
D e s i g n o f a P a r a l l e l V e c t o r A c c e s s U n i t f o r S D R A M

M e m o r y S y s t e m s

Binu K. Mathew, Sally A. McKee, John B. Carter, Al Davis

{mbinu | sam | retrac | ald}@cs.utah.edu
D r a f t . D o n o t d i s t r i b u t e

i

UUCS-99-006

Department of Computer Science
3190 Merrill Engineering Building

University of Utah
Salt Lake City, UT 84112

February 4, 2000

' Abstract

Parallel Vector Access is a technique that exploits the regularity of vector or stream
accesses to perform them efficiently in parallel on a multi-bank memory system. The perfor
mance of applications that have vector accesses may be improved using a memory controller
that performs scatter/gather operations so that only the vector or stream elements that are
accessed by the application are transmitted across the system bus. These scatter/gather
operations can be speeded up by broadcasting vector operations to all banks of memory
in parallel, each of which implements an algorithm to determine which elements of the re
quested vector they contain. This thesis presents the mathematical foundations behind one
such algorithm for efficient parallel access of base-stride vectors on both word interleaved
and cache-line interleaved memory systems. The design of a memory controller subcompo
nent that uses the Parallel Vector Access (PVA) algorithm to improve the performance of
applications with strided access patterns is described. The hardware implementation issues
behind such a memory controller are investigated. The the performance of such a memory
controller on vector kernels is studied by gate level simulation and the results analyzed. Be
cause of the parallel approach, the PVA is able to load elements up to 32.8 times faster than
a conventional memory system and 3.3 times faster than a pipelined vector unit, without
hurting normal cache line fill performance.

Keywords: memory architecture, memory latency, memory bandwidth, bus utilization,
cache efficiency

^ h is effort was sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL) under agreement number F30602-98-1-0101 and DARPA Order
Numbers F393/00-01 and F376/00. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official polices or endorsements, either express
or implied, of DARPA, AFRL, or the US Government.

T ech n ic a l A reas: Architecture, Memory Systems, Hardware Design, Vector Processing

1

1 Introduction

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 1

Processor speeds are increasing much faster than memory speeds, so memory latency and

bandwidth lim itations prevent many applications from making effective use of the tremen

dous computing power of modern microprocessors. The traditional approach to solving this

mismatch has been to structure memory hierarchically by adding several levels of fast cache

memory between the processor and the real memory. The fast cache memory improves

overall performance by taking advantage of spatial and temporal locality to reduce average

load/store latency. However caches may not be able to improve the performance of irregular

applications that have poor locality. They might in fact exacerbate the problem by loading

and storing entire cachelines even when the application uses only a few of the memory words

in a cacheline. Moreover caches do not solve the bandwidth mismatch on the cachefill path.

In cases where system bus bandwidth is the bottleneck, memory system performance can be

improved only by utilizing this resource more efficiently.

Several applications that suffer from poor cache locality have predictable access patterns.

Programs that operate on large multi-dimensional arrays are an example of this class of ap

plications. Though modern processors generate memory operations at several granularities,

such operations are filtered through the cache and the real memory accesses are done by the

cache controllers at cacheline grain size. Hence, memory operations are seen at the DRAM

end at the granularity of the lowest level cacheline size. If an access to an array element

misses in the cache, it will be seen by the DRAM as a cache line accesses. Conceptually a

cacheline request can be considered a fixed length vector, and a memory controller serves

requests to load or store fixed length vectors. When applications access their array elements

in the same order as a memory vector, performance improves due to good cache and bus

bandwidth utilization. When the sequence of memory elements accessed by an application

belong to different memory vectors performance suffers. The former case happens when an

application accesses an array stored in row major order along a row of the array. An ex

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 2

ample of the latter case is when the same array is accessed along a column or a diagonal.

Performance loss in the latter case is due to two reasons.

• Poor cache utilization: The application uses only some elements of a memory vector,

but the whole vector occupies space in the cache. The amount of data the cache can

handle is therefore reduced.

• Poor system bus utilization: The application uses only some elements of a memory

vector, but the whole vector is transferred across the system bus. Hence, the amount

of usable data that can be transferred across the bus is reduced.

Henceforth let us call a sequence of array elements accessed by an application that occupies

the same number of memory words as a cacheline an application vector. The problem

of irregular applications is that their performance suffers due to poor cache and system

bus utilization because their application vectors do not match memory vectors. Memory

vectors are currently unit stride vectors while application vectors may have some other

pattern depending on the nature of the application. If a traditional memory controller can

be extended to understand application vectors that have patterns other than unit stride then

applications with such patterns can benefit from better cache and system bus utilization.

Some of the common patterns for application vectors are:

• Non-unit, but constant stride which occurs when an application accesses array elements

along the column of an array, accesses particular fields of an array of records etc. We

will refer to this pattern as BASE-STRIDE access.

• The elements of the application vector are accessed indirectly using offsets or addresses

contained in another vector. The latter case is common in sparse matrix computations.

We will refer to this pattern as v e c t o r - i n d i r e c t access.

• The application vector for Fast Fourier Transform algorithms corresponds to a bit-

reversal of the address of consecutive elements in an array that contains the data.

This thesis introduces a memory controller architecture that understands application vectors

that follow a base-stride pattern in addition to the traditional unit stride pattern. It discusses

architectural features that enable the memory controller to efficiently load and store base-

stride vectors by operating multiple memory banks in parallel. In closing, it also provides

some suggestions on how other common application vectors can be handled.

