborated

on parallelism in the system. A comparison to knowledge based system was discussed in chapter four.

Finally, an overview of CAOS and its user interface was presented in chapter five, with references to

appendix A and B for the complete CAOS C and LISP source code.

CAOS, an approach to robot control, was developed with three of the important aspects of human

intelligence in mind: basic building blocks, hierarchical organization, and parallel processing. The system

consists of three basic parts which include the knowledge base, the data base, and the scheduler for

hierarchical control. This scheduler and the neuroschemata use information found in the knowledge base

and data base to determine how to obtain a goal given by the user. Meta rules in the form of probability

of success and average run time is used in the system for planning.

Examples showing how the system functions was presented, including a simulation of object manipula

tion by a robot.

Current software and hardware technologies enables limited use of parallel processing, utilized in

CAOS, but future work on this system will include drastic changes in control structure and knowledge

representation. Neuroschemata, with some modifications, will still function as the basic units of the

control system, while the control structure will change from being strictly hierarchical to be

spherical [27].

We conclude that although CAOS is similar to expert systems in some respects, they are set apart by

differences such as using neuroschemata as a basic unit, the easy integration of sensory input and output,

planning using meta knowledge, and its learning capabilities.

Future work will consist of completing a parallel implementation of CAOS and obtaining results for

speedup when comparing parallel versus serial processing. We will also study processor utilization and

process synchronization. The control structure of CAOS will also be restructured to include both hierar

chical and heterarchical control. Finally, we will continue to expand the scope of tasks which the control

system can handle, including recognition of more complex 3-D objects and their assembly.

39

Dec 11 19:04 1986 compcaos.l Page 1

; File : compcaos.l
; Author : Nils Thune
; Created : December 12, 1986
; Mode : Common Lisp
t
; Purpose : Compilation file for CAOS.
i
; Copyright (c) 1986, Nils Thune.

(load "/net/ug/u/grads/shebs/objects")

(format t "Compiling CAOS node o b j e t c s ~%")
(compile-file "/net/cs/u/class/u-nthune/proj86/LISP/nodes.1")
(load "/net/cs/u/class/u-nthune/proj86/LISP/nodes")

(format t "Compiling CAOS g l o b a l s~%")
(compile-file "/net/cs/u/class/u-nthune/proj86/LISP/globals.1")
(load "/net/cs/u/class/u-nthune/proj86/LISP/globals")

(format t "Compiling CAOS consult f u n c t i o n s ~%")
(compile-file "/net/cs/u/class/u-nthune/proj86/LISP/consuit.1")

(format t "Compiling CAOS t o o l s~%")
(compile-file "/net/cs/u/class/u-nthune/proj86/LISP/tools.1")

(format t "Compiling CAOS help f u n c t i o n s~%")
(compile-file "/net/cs/u/class/u-nthune/proj8 6/LISP/help.1")

(format t "Compiling CAOS achieve f u n c t i o n s~%")
(compile-file "/net/cs/u/class/u-nthune/proj86/LISP/achieve.1")

(format t "Compiling CAOS graphic r o u t i n e s ~%")
(compile-file "/net/cs/u/class/u-nthune/proj86/LISP/graph-rout.1")

(format t "Compiling CAOS graphic r o u t i n e s ~%")
(compile-file "/net/cs/u/class/u-nthune/proj86/LISP/scene.1")

(format t "Compiled CAOS system !!!")

Dec 10 19:15 1986 caos.l Page 1

File : caos.l
Author : Nils Thune
Created : November 17, 1986

Copyright (c) 1986, Nils Thune.

Purpose :

CAOS is a hierarchical action oriented control system. The system builds
a hierarchical tree with 2 node types (OR and AND) and 1 leaf type
(PROGRAM), where the root of the tree is the main goal to be achieved.

The 2 node types and the leaf type (LISP objects) represents goals or
subgoals in the tree. Each node and leaf type (goal types) have a method
that controls the achievement of that particular goal (node or l e a f) .

One node, or leaf, with its control method is called a "neuroschema",
named after its similarities with neurons and schemas.

The neuroschemas interacts with a goal base to achieve a particular
goal. This goal base contains nodes with information about a particular
goal (node or leaf type g o a l) .

(format t "Loading LISP objects ~%")
(load "/net/ug/u/grads/shebs/objects")

(format t "Loading CAOS globals ~%")
(load " /net/cs/u/class/u-nthune/proj86/LISP/globals")

(format t "Loading CAOS node o b j e c t s ~ % ")
(load "/net/cs/u/class/u-nthune/proj86/LISP/nodes")

(format t "Loading CAOS consult functions ~ % ")
(load "/net/cs/u/class/u-nthune/proj8 6/LISP/consult")

(format t "Loading CAOS t o o l s ~%")
(load "/net/cs/u/class/u-nthune/proj8 6/LISP/tools")

(format t "Loading CAOS help f u n c t i o n s ~%")
(load "/net/cs/u/class/u-nthune/proj86/LISP/help")

(format t "Loading CAOS achieve functions ~%")
(load "/net/cs/u/class/u-nthune/proj8 6/LISP/achieve")

(format t "Loading CAOS starbase graphics routines ~%")
(load "/net/cs/u/class/u-nthune/proj8 6/LISP/graph-rout")

(format t "Loading CAOS starbase scene drawing routines ~%")
(load "/net/cs/u/class/u-nthune/proj8 6/LISP/scene")

(format t "CAOS system loaded !!!~%")

Dec 11 10:01 1986 globals.l Page 1

; File : globals.l
; Author : Nils Thune
; Created : December 12, 1986
; Mode : Common Lisp
t
; Purpose : All globals used in CAOS.
7
; Copyright (c) 1986, Nils Thune.

(defvar *trace* nil) ;; Trace mode initialized to OFF.

(defvar *goal-base* nil) ;; Contains goals in form of an alist.
((goal-name node-object) (.......))

(defvar failed nil) ;; Indicates that a goal failed (implies that
a goal can not return nil as its success value./ /

(defvar *consult-mode* 1) ;; Specifies the current consult mode, initialized
to define mode.

(defvar *define* 1) ;; This consult mode specifies that if a goal all
ready has been defined, it can not be redefined.t /

(defvar Predefine* 2) ;; This consult mode specifies that a goal can be
;; redefined.

;; Used when returning the result of a subgoal (the 'result' and 'sn' is listed
;; together). The variable indicates that a goal can only have 9 subgoals,
;; but by adding (10 slO) etc., any number can be allowed.

(defvar *subgoal-variables*
'((1 si) (2 s2) (3 s3) (4 s 4) (5 s5) (6 s6) (7 s7) (8 s8) (9 s9)))

;;; Next are some globals used in the graphics interface made for CAOS.

;; I am usually using 'device' and 'driver'.

(defvar device "/dev/graphics")
(defvar driver "hp98710”)
(defvar device2 "/dev/screen/foo")
(defvar driver2 "hp300h")
(defvar device3 "/dev/graphics")
(defvar driver3 "hp98700")

(defconstant WX1 0.0) ;; Lower left corner of scene in world coordinates,
(defconstant WY1 0.0)
(defconstant WZl 0.0)
(defconstant WX2 10.0) ;; Upper right corner of scene in world coordinates,
(defconstant WY2 10.0)
(defconstant WZ2 -20.0)

Dec 11 10:01 1986 globals.1 Page 2

(defvar *fd* 0) ;; File descriptor for graphics device.

;; Open mode used when opening the graphics device.

(defvar *open-mode* (logior hp-ux_3g:THREE_D hp-ux_3g:INIT))

(defvar *xr* 0.0) ;; view reference point.
(defvar *yr* 0.0)
(defvar *zr* 0.0)

(defvar *dxn* 0.0) ;; view plane normal.
(defvar *dyn* 0.0) ,
(defvar *dzn* 1.0)

(defvar *dxup* 0.0) ;; view-up direction.
(defvar *dyup* 1.0)
(defvar *dzup* 0.0)

(defvar *view-distance* 0.0) ;; view distance.

;; Scaling matrix for the camera.

(setf *camera-scale* (make-array '(4 4) :initial-contents
' ((2.0 0.0 0.0 0.0)

(0.0 2.0 0.0 0.0)
(0.0 0.0 2.0 0.0)
(0.0 0.0 0.0 1.0))))

;; The perspective transformation matrix used for the scene.

(setf -zp -15.0)
(setf yp 10.0)
(setf xp 5.0)
(setf *perspective-transformation* (make-array '(4 4) :initial-contents

'((,-zp 0.0 0.0 0.0)
(0.0 ,-zp 0.0 0.0)
(,xp ,yp 0.0 1.0)
(0.0 0.0 0.0 ,-zp))))

;;; Next follows help information for each command in CAOS stored in an
;;; a-list.

(defvar *help-list*
' ((achieve

"Syntax: (achieve ' (goa1-name (inputl input2 ...)))
With this command you can achieve a goal specified in the goal base.
To find out which goals are available, use the command (display).
To add new goals to the goal base use the commands (consult clauses)
or (reconsult clauses).
")

(consult
"Syntax: (consult clauses)
With this command you can add new goals to the goal base. This is

Dec 11 10:01 1986 globals.l Page 3

i done by making a program consisting of clauses. Refer to the user
^ manual for the syntax and examples of clauses. Consult will not

modify a goal if the same goal is defined in more than one clause.
Refer to (reconsult clauses) for this.
")

(display
"Syntax: (display) or (display goal-name)
With this command you can display the information stored in the goal
base for all the goals, or one particular. The information shown is
in particular the average run time of the goal, failures and successes
, goal syntax, and input information.
">

(erase •
"Syntax: (erase) or (erase goal-name)
With this command you can erase all the goals in the goal base or only
on particular goal.
")

(help
"Syntax: (help) or (help command)
With this command you can get short help on all the commands at one
time, or more extensive help on a particular command.
")

(reconsult
"Syntax: (reconsult clauses)
Same as consult, but will modify a goal if defined more than once
in a progam.
")

(trace-on
"Syntax: (trace-on)
With this command, CAOS will print out messages conserning which
goal(s) have been activated when you are using the achieve command.
It will also print out messages about which goal is beeing consulted
when using the consult functions.
">

(trace-off
"Syntax: (trace-off)
Turns the trace mode off (turned on by trace-on).
")))

Dec 10 19:12 1986 nodes.1 Page 1

File : nodes.1
Author : Nils Thune
Created : December 12, 1986
Mode : Common Lisp

Purpose : Definitions of objects used in CAOS.
- generic-goal
- or-node
- and-node
- program

Copyright (c) 1986, Nils Thune.

; Below follows the definitions of goal types; there are 3 types of goals.
; The 3 types are built around a generic goal type. The reason for using
; objects for goal types, is that the neuroscema (the controller) for these
; 3 types are different for each of them; using objects gives us the advantage
; of methods, hence the neuroschemas are implemented as 3 methods with the
; same n a m e .

;;; GENERIC-GOAL: Has information common to all three goal types. The three
;;; goal types inherits slots from this generic goal type.

(define-type generic-node
(:var goal)
(:var goal-args)
(:var expected-pre-inputs)
(:var expected-post-inputs)
(:var total-time (:init 0))
(:var successes (:init 1))
(:var failures (:init 1))
(:var output-func-args)
(:var output-function)
:all-initable
:all-settable
:all-gettable
)

;;; OR-NODE: Is a goal that exists as a goal node in the hierarchical control
;;; tree. It has a slot for subgoals in addition to the slots inherited from
;;; the generic goal. An OR-NODE can only be a node in the control tree,
;;; never a l e a f .

(define-type or-node
(:inherit-from generic-node)
(:var subgoals)
:all-initable
:all-settable
:all-gettable
)

;;; AND-NODE: Is a goal that exists as a goal node in the hierarchical control

; An OR node goal t y p e .

; The subgoals needed to obtain this goal.

Syntax of this goal
Arguments in the goal.
Expected type/range of pre-inputs.
Expected type/range of post-inputs.
Total run time to achieve this goal.
of successes obtaining this goal.
of failures.
Arguments in the output function.
Function to compute the goal output

Dec 10 19:12 1986 nodes.1 Page 2

;; tree. It has a slot for subgoals in addition to the slots inherited from
;; the generic goal. An AND-NODE can only be a node in the control tree,
;; never a leaf.

