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This peper describes an implementation technique termed 

interpretive control self-modeling (ICSM) and outlines its 

a pplication in the implementation of CONSIM, a prototype 

conversational simulation language. ICSM may be defined as 

the use of a higher-level programming language (HLL) to 

specify its own control organization through an interpreter 

administering each control event in a "reflexiveu fashion. 

That is, recursion in the subject program is implemented via 

recursion in the interpreter, coroutines via coroutines, 

etc. Thus the run-time control state of the interpreter 

evolves in a manner directly paralleling that evolving in 

the subject program. 

Al though ICSM is a fami liar idea in the context of 

LISP-like languages, it appears not to have been applied in 

more general purpose settings. We report here on the 

conceptual and practical advantages found in using ICSM in a 

SIMULA-67 environment to design and implement the 

conversational SIMULA variant CONSIM. Benefits resulting 

include conciseness and clarity of interpreter organization, 

ease of system modification, and control compatibility of 

CONSIM with SIMULA, thereby facilitating conversion of 

stable programs to compilable SIMULA. Disadvantages include 

system run-time size and speed, and awkwardness in dOing 

control extensions beyond the scope of the underlying 

system. Future research suggested includes the formal 

specification of the ICSM process, adaptation to compiled 
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systems, and more thorough investigation of economic 

trade-offs involved in selecting ICSM as an implementation 

strategy. 

I. Interpretive Control Self-Modeling 

The problems of language description confront all 

individuals dealing with a higher level language: the 

designer, the specifier, the implementor, and the user. A 

major portion of these problems involve the control 

structures of that language, i.e. its facilities for 

logical program structuring and execution sequencing. Three 

approaches to control description can be identifiedl 

i) abstract: in which control events are 
described in terms of an axiomatic foundation 
and invariant properties (e.g. Wang and 
Da hi' s S 1M U L A work [I]); 

ii) ~~i1QU21: in which control patterns are 
specified by means of an algorithm 
translating them into a language with known 
control semantics (e.g. the Vienna 
Definition Language), and 

iii) iniarpretation21: in which an algorithm is 
provided that directly performs control 
events when applied to a subject program 
(e.g. LISP's EVAL). 

A programming concept which has proven useful in the 

specification of a certain class of control regimes in 

higher level languages is interpretive control self-modeling 

(ICSM), which deal s wi th the use of particular control forms 
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to directly achieve their own modeling. ICSM is a 

refinement of interpretive control description in which the 

following added constraints are observed: 

i) the language being described 
language) and the language 
interpretive definition is 
descriptiQn language) are the 

(the ..subject 
in which the 

expressed (the 
same, and 

i i ) each control variety in the language 
subject language) is phrased in 
interpreter (using the language as 
description language) directly in terms 
it se 1 f. 

(as 
the 

a 
of 

The foremost example of this effect is the definition 

of LISP through the LISP fUnction EVAL. The conciseness and 

extensibility of this description has contrihuted to LISP~s 

popularity as a base for language experimentation during the 

last fifteen years. Despite the attractiveness of ICSM in 

the LISP arena, there seems to have been little application 

of this technique in more general language settings. 

2. CONSIM and SIMULA 

The conversational simulation language CONSIM provides 

a vehicle for illustrating the broader application of ICSM. 

CONSIM was developed as a prototype system to demonstrate 

the feasibility and utility of combining the traditional 

facilities of simulation languages (e.g. coroutines. 

scheduling, and advanced data structures) with the 

advantages offered by a conversational environment capable 
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of supporting mid-execution editing of both programs and 

data [2]. Although such languages have been proposed and 

discussed in the literature ([3], [4J, [5]), no full 

implementations appear to exist. "Interactive ll simulation 

systems are available (see for example Fox and Pritsker [6]) 

which allow some on-line interaction between the modeler and 

the running program. Such systems, however, typically 

restrict the user's interactive options to interrogation of 

variables and/or suwlying data to predefined input 

routines. Languages which meet our notion of conversational 

must be less restrictive and support more elaborate user 

control. In a truly conversational system, for example, the 

user must be able to interrupt execution at any time, 

interrogate and update variables, edit the program, and then 

continue execution from a user-specified paint. 