The domain of applicability extends from the traditional scientific vector processing to

the realm of desktop computing. Several new instruction set extensions (e.g., Intel’s MMX

for the Pentium [13], A M D ’s 3DNow! for the K6-2 [1], M IPS’s MDMX [24], Sun’s VIS for

the UltraSPARC [35], and Motorola’s AltiVec for the PowerPC [27]) bring stream and vector

processing to the domain of desktop computing. The results for some applications that use

these vector extensions are quite promising [36, 34], even though the extensions do little

to address memory system performance. All these extensions will benefit from a memory

controller that understands application vectors.

The architectural features and algorithms used for this purpose will be collectively re

ferred to as P a r a l l e l V e c t o r A c c e s s or P V A . The organization of the main memory

system assumed in the rest of this thesis is shown in figure 1 . The data paths are not shown

in the figure. This thesis assumes that the processor has some means of communicating

information about application vectors to the memory controller. Some indications of how

this can be achieved can be found in section 3.2. The rest of this thesis assumes that the

P V A unit receives vector requests from the Vector Command Unit and returns results to it.

The communication between the Vector Command Unit and the processor over the system

bus are not relevant to the ideas discussed here.

To put the later discussion of the PVA in the appropriate context, chapter 2 provides

a brief background of current memory technologies. Chapter 3 discusses related work in

this area. Chapter 4 introduces the PVA algorithms for parallel base-stride access and sets

the background for chapter 5 that describes the implementation architecture. Chapter 6

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 3

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s

System
Bus Vector

Comand
Unit

«>3
Q*
O++o
£

Parallel Vector Access Unit

Figure 1: Memory System Organization

Bank i DRAM
Controller i Bank

i

Bank
i
i DRAM

Controller i
i

Bank

i

Bank
i
i DRAM

Controller i
i

Bank

i
| •

•| •
i

Bank i
i DRAM

Controller i Bank

describes the experiments that were done and analyzes their results. Chapter 8 concludes

the results of this work and presents some directions for future research.

2 M emory Technology Background

The memory technology used for high performance vector processors has traditionally been

SRAM while DRAM has been more common on almost all other macines. A major portion

(often more than half) of the cost of a vector super computer consists of the cost of the

memory system [15][10]. The reason for this preference of DRAM over SRAM becomes

obvious when we consider that the largest DRAM chip available from a major manufacturer

in 1999 was 256 Mbits while the largest SRAM part available from the same manufacturer is

4 Mbits [251[26], In addition the 4 Mbit SRAM chip is priced much higher than an SDRAM

chip with 64 times the capacity. The 4 Mbit SRAM part has a cycle tim e of 10ns (max).

The 256 Mbit SDRAM part too is capable of operating at 100 Mhz, i.e. with a clock cycle

tim e of 10ns. W hat sets the SRAMs performance apart from that of the SDRAM is that

while the SRAM always has a fixed latency of 10ns, the SDRAM might take several clock

cycles to access data. Theoretically, it is possible to apply one address to an SDRAM every

cycle since it internally pipelines accesses. If this were practically possible, then the 256 M

bit SDRAM part might be able to deliver performance close to that of the 4 Mbit SRAM

part at a fraction of the cost. The current trends in DRAM technology can all be considered

as interface modifications that are geared towords exploiting this ability to pipeline accesses

to the maximum. RAM BUS, SLDRAM and the Alpha 21174 memory controller discussed

later in this chapter are all examples of this trend. All these memory systems try to hide

RAS and pre-charge latencies of DRAM as much as possible by exploiting row hits within a

stream of accesses. To understand how these new memory technologies work let us look at

In SRAM every bit corresponds to a six transistor cell. For optimal layout the cells are often

organized as a square matrix. Figure 2 shows the internal organization of a typical SRAM

chip. The address bits Am..A0, consist of the row address (bits A 0..An) and the column

address (bits A n+x..Am). The row decoder uses the row address to select an entire row

within the memory array and portion of this row is selected by the column address decoder

using the column address. Control signals like Chip Select, Output Enable and Write Control

In DRAM every bit corresponds to a single transistor cell which is implemented as a simple

capacitive charge well. DRAM cells are more compact yielding much greater densities for

DRAM over SRAM. Figure 3 shows the internal organization of a typical DRAM chip.

Like SRAM, the cells are organized as a matrix. But unlike SRAM the address bits are

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s

An+1

Am

Chip Select CS -

Output Enable OE~

Write Control W

AO ■

An -

Column Address
Buffer

I

I/O Control Logic

♦ ~

Row Address
Buffer

- A

a>■oooa>a
So
GC

l/OO l/Ow

Data In Data Out
Buffer Buffer

Column Address Decodei

i F
Column I/O Circuits

... Bit lin e s ...

Memory Array

. L J J_ _ l_ _l _l _ " r ” ” ~

Figure 2: Block Diagram of SRAM

multiplexed. The row and column decoders work like their counterparts in SRAM. The

fundamental difference is that an analog sense amplifier is used to read the contents of a cell

and the charge in the cell is drained after each read. The charge leaks over tim e and needs to

be restored periodically and also after each read. For these reasons access to a DRAM word

involves a more complex procedure than access to an SRAM word. First the row address is

applied (RAS - Row Address Strobe) and the row decoder selects the appropriate row and

then the column address is applied (CAS - Column Address Strobe). In the case of reads,

after the data has been read, a pre-charge operation is done to restore the charge to the row

that was read. Refresh circuitry is used to periodically (typically every 64ms) refresh the

contents of each row.

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s

i/oo l/Ow

R A S

C A S

W E
AO

An

Figure 3: Conventional DRAM

* UUCS-99-006: A Parallel Vector Access Unit for S D R A M Memory Systems 8
•«§

2.3 N ew D R A M Variants

Most manufