
,

, .

CONSIM:

A CONVERSATIONAL SIMULATION LANGUAGE

IMPLEMENTED THROUGH

INTERPRETIVE CONTROL SELF-MODELING

by

Sallie S. Nelson(*) and Gary Lindstrom(+)

UUCS-77106

(*) Department of Computer Science
Texas A & M University
College Station, Texas 77843

(+) Department of Computer Science
University of Utah
,Salt Lake City, Utah 84112

July 7, 1977

Computing Reviews categories: 4.22; 4.13, 8.1.

Key words and phrases: conversational simulation language, interpretive

control self-modeling, control structures, coroutines, SIMULA,

interactive programming.

This work has been supported in part by the National Science Foundation

under grant DCR73-03441 AOl to the University of Pittsburgh

flb stract

This peper describes an implementation technique termed

interpretive control self-modeling (ICSM) and outlines its

a pplication in the implementation of CONSIM, a prototype

conversational simulation language. ICSM may be defined as

the use of a higher-level programming language (HLL) to

specify its own control organization through an interpreter

administering each control event in a "reflexiveu fashion.

That is, recursion in the subject program is implemented via

recursion in the interpreter, coroutines via coroutines,

etc. Thus the run-time control state of the interpreter

evolves in a manner directly paralleling that evolving in

the subject program.

Al though ICSM is a fami liar idea in the context of

LISP-like languages, it appears not to have been applied in

more general purpose settings. We report here on the

conceptual and practical advantages found in using ICSM in a

SIMULA-67 environment to design and implement the

conversational SIMULA variant CONSIM. Benefits resulting

include conciseness and clarity of interpreter organization,

ease of system modification, and control compatibility of

CONSIM with SIMULA, thereby facilitating conversion of

stable programs to compilable SIMULA. Disadvantages include

system run-time size and speed, and awkwardness in dOing

control extensions beyond the scope of the underlying

system. Future research suggested includes the formal

specification of the ICSM process, adaptation to compiled

Page 2

systems, and more thorough investigation of economic

trade-offs involved in selecting ICSM as an implementation

strategy.

I. Interpretive Control Self-Modeling

The problems of language description confront all

individuals dealing with a higher level language: the

designer, the specifier, the implementor, and the user. A

major portion of these problems involve the control

structures of that language, i.e. its facilities for

logical program structuring and execution sequencing. Three

approaches to control description can be identifiedl

i) abstract: in which control events are
described in terms of an axiomatic foundation
and invariant properties (e.g. Wang and
Da hi' s S 1M U L A work [I]);

ii) ~~i1QU21: in which control patterns are
specified by means of an algorithm
translating them into a language with known
control semantics (e.g. the Vienna
Definition Language), and

iii) iniarpretation21: in which an algorithm is
provided that directly performs control
events when applied to a subject program
(e.g. LISP's EVAL).

A programming concept which has proven useful in the

specification of a certain class of control regimes in

higher level languages is interpretive control self-modeling

(ICSM), which deal s wi th the use of particular control forms

Page 3

to directly achieve their own modeling. ICSM is a

refinement of interpretive control description in which the

following added constraints are observed:

i) the language being described
language) and the language
interpretive definition is
descriptiQn language) are the

(the ..subject
in which the

expressed (the
same, and

i i) each control variety in the language
subject language) is phrased in
interpreter (using the language as
description language) directly in terms
it se 1 f.

(as
the

a
of

The foremost example of this effect is the definition

of LISP through the LISP fUnction EVAL. The conciseness and

extensibility of this description has contrihuted to LISP~s

popularity as a base for language experimentation during the

last fifteen years. Despite the attractiveness of ICSM in

the LISP arena, there seems to have been little application

of this technique in more general language settings.

2. CONSIM and SIMULA

The conversational simulation language CONSIM provides

a vehicle for illustrating the broader application of ICSM.

CONSIM was developed as a prototype system to demonstrate

the feasibility and utility of combining the traditional

facilities of simulation languages (e.g. coroutines.

scheduling, and advanced data structures) with the

advantages offered by a conversational environment capable

Page 4

of supporting mid-execution editing of both programs and

data [2]. Although such languages have been proposed and

discussed in the literature ([3], [4J, [5]), no full

implementations appear to exist. "Interactive ll simulation

systems are available (see for example Fox and Pritsker [6])

which allow some on-line interaction between the modeler and

the running program. Such systems, however, typically

restrict the user's interactive options to interrogation of

variables and/or suwlying data to predefined input

routines. Languages which meet our notion of conversational

must be less restrictive and support more elaborate user

control. In a truly conversational system, for example, the

user must be able to interrupt execution at any time,

interrogate and update variables, edit the program, and then

continue execution from a user-specified paint.