In order to support such a capacity for mid-execution 

editibility either an interpretive implementation or an 

incremental compiler is appropriate to provide the necessary 

dynamic run-time organization. We chose a mixed strategy 

for CONSIM, combining incremental syntax analysis with 

interpretive execution. 

During CONSIM's design phase we noted that using an 

existing simulation language as a model would offer certain 

advantages. Such a technique, for example, would shorten 

the design phase by allowing us to take advantage of work 
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already accomplished in creating the existing language. 

S e sid e s f a c i lit at i n g des i g n r e use, fa sh ion i n g CON S I M aft e r 

an existing compilation-oriented language would insure that 

the new language would have at its core a control regime 

known to be suitable for later compilation. Thus stabilized 

conversational programs would have an improved chance of 

being readily translatable into the base language for 

compiled efficiency. Compatibility between an existing 

language and CONSIM would offer a further advantage in that 

users already familiar with the existing language could more 

easily adapt to the new environment, since their past 

experiences would be directly applicable. 

For these reasons CONSIM was modeled after the existing 

simulation language SIMULA 67 [7]. After a careful survey 

of the currently available simulation languages, SI MULA 67 

(hereafter referred to simply as SI MULA) was selected 

because it is a powerful modern language offering a 

comprehensive assortment of control features for both 

coroutining and simulation. SIMULA contains an image of 

ALGOL 60 as a subset, thus providing a good general purpose 

basi s for the language. Furthermore, it is a "second 

generation" simulation language benefitting from 

considerable experience with its predecessor, SI MULA I. 

These same high level features led us to select SIMULA 

as the implementation language as well as the design model 
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for CONSIM. We f e Itt hat S I M UL A" sse I e c t ion a s the 

implementation language would minimize reinvention, since 

many of CONSIM"s features could be directly implemented 

using SIMULA"s features. For example, SIMULk"s statistical 

facilities and random number generators seemed prime targets 

for reuse in CONSIM. 

Moreover, as we further examined the features of SIMULA 

applicable to our implementation needs, it became clear that 

SIMULA~s control structures were ideal for administering 

CONSIM~s control forms in the interpreter. Thus our 

implementation task became an ideal test case for evaluating 

ICSM beyond the LISP-like language domain. By utilizing the 

techniques of ICSM we were able to make extensive use of 

SIMULA's coroutine generation and sequencing primitives, as 

well as its simulation facilities, to implement directly the 

corresponding facilities for CONSIM. 

3. Application of ICSM to CONSIM Implementation 

. An interpreter for a conversational system such as 

CONSIM must support many functions not found in a 

conventional interpreter, e.g. a terminal handler (with 

interrupt processing capability), a program editor, and a 

run-time program increment linker. These aspects of 

CONSIM~s implementation, as well as the phases of the system 

which are wholly traditional in nature (lexical analyzer, 
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syntax analyzer, 1/0 routines, etc.), are tangential to our 

purpose here, and will not be considered in this paper (see 

[2] for a discussion of these topics). Instead, we focus on 

the control organization of the interpreter itself, which 

operates on a post-syntactic program representation (termed 

"'triples ll ) functionally equivalent to postfix code. 

3.1 ICSM as an Implementation Strategy 

Using ICSM as an implementation strategy, the CONSIM 

interpreter is organized so that its run-time structure 

(i.e. that of its dynamic block instances) evolves in a 

manner directly paralleling that evolving within the subject 

program being interpreted. Thus when a dynamic block 

instance is created and entered onto the operating chain in 

the CONSIM subject program, a corresponding block instance 

of the CONSIM interpreter is created and entered onto the 

SIMULA operating chain. In particular our adherence to ICSM 

means: 

i) lQ£§.1 
jumps 
local 
block 

~llir.Ql (i.e. sequential control and 
within a block) is administered hy 

control within the current interpreter 
instance; 

ii) QLQ~~ entry and axil is administered by 
the creation, execution, and termination of a 
new interpreter instance invoked by the 
currently operating interpreter instance 
positioned at the CONSIM procedure's place of 
call; 

iii) ~y'i;.in~ ~r.af!liQil, ru;.i;.i..Y..a:t.1.Qn, d.a tac.hm e n t t 

etc. are administered by the corresponding 
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actions on an interpreter instance dedicated 
to the execution of that coroutine instance 
in the CONSIM subject program, and 

i v} QLQ~~ ~~i.Q..o., ~b.e.d.u.Li..o.Q , etc. i s 
administered by the corresponding action on 
an interpreter process undergoing the same 
control actions. 