(define-type and-node ; An AND node goal type.
(:inherit-from generic-node)
(:var subgoals) ; The subgoals needed to obtain this goal.
:all-initable
:all-settable
:all-gettable ’
)

;; PROGRAM: Has a slot for a procedure (lambda exp) that it achieves
;; the goal with. A PROGRAM is always a leaf in the control tree, never
;; a node.

(define-type program ; A leaf in the hierarchical tree.
(:inherit-from generic-node)
(:var procedure) ; A lambda expression used to obtain the
:all-initable ; goal of the leaf.
:all-settable
:all-gettable
)

Dec 11 11:41 1986 consult.1 Page 1

File : consult.1
Author : Nils Thune
Created : November 20, 1986
Mode : Common Lisp

Purpose : Defines the functions CONSULT and RECONSULT which enables the
user to define goals.

Copyright (c) 1986, Nils Thune.

;;; CONSULT is one way of communicating our goals to CAOS. Consult takes
;;; a list of clauses and adds them to the goal base. Consult does not
;;; redefine a goal that has allready been defined.

(defun consult (clauses)
(setf *consult-mode* *define*)
(do-consult clauses))

;;; RECONSULT is another way of communicating our goals to CAOS. Reconsult
;;; takes a list of clauses and adds them to the goal base. Reconsult
;;; does redefine a goal that has allready been defined.

(defun reconsult (clauses)
(setf *consult-mode* *redefine*)
(do-consult clauses))

;;; For each clause found in the list CLAUSES, the clause is integrated into
;;; the goal base depending on its type.

(defun do-consult (clauses)
(dolist (clause clauses (format t "~%Clauses consulted.~%"))

(if *trace* (format t "Consulting: ~A~%" clause))
(case (clause-type clause)

('and (integrate-node 'and-node clause))
('or (integrate-node for-node clause))
('function (integrate-node 'program clause))
('output (integrate-output clause))
(T (integrate-input clause)))))

;;; Returns the first element in the clause body.

(defun clause-type (clause)
(caadr clause))

;;; Adds a funtion to a particular input argument in the goal definition, which
;;; specifies the type of input to expect for that argument. The function
;;; should return T or nil (specified by the user).

(defun integrate-input (clause)
(let ((node (lookup-node (clause-name clause)))

(symbol (clause-type clause))
)

(cond ((null node) (format t "~A~%Goal not defined. Ignoring it !!~%" clause

Dec 11 11:41 1986 consult.1 Page 2

- ((post-input-function-? clause node (symbol-name symbol)))
((pre-input-function-? clause node symbol))
(T (format t "~A~%" clause)

(format t "Don't recognize the the first element of the body.~%")
(format t "Ignoring it !!~%")))))

;;; Returns the node object associated with a named goal.

(defun lookup-node (name)
(cadr (assoc name *goal-base*))) '

;;; Returns the name of the goal in the given clause.

(defun clause-name (clause) ’
(caar clause))

;;; Post input to a goal is the result of its subgoal(s). A variable
;;; for post input is defined as sn, where n is the subgoal number.
;;; If sn is the first element of the clause body, then the rest is a function
;;; that specifies what the domain of sn should be (functions should return
;;; T or nil, specified by the user).

(defun post-input-function-? (clause node symbol)
(if (and (equal 's (read-from-string symbol :start 0 :end 1))

(numberp (read-from-string (subseq symbol 1))))
(setf (expected-post-inputs node)

. (append (remove-instance (read-from-string symbol)
(expected-post-inputs node))

(list (list (read-from-string symbol)
(eval (clause-function clause))))))))

;;; Returns the cdr of the clause body.

(defun clause-function (clause)
(cadadr clause))

;;; Pre input to a goal is the input that the goal is called with. The
;;; argument names for pre inputs has no restriction. If an argument
;;; name is the first element of the clause body, then the rest is a function
;;; that specifies what the domain of the argument should be (functions
;;; should return or nil, specified by the user).

(defun pre-input-function-? (clause node symbol)
(dolist (current (goal-args node) nil)

(cond ((equal symbol current)
(setf (expected-pre-inputs node)

(append (remove-instance symbol
‘ (expected-pre-inputs node))

(list (list symbol
(eval (clause-function clause))))))

(return T)))))

;;; If 'output' is the first element of the clause body, then the cdr of the
;;; clause body is a function that will ultimately return the output of the
;;; goal (the goal result).

Dec 11 11:41 1986 consult.1 Page 3

(•defun integrate-output (clause)
(let ((node (lookup-node (clause-name clause))))

(cond (node
(setf (output-func-args node) (arguments (clause-function clause)))
(setf (output-function node) (eval (clause-function clause))))

(T (format t "~A~%Not defined as a goal. Ignoring it !!-*%" clause))
)))

;;; Returns the list of arguments of a lambda function.

(defun arguments (some-function)
(cadadr some-function))

;;; This function creates a new node or modifies an existing one if we are
;;; reconsulting clauses.

(defun integrate-node (type clause)
(let ((node (lookup-node (clause-name clause))))

(cond ((null node) (create-node type clause))
((redefine-mode) (modify-node node type clause))
(T (format t ”~A~%Clause allready exists. Ignoring it !!-%" clause))
)))

;;; Returns T if the current consult mode is 'redefine'.

(defun redefine-mode ()
(if (equal *consult-mode* Predefine*) T))

;;; Creates a new goal node in the goal base and initializes it with the
;;; given information in the clause.

(defun create-node (type clause)
(let ((node (make-instance type)))

(setf (goal node) clause)
(setf (goal-args node) (clause-args clause))
(modify-body node type clause)
(add-node-to-goal-base (clause-name clause) node)
))

;;; Returns the arguments to a goal as given in the clause.

(defun clause-args (clause)
(cadar clause))

;;; Adds the goal and its node with information to the goal base.

(defun add-node-to-goal-base (name node)
(setf *goal-base* (cons (list name node) *goal-base*)))

;;; Adds a procedure or subgoals to the node depending on the caluse type.

(defun modify-body (node type clause)
(if (equal type 'program)

(setf (procedure node) (eval (body clause)))
(setf (subgoals node) (clause-subgoals clause))))

Dec 11 11:41 1986 consult.1 Page 4

;;; Returns the body of the clause.

(defun body (clause)
(cadr clause))

;;; Returns the subgoals in the body of the clause.

(defun clause-subgoals (clause)
(cdadr clause))

;;; If the consult mode is 'redefine', then the node information can be
;;; altered without removing the goal from the goal base first.

(defun modify-node (node type clause) ’
(setf (goal node) clause)
(setf (goal-args node) (clause-args clause))
(setf (expected-pre-inputs node) nil)
(setf (expected-post-inputs node) nil)
(setf (total-time node) 0)
(setf (successes node) 1)
(setf (failures node) 1)
(setf (output-func-args node) nil)
(setf (output-function node) nil)
(modify-body node type clause))

Dec 11 19:05 1986 achieve.1 Page 1

File : a c hieve.1
Author : Nils Thune
Created : November 28, 1986
Mode : Common Lisp

Purpose : Defines the methods, functions that can achieve a goal(s) in CAOS.
- achieve

Copyright (c) 1986, Nils Thune.

;;; This macro computes the run time of a goal and then updates the goal
;;; information in the node (total-time and if the goal failed or not).
;;; Since the macro is called inside methods only, I had to use self
;;; as an argument name refering to the object the method was called with.
;;; (if I used ex. node instead of self, node would be unbound)

(defmacro time-goal (func self)
' (let (result

run-time-2
(run-time-1 (get-internal-run-time)))

(PROGN (setf result ,func)
(setf run-time-2 (get-internal-run-time))
(cond (result

(setf (successes self) (+ 1 (successes self)))
(setf (total-time self)

(+ (total-time self)
(/ (- run-time-2 run-time-1)

internal-time-units-per-second))))
(T
(setf (failures self) (+ 1 (failures self)))))

result)))

;;; Achieves the specified goal, if possible.

(defun achieve (goal)
(let ((node (lookup-node* (car goal))))

(if node (achieve-node node (pre-inputs goal node))
(format t "~%~A is not defined as a goal.~%" goal)

)))

;;; Does the same as lookup-node, but warns the user if the goal is not
;;; defined (if the goal is not defined, it is the same as we did not
;;; achieve the goal -> returns nil as result. This might result in
;;; failure when least expected by the user.)

(defun lookup-node* (name)
(cond ((assoc name *goal-base*) (cadr (assoc name *goal-base*)))

(T (format t "WARNING: ~A is not defined as a goal.~%" name)
(format t "Result of it defaults to nil.~%"))))

(defun pre-inputs (goal node)

;;; Returns an alist with input variable name and associated v a l u e s .

Dec 11 19:05 1986 achieve.1 Page 2

(mapcar #'list (goal-args node) (cadr goal)))

; OR-NODE: This achieve method must make sure that all pre-inputs are ok,
; then it must achieve one of the subgoals of the goal node and finally
; it must do the output of the goal node. It uses previous experience to
; decide which path to traverse (in form of average run time and freq. of
; success.

(define-method (or-node achieve-node) (inputs)
(if *trace* (format t "Activating: ~A~%" (goal self))) •
(let ((untried-subgoals (subgoals self)) (result nil))

(time-goal
(if (and

(check-inputs (expected-pre-inputs self) inputs)
(do ((best-subgoal (find-best-subgoal untried-subgoals)

(find-best-subgoal untried-subgoals)))
((null best-subgoal) failed)
(if (setf result (achieve-node (node best-subgoal)

(correct-inputs
(args (goal (node best-subgoal)))
(args (car best-subgoal))
inputs)))

(return (setf inputs (append inputs (list (list 'si result)))))
(setf untried-subgoals (remove-instance (caar best-subgoal)

untried-subgoals)))))
(produce-output self inputs))

self)))

Makes sure that the functions in the alist of arguments and functions,
returns T when applied to the matching argument value in the alist
of arguments and values (inputs).

(defun check-inputs (functions inputs)
(dolist (current functions T)

(if (apply (cadr current) (cdr (assoc (car current) inputs)))
T
(return nil))))

;;; This function uses the previous experience stored in a goal to determine
;;; which path to follow (only called by an OR node controller).

(defun find-best-subgoal (subgoals)
(let ((best-subgoal (lookup-goal (car subgoals))) (current-node nil))

(dolist (current (cdr subgoals) best-subgoal)
(setf best-subgoal (best-goal best-subgoal (lookup-goal current))))))

Returns the best of two goals depending on freq. of success and path
length. E(s) ■= Time/P (s) , where the smallest E(s) is chosen as the
best goal (see write up for more details).

(defun best-goal (infol info2)
(let ((nodel (cadr infol)) (node2 (cadr info2)))
(cond ((null nodel) info2)

((null node2) infol)
((< (/ (* (total-time nodel)

(+ (failures nodel) (successes nodel)))

Dec 11 19:05 1986 achieve.1 Page 3

. (* (successes nodel) (successes nodel)))
(/ (* (total-time node2)

(+ (failures node2) (successes node2)))
(* (successes node2) (successes node2))))

infol)
(T info2))))

;;; Returns a list (goal node-object) from the goal base. Warns the user
;;; if a goal is not defined.

(defun lookup-goal (subgoal)
(cond ((assoc (car subgoal) *goal-base*)

(list subgoal (cadr (assoc (car subgoal) *goal-base*))))
(T (format t "WARNING: ~A is not defined as a goal.~%" (car subgoal))

(format t "Result of it defaults to nil.~%"))))

;;; Returns an alist of the correct arguments and their value for the
;;; goal to be achieved.

(defun correct-inputs (argsl args2 inputs)
(cond ((null args2) nil)

(T (cons (list (car argsl) (cadr (assoc (car args2) inputs)))
(correct-inputs (cdr argsl) (cdr args2) inputs)))))

;;; Returns the input arguments of a goal.

(defun args (goal)
(cadr goal))

;;; Produces the output of a goal. If no output function is provided for
;;; the goal the last result of the input list is returned (this would be
;;; the result of the last subgoal in the case of an AND-NODE, or the
;;; only subgoal result in the case of an OR-NODE.

(defun produce-output (node inputs)
(if (check-inputs (expected-post-inputs node) inputs)

(if (output-function node)
(apply (output-function node)

(output-args (output-func-args node) inputs))
(return-last-input inputs))

failed))

;;; Returns the correct inputs needed for the output function.

(defun output-args (args inputs)
(if args

(cons (cadr (assoc (car args) inputs)) (output-args (cdr args) inputs))))

;;; Returns the value of the last input of the input list.

(defun return-last-input (inputs)
(cadr (nth (- (length inputs) 1) inputs)))

;;; AND-NODE: This achieve method must make sure that all pre-inputs are ok,
;;; then it must achieve each of the subgoals of the goal node and finally
;;; it must do the output function of the goal n o d e .

Dec 11 19:05 1986 achieve.1 Page 4

(define-method (and-node achieve-node) (inputs)
(if *trace* (format t "Activating: ~A~%" (goal self)))
(let ((n 0) (node nil) (result nil))

(time-goal
(if (and

(check-inputs (expected-pre-inputs self) inputs)
(dolist (subgoal (subgoals self) inputs)

(setf n (+ n 1))
(if (and •

(setf node (lookup-node* (car subgoal)))
(setf result (achieve-node

node
(correct-inputs (goal-a'rgs node)

(args subgoal) inputs))))
(setf inputs (append inputs (list (list (sm n) result))))

. (return failed))))
(produce-output self inputs))

self)))

;;; Returns a symbol of the form sm (si or s2, etc.) for use in the list
;;; of inputs (pre and post inputs) to the goal (sm is a post input).

(defun sm (n)
(cadr (assoc n *subgoal-variables*)))

;;; PROGRAM: This achieve method must make sure that all pre-inputs are ok,
;;; then it must achieve the goal node by executing the procedure of the go
;;; node and make sure that the post-inputs from it are ok, and finally it
;;; must do the output function of the goal node.

(define-method (program achieve-node) (inputs)
(if *trace* (format t "Activating: ~A~%" (goal self)))
(time-goal
(if (check-inputs (expected-pre-inputs self) inputs)

(produce-output
self
(append inputs (list (list 'si (apply (procedure self)

(input-values inputs))))))
failed)

self))

(defun input-values (inputs)
(mapcar #'cadr inputs))

;;; Returns the values of the arguments found in the input alist.

Dec 10 19:02 1986 tools.1 Page 1

File : t o o l s .1
Author : Nils Thune
Created : November 25, 1986
Mode : Common Lisp

Purpose : Defines some tools for CAOS.
- display
- erase
- trace-on .

- trace-off

Copyright (c) 1986, Nils Thune.

;;; Displays information about all (or one particular) goal(s) in the
;;; knowledge base.

(defun display (fioptional goal)
(cond ((null goal) (dolist (current *goal-base*)

(print-information (node current))))
((lookup-node goal) (print-information (lookup-node goal)))
(T (format t "~A is not defined as a goal.~%" goal))
))

;;; Prints out information from the slots of the goal (node) object.

(defun print-information (node)
(format t "~%Goal: ~A~%" (goal node))
(format t "Goal args: ~A~%" (goal-args node))
(format t "Expected pre inputs: ~A~%" (expected-pre-inputs node))
(format t "Expected post inputs: ~A~%" (expected-post-inputs node))
(format t "Average run time: ~8,2f seconds~%" (/ (total-time node)

(successes node)))
(format t "P(S) ■= ~l,lf~%" (/ (successes node)

(+ (successes node) (failures node))))
(format t "Output args: ~A~%" (output-func-args node))
(format t "Output function : ~A~%" (output-function node))
)

;;; Erases the entire knowlegde base, or only one goal if specified.

(defun erase (fioptional goal)
(if goal (setf *goal-base* (remove-instance goal *goal-base*))

(setf *goal-base* nil))
(format t "Erased OK !I~%"))

;;; Removes one goal from the knowledge base.

(defun remove-instance (element assoc-list)
(cond ((null assoc-list) nil)

((equal element (caar assoc-list)) (cdr assoc-list))
(T (append (list (car assoc-list))

(remove-instance element (cdr assoc-list))))))

;;; Returns the node object associated with a goal.

(defun node (goal-list)
(cadr goal-list))

;;; Sets the trace mode to ON. (Initialized to nil at startup)

(defun trace-on ()
(setf *trace* T))

;;; Sets the trace mo d e to OFF.

(defun trace-off ()
(setf *trace* nil))

Dec 10 19:02 1986 tools.1 Page 2

Dec 11 10:06 1986 help.l Page 1

File : h e l p .1
Author : Nils Thune
Created : November 25, 1986
Mode : Common Lisp

Purpose : Defines help functions for CAOS.
- help

Copyright (c) 1986, Nils Thune.

;;; Prints out all available commands in CAOS or information about a specific
;;; command.

(defun help (Sioptional command)
(if command (help-command command) (display-help)))

(defun display-help ()
(format t "

Bellow is a listing of the currently available commands in CAOS. For
more specific help on any of them do a (help command).

Command Comments

(achieve goal)
(consult clauses)
(display)
(display goal)
(erase)
(erase goal)
(help)
(help command)
(reconsult clauses)
(trace-on)
(trace-off)
"))

Ahcieve specified goal.
Add goals to knowledge base.
Display all goals in the knowledge base.
Display this particular goal.
Erase the knowledge base.
Erase goal from knowledge base.
Display all commands available.
Display help on this command.
Redefine and add goals to knowledge base,
Set trace mode to on.
Set trace mode to off.

;;; Prints out the help in formation found under the command in the help
;;; list. If no help is found, nil is printed.

(defun help-command (command)
(format t "Current Available Help:~%~A" (cadr (assoc command *help-list*))))

Dec 11 19:01 1986 graph-rout.l Page 1

File : graph-rout.l
Author : Nils Thune
Created : November 17, 1986

Copyright (c) 1986, Nils Thune.

Purpose:

To graphically show some concepts involved with CAOS: '

To display a scene, as seen through the users eyes from a specified
viewpoint, in one window, and to display the same scene, as seen trough
the camera of a robot moving in this scene, in a second window.

;;; Makes starbase graphics routines availbale.

(require "hp-ux_3g")

;;; This function sets the different parameters allowing the user to select
;;; how to view the scene as seen through the camera mounted on the robot.
;;; Note that the camera is fixed on the robot. The function returns the
;;; correct transformation matrix.

(defun get-transformation (xp yp d)
(set-view-reference-point 0.0 0.0 0.0)
(set-view-plane-normal xp yp -1.0)
(set-view-distance d)
(make-■view-plane-transformation))

;;; This function sets the different parameters allowing the user to select
;;; how to view the scene as seen through his own eyes. The function returns
;;; the correct transformation matrix.

(defun get-user-transformation ()
(set-view-reference-point 0.0 0.0 0.0)
(set-view-plane-normal -0.15 -0.3 -1.0)
(set-view-distance -5.0)
(make-view-plane-transformation))

;;; Returns the perspective transformation matrix.

(defun get-perspective-transformation ()
perspective-transformation)

;;; Returns the scaling matrix fro the camera.

(defun get-camera-scale ()
earnera-scale)

;;; Pops the TOS of the graphics stack (the current transformation matrix).

Dec 11 19:01 1986 graph-rout.l Page 2

(defun pop-transformation-matrix ()
(hp-ux_3g:pop_matrix *fd*)
T)

;;; Switches to the window where the scene, as seen by the camera, is shown.

(defun current-window-camera ()
(hp-ux_3g:set_j>l_j>2 *fd* hp-ux_3g:FRACTIONAL 0.72 0.72 0.0 1.0 1.0 1.0)
T) *

;;; Switches to the window where the scene, as seen by the user, is shown.

(defun current-window-scene ()
(hp-ux_3g:set_j>l_p2 *fd* hp-ux_3g:FRACTIONAL 0.0 0.3 0.0 0.7 1.0 1.0)
T)

;;; This function sets up the windows for both the scene and camera.

(defun set-up-graphics-device ()
(setf *fd* (hp-ux_3g:gopen device hp-ux_3g:outdev driver *open-mode*))
(hp-ux_3g:flush_matrices *fd*)
(hp-ux_3g:depth_indicator *fd* 1 1) '
(hp-ux_3g:vdc_extent *fd* WX1 WY1 WZ1 WX2 WY2 W Z 2)
(hp-ux_3g:mapping_mode *fd* 1)
(hp-ux_3g:clip_rectangle *fd* WX1 WX2 WY1 WY2)
(hp-ux_3g:clip_depth *fd* WZ2 WZ1)
(hp-ux_3g:background_color *fd* 1.0 1.0 1.0)
(current-window-scene)
(gclear)
(hp-ux_3g:background_color *fd* 1.0 0.8 0.9)
(current-window-camera)
(gclear)
T)

;;; Clears the window of the specified file descriptor *fd*))

(defun gclear ()
(hp-ux_3g: clear_control *fd* hp-ux_3g: clear_vdc_extent)
(hp-ux_3g:clear_view_surface *f d *)
(hp-ux 3g:make picture current *f d *)
T)

;;; Closes the window(s) of the specified file descriptor.

(defun gend ()
(hp-ux_3g:gclose *fd*)
T)

;;; This function concatinates the given matrix with the current transformation
;;; matrix on the stack, and then pushes the result onto the stack.

(defun set-transformation-to (matrix)
(hp-ux_3g:concat_transformation3d *fd* matrix hp-ux_3g:PRE hp-ux_3g:PUSH)
T)

Dec 11 19:01 1986 graph-rout.l Page 3

;; For changing the view reference point.
;; Arguments x,y,z the new view reference point.
;; Global *xr*,*xy*,*xz* permanent storage for the reference point.

(defun set-view-reference-point (x y z)
(setf *xr* x)
(setf *yr* y)
(setf *zr* z))

;; For changing the view plane normal. -
;; Arguments dx,dy,dz the new view plane normal vector.
;; Global *dxn*,*dyn*,*dzn* permanent storage for the view plane normal.

(defun set-view-plane-normal (dx dy dz) •
(let ((d (sqrt (+ (* dx dx) (* dy dy) (* dz dz)))))

(setf *dxn* (/ dx d))
(setf *dyn* (/ dy d))
(setf *dzn* (/ dz d))))

;; For changing the distance between the view reference point and the vi
;; p l a n e .
;; Argument d the new distance.
;; Global *view-distance* the permanent storage for the view distance.

(defun set-view-distance (d)
(setf *view-distance* d))

;; For changing the direction that will be vertical on the image plane.
;; Arguments dx,dy,dz the new view up vector.
;; Global *dxup*,*dyup*,*dzup* permanent storage for view-up direction.

(defun set-view-up (dx dy dz)
(setf *dxup* dx)
(setf *dyup* dy)
(setf *dzup* dz))

;;; For making the view-plane transformation.

(defun make-view-plane-transformation ()
(let ((tmatrix 0) (v 0) (xup-vp 0) (yup-vp 0) (rup 0))

; Translate so that view plane center is new origin.
(setf tmatrix (translate (- (+ *xr* (* *dxn* *view-distance*)))

(_ (+ *yr* (★ *dyn* *view-distance*)))
(- (+ *zr* (* *dzn* *view-distance*)))))

; Rotate so that view plane normal is Z axis.
(setf v (sqrt (+ (* *dyn* *dyn*) (* *dzn* *dzn*))))
(setf tmatrix (rotate 'x (- (/ *dyn* v)) (- (/ *dzn* v)) tmatrix))
(setf tmatrix (rotate 'y *dxn* v tmatrix))

; Determine the view-up direction in these new coordinates.
(setf xup-vp (+ (* *dxup* (aref tmatrix 0 0))

(* *dyup* (aref tmatrix 1 0))
(* *dzup* (aref tmatrix 2 0))))

(setf yup-vp (+ (* *dxup* (aref tmatrix 0 1))
(* *dyup* (aref tmatrix 1 1))
(* *dzup* (aref tmatrix 2 1))))

; Determine rotation needed to make view-up vertical.

Dec 11 19:01 1986 graph-rout.l Page 4

. (setf rup (sqrt (+ (* xup-vp xup-vp) (* yup-vp yup-vp))))
(setf tmatrix (rotate 'z (/ xup-vp rup) (/ yup-vp rup) tmatrix))
tmatrix))

;; Rotation about an axis.
;; Arguments matrix to add rotation to
;; axis to rotate around
;; sine, cosine the sine and cosine of the rotation angle.

(defun rotate (axis sine cosine Soptional matrix) ■
(let ((mat (make-identity 4)))

(case axis
('z •
(setf (aref mat 0 0) cosine)
(setf (aref mat 0 1) sine)
(setf (aref mat 1 0) (- sine))
(setf
t,,

(aref mat 1 1) cosine))
y
(setf (aref mat 0 0) cosine)
(setf (aref mat 0 2) (- sine))
(setf (aref mat 2 0) sine)
(setf
f v

(aref mat 2 2) cosine))
X
(setf (aref mat 1 1) cosine)
(setf (aref mat 1 2) sine)
(setf (aref mat 2 1) (- sine))
(setf (aref mat 2 2) cosine))

)
(if matrix (multiply mat matrix) mat)))

;;; Multiplies two matrices and returns the result as a matrix.
;;; Arguments ml,m2 two matrices

(defun multiply (matrixl matrix2)
(let ((matrix3 nil)

(diml (array-dimensions matrixl))
(dim2 (array-dimensions matrix2)))

(cond ((= (cadr diml) (car dim2))
(setf matrix3 (make-new-array (car diml) (cadr dim2) 0.0))
(dotimes (i (car diml))

(dotimes (j (cadr dim2))
(dotimes (k (car dim2))

(setf (aref matrix3 i j) (+ (aref matrix3 i j)
(* (aref matrixl i k)

(aref matrix2 k j)))))))
matrix3)
(T (error "Illegal to multiply ~A and ~A~%" matrixl matrix2)))))

;;; Returns a matrix that accomplishes the given transformation.
;;; Arguments matrix to multiply
;;; tx,ty,tz the amount of translation

(defun translate (tx ty tz soptional matrix)
(let ((mat (make-identity 4)))

(setf (aref mat 3 0) (float tx))
(setf (aref mat 3 1) (float ty))

Dec 11 19:01 1986 graph-rout.l Page 5

■ (setf (aref mat 3 2) (float tz)) -
(if matrix (multiply mat matrix) mat)))

;;; Creates and returns a nxn identity matrix.
;;; Argument n the matrix size.

(defun make-identity (n)
(let ((matrix (make-new-array n n 0.0)))

(dotimes (i n) (setf (aref matrix i i) 1.0))
matrix)) '

;;; Create an array/matrix of float, size nxm.
;;; Arguments n,m,val is rows, columns and initial element value.

(defun make-new-array (h m val)
(make-array '(,n ,m) :initial-element (float val) :element-type 'float))

Dec 10 20:31 1986 scene.1 Page 1

; File : scene.1
; Author : Nils Thune
; Created : November 17, 1986
f
; Copyright (c) 1986, Nils Thune.
t
; Purpose :
r
; This file defines six cubes (of different sizes and colors) used to draw
; a scene in a room. The reason for using 6 (5*4) arrays, and initialize them
; to their corresponding cube corner values, is that the scene are redrawn
; several times showing different views of it. If we had to set the points
; each time we drew the scene, it would slow down the program considerably.

; ;; Red cube

(setf pi ' (0.0 0.0 0.0)) ; Cube corners.
(setf p2 ' (0.0 1.0 0.0))
(setf p3 ' (0.0 0.0 -1. 0))
(setf p4 ' (0.0 1.0 -1. 0))
(setf p5 ' (1.0 0.0 -1. 0))
(setf p6 ' (1.0 1.0 -1. 0))
(setf P? ' (1.0 0.0 0.0))
(setf p8 ' (1.0 1.0 0.0))

; cube ploygons
(setf srl (make-array ' (4 3) : initial-contents (list Pi P2 p4 p3))
(setf sr2 (make-array ' (4 3) :initial-contents (list p3 p4 p6 p 5))
(setf sr3 (make-array ' (4 3) : initial-contents (list p5 p6 p8 p 7))
(setf sr4 (make-array ' (4 3) : initial-contents (list P7 p8 p2 pi))
(setf sr5 (make-array ' (4 3) : initial-contents (list p2 p4 p6 p8))

;;; Blue c u b e .

(setf pi ' (2.0 0.0 -2 .0)) ; cube corners.
(setf p2 ' (2.0 3.0 -2 .0))
(setf p3 ' (2.0 0.0 -3. 0))
(setf p4 ' (2.0 3.0 -3. 0))
(setf p5 ' (3.0 0.0 -3. 0))
(setf p6 ' (3.0 3.0 -3. 0))
(setf P? ' (3.0 0.0 -2. 0))
(setf p8 ' (3.0 3.0 -2. 0))

; cube ploygons
(setf sbl (make-array ' (4 3) : initial-contents (list Pi P2 p4 p3))
(setf sb2 (make-array ' (4 3) :initial-contents (list p3 p4 p6 F 5))
(setf sb3 (make-array ' (4 3) :initial-contents (list P5 p6 p8 p7))
(setf sb4 (make-array ' (4 3) :initial-contents (list P7 p8 p2 pi))
(setf sb5 (make-array ' (4 3) :initial-contents (list p2 p4 p6 p8))

;;; Green c u b e .

(setf pi ' (7.0 0.0 -1. 0)) ; cube corners.
(setf p2 ' (7.0 1.0 -1. 0))
(setf p3 ' (7.0 0.0 -3. 0))

Dec 10 20:31 1986 scene.1 Page 2

(setf p4 ' (7.0 1.0 -3.0))
(setf p5 ' (9.0 0.0 -3.0))
(setf p6 ' (9.0 1.0 -3.0))
(setf P? ' (9.0 0.0 -1.0))
(setf p8 ' (9.0 1.0 -1.0))

; cube ploygons
(setf sgl (make-array '(4 3) :initial-contents (list Pi P2 p4 p3))
(setf sg2 (make-array '(4 3) :initial-contents (list p3 p4 p6 p5))
(setf sg3 (make-array ' (4 3) :initial-contents (list p5 p6 p8 p7))
(setf sg4 (make-array ' (4 3) :initial-contents (list p7 p8 p2 pl))
(setf sg5 (make-array ' (4 3) :initial-contents (list P2 p4 p6 p 8))

;;; Yellow c u b e .

(setf pi ' (2.0 0.0 -15.0)) ; cube corners.
(setf p2 ' (2.0 1.0 -15.0))
(setf p3 ' (2.0 0.0 -18.0))
(setf p4 ' (2.0 1.0 -18.0))
(setf p5 ' (4.0 0.0 -18.0))
(setf p6 ' (4.0 1.0 -18.0))
(setf P? ' (4.0 0.0 -15.0))
(setf p8 ' (4.0 1.0 -15.0))

; cube ploygons
(setf syl (make-array ' (4 3) :initial-contents (list Pi p2 p4 p3))
(setf sy2 (make-array ' (4 3) :initial-contents (list p3 p4 p6 p5))
(setf sy3 (make-array ' (4 3) :initial-contents (list p5 p6 p8 p7))
(setf sy4 (make-array ' (4 3) :initial-contents (list p7 p8 p2 pl))
(setf sy5 (make-array '(4 3) :initial-contents (list P2 p4 p6 p 8))

;;; AA c u b e .

(setf pi ' (3.0 0.0 -8.0)) ; cube corners.
(setf p2 ' (3.0 1.0 -8.0))
(setf p3 ' (3.0 0.0 -11.0))
(setf p4 ' (3.0 1.0 -11.0))
(setf p5 ' (7.0 0.0 -11.0))
(setf p6 ' (7.0 1.0 -11.0))
(setf P? ' (7.0 0.0 -8.0))
(setf p8 ' (7.0 1.0 -8.0))

; cube ploygons
(setf sal (make-array '(4 3) :initial-contents (list Pi p2 p4 p3))
(setf sa2 (make-array '(4 3) :initial-contents (list p3 p4 p6 p5))
(setf sa3 (make-array ' (4 3) :initial-contents (list p5 p6 p8 p 7))
(setf sa4 (make-array ' (4 3) :initial-contents (list p7 p8 p2 pl))
(setf sa5 (make-array ' (4 3) :initial-contents (list p2 p4 p6 p 8))

;;; CC c u b e .

(setf pi ' (6.0 0.0 -14.0)) ; cube corners.
(setf p2 ' (6.0 2.0 -14.0))
(setf P 3 ' (6.0 0.0 -16.0))
(setf p4 ' (6.0 2.0 -16.0))
(setf p5 ' (7.0 0.0 -16.0))
(setf P 6 ' (7.0 2.0 -16.0))
(setf P? ' (7.0 0.0 -14.0))
(setf p8 ' (7.0 2.0 -14.0))

Dec 10 20:31 1986 scene.1 Page 3

(setf scl (make-array ' (4 3)
; cube ploygons
:initial-contents (list Pi P2 p4 P3)))

(setf sc2 (make-array r (4 3) :initial-contents (list P3 p4 p6 p5)))
(setf sc3 (make-array ' (4 3) :initial-contents (list P5 p6 p8 P7)))
(setf sc4 (make-array ' (4 3) :initial-contents (list P7 p8 P2 P D))
(setf sc5 (make-array ' (4 3) :initial-contents (list P2 p4 p6 p8)))

(setf pi '(0.0 0.0 0.0)) ; wall corners of room.
(setf p2 '(0.0 10.0 0.0))
(setf p3 '(0.0 10.0 -20.0)) '
(setf p4 '(0.0 0.0 -20.0))

; wall ploygon
(setf left (make-array '(4 3) :initial-contents (list pi, p2 p3 p4)))

(setf pi '(0.0 0.0 -20.0)) ; wall corners.
(setf p2 '(0.0 10.0 -20.0))
(setf p3 '(10.0 10.0 -20.0))
(setf p4 ' (10.0 0.0 -20.0))

; wall ploygon
(setf back (make-array '(4 3) :initial-contents (list pi p2 p3 p 4)))

(setf pi '(10.0 0.0 0.0)) ; wall corners.
(setf p2 ' (10.0 10.0 0.0))
(setf p3 '(10.0 10.0 -20.0))
(setf p4 '(10.0 0.0 -20.0))

; wall ploygon
(setf right (make-array '(4 3) :initial-contents (list pi p2 p3 p 4)))

(setf pi '(0.0 0.0 0.0)) ; wall corners.
(setf p2 '(0.0 0.0 -20.0))
(setf p3 ' (10.0 0.0 -20.0))
(setf p4 ' (10.0 0.0 0.0))

; wall ploygon
(setf floor (make-array ' (4 3) :initial-contents (list pi p2 p3 p4)))

;;; Draws the scene, which contains several cubes of different sizes
;;; and colors.

(defun draw-scene ()
(hp-ux_3g:fill_color *fd* 1.0 0.8 0.6)
(hp-ux_3g:perimeter_color *fd* 0.0 0.0 0.0)
(hp-ux_3g: interior_style *fd* hp-ux_3g: INT_SOLID 1)
(hp-ux_3g:polygon3d *fd* floor 4 0)
(hp-ux_3g:polygon3d *fd* left 4 0)
(hp-ux_3g:polygon3d *fd* back 4 0)
(hp-ux_3g:polygon3d *fd* right 4 0)
(draw-cube syl sy2 sy3 sy4 sy5 0.0 1.0 1.0)
(draw-cube scl sc2 sc3 sc4 sc5 1.0 1.0 0.0)
(draw-cube sal sa2 sa3 sa4 sa5 1.0 0.0 1.0)
(draw-cube srl sr2 sr3 sr4 sr5 1.0 0.0 0.0)
(draw-cube sbl sb2 sb3 sb4 sb5 0.0 0.0 1.0)
(draw-cube sgl sg2 sg3 sg4 sg5 0.0 1.0 0.0)
(hp-ux_3g:make_picture_current *fd*)
T)

;;; Draws a cube with 4 sides and a top. The sides and the top gets the

Dec 10 20:31 1986 scene.1 Page 4

;;; color "r g b".

(defun draw-cube (si s2 s3 s4 s5 r g b)
(hp-ux_3g:fill_color *fd* r g b)
(hp-ux_3g:perimeter_color *fd* 0.0 0.0 0.0)

f d hp
si 4 0)
s2 4 0)
s3 4 0)
s4 4 0)
s5 4 0)

T)

8. A p p e n d i x B

C A O S Source C o d e : C Version

This appendix lists the complete C source code of CAOS.

41

Procedure Name : A c h i e v e _ G o a l ()
Part of : Hierarchical Robot Control System
File Name : ag.c
Date : 05.15.86
Author : Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To achieve a goal (this proceudre is the schema itself)

♦include "defs.h" /* user defined goodies */ •

void Achieve_Goal(Goal,Goal_Information)
char Goal[];
goalinfo *Goal_Information; '
{
boolean status = GO;

p r i n t f ("Neuroschema activated\n for : %s\n",Goal);

while (status != DONE && status != QUIT)
{

/*__
* Activation Section
*/

status = Check_Goal Status(Goal Information);

/*__
* Event Section
*/

if (status == GO) status = Achieve SubGoals(Goal Information);

/*_____________________
* Learning Section
*/

if (status == LEARN) status = Learn_From_User(Goal,Goal_Information);

/*___
*/

}
Print_Goal_Result(Goal,Goal_Information);
Update_Probabilities(Goal,Goal_Information);
}

Procedure Name
Part of
File Name
Date
Author

A s s i g n _ I n p u t s ()
Hierarchical Robot Control System
a i . c
05.15.86
Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose :

***/

♦include "defs.h" /* user defined goodies */ •

void Assign_Inputs(Goal,Goal_Info)
char G o a l [];
goalinfo *Goal_Info; ‘
{

int no;
int level = 0;
input *Inp;
char A r g u m e n t [50] ;

Inp = Goal_Info->Needed_Input;

while (Inp != NULL)
{

while (Goal[++level] != ARG) ;
no = 0;
while (Goal[++level] != ARG)
{

if (Goal[level] *== '\0') ERROR_MSG (" a i . c : Missing ~ when
A r g u m e n t [no++] = Goal[level];

}
Argument[no] = '\0';
Inp->Value = MORE_MEMORY(1+no,char);
strcpy(Inp->Value,Argument);
Inp = Inp->Next;

}

Procedure Name
Part of
File Name
Date
Author

A s s i g n _ N a m e s ()
Hierarchical Robot Control System
a n . c
05.15.86
Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To make names match both to level above and below

★★★j

#include "defs.h" /* user defined goodies */

void Assign_Names(Goal,Goal_Info)
char G o a l [];
goalinfo *Goal_Info;
{

int i, no;
input *Inp;
output *Out;
char v a l u e [50];

if (Goal_Info->Null) return;
i = -1;
Inp = Goal_Info->Needed_Input;

while (Goal[++i] != '\0' && Goal[i] != EOC && Goal[i] != OUTP)
if (Goal[i] == ARG)
{

no = 0;
while (Goal[++i] != ARG) value[no++] = Goal[i];
Inp->Inp_Namel = MORE_MEMORY(1+no,char);
strncpy(Inp->Inp_Namel,value,no);
Inp = Inp->Next;

}
Out = Goal_Info->Needed_Output;
while (Goal[++i] != '\0' && Goal[i] != EOC)
if (Goal[i] == ARG)
{

no = 0;
while (Goal[++i] != ARG) value[no++] = Goal[i];
Out->Out_Namel = MORE_MEMORY(1+no,char);
strncpy(Out->Out_Namel,value,no);
Out = Out->Next;

}

/★★★

Procedure Name : Achi e v e _ S u b G o a l s ()
Part of : Hierarchical Robot Control System
File Name : as.c
Date : 05.15.86
Author : Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To achieve the subgoals of a goal

★★★j

tinclude "defs.h" /* user defined goodies */ •

int Achieve_SubGoals(Goal_Information)
goalinfo *Goal_Information;
{ '

subgoal *SubGoal;
int Sgr;

SubGoal = Find_Best_AND_group(Goal_Information);
if (SubGoal == NULL) return(QUIT);
Sgr = SubGoal->Group;
p r i n t f ("Group = %d\n",Sgr);
while (SubGoal != NULL && SubGoal->Group == Sgr)
{

SubGoal->Goal_Info = Get_Goal_Information(SubGoal->SubGoal);
Assign_Names(SubGoal->SubGoal,SubGoal->Goal_Info);
if (Get_Input(Goal_Information,SubGoal) == NOTOUTOK) return;

if (SubGoal->Goal_Info->ProgNo > 0)
{

Execute(SubGoal);
}
else
{

Achieve_Goal(SubGoal->SubGoal,SubGoal->Goal_Info);
}
if (SubGoal->Goal_Info->OutOK == FALSE) return;
SubGoal = SubGoal->Next;

Procedure Name : C h e c k _ G oal_Status()
Part of : Hierarchical Robot Control System
File Name : cgs.c
Date : 05.15.86
Author : Nils Thune

Copyright (c) 198 6 - THUNE DATA (T.D.)

Purpose : To see if the goal is done or if it must learn from the
user to achieve the goal

♦include "defs.h" /* user defined goodies */

boolean Check_Goal_Status(Goal_Information)
goalinfo *Goal_Information; ‘
{

subgoal *SubGoal;
int Sgr;

if (Goal_Information->Null) return(LEARN);

SubGoal = Find_Best_AND_group(Goal_Information);
if (SubGoal == NULL) return(QUIT);
if (SubGoal->Goal_Info == NULL) return(GO);
Sgr = SubGoal->Group;

while (SubGoal != NULL && Sgr == SubGoal->Group)
. {

if (!SubGoal->Goal_Info->OutOK) .
{

Remove_SubGoal(Goal_Information,Sgr);
if (Goal_Information->SubGoals == NULL) break;
else return(GO);

}
SubGoal = SubGoal->Next;

}
Get_Output(Goal_Information);
r eturn(DONE);

}

j -k'k'k'k'k'k'k'k'k'k'k'k'k-k'kî 'k

Procedure Name : Execute()
Part of : Hierarchical Robot Control System
File Name : e.c
Date : 05.15.86
Author : Nils Thune

Copyright (c) 198 6 - THUNE DATA (T.D.)

Purpose : To execute a program

♦include "defs.h" /* user defined goodies */ .

void Execute(SubGoal)
subgoal *SubGoal;
{ •

output *Out;

/* printf("Executing :
%d%s\n" , SubGoal->Goal_Info->ProgNo,SubGoal->SubGoal); */

switch(SubGoal->Goal_Info->ProgNo)
{

case 1: progl(SubGoal); break;

case 2 : prog2(SubGoal); break;

case 3: prog3(SubGoal); break;

case 4 : prog4(SubGoal); break;

case 5: prog5(SubGoal); break;

case 6: prog6(SubGoal) break;

case 7 : ■pzoql (SubGoal) ; break;

default: ERR0R_MSG("Execute Error","");
}
Print_Goal_Result(SubGoal->SubGoal,SubGoal->Goal_Info) ;
Update_Probabilities(SubGoal->SubGoal,SubGoal->Goal_Info);

}

Procedure Name
Part of
File Name
Date
Author

Find_Best_AND_group()
Hierarchical Robot Control System
fbag.c
05.15.86
Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To find the best AND gropu for achieving a goal

★★★it*/

♦include "defs.h" /* user defined goodies */

subgoal *Find_Best_AND_group(Goal_Info)
goalinfo *Goal_Info; •
{

subgoal *SubGoal;
subgoal *Temp;
int Sgr;
float Prob;
float NewProb;

SubGoal = Goal_Info->SubGoals;
if (SubGoal == NULL) return(SubGoal);
Temp = SubGoal;
Sgr = SubGoal->Group;
Prob = Find_Prob(SubGoal->SubGoal);

for (; ;)
{

while (Temp != NULL && Temp->Group == Sgr) Temp = Temp->Next;

if (Temp == NULL) break;
NewProb = Find_Prob(Temp->SubGoal) ;
if (NewProb > Prob)
{

Prob = NewProb;
SubGoal = Temp;

}
Sgr = Temp->Group;

}
return(SubGoal);

Procedure Name : Find_Prob()
Part of : Hierarchical Robot Control System
File Name : fp.c
Date : 05.15.86
Author : Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To find probability for a goal

★★★j

♦include "defs.h" /* user defined goodies */

float Find_Prob(Goal)
char G o a l []; /* command string */
{ '

extern Kelem * K n o w _ T a b l e [27];/* know, base */
K elem *Curr_Elem;

Curr_Elem = Kn o w _ T a b l e [G o a l[0] A'] ;

if (Curr_Elem == NULL) r e t u r n (0.0);

while (!GoalComp(Goal,Curr_Elem->Goal)) Curr_Elem = Curr_Elem->Next;

return(Curr_Elem->S/(float)Curr_Elem->N);
}

Procedure Name
Part of
File Name
Date
Author

G o a l C o m p ()
Hierarchical Robot Control System
g c . c
05.15.86
Nils Thune

Copyright (c) 1986 - T H U N E D A T A (T . D .)

Purpose : To compare to goals and see if they match

ic'kicic'kj

♦include "defs.h" /* user defined goodies */

boolean GoalComp(goall,goal2)
char *goall; .
char *goal2;
{

int i = 0;
int j = 0;

while (goall[i] == goal2[j])
{

if (goall[i] == ARG)
{

while (goall[++i] != ARG) ;
while (goal2[++j] != ARG) ;

}
+ + i ;
+ + j;
if (goall [i] == OUTP || goall[i] == EOC || goall[i] == '\0'i

return(TRUE);
}
return(FALSE);

I★★★

Procedure Name : Get_Goal_Information()
Part of : Hierarchical Robot Control System
File Name : g g i .c
Date : 0 5.15.86
Author : Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To get the goal information from the knowledge base for a
a goal

♦include "defs.h" /* user defined goodies */

goalinfo *Get_Goal_Information(Goal)
char Goal [];
{

extern Kelem * K n o w _ T a b l e [27];
Ke lem *Curr_Elem;
goalinfo *Goal_Info;
subgoal *Subgl, *Subg;
input *inpl, *inp2;
output *outl, *out2;
char A r g u m e n t [50]; .

Curr_Elem = K n o w _ T a b l e [G o a l [0]-'A '];
while (Curr_Elem != NULL)
■{

if (GoalComp(Goal,Curr_Elem->Goal)) break;
Curr_Elem = Curr_Elem->Next;

}
Goal_Info = MORE_MEMORY(1,goalinfo);
if (Curr_Elem == NULL) /* goal does not exists */
{

Goal_Info->Null = TRUE;
return(Goal_Info);

}
Goal_Info->ProgNo = Curr_Elem->Goal_Info->ProgNo;

/* copy over input information */

inpl = Curr_Elem->Goal_Info->Needed_Input;
if (inpl != NULL)
{

inp2 = M O R E _ M E M O R Y (1,input);
Goal_Info->Needed_Input = inp2;
while (inpl != NULL)
{

inp2->Inp_Name = inpl->Inp_Name;
inpl = inpl->Next;
if (inpl != NULL)
{

inp2->Next = M O R E _ M E M O R Y (1,i n p u t); .
inp2 = inp2->Next;

}
}

}
/* copy over output information */

Goal_Info->Output = Curr_Elem->Goal_Info->Output;

outl = Curr Elem->Goal Info->Needed_Outpyt;

if (out1 != NULL)

{
out2 = M O R E _ M E M O R Y (1,output);
Goal_Info->Needed_Output = out2;
while (outl != NULL)
{

out2->0ut_Name = outl->Out_Name;
outl = outl->Next;
if (outl != NULL)
{

out2->Next = M O R E _ M E M O R Y (1,out p u t);
out2 = out2->Next;

}
}

}
/* copy over subgoal information */

Subgl = Curr_Elem->Goal_Info->SubGoals;
if (Subgl != NULL) •
{

Goal_Info->SubGoals = M O R E _ M E M O R Y (1,subgoal);
Subg = Goal_Info->SubGoals;
while (Subgl ! = N U L L)
{

Subg->SubGoal = Subgl->SubGoal;
Subg->Group = Subgl->Group;
Subgl = Subgl->Next;
if (Subgl != NULL)
{

Subg->Next = M O R E _ M E M O R Y (1,subgoal)
Subg = Subg->Next;

}
}

}
return(Goal Info);

Procedure Name : Get_Input()
Part of : Hierarchical Robot Control System
File Name : g i .c
Date : 05.15.86
Author : Nils Thune

Copyright (c) 1986 - THUNE DATA (T . D .)

Purpose : To get the input for a goal

★★★j

♦include "defs.h" /* user defined goodies */ '

int Get_Input(Goal_Information,SubGoal)
goalinfo *Goal_Information; _
subgoal *SubGoal;
{

input * Inputl;
input *Input2;
output *Output;
subgoal *Subg;
boolean ALL = TRUE;
boolean FOUND;

if (SubGoal->Goal_Info->Null) return(l);

/* look for input values in main goal information first */

Input2 = SubGoal->Goal_Info->Needed_Input;
while (Input2 != NULL)
{

Input1 = Goal_Information->Needed_Input;
while (Inputl != NULL)
{

if (strcmp(Inputl->Inp_Name,Input2->Inp_Namel) == 0
{

if (Inputl->Value == NULL) E R R O R _ M S G (" g i .c :
Input2->Value = Inputl->Value;
break;

}
Inputl = Inputl->Next;

}
if (Inputl == NULL) ALL = FALSE;
Input2 = Input2->Next;

}
if (ALL) return (1);

/* look for inputs among other subgoals outputs */

Inputl = SubGoal->Goal_Info->Needed_Input;
while (Inputl != NULL)
{

FOUND = FALSE;
Subg = Goal_Information->SubGoals;
if (Inputl->Value == NULL)
while (Subg != NULL)
{

if (Subg == SubGoal)
{

User_Provide(SubGoal,Inputl);
FOUND = TRUE;

}
else

)

M i s s i n

Output = S u b g - > G o a l _ I n f o - > N e e d e d _ O u t p u t ;
while (Output != NULL)

{
if (s t r c m p (O u t p u t - > Out_Namel,Inputl->Inp_Namel)

{
if (!Subg->Goal_Info->OutOK) return(NOTOUTOK)
Input l - > V a l u e = Output->Value;
FOUND = TRUE;
break;

}
Output = O u t p u t - > N e x t ;

}
}
if (FOUND) break; •
Subg = Subg->Next;

}
if (Subg == NULL) U s e r _ P rovide(SubGoal, I n p u t l) ;
Input 1 = I n p u t l - > N e x t ;

}
r e t u r n (1);

{

/★★★

Procedure Name : G e t _ O u t p u t ()
Part of : Hierarchical Robot Control System
File Name : go.c
Date : 05.15.86
Author : Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To get the output for a goal

•k'k'k'k'k'k'k'k'k'k'k'k'k'k'kick'k'k'kic'k'k'k'kic'k'kic'kiddcickick'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'kic'k'k'k'k'k'k'k'k'k'k'k'k'k-k-k-k-k-k j

♦include "defs.h" /* user defined goodies */ *

void Get_Output(Goal_Information)
goalinfo *Goal_Information;
{ '

output *Outputl;
output *Output2;
subgoal *Subg;
boolean NotAll = FALSE;
boolean FOUND;

if (Goal_Information->SubGoals == NULL)
{

Goal_Information->Done = TRUE;
Goal_Information->OutOK = FALSE;
return;

}
Outputl = Goal_Information->Needed_Output;

while (Outputl != NULL)
{

Subg = Goal_Information->SubGoals;
while (Subg != NULL)
{

Output2 = Subg->Goal_Info->Needed_Output;
while(Output2 != NULL)
{

if (strcmp(Outputl->Out_Name,Output2->Out_Namel) == 0)
{

Outputl->Value = Output2->Value;
break;

}
Output2 = Output2->Next;

}
if (Output2 != NULL) break;
Subg = Subg->Next;

}
if (Subg — > NULL) E R R O R _ M S G (" g o .c : Can't find output
Outputl = Outputl->Next;

}
Goal_Information->Done = TRUE;
Goal Information->OutOK = TRUE;

Procedure Name
Part of
File Name
Date
Author

Insert ()
Hierarchical Robot Control System
i . c
05.15.86
Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose :

★ ★★★it /

♦include "defs.h" /* user defined goodies */ .

void Insert(com,Goal_Info,fd)
char c o m []; /* command string */
goalinfo *Goal_Info; /* pointer to goal information */
FILE *fd;
{

extern Kelem * K n o w _ T a b l e [27];/* know, base */
Kelem *Curr_Elem;

Curr_Elem = M O R E _ M E M O R Y (1, Kelem) ;
Curr_Elem->Goal = MORE_MEMORY(1+strlen(com),c h a r);
strcpy(Curr_Elem->Goal,com);

Store_Arg-uments (com, Goal_Inf o) ;
Read_In_Probs(fd,Curr_Elem);

Curr_Elem->Goal_Info = Goal_Info;
Curr_Elem->Next = K n o w _ T a b l e [c o m [0] A '];
K n o w _ T a b l e [c o m [0] A '] = Curr_Elem;

}

Procedure Name
Part of
File Name
Date
Author

L e a r n _ F r o m _ U s e r ()
Hierarchical Robot Control System
l f u . c
05.15.86
Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To leanr from the user how to achieve the goal

★★★j

♦include "defs.h" /* user defined goodies */ •

int Learn_From_User(Goal,Goal_Information)
char Goal [];
goalinfo *Goal_Information; ’
{

goalinfo *Goal_Info;
subgoal *Temp;
subgoal *Prev;
int i, Sgr;
int no;
char Goall[COMMAND_SIZE] ;
char SubGoal[COMMAND_SIZE];

if (Goal_Information->Null)
{

printf("\nl don't understand the meaning of \"%s\"\n\n",G o al);
printf("Will you explain for me what to do ?(y/n): ");
scanf ("%s",SubGoal);
s w i t c h (S u b G o a l [0])
{

case 'y ':
case 'Y': break;
default: p r i n t f ("\nOK, Bye bye . . .\n\n");

return(DONE);
}

Goal_Info = M O R E _ M E M O R Y(1 ,goalinfo);
Temp = M O R E _ M E M O R Y (1,subgoal);
Prev = Temp;
Goal_Info->SubGoals = Temp;

p r i n t f (" C ommand: ");
for (i = 2; i < COMMAND_SIZE; i++) p r i n t f ("_");
for (i = 2; i < COMMAND_SIZE; i++) p r i n t f ("\b");
fflush(stdout);
scanf("%s",Goall);
TOUPPER(Goall);
Sgr = 1;
no = 0;
while(Sgr > 0)
{

printf ("\n0 = No More SubGoals\n");
p r i n t f ("SubGoal Number %d \n",++no);
printf("AND Group # ? : ");
scanf("%d",&Sgr);
if (Sgr > 0)
{

p r i n t f ("SubGoal : ");
for (i = 8; i < COMMAND_SIZE; i++) p r i n t f ("_");
for (i = 8 ; i < COMMAND_SIZE; i++) printf("\b");
fflush(stdout);

scanf("%s",SubGoal);
TOUPPER(SubGoal);

Temp->SubGoal = MORE_MEMORY(1+strlen(SubGoal),cha.
strcpy(Temp->SubGoal,SubGoal);
Temp->Group = Sgr;
Prev = Temp;
Temp->Next = M O R E _ M E M O R Y (1,subgoal);
Temp = Temp->Next;

}
}
Prev->Next = NULL;
cfree(Temp);
Insert (Goall, Goal__Inf o) ;
Goal_Info = Get_Goal_Information(Goall);
if (Goal_Info->Null) {printf("\nNull info found: %s\n%s\n",Goal,G>
Goal_Information->Needed_Input = Goal_Info->Needed_Input;
Goal_Information->Needed_Output = Goal_Info->Needed_Output;
Goal_Information->SubGoals = Goal_Info->SubGoals;
Goal_Information->Null = FALSE;
Assign_Inputs(Goal,Goal_Information);
return;

}
p r i n t f ("Don't now how to learn this way yet !!!!!!!!\ n \n");
e x i t (1);

}

Procedure Name
Part of
File Name
Date
Author

L o a d_Information()
Hierarchical Robot Control System
l i . c
05.15.86
Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To load the knowledge- and data base into memory

★★I*/

♦include "defs.h" /* user defined goodies */

void Load_Information(KnowBase,ProgBase)
char *KnowBase;
char *ProgBase;
{

FILE
FILE
extern Kelem

*fd;
* f o p e n ();
*Know T a b l e [27];

/* file name for knowledge base *
/* file name for program base *

/* file descriptor */
/* open function */
/* know, base hash table */

I N I T I A L I Z E (27,NULL,Know_Table);

p r i n t f ("\n\nTrying to Load Program Base . . .
if ((fd = fopen(ProgBase,"r")) == NULL) E R R O R _ M S G ("Can ' t open ",ProgBase)

") ;

/* load in program base */
/* close file */

Load_Program_Base(fd);
fclose(fd);
p r i n t f ("Loaded !\n");

p r i n t f ("Trying to Load Knowledge Base
if ((fd = fopen(KnowBase,"r")) == NULL) E R R O R _ M S G ("Can't open ",KnowBase)

");

Load_Knowledge_Base(fd);
f c l o s e (f d) ;
p r i n t f ("Loaded !\n");

/* load in knowledge base */
/* close file */

Procedure Name : Load_Knowledge_Base() '
Part of : Hierarchical Robot Control System
File Name : lkb.c
Date : 05.15.86
Author : Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To load the knowledge base into memory

ye**/

♦ include "defs.h" /* user defined goodies */ .

void Load_Knowledge_Base(fd)
FILE *fd; /* file descriptor for knowledge file */
{ ■

int i; /* loop counter */
char com[COMMAND_SIZE]; /* character used to read file */
char subcom[COMMANDOSIZE]; /* character used to read file */
int no; /* # of subgoals */
int Sno; /* Subgoal group # */
goalinfo *Goal_Info; /* pointer to goal information */
subgoal *Subg; /* temporary pointer to subgoals */

while (fscanf(fd,"%d%s!",&no, com) != EOF)
{

Goal_Info = MORE_MEMORY(1,goalinfo);
Goal_Info->SubgNo = no;
Subg = MORE_MEMORY(1,subgoal);

’ Goal_Info->SubGoals = Subg;
for (i = 0; i < no; ++i)
{

fscanf(fd,"%d%s!",&Sno,subcom);
Subg->SubGoal = MORE_MEMORY(1+strlen(subcom),char);
strcpy(Subg->SubGoal,subcom);
Subg->Group = Sno;
if (i < no-1)
{

Subg->Next = MORE_MEMORY(1,subgoal);
Subg = Subg->Next;

}
}
Insert(com, Goal_Info,fd);

}

/

Procedure Name
Part of
File Name
Date
Author

Load_Program_Base()
Hierarchical Robot Control System
lpb. c
05.15.86
Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To load in low level programs into the know, base

★★I*/

♦include "defs.h"

void Load_Program_Base(fd)
FILE *fd;
{

goalinfo *Goal_Info;
char com[COMMAND_SIZE];
int Pno;

/* user defined goodies */

/* file descriptor for program base */

/* pointer to goalinfo */
/* character used to read file */
/* program number */

while (fscanf(fd,"%d%s!",&Pno,com) != EOF)
{

Goal_Info = M O R E _ M E M O R Y (1,goalinfo);
Goal_Info->ProgNo = Pno;
Insert(com,Goal_Info,fd);

}

Procedure Name
Part of
File Name
Date
Author

m a i n ()
Hierarchical Robot Control System
m a i n .c
05.15.86
Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To control all the schemas and low level programs that
are needed to achieve a goal

♦include "defs.h" /* user defined goodies */

Kelem * K n o w _ T a b l e [27]; /* Hash table of goals */

m a i n ()
{

char Main_Goal[COMMAND_SIZE];/* main goal from user */
goalinfo *Goal_Information; /* pointer to goal information */
char K n o w B a s e [50]; /* file name for know, base */
char P r o g B a s e [50]; /* file name for prog, base */

* Startup Section
*/

PRINT_HEADING;
G E T _ F I L E _ N A M E ("KnowLedge Base : ",KnowBase);
G E T _ F I L E _ N A M E ("Program Base : ",ProgBase);
Load_Information(KnowBase,ProgBase) ;

* Main Goal Achievement Section
*/

for (;;)
{

User_Interface(Main_Goal, KnowBase, ProgBase) ;

Goal_Information = Get_Goal_Information(Main_Goal);
Assign_Inputs(Main_Goal,Goal_Information);
Achieve_Goal(Main_Goal,Goal_Information);

/* if (Goal_Information->Done == FALSE) Learn_From_User(Main_Goal, Gc
}

}

/★★★

Procedure Name
Part of
File Name
Date
Author

P r i n t _ F i l e s ()
Hierarchical Robot Control System
p f . c
05.15.86
Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To print all the data base files

★ ★★★■dr/

♦include "defs.h" /* user defined goodies */ '

void Print_Files(KnowBase,ProgBase)
char *KnowBase; /* file name for knowledge base */
char *ProgBase; /* file name for program base */
{

FILE *fd; /* file descriptor */
FILE *fopen(); /* open function */
char com[COMMAND_SIZE];

p r i n t f (" \ n ");

if ((fd = fopen(ProgBase,"r")) == NULL) E R R O R _ M S G ("Can't open ",ProgBase)
p r i n t f ("Program Base: %s\n",ProgBase);
while (fscanf(fd,"%s!", com) != EOF) p r i n t f ("%s\n",c o m) ;
close (f d) ;

if ((fd = fopen(KnowBase,"r")) == NULL) E R R O R _ M S G ("Can't open ",KnowBase)
p r i n t f ("\nKnowledge Base file: %s\n",KnowBase);
while (fscanf(fd,"%s!",com) != EOF) p r i n t f ("%s\n",c o m) ;
close (f d) ;

Procedure Name : P r i n t _ Goal_Result()
Part of : Hierarchical Robot Control System
File Name : pgr.c
Date : 05.15.86
Author : Nils Thune

Copyright (c) 198 6 - THUNE DATA (T.D.)

Purpose : To print the goal and its input/output

♦include "defs.h" /* user defined goodies */ .

void Print_Goal_Result(Goal,Goal_Information)
char G o a l [];
goalinfo *Goal_Information; •
{

int i ;
input *Input;
output *0utput;
char Arg[COMMAND_SIZE] ;

if (Goal_Information->OutOK == FALSE)
{

printf("Failed : % s \n",G o a l) ;
return;

}
i = -1;
Input = Goal_Information->Needed_Input;
p r i n t f ("Achieved : ");

while (Goal[++i] != '\0' && Goal[i] != EOC && Goal[i] != OUTP)
{

if (Goal[i] — ARG)
{

p r i n t f ("~%s~",Input->Value);
while (Goal[++i] != ARG) ;
Input = Input->Next;

}
else printf("%c",Goal [i]);

}
Output = Goal_Information->Needed_Output;
s t r c p y (Arg,Goal_Information->Output);
i = -1;
while (Arg[++i] != '\0' && Arg[i] != EOC)

{
if (Arg[i] == ARG)
{

printf("~%s~",Output->Value);
while (Arg[++i] != ARG) ;
Output = Output->Next;

}
else printf("%c",Arg[i]) ;

}
p r i n t f (" \ n ") ;

/'k

ficltic'k'k'k'k'k'k-k'k'k'k'k-k'k

Procedure Name
Part of
File Name
Date
Author

Print_Kno w _ T a b l e ()
Hierarchical Robot Control System
p k t . c
05.15.86
Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To print the knowledge base

★★★j

♦include "defs.h" /* user defined goodies */

void P r i n t _ K n o w _ T a b l e ()
{

extern Kelem *Know_ T a b l e [2 7];/* know, base */'
Kelem *Curr_Elem;
subgoal *Subg;
i nt i ;

p r i n t f ("\nKnowledge B a s e :\ n\n");

for (i = 0; i < 27; i++)
{

Curr_Elem = K n o w _ T a b l e [i] ;
while (Curr_Elem != NULL)
{ .

p r i n t f ("%s\n",Curr_Elem->Goal);
Subg = Curr_Elem->Goal_Info->SubGoals;
while (Subg != NULL)
{

p r i n t f ("\t%02d %s\n",Subg->Group,Subg->SubGoal);
Subg = Subg->Next;

}
Print_Probabilities(Curr_Elem);
Curr_Elem = Curr_Elem->Next;

}
}

} ■

Procedure Name : Print_Probabilities()
Part of : Hierarchical Robot Control System
File Name : pp.c
Date : 05.15.86
Author : Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose :

★ ★★■A-***/

♦include "defs.h" /* user defined goodies */

void Print_Probabilities(Curr_Elem)
Kelem *Curr_Elem;
{ '

printf("Goal Prob = %f\n\n",Curr_Elem->S/(float)Curr_Elem->N);
}

/★★★

Procedure Name : Read_In_Probs(fd,Curr_Elem)
Part of : Hierarchical Robot Control System
File Name : rip.c
Date : 05.15.86
Author : Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To read in probabilities for a goal

♦include "defs.h" /* user defined goodies

void Read_In_Probs(fd,Curr_Elem)
FILE *f d;
Kelem *Curr_Elem; ‘
{

fscanf(fd,"%d%d",& (Curr_Elem->N),&(Curr_Elem->S));
}

★★★★★★★★★★★j

*/ ■

Procedure Name : Remove_SubGoal()
Part of : Hierarchical Robot Control System
File Name : rs.c
Date : 05.15.86
Author : Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To remove subgoals in a tree

♦include "defs.h" /* user defined goodies */

void Remove_SubGoal(Goal_Info,Sgr)
goalinfo *Goal_Info; ,
int Sgr;
{

subgoal *SubGoal;
subgoal *Temp;
subgoal *Next;
boolean FLAG = FALSE;

SubGoal = Goal_Info->SubGoals ;
Temp = SubGoal;

while (SubGoal != NULL && Sgr != SubGoal->Group)
{

Temp = SubGoal;
SubGoal = SubGoal->Next;

' }
if (Temp == SubGoal) FLAG = TRUE;
while (SubGoal != NULL && Sgr == SubGoal->Group)
{

Next = SubGoal->Next;
cfree(SubGoal);
SubGoal = Next;

}
if (FLAG)
{

if (SubGoal == NULL) Goal_Info->SubGoals = NULL;
else Goal_Info->SubGoals = SubGoal;

}

^ & & & i c i c & & & 1 c 1 c & & i c i c i c i c i c i c i c * i c i c i c i c i c i c i c i c i c i c * * * ' k

else Temp->Next = SubGoal;

Inp->Next = M ORE_M EM ORY(1,input);
Inp = Inp->Next;

}
Inp->Inp_Name = MORE_MEMORY(1+no,char);
strcpy(Inp->Inp_Name,Argument);

}
}

{

Procedure Name
Part of
File Name
Date
Author

Store_Arguments()
Hierarchical Robot Control System
sa. c
05.15.86
Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To store arguments for a goal that is read

♦include "defs.h" /* user defined goodies */ .

void Store_Arguments(com,Goal_Info)
char c o m [];
goalinfo *Goal_Info; ■
{

output *Out ;
input * I np;
char Argument [1 0 0] ;

int no;
int i = -1 ;

boolean O U T P U T = F A L S E ;

while (com[++i] != '\0' && com[i] != EOC)
if (com[i] == OUTP)
{

OUTPUT = TRUE;
Goal_Info->Output = MORE_MEMORY(1+strlen(&com[i]),char);
strcpy(Goal_Info->Output,&com[i]);

}
else if (com[i] == ARG)
{

no 0 ;
while (com[++i] != ARG)
{

if (com[i] == '\0') ERROR_MSG("sa.c : Missing ~ when readinc
Argument[no++] = com[i];

}
Argument[no] = '\0';
if (OUTPUT)
{

if (Goal_Info->Needed_Output == NULL)
{

Out = MORE_MEMORY(1,output);
Goal_Info->Needed_Output = Out;

}
else
{

Out->Next = MORE_MEMORY(1,output);
Out = Out->Next;

}
Out->Out_Name = MORE_MEMORY(1+no,char);
strcpy(Out->Out_Name,Argument);

}
else
{

if (Goal_Info->Needed_Input == NULL)
{

Inp = MORE_MEMORY(1,input);
Goal_Info->Needed_Input = Inp;

}
else

Procedure Name
Part of
File Name
Date
Author

Store_Information()
Hierarchical Robot Control System
si. c
05.15.86
Nils Thune

Copyright (c) 198 6 - THUNE DATA (T.D.)

Purpose : To store information about a goal on file

♦include "defs.h" /* user defined goodies */ •

void Store_Information(KnowBase,ProgBase)
char KnowBase[];
char
{

ProgBase[];

int
extern Kelem
Kelem
subgoal
F I L E

F I L E

F I L E

i ;
*Know_Table[27] ;
*Curr_Elem;
*Subg;
*fdl;
*fd2;
*fopen();

/* loop counter */
/* know, base */

/* file descriptor */
/* file descriptor */
/* open function */

printf ("\nTrying to Store Knowledge Base . . . ");
if ((fdl = fopen(KnowBase,"w")) == NULL) ERROR_MSG("Can't open ",KnowBase)
if ((fd2 = fopen(ProgBase,"w")) == NULL) ERROR_MSG("Can't open ",ProgBase)

for (i = 0; i < 27; ++i)
{

Curr_Elem = Know_Table[i];
while (Curr_Elem != NULL)
{

if (Curr_Elem->Goal_Info->ProgNo == 0)
{

fprintf(fdl,"%d%s\n",Curr_Elem->Goal_Info->SubgNo,
Subg = Curr_Elem->Goal_Info->SubGoals;
while (Subg != NULL)
{

fprintf(fdl,"%d%s\n",Subg->Group,Subg->Sub
Subg = Subg->Next;

}
Store_Probs(fdl,Curr_Elem);

}
else
{

fprintf(fd2,"%d%s\n",Curr_Elem->Goal_Info->ProgNo,
Store Probs(fd2,Curr Elem);

}
Curr Elem = Curr Elem->Next;

}
}
fclose(fdl);
fclose(fd2);
printf("Stored !\n");

/* close file */
/* close file */

9

j ★★★

Procedure Name : S t o r e _ P r o b s ()
Part of : Hierarchical Robot Control System
File Name ■ : sp.c
Date : 05.15.86
Author : Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To store probabilities for a goal on file

♦include "defs.h" /* user defined goodies */

void Store_Probs(fd,Curr_Elem)
FILE *fd;
Kelem *Curr_Elem; *
{

fprintf(fd,"%d %d\n",Curr_Elem->N,Curr_Elem->S);

fprintf(fd,"\n");
}

* sort_thetas.c - sorts the thetas in descending order.
*

* Author: J.K. Lee
* Computer Science D e p t .
* University of Utah
* Date: Tu. May 6 198 6
* Copyright (c) 1986 J.K. Lee
*/

♦include "defs.h"

* T A G (s o r t _ t h e t a s .c)
*

* sort_thetas
★

*/
void sort_thetas(thetal,theta2,theta3) •
double * t h etal,*theta2,*theta3;
{

int i, j;
double theta[3], temp;

/* sort thetas in descending order */
/* vertices is recorded in the same order as thetas */
theta[0] = *thetal;
theta[l] = *theta2;
theta[2] = *theta3;

for (i = 0; i < 3; i++)
for (j = i+1; j < 3; j++)

if (theta[i] < theta[j])
{

temp = theta[i];
theta[i] = theta[j];
theta[j] = temp;

}
*thetal = theta[0];
*theta2 = theta[l];
*theta3 = theta[2];

/*

}

/ ★ i t *

Procedure Name
Part of
File Name
Date
Author

User_Interface()
Hierarchical Robot Control System
u i . c
05.15.86
Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To get a command (main goal) from the user via the
keyboard

♦include "defs.h" /* user defined goodies */

void User_Interface(command,KnowBase, ProgBase)
char command[]; .

KnowBase[];
ProgBase[];

char
char
{

int

for (;;)
{

1 ;

PRINT_MENU;
printf("\nCommand: ");
for (i = 0 ; i < 70; i++) printf("_");
for (i = 0 ; i < 70; i++) printf("\b");
fflush(stdout);
scanf("%s",command);
switch (command[0])
{

' 1 ' :case

case

case

case

default:

Print_Files(KnowBase,ProgBase);
break;

Print_Know_Table();
break;

PRINT_SYNTAX;
break;

Store_Information(KnowBase, ProgBase) ;
printf("\nBye bye . . .\n\n");
exit (1);

TOUPPER(command);
return;

/★★★

Procedure Name
Part of
File Name
Date
Author

U s e r _ P r o v i d e ()
Hierarchical Robot Control System
u p . c
05.15.86
Nils Thune

Copyright (c) 198 6 - THUNE DATA (T.D.)

Purpose : To get the input for a goal

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★*★★★★★*★★★★★★*★★★★★★★**★★★*★★★*★★J

♦include "defs.h" /* user defined goodies */ •

int User_Provide(SubGoal,Input)
subgoal *SubGoal;
input * Input; ’
{

char value [50];
char N a m e [50] ;

if (Input->Inp_Namel == '\0') strcpy(Name,Input->Inp_Name);
else strcpy(Name,Input->Inp_Namel);

p r i n t f ("Input missing for: %s\n",SubGoal->SubGoal);
p r i n t f ("Can't find input for: %s\n",Name);
printf ("Please specify \n");
printf("%s = ? : ",Name);
scanf("%s",value);
Input->Value = M O R E _ M E M O R Y (1+strlen(value),c h a r);
strcpy(Input->Value,value);

Procedure Name : U p date_Probabilities()
Part of : Hierarchical Robot Control System
File Name : u p r .c
Date : 05.15.86
Author : Nils Thune

Copyright (c) 1986 - THUNE DATA (T.D.)

Purpose : To update probabilities for a goal

★ ★★■A1* j

♦include "defs.h" /* user defined goodies */

void Update_Probabilities(Goal,Goal_Info)
char G o a l []; /* command string */
goalinfo *Goal_Info; /* pointer to goal information */
{

extern Kelem * K n o w _ T a b l e [27];/* know, base */
Kelem *Curr_Elem;

Curr_Elem = Kn o w _ T a b l e [G o a l [0]-'A '];

while (IGoalComp(Goal,Curr_Elem->Goal)) Curr_Elem = Curr_Elem->Next;

if (Goal_Info->OutOK) Curr_Elem->S += 1.0;
Curr_Elem->N += 1.0;

}

Purpose : definitions used in the robot control system program

★★★j

File Name : defs.h
Date : 05.16.86

/* _________________________________
* Definitions of constants
*/

♦define COMMAND SIZE 100 /* length of commando size */
♦define TRUE 1 /* boolean constant */
♦define FALSE 0 /* boolean constant */
♦define DONE 1 /* is schema DONE ? */ ■
♦define GO 2 /* schema is not DONE ? */
♦define LEARN 3 /* schema should learn from user */
♦define QUIT 4 / * quit trying to obtain a goal */
♦define NOTOUTOK -1 /* output is not OK */

/* Some constants used when loading/writing data bases */

♦define ARG > i /* command ARGument */
♦define OUTP > . / /* OUTPut follows */
♦define EOC ' !' /* End Of Command */

/* ___
* List all user/system defined include files here
*/

♦include cctype.h> / * macro goodies */
♦include <stdio.h> / * input output goodies */
♦include cmath.h> / * math goodies */
♦include <strings.h> / * string operation goodies */
♦include "struct.h" / * structure definitions */
♦include "func.h" / * function declarations */
♦include "macro.h" / * include my personal defined macros */

File Name : func,h
Date : 05.16.86

Purpose : function declarations of programs used in the robot
control system

/★★■a1**

/* _____________________________
* Function declarations
*/

void A c h i e v e _ G o a l () ;
int Achieve S u b G o a l s O ;
void A s s i g n _ I n p u t s ();
void A s s i g n _ N a m e s ();
boolean C h e c k _ Goal_Status();
void Execute ();
subgoal * Find_Best_AND_group();
float Find P r o b ();
goalinfo *Get_Goal_Information();
int G e t _ I n p u t ();
void Get_Output ();
boolean G o a l C o m p ();
void Insert ();
int L e a r n _ F r o m _ U s e r ();
void Load Inform a t i o n ();
void Load_Knowledge Base ();
void Load_P r o g r a m _ B a s e ();
void Print Files ();
void Pr i n t _ G o a l _ R e s u l t ();
void Print Know T a b l e ();
void P r i n t _ P r obabilities();
void R e a d _ I n _ P r o b s ();
void Remove S u b G o a l ();
void Store A r g u m e n t s ();
void Store I n f o r m a t i o n ();
void S t o r e _ P r o b s ();
void Update Probabilities ();
void User I n t e r f a c e ();
int User P r o v i d e O ;

File Name : macro.h
Date : 05.16.86

★★★j

Purpose : macros for the robot control system

/*
★
★

*/
Macro that initializes an array to the 'value' given

♦define INITIALIZE(no,value,array) {int i;\
for (i = 0 ; i < no; i++)\

array[i] = value; }

/*
★
★

*/
Macro that prints out the heading for the robot control system

♦define PRINT_ HEADING {system("clear");\
printf ("\t\tHierarchical Robot Control System\n");\
p r i n t f ("\t\t\t Release 1.30\n\n\n\n\n");\
p r i n t f ("Please specify \n\n");}

/*
★
★

*/
Macro that prints out menu

♦define

/*

PRINT__MENU {printf("\n\n\t\tM E N U\n\n");\
p r i n t f ("1... Print Knowledge and Program
p r i n t f ("2 ... Print Knowledge Base\n");\
p r i n t f ("4 ... Print Command Syntax\n");\
p r i n t f ("9 ... Exit Control System\n"); }

files\n");\

★
*

*/
Macro that prints the command syntax

♦define PRINT__SYNTAX p r i n t f ("\nSyntax: letters~argument~:letters~argument~

/*
★
★

*/
Macro that reads in a file name from the terminal

♦define GET_FILE_NAME(string,file) {\
p r i n t f ("% s " ,string);\
scanf("%s",file); }

/*
★

* Macro which returns a pointer to a string of type 'type' of length
* 'size'
*/

♦define MORE_MEMORY(size,type) (type *) (calloc(size,sizeof(type)))

/*

* Macro which converts characters in a string to upper case
*/

♦define TOUPPER(array) {int i = 0;\
while (array[i] != '\0') {\
if (array[i] == ARG) while (array[++i] I- ARG) ;\
else if (islower(array[i])) array[i] = t o u p p e r (a r r a y [i]);
++i; } }

/ * __
:k

* Macro that prints out an error message and then exits the program
* /

♦define ERROR_MSG(si,s2){printf("\n\n%s %s\n\n",si,s2);\
printf("Fatal error, bailing out\n\n");\
exit (-1); }

File Name : struct.h
Date : 0 5.16.86

★★★j

Purpose : definitions used in the robot control system program

/* __
* Type d e f in i t io n s
* /

typede f char boo lean ; /* boo lean is the same as cha r, 1 by te * /

/* ______________
* S tru c tu re s
* /

typede f s t r u c t

{
s t r u c t
i n t
i n t
char
s t r u c t

} Kelem;

/*

_Kelem

_Kelem *Next;
N;

*G oal;
_ g o a l in fo *G o a l_ In fo ;

/* element in hash ta b le * /

/* Next g oa l in Kbase * /
/ * # o f t r i a l s * /
/* # o f successes * /

typede f s t r u c t _ in p u t
{

char
char
char
s t r u c t _ in p u t

*Inp_Nam el;
*Inp_Name;
*Value;
*Next;

/* name o f in p u t * /
/* name o f in p u t * /
/* a c c tu a l in p u t * /
/* p o in te r to next needed in p u t * /

} in p u t ;

/*

/* h o ld s in p u t in fo rm a t io n fo r a goa l * /

typede f s t r u c t

{
char
char
char
s t r u c t

o u tpu t

_ o u tp u t

*Out_Namel;
*Out_Name;
*V alue;
*Next;

* /
* /

/* name o f o u tpu t
/* name o f o u tpu t
/* a c c tu a l o u tp u t * /
/* p o in te r to next needed o u tp u t * /

} o u tp u t ;

/*

/* h o ld s o u tpu t in fo rm a t io n fo r a g o a l */

typede f s t r u c t _subgoa l
{

char
in t
s t r u c t _ g o a l in fo
s t r u c t subgoal

*SubGoal;
Group;
*G o a l_ In fo ;
*Next;

/* h o ld in g the subgoal 'command'
/* group # * /
/* P o in te r to subgoal in fo rm a tio n
/* P o in te r to next subgoal */

} subgoal; /* subgoal information for a goal */

h

typedef s t r u c t
{

_ g o a lin f o

boo lean N u ll;
i n t ProgNo;

*N eeded_Inpu t;
*Needed_Output ;

boo lean Done;
in p u t
o u tp u t
char *O u tpu t;
boo lean OutOK;
subgoal *SubGoals;
i n t SubgNo;

/*
/*
/*
/*
/*
/*
/*
/*
/*

i f goa l in fo was found or not */
I f program , t h is is the re fe rence */
Is i t done ? * /
In p u t needed to ach ieve goa l */
Output needed to ach ieve goa l */
Output s t r in g * /
i f needed ouput is OK */
Subgoals i f g oa l i s not program */
number o f subgoals * / ,

} g o a l in fo ;

/*

/* h o ld s in fo rm a t io n about goa l achievem ent * /

*/

typede f s t r u c t da ta
{

in t h e i;

} datanode; /* */

/*

42

[1] J.S. Albus. Brains, Behavior, & Robotics. BYTE Publications Incorporated, 1981.

[2] J.A. Anderson. Cognitive and Psychological Computation with Neural Models. IEEE Trans
actions on Systems, Man, and Cybernetics SMC-13(5):799-815, September/October, 1983.

[3] M.A. Arbib, T. Iberall and D. Lyons. Coordinated Control Programs for Movements of the Hand.
COINS 83-25, University of Massachusetts, August, 1983.

[4] D.H. Ballard and C.M. Brown. Computer Vision. Prentic-Hall, Inc, 1982.

[5] Avron Barr and Edward A. Feigenbaum. The Handbook of Artificial Intelligence. Addiso-Wesley
Publishing Company, Inc., 1981.

[6] M. Beeler. Butterfly Parallel Processor Tutorial for Programming in the C Language. BBN
6190, BBN Laboratories Incorporated, March, 1986.

[7] Bir Bhanu, Nils Thune, and Mari Thune. CAOS: A Hierarchical Robot Control System. To
appear in IEEE Transactions on Robotics and Automation , 1987.

[8] Bir Bhanu, Nils Thune, Jih Kun Lee, and Mari Thune. Hierarchical Robot Control in a Multisen
sor Environment. To appear in SPIE, Intelligent Robots and Computer Vision , 1986.

[9] C.M. Brown, C.S. Ellis, J.A.Feldman, T.J. LeBlanc and G.L. Peterson. Research with the But
terfly Multicomputer. Technical Report, BBN Laboratories Incoiporated, 1986.

[10] Joseph F. Engelberger. Robotics in Practice, ama com, 1980.

[11] J.A. Feldman. Connectionist Models and Parallelism in High Level Vision. Computer Vision,
Graphics, and Image Processing 31(2):178-200, August, 1985.

[12] Arthur C. Guyton. Human Physiology and Mechanisms of Disease. W.B. Saunders Company,
1982.

[13] Frederick Hayes-Roth, Donald A. Waterman, Douglas B. Lenat. Building Expert Systems.
Addison-Wesley Publishing Company, Inc., 1983.

[14] T. Iberall and D. Lyons. Towards Perceptual Robotics. COINS 84-17, University of Massachu
setts, August, 1984.

[15] Peter Jackson. Introduction to Expert Systems. Addison-Wesley Publishing Company, Inc., 1986.

[16] C. Jacobus, W.D. Lee and J. Norton. Flexible Assembly and Inspection of a small Electric Fuel
Pump. SPIE, Intelligent Robots and Computer Vision 579:528-536, 1985.

[17] Eric R. Kandel and James H. Schwartz. Principles of neural science. Elsevier Science Publishing
Co, Inc., 1985.

[18] Robert R. Kessler. Objective Lisp. Brown and Company, 1986.

[19] Stephen W. Kuffler, John G. Nicholls, A. Robert Martin. From Neuron To Brain. Sinauer As
sociates Inc. Publishers, 1984.

[20] E.R. Lewis. The Elements of Single Neurons: A Review. IEEE Transactions on Systems, Man,
and Cybernetics SMC-13(5):702-710, September/October, 1983.

[21] D. Mankins. Chrysalis Programmers Manual, Version2.3. BBN 6191, BBN Laboratories Incor
porated, May, 1986.

[22] Amar Mitiche and J. K. Aggarwal. Multiple Sensor Integration/Fusion through Image Processing.
Optical Engineering 25(3):380-386, March, 1986.

References

43

[23] D.S.Nau. Expert Computer Systems. IEEE Computer 16(2):63-85, February, 1983.

[24] K.J. Overton. The Acquisition, Processing, and use of Tactile Sensor Data in Robot Control.
COINS 84-08, University of Massachusetts, May, 1984.

[25] B. Thomas, R. Gurwitz, J. Goodhue, D. Allen and M. Beeler. Butterfly Parallel Processor
Overview. BBN 6148, BBN Laboratories Incoiporated, March, 1986.

[26] B. Thomas. The Uniform System Approach to Programming the Butterfly Parallel Processor,
Version 1. BBN 6149, BBN Laboratories Incoiporated, March, 1986.

[27] Nils Thune. Spherical Control. In preparation , 1987. '

[28] D.A. Waterman. A Guide to Expert Systems. Addison-Wesley Publishing Company, Inc., 1986.