In order to support such a capacity for mid-execution

editibility either an interpretive implementation or an

incremental compiler is appropriate to provide the necessary

dynamic run-time organization. We chose a mixed strategy

for CONSIM, combining incremental syntax analysis with

interpretive execution.

During CONSIM's design phase we noted that using an

existing simulation language as a model would offer certain

advantages. Such a technique, for example, would shorten

the design phase by allowing us to take advantage of work

Page 5

already accomplished in creating the existing language.

S e sid e s f a c i lit at i n g des i g n r e use, fa sh ion i n g CON S I M aft e r

an existing compilation-oriented language would insure that

the new language would have at its core a control regime

known to be suitable for later compilation. Thus stabilized

conversational programs would have an improved chance of

being readily translatable into the base language for

compiled efficiency. Compatibility between an existing

language and CONSIM would offer a further advantage in that

users already familiar with the existing language could more

easily adapt to the new environment, since their past

experiences would be directly applicable.

For these reasons CONSIM was modeled after the existing

simulation language SIMULA 67 [7]. After a careful survey

of the currently available simulation languages, SI MULA 67

(hereafter referred to simply as SI MULA) was selected

because it is a powerful modern language offering a

comprehensive assortment of control features for both

coroutining and simulation. SIMULA contains an image of

ALGOL 60 as a subset, thus providing a good general purpose

basi s for the language. Furthermore, it is a "second

generation" simulation language benefitting from

considerable experience with its predecessor, SI MULA I.

These same high level features led us to select SIMULA

as the implementation language as well as the design model

Page 6

for CONSIM. We f e Itt hat S I M UL A" sse I e c t ion a s the

implementation language would minimize reinvention, since

many of CONSIM"s features could be directly implemented

using SIMULA"s features. For example, SIMULk"s statistical

facilities and random number generators seemed prime targets

for reuse in CONSIM.

Moreover, as we further examined the features of SIMULA

applicable to our implementation needs, it became clear that

SIMULA~s control structures were ideal for administering

CONSIM~s control forms in the interpreter. Thus our

implementation task became an ideal test case for evaluating

ICSM beyond the LISP-like language domain. By utilizing the

techniques of ICSM we were able to make extensive use of

SIMULA's coroutine generation and sequencing primitives, as

well as its simulation facilities, to implement directly the

corresponding facilities for CONSIM.

3. Application of ICSM to CONSIM Implementation

. An interpreter for a conversational system such as

CONSIM must support many functions not found in a

conventional interpreter, e.g. a terminal handler (with

interrupt processing capability), a program editor, and a

run-time program increment linker. These aspects of

CONSIM~s implementation, as well as the phases of the system

which are wholly traditional in nature (lexical analyzer,

Page 7

syntax analyzer, 1/0 routines, etc.), are tangential to our

purpose here, and will not be considered in this paper (see

[2] for a discussion of these topics). Instead, we focus on

the control organization of the interpreter itself, which

operates on a post-syntactic program representation (termed

"'triples ll) functionally equivalent to postfix code.

3.1 ICSM as an Implementation Strategy

Using ICSM as an implementation strategy, the CONSIM

interpreter is organized so that its run-time structure

(i.e. that of its dynamic block instances) evolves in a

manner directly paralleling that evolving within the subject

program being interpreted. Thus when a dynamic block

instance is created and entered onto the operating chain in

the CONSIM subject program, a corresponding block instance

of the CONSIM interpreter is created and entered onto the

SIMULA operating chain. In particular our adherence to ICSM

means:

i) lQ£§.1
jumps
local
block

~llir.Ql (i.e. sequential control and
within a block) is administered hy

control within the current interpreter
instance;

ii) QLQ~~ entry and axil is administered by
the creation, execution, and termination of a
new interpreter instance invoked by the
currently operating interpreter instance
positioned at the CONSIM procedure's place of
call;

iii) ~y'i;.in~ ~r.af!liQil, ru;.i;.i..Y..a:t.1.Qn, d.a tac.hm e n t t

etc. are administered by the corresponding

Page 8

actions on an interpreter instance dedicated
to the execution of that coroutine instance
in the CONSIM subject program, and

i v} QLQ~~ ~~i.Q..o., ~b.e.d.u.Li..o.Q , etc. i s
administered by the corresponding action on
an interpreter process undergoing the same
control actions.

(The remainder of section 3 assumes a basic familiarity

with SIMULA and its control facilities. The reader is

referred to (8J for suitable background information, if

needed.)

3.2 ,Use of ICSM in CONSIM·'s Implementation

The realization of ICSM as described above implies that

CONS 1M' s interpreter must be able to a ssume a number of

different guises as source program control events dictate.

That is, individual instances of an interpreter must model

different control units (e.g. procedure s, coroutines,

processes) as those units dynamically arise during CONSIM

program execution. At first examination, it may appear that

four slightly different but highly similar interpreter

definitions would be required for processing the main

program, procedures, coroutines, and processes of the CONSIM

program. While much of SlMULA's semantics are unchanged

with the se various control uni t s, some contextual

restrictions do exist (for example, cta~ is valid only in

class bodies). The prefixing feature of SIMULA classes and

blocks, however, facilitates an alternative to such a

Page 9

multiple interpreter organization.

SIMULN's prefixing facility for classes and blocks

provide s a means of concatenating both the code a(,d the data

declarations of such textual units. In addition certain

attributes such as labels may be declared to be IIvirtual ll ,

allowing their redefinition in particular prefixed

subclasses at lower levels. With this capability in mind.

an interpreter definition for the most general CONSIM

control environment, namely for procedure activations. was

written and used as a prefix to definitions for interpreters

supporting the remaining control varieties. Because the

basic CONSIM interpreter for processing procedures (a SIMULA

class called INTERP) is used as a prefix to the definition

of the interpreter for coroutine s (called COINTERP), for

simulation processes (called PINTERP), and for the main

program block, only the parts which are different must be

defined in the subclass declarations. The virtual facility

allowed the redefinition of labels to reference specific

overriding semantic routine s, thus accommodating the

di fferences between proce ssing for procedures and for the

other control blocks. Figure shows a skeleton of the

i n t e r pr e t e r •

Page 10

SIMULATION BEGIN
•
•
CLASS INTERP (•••);

BEGIN

END;

VIRTUAL: LABEL EX9, ••• ,EX37, ••• ;

SWITCH SWGO:=EXt ,EX2, ••• ,EXt 28;
•
•
! sequential interpreter cycle;
MAL NLOOP: NE X fTR I P;
! advance object program counter;
GOTO Sv~GO(TH2];
! procedure termination;
EX9: GerrO ENDINT;
•
•
! DETACH illegal unless in a coroutine;
EX37a ERROR(7, t); GOTO MAINLOOP;
•
•
! procedure call;
EX39: NEW INTERP(•••); GOTO MAINLoOP;
•
•
! coroutine and process creation;
EX45: If ID.VAL=I THEN

•
•

HIDENT.EXECa-NEW COINTERP(•••)
ELSE RIDENT.PEXEC:-NEW Pf?OC(•••);

for coroutines create a COINTERP
instance and for processes create
a PROC instance;

Gerro MAL NLOOP;

! PASSIVATE current process;
EX85: PASSIVATE;

GOTO M AI NLOoP;
•
•
ENDINT:

FIGURE J: Interpreter Outline

END

INTERP CLASS COINTERP;
BEGIN

END;

•
•
! DETACH for coroutines;
EX37: COKTt~. SELF: -NONE;

DETACH;

•
•

CORTN.SELF:-THIS COINTERP;
GOTO MAIN;

INTERP CLASS PINTEr~p(•••• PSELF);
BEGIN

•
•
!DETACH for processes;
EX37: COHTN.PSELF:-NONE;

RESUME (M AI N) ;
GOTO MAINLOOP;

•
•

END;

PfWCESS CLASS PROC(•••);
BEGIN

END;

REF(PROC)PSELF; REF(PINTERP)P;
PSELF: -11H S PROC;
P:-NE!/~ PINIEf~P(••• ,PSELF);

! mai n program;
INTERP (•••) BEGIN

•
•

Page II

! MAIN program may not RETURN;
EX9: ERRotH7,2);
•
•
! MAIN pro9ram may not DET ACH;
EX 37: E R RO fH 7 • 3);
•
•

END;

FIGU!?E 1: Interpreter Outline (continued)

Page 12

The local control structure within the INTERP class

body consists primarily of a loop (beginning at label

MAINLOOP) utilizing a swi tch to effect transfers to the

appropriate semantic processing routines, most of which end

with a QQiQ back to the beginning of the loop. For each

cycle through the loop the procedure NEXTTRIP is called to

retrieve the next object program triple for interpretation.

The EXEC numbers in each triple provide an index to the

appropriate processing routine. Unless the CONSI M statement

being executed alters the flow of control, the next

sequential triple is always selected (via NEXTTRIP) for

processing, providing sequential control within the block.

For each control action requiring generation of a new

block instance (i.e. for a procedure, coroutine, or

simulation construct), the currently operating interpreter

creates an individualized instance of the appropriate

interpreter. This interpreter instance then enters and

leaves the SIMULA operating chain in the same manner as the

corres ponding source program acti vation r'ecord. The

operating chain of the CONSIM program being executed

consists of activation records for interpreter instances

only, each processing specific activations of CONSI M control

types (e.g. main program, procedures, coroutines, and

simulation processes). This can be illustrated by six

sample control events discussed in the following

subsections: procedure call, procedure exit, coroutine

Page 13

crea ti on, corouti ne detachment, proce ss creat ion, and

process passivation. Implementation of additional control

events is given in (9] while a more detailed and complete

presentation can be found in (2].

£L~egure Call: Procedures are invoked by the semantic

routine at lahel EX39 of Figure 1. Note that a totally new

instance of INTERP is created, which oversees the entire

execution of that subrouti ne instance. Becau se I \rrERP doe s

not contain any SIMULA deta.c.h or l:e.~ume instructions, each

activation of INTERP obeys a stack-like protocol on the

operating chain of dynamic block instances. Thus, although

INTERP is itself a SIMULA class, on the operating chain its

instances behave like SIMULA procedure instances.

£.l:.Q~J.U:..e. E.x.il: ~~hen a procedure instance terminates (at

label EXY) the paralleling INTERP instance also terminates

by a jump to its exit label ENDINT. Since no references to

this INIERP instance remain, it is no longer accessible in

any way (consistent with SIMULA procedure activations).

Control returns to the creating interpreter instance (i.e.,

the caller of the subroutine), poised in its EX39 routine.

sequential control then continues from the place of

procedure call in the object program.

Page 14

CQLQui~ Creation: By utilizing the coroutine primitives

~, detach and ~~, the user can explicitly control the

creation of coroutine instances and the suspension and

resumption of their actions. With the inclusion of such

facilities the operating chain of activation rAcords no

longer obeys a stac k-l i ke protocol in genera 1. Corouti ne

instances which are suspended must be" swa pped" off the

chain and retained in such a way that they can be "swapped ll

back on if they are subsequently resumed.

When a coroutine is created, an action (EX45) takes

place similar to that for a procedure call, except that a

COINTERP subcla ss (of INTERP) is created rather than one of

INTEHP itself. This permits the general block mediation

code of INIERP to be extended by the new definition (via

virtual label placement) of routines particular to coroutine

semantics. This is illustrated by the next subsection.

QQ~QUi~ Detachment: Only coroutines are permitted to

detach (and not, e.g., procedures), so the occurrence of a

~~ in either the main program or a procedure instance

results in generation of an error, as may be noted by the

e.rror call in the EX37 routine of INTERP. COINTERP and

PINTERP, however, do permit detachment, accomplishing it by

direct modeling in their respective EX37 routines.

When a CONSIM detach is encountered by a COINTERP or

Page 15

PINTERP instance, a SIMULA d.e.~ is executed. This places

the interpreter instance in the "detached" state, suspending

CONSIM interpretation at that point. The suspended COINTERP

instance is automatically retained by the SIMULA run-time

system for possible resumption (e.g., via a resuaa or ~ll

statement) •

eroces~ Creation: We planned to implement CONSIMl s

simulation primitives in an analogous manner utilizing

ICSM; that is, for each CONSIM proce ss create an instance of

PINIfRP (the process interpreter class) and directly

schedule it via SIMULA's simulation primitives. However, in

order for PINTERP to be "schedulable" by SIMULA, it has to

be prefixed by the system-defined class PROCESS. This was

not possible however,

INTERP (in utilizing

since PINIERP is already prefixed by

S I M U L AI S vir t u a 1 f a c i lit Y to

accommodate semantic variations between procedures and

processes). Therefore a new class called PROC (shovvn in its

entirety in Figure I), was defined and prefixed by SIMULA's

class PROCESS. Its primary action is to create a PINTERP

instance for interpreting the CONSIM process. Thus the

PROC/PINTERP pair represent a single CONSIM process (;n

SIMULAJ s operating chain.

When a CONSIM process is created (at EX45), two dynamic

block instances are generated: an instance of PROC which is

directly schedulable as a SIMULA process, and an instance of

Page 16

PINTERP which performs the"execution,1I of the CONSIM

process-'s triples. This is a slight non-uniformity in ICSM

faithfulness, but in no way encumbers the implementation.

~r.Q<;;es.s Passivation: Once SIMULA's scheduling fRcilities

were made available for direct use in CONSIM"s

implementation (through the use of SIMULA's standard class

PHOCESS), the ICSM strategy was very easy to apply. For

example, the semantic processing for ~gssl~ (EX~5) is

shown in Figure 1, consisting simply of the SIMULA statement

Q1!~ate.

3.3 An Example

To further clarify the similarities of SIMULA and

CONSIM processing, consider

systems while executing the

the operating chain for both

following example. A main

program creates coroutine instances X and Y. Each coroutine

~detachesJ', returning control to the main program. The main

program resumes coroutine instance Y which calls procedure

Z. Using the Wang and Dahl operating chain diagrams the

configuration at this point can be represented as follows:

Page 17

SI MULA CONSIM

If procedure Z then execute s the instruction ~~ X, the

configuration becomes:

SIMULA CONSIM

q= x (H M ai. jp

q z H y lP
If coroutine instance Y is subsequently resumed, the

activation records for both Y and Z will be swapped back

onto the operating chain .

4 . Advantages and Di sadvantages of CON5I MJ's Use of IC5 M

The use of IC5 M greatly simplified the implementation

of CON5 I MJ's interpreter since the responsibility for much of

the .lIbookk eep ing·1I cou ld be transfe rred back to the

underlying 51 MULA system . For exam pI e , because the

interpreter instances enter and leave the operating chain as

surrogates for the CON5I M activation records, the operating

state of each interpreter instance (llattached", "detached'",

Page 18

or"terminated-II) directly reflects the state of the

corresponding CONS I M control uni t instance. As a r esu 1 t,

the CONSIM implementation does not maintain separate state

information for each source program unit; rather it makes

use of the interpreter state as automatically updated by the

SIMULA run-time system. Moreover, all the complexities of

run-time storage management are "finessedll in this

implementation through their complete delegation to the

background SIMULA system.

Besides simplifying the interpreter's implementation,

ICSM also clarifies its organization, making it attractive

as a vehicle for language study and experimentation. As can

be seen from the outline in Figure 1 the interpreter is not

only highly readable but also isolates the proce ssing for

specific semantic actions (into the EX routines) and

minimizes redundancy in the various control modules (e.g.

COINTERP, PINTERP, etc.). The conciseness resulting from

the use of ICSM is even more apparent in the full

interpreter listing (given in [2]), which is only 734 lines

long including comments.

One of the disadvantages

implementation of CONSIM is

of ICSM techniques

the run-time size

in

of

the

the

resulting system. For example, interactive construction and

execution of a small model via the prototype implementation

required 40K words on a DEC system-IO (see [2] for a

Page 19

scenario of the model construction process). Although this

level of overhead would normally be judged intolerable for a

user-oriented implementation in a production environment,

other factors, such as system develop:nent time and effort,

as well as user flexibility, should be considered in

assessing the true merit of this technique.

Although economics will probably necessitate the use of

some other strategy in a full user-oriented implementation,

ICSM was shown to be a useful a pproach in language

experimentation, especially in the area of control structure

design. The ability to use SIMULA's powerful primitives in

implementing similar ones for CONSIM reduced the complexity

of the interpreter to a manageable degree, facilitating

experimentation and providing additional insight into system

operation. This characteristic of ICSM makes it the kind of

tool advocated by Winograd (IOJ for use in the design and

developnent of today's complex systems.

5. Conclusions and Promising Areas of Further Research

The main question addressed by this paper can be

succinctly stated as follows:

What are the advantages, conceptual and
practical, of using an advanced simulation
language (SIMULA) to implement a replica of
itself (CONSIM) through interpretive control
self-modeling?

Our conclusions to this question may be summarized as

Page 20

follows:

i) lilJ... power: an obvious first advantage lies
in the sum total of all the features that a
modern till such as S IMUlA offers to the
language implementor: code generation
leverage, advanced data structures, and
support facilities (1/0 routines, linkers,
debuggers, editors, etc.);

ii) Q§LS.lmony: ICSM results in less source code
in the interpreter, since activities such as
process creation, detachment, and scheduling
can be accomplished directly and reliably
through direct usage of the same primitives
within the interpreter;

iii) ~~gn ~~: for the language design (e.g.
for us, that of CONSIM), the availability of
a comprehensive language such as SIMUlA
offers a control design that is already
thoroughly designed, evaluated and packaged,
and

iv) kQffiQg1iQl1i1Y: when the describing language
is compilation-oriented (as is SIMUlA), then
the subject language has as a control core a
regime known to be suitable for later
compilation.

Our experience in this research suggests that ICSIA can

be a viable and useful technique for language research in a

broader arena than simply that of IISP-like languages. In

particular, we found SIMUlA to be quite suitable for ICSM.

Our preliminary research indicates, however, that when the

inter preti ve language is extended to include control

facilities beyond those of SIMUlA, the strategy becomes less

straightforward. For example, addition of a multi-level

~~ statement to CONSIM would be more difficult to

implement, since the corresponding control construct does

not exist in SIMUlA. [he availability in SIMUlA of

Page 21

primitives by which the user could directly access

activation records to control their entry and exit from the

operating chain would be useful in this regard. Further

study is needed to identify the characteristics which make a

language most suitable for use with ICSM.

Our re su Its here indi ca te tha t further resea rch is

merited into interpretive control self-modeling as a

language pro perty and as a programming tool. The

attractiveness of icsm as a means of insight into HLL

control structures would be further illuminated

examination of the following questions:

i} how can the proce ss of I CSM be forma 11 y
spec i fie d ? (R e y n 0 1 d s [1 1] has 0 f fer e d so me
directions here.)

ii) what language control features are naturally
suitable for ICSM, and why?

iii) how do we prove the correctness of an
instance of ICSM?

by

Beyond its conceptual advantages, ICSM has been shown

here to offer a practical programming aid in certain system

impl ementati on area s. A fu 11 a sse ssment of I CSM" s pract ic a 1

utility would include:

i) an analysis of run-time economic issues,
especially in terms of storage management;

ii) a thorough study of the nature and
attractiveness of ICSM when adapted to a
variety of positions on the interpret/compile
spectrum, and

Page 22

iii) an investigation of what application areas
ICSM techniques are best suited for (e.g.,
can the idea be adapted to support operating
system construction using simulation
languages?).

· ~

REFERENCES

Page 23

.. ~

(I] A. Wang, and O. J. Dahl, UCoroutine Sequencing in a
Block Structured Environment,.!' BIT II (1971).

[2] Sallie S. Nelson, "Control I ssues in the Development
of a Conversational Simulation Language," (Ph.D.
Thesis) University of Pittsburgh, Pittsburgh, Pa.
(Apr ill 977) •

(3] Malcolm M. Jones, J'Incremental Simulation on a
Time-Shared Computer," (Ph.D. Thesis) MIT MAC Report
TR-48, I 968.

[4] Philip J. Kiviat, "Requirements for an Interactive
Mode ling and S imu la tion System ," MULTI - ACCESS
COMPUTING: MODERN RESEARCH AND REQUIREMENTS (ed. Paul
H. Rosenthal and R. K. Mish), 1974.

[~] Gary E. Lindstrom, "Prospects for Conversational

[6]

[7]

[b]

Simulation Programming," 4TH ANNUAL PITTSBURGH
CONFEHEi~CE ON MODELING AND SIMULATION, (April IY73).

Mark A. Fox, and Al an
Simulation with GASP IV
Vol. 6 No.3, (Apr il I 9 7 ~) •

f3. Pritsker,IIInteractive
on a :,Hnicomputer,1I SIGSIM,

o. J. Dahl, B. Myhrhaug and K. Nygard, SIMULA 67
Computing Center, COMi~ON BASE L ANGU AGE. Norwegi an

Norway (May 1968).

J. D. Ichbiah, and S. P.
the SIMULA 67 Programming
AUTO!A An C P RUGR M~M I NG, Vo 1.
6S-93.

i.1orse, "General Concepts of
Language,i1 ANNUAL l?EVIEv.t IN

7, Part 1 (1972), pp.

[yJ Sallie S. Nelson, and Gary E. Lindstrom, "CONSIM: A
Case Study
Technical

in Interpretive Control Self-Modeling,1I
He port 76-12, Uni versi ty of Pi tt shurgh

(1 976) •

[10] Terry Winograd,
Again," SIGPLAN,
13-20.

"Breaking the
Vol. JO, No.

Complexity Barrier
1 (January 1975), pp

[11] John C. Reynolds,"Definitional Interpreters for
Higher-Order Programming Languages," PROCEEDINGS ACM
NATIONAL CONfERENCE, (1974).