(The remainder of section 3 assumes a basic familiarity 

with SIMULA and its control facilities. The reader is 

referred to (8J for suitable background information, if 

needed. ) 

3.2 ,Use of ICSM in CONSIM·'s Implementation 

The realization of ICSM as described above implies that 

CONS 1M' s interpreter must be able to a ssume a number of 

different guises as source program control events dictate. 

That is, individual instances of an interpreter must model 

different control units (e.g. procedure s, coroutines, 

processes) as those units dynamically arise during CONSIM 

program execution. At first examination, it may appear that 

four slightly different but highly similar interpreter 

definitions would be required for processing the main 

program, procedures, coroutines, and processes of the CONSIM 

program. While much of SlMULA's semantics are unchanged 

with the se various control uni t s, some contextual 

restrictions do exist (for example, cta~ is valid only in 

class bodies). The prefixing feature of SIMULA classes and 

blocks, however, facilitates an alternative to such a 
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multiple interpreter organization. 

SIMULN's prefixing facility for classes and blocks 

provide s a means of concatenating both the code a(,d the data 

declarations of such textual units. In addition certain 

attributes such as labels may be declared to be IIvirtual ll , 

allowing their redefinition in particular prefixed 

subclasses at lower levels. With this capability in mind. 

an interpreter definition for the most general CONSIM 

control environment, namely for procedure activations. was 

written and used as a prefix to definitions for interpreters 

supporting the remaining control varieties. Because the 

basic CONSIM interpreter for processing procedures (a SIMULA 

class called INTERP) is used as a prefix to the definition 

of the interpreter for coroutine s (called COINTERP), for 

simulation processes (called PINTERP), and for the main 

program block, only the parts which are different must be 

defined in the subclass declarations. The virtual facility 

allowed the redefinition of labels to reference specific 

overriding semantic routine s, thus accommodating the 

di fferences between proce ssing for procedures and for the 

other control blocks. Figure shows a skeleton of the 

i n t e r pr e t e r • 
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SIMULATION BEGIN 
• 
• 
CLASS INTERP ( ••• ); 

BEGIN 

END; 

VIRTUAL: LABEL EX9, ••• ,EX37, ••• ; 

SWITCH SWGO:=EXt ,EX2, ••• ,EXt 28; 
• 
• 
! sequential interpreter cycle; 
MAL NLOOP: NE X fTR I P; 
! advance object program counter; 
GOTO Sv~GO(TH2]; 
! procedure termination; 
EX9: GerrO ENDINT; 
• 
• 
! DETACH illegal unless in a coroutine; 
EX37a ERROR(7, t); GOTO MAINLOOP; 
• 
• 
! procedure call; 
EX39: NEW INTERP( ••• ); GOTO MAINLoOP; 
• 
• 
! coroutine and process creation; 
EX45: If ID.VAL=I THEN 

• 
• 

HIDENT.EXECa-NEW COINTERP( ••• ) 
ELSE RIDENT.PEXEC:-NEW Pf?OC( ••• ); 

for coroutines create a COINTERP 
instance and for processes create 
a PROC instance; 

Gerro MAL NLOOP; 

! PASSIVATE current process; 
EX85: PASSIVATE; 

GOTO M AI NLOoP; 
• 
• 
ENDINT: 

FIGURE J: Interpreter Outline 



END 

INTERP CLASS COINTERP; 
BEGIN 

END; 

• 
• 
! DETACH for coroutines; 
EX37: COKTt~. SELF: -NONE; 

DETACH; 

• 
• 

CORTN.SELF:-THIS COINTERP; 
GOTO MAIN; 

INTERP CLASS PINTEr~p( •••• PSELF); 
BEGIN 

• 
• 
!DETACH for processes; 
EX37: COHTN.PSELF:-NONE; 

RESUME (M AI N) ; 
GOTO MAINLOOP; 

• 
• 

END; 

PfWCESS CLASS PROC( ••• ); 
BEGIN 

END; 

REF(PROC)PSELF; REF(PINTERP)P; 
PSELF: -11H S PROC; 
P:-NE!/~ PINIEf~P( ••• ,PSELF); 

! mai n program; 
INTERP ( ••• ) BEGIN 

• 
• 

Page II 

! MAIN program may not RETURN; 
EX9: ERRotH7,2); 
• 
• 
! MAIN pro9ram may not DET ACH; 
EX 37: E R RO fH 7 • 3 ); 
• 
• 

END; 

FIGU!?E 1: Interpreter Outline (continued) 
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The local control structure within the INTERP class 

body consists primarily of a loop (beginning at label 

MAINLOOP) utilizing a swi tch to effect transfers to the 

appropriate semantic processing routines, most of which end 

with a QQiQ back to the beginning of the loop. For each 

cycle through the loop the procedure NEXTTRIP is called to 

retrieve the next object program triple for interpretation. 

The EXEC numbers in each triple provide an index to the 

appropriate processing routine. Unless the CONSI M statement 

being executed alters the flow of control, the next 

sequential triple is always selected (via NEXTTRIP) for 

processing, providing sequential control within the block. 

For each control action requiring generation of a new 

block instance (i.e. for a procedure, coroutine, or 

simulation construct), the currently operating interpreter 

creates an individualized instance of the appropriate 

interpreter. This interpreter instance then enters and 

leaves the SIMULA operating chain in the same manner as the 

corres ponding source program acti vation r'ecord. The 

operating chain of the CONSIM program being executed 

consists of activation records for interpreter instances 

only, each processing specific activations of CONSI M control 

types (e.g. main program, procedures, coroutines, and 

simulation processes). This can be illustrated by six 

sample control events discussed in the following 

subsections: procedure call, procedure exit, coroutine 
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crea ti on, corouti ne detachment, proce ss creat ion, and 

process passivation. Implementation of additional control 

events is given in (9] while a more detailed and complete 

presentation can be found in (2]. 

£L~egure Call: Procedures are invoked by the semantic 

routine at lahel EX39 of Figure 1. Note that a totally new 

instance of INTERP is created, which oversees the entire 

execution of that subrouti ne instance. Becau se I \rrERP doe s 

not contain any SIMULA deta.c.h or l:e.~ume instructions, each 

activation of INTERP obeys a stack-like protocol on the 

operating chain of dynamic block instances. Thus, although 

INTERP is itself a SIMULA class, on the operating chain its 

instances behave like SIMULA procedure instances. 

£.l:.Q~J.U:..e. E.x.il: ~~hen a procedure instance terminates (at 

label EXY) the paralleling INTERP instance also terminates 

by a jump to its exit label ENDINT. Since no references to 

this INIERP instance remain, it is no longer accessible in 

any way (consistent with SIMULA procedure activations). 

Control returns to the creating interpreter instance (i.e., 

the caller of the subroutine), poised in its EX39 routine. 

sequential control then continues from the place of 

procedure call in the object program. 
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CQLQui~ Creation: By utilizing the coroutine primitives 

~, detach and ~~, the user can explicitly control the 

creation of coroutine instances and the suspension and 

resumption of their actions. With the inclusion of such 

facilities the operating chain of activation rAcords no 

longer obeys a stac k-l i ke protocol in genera 1. Corouti ne 

instances which are suspended must be" swa pped" off the 

chain and retained in such a way that they can be "swapped ll 

back on if they are subsequently resumed. 

When a coroutine is created, an action (EX45) takes 

place similar to that for a procedure call, except that a 

COINTERP subcla ss (of INTERP) is created rather than one of 

INTEHP itself. This permits the general block mediation 

code of INIERP to be extended by the new definition (via 

virtual label placement) of routines particular to coroutine 

semantics. This is illustrated by the next subsection. 

QQ~QUi~ Detachment: Only coroutines are permitted to 

detach (and not, e.g., procedures), so the occurrence of a 

~~ in either the main program or a procedure instance 

results in generation of an error, as may be noted by the 

e.rror call in the EX37 routine of INTERP. COINTERP and 

PINTERP, however, do permit detachment, accomplishing it by 

direct modeling in their respective EX37 routines. 

When a CONSIM detach is encountered by a COINTERP or 
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PINTERP instance, a SIMULA d.e.~ is executed. This places 

the interpreter instance in the "detached" state, suspending 

CONSIM interpretation at that point. The suspended COINTERP 

instance is automatically retained by the SIMULA run-time 

system for possible resumption (e.g., via a resuaa or ~ll 

statement) • 

eroces~ Creation: We planned to implement CONSIMl s 

simulation primitives in an analogous manner utilizing 

ICSM; that is, for each CONSIM proce ss create an instance of 

PINIfRP (the process interpreter class) and directly 

schedule it via SIMULA's simulation primitives. However, in 

order for PINTERP to be "schedulable" by SIMULA, it has to 

be prefixed by the system-defined class PROCESS. This was 

not possible however, 

INTERP (in utilizing 

since PINIERP is already prefixed by 

S I M U L AI S vir t u a 1 f a c i lit Y to 

accommodate semantic variations between procedures and 

processes). Therefore a new class called PROC (shovvn in its 

entirety in Figure I), was defined and prefixed by SIMULA's 

class PROCESS. Its primary action is to create a PINTERP 

instance for interpreting the CONSIM process. Thus the 

PROC/PINTERP pair represent a single CONSIM process (;n 

SIMULAJ s operating chain. 

When a CONSIM process is created (at EX45), two dynamic 

block instances are generated: an instance of PROC which is 

directly schedulable as a SIMULA process, and an instance of 
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PINTERP which performs the"execution,1I of the CONSIM 

process-'s triples. This is a slight non-uniformity in ICSM 

faithfulness, but in no way encumbers the implementation. 

~r.Q<;;es.s Passivation: Once SIMULA's scheduling fRcilities 

were made available for direct use in CONSIM"s 

implementation (through the use of SIMULA's standard class 

PHOCESS), the ICSM strategy was very easy to apply. For 

example, the semantic processing for ~gssl~ (EX~5) is 

shown in Figure 1, consisting simply of the SIMULA statement 

Q1!~ate. 

3.3 An Example 

To further clarify the similarities of SIMULA and 

CONSIM processing, consider 

systems while executing the 

the operating chain for both 

following example. A main 

program creates coroutine instances X and Y. Each coroutine 

~detachesJ', returning control to the main program. The main 

program resumes coroutine instance Y which calls procedure 

Z. Using the Wang and Dahl operating chain diagrams the 

configuration at this point can be represented as follows: 
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SI MULA CONSIM 

If procedure Z then execute s the instruction ~~ X, the 

configuration becomes: 

SIMULA CONSIM 

q= x (H M ai. jp 

q z H y lP 
If coroutine instance Y is subsequently resumed, the 

activation records for both Y and Z will be swapped back 

onto the operating chain . 

4 . Advantages and Di sadvantages of CON5I MJ's Use of IC5 M 

The use of IC5 M greatly simplified the implementation 

of CON5 I MJ's interpreter since the responsibility for much of 

the .lIbookk eep ing·1I cou ld be transfe rred back to the 

underlying 51 MULA system . For exam pI e , because the 

interpreter instances enter and leave the operating chain as 

surrogates for the CON5I M activation records, the operating 

state of each interpreter instance (llattached", "detached'", 
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or"terminated-II ) directly reflects the state of the 

corresponding CONS I M control uni t instance. As a r esu 1 t, 

the CONSIM implementation does not maintain separate state 

information for each source program unit; rather it makes 

use of the interpreter state as automatically updated by the 

SIMULA run-time system. Moreover, all the complexities of 

run-time storage management are "finessedll in this 

implementation through their complete delegation to the 

background SIMULA system. 

Besides simplifying the interpreter's implementation, 

ICSM also clarifies its organization, making it attractive 

as a vehicle for language study and experimentation. As can 

be seen from the outline in Figure 1 the interpreter is not 

only highly readable but also isolates the proce ssing for 

specific semantic actions (into the EX routines) and 

minimizes redundancy in the various control modules (e.g. 

COINTERP, PINTERP, etc.). The conciseness resulting from 

the use of ICSM is even more apparent in the full 

interpreter listing (given in [2]), which is only 734 lines 

long including comments. 

One of the disadvantages 

implementation of CONSIM is 

of ICSM techniques 

the run-time size 

in 

of 

the 

the 

resulting system. For example, interactive construction and 

execution of a small model via the prototype implementation 

required 40K words on a DEC system-IO (see [2] for a 
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scenario of the model construction process). Although this 

level of overhead would normally be judged intolerable for a 

user-oriented implementation in a production environment, 

other factors, such as system develop:nent time and effort, 

as well as user flexibility, should be considered in 

assessing the true merit of this technique. 

Although economics will probably necessitate the use of 

some other strategy in a full user-oriented implementation, 

ICSM was shown to be a useful a pproach in language 

experimentation, especially in the area of control structure 

design. The ability to use SIMULA's powerful primitives in 

implementing similar ones for CONSIM reduced the complexity 

of the interpreter to a manageable degree, facilitating 

experimentation and providing additional insight into system 

operation. This characteristic of ICSM makes it the kind of 

tool advocated by Winograd (IOJ for use in the design and 

developnent of today's complex systems. 

5. Conclusions and Promising Areas of Further Research 

The main question addressed by this paper can be 

succinctly stated as follows: 

What are the advantages, conceptual and 
practical, of using an advanced simulation 
language (SIMULA) to implement a replica of 
itself (CONSIM) through interpretive control 
self-modeling? 

Our conclusions to this question may be summarized as 
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follows: 

i) lilJ... power: an obvious first advantage lies 
in the sum total of all the features that a 
modern till such as S IMUlA offers to the 
language implementor: code generation 
leverage, advanced data structures, and 
support facilities (1/0 routines, linkers, 
debuggers, editors, etc.); 

ii) Q§LS.lmony: ICSM results in less source code 
in the interpreter, since activities such as 
process creation, detachment, and scheduling 
can be accomplished directly and reliably 
through direct usage of the same primitives 
within the interpreter; 

iii) ~~gn ~~: for the language design (e.g. 
for us, that of CONSIM), the availability of 
a comprehensive language such as SIMUlA 
offers a control design that is already 
thoroughly designed, evaluated and packaged, 
and 

iv) kQffiQg1iQl1i1Y: when the describing language 
is compilation-oriented (as is SIMUlA), then 
the subject language has as a control core a 
regime known to be suitable for later 
compilation. 

Our experience in this research suggests that ICSIA can 

be a viable and useful technique for language research in a 

broader arena than simply that of IISP-like languages. In 

particular, we found SIMUlA to be quite suitable for ICSM. 

Our preliminary research indicates, however, that when the 

inter preti ve language is extended to include control 

facilities beyond those of SIMUlA, the strategy becomes less 

straightforward. For example, addition of a multi-level 

~~ statement to CONSIM would be more difficult to 

implement, since the corresponding control construct does 

not exist in SIMUlA. [he availability in SIMUlA of 
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primitives by which the user could directly access 

activation records to control their entry and exit from the 

operating chain would be useful in this regard. Further 

study is needed to identify the characteristics which make a 

language most suitable for use with ICSM. 

Our re su Its here indi ca te tha t further resea rch is 

merited into interpretive control self-modeling as a 

language pro perty and as a programming tool. The 

attractiveness of icsm as a means of insight into HLL 

control structures would be further illuminated 

examination of the following questions: 

i} how can the proce ss of I CSM be forma 11 y 
spec i fie d ? ( R e y n 0 1 d s [1 1] has 0 f fer e d so me 
directions here.) 

ii) what language control features are naturally 
suitable for ICSM, and why? 

iii) how do we prove the correctness of an 
instance of ICSM? 

by 

Beyond its conceptual advantages, ICSM has been shown 

here to offer a practical programming aid in certain system 

impl ementati on area s. A fu 11 a sse ssment of I CSM" s pract ic a 1 

utility would include: 

i) an analysis of run-time economic issues, 
especially in terms of storage management; 

ii) a thorough study of the nature and 
attractiveness of ICSM when adapted to a 
variety of positions on the interpret/compile 
spectrum, and 
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iii) an investigation of what application areas 
ICSM techniques are best suited for (e.g., 
can the idea be adapted to support operating 
system construction using simulation 
languages?). 
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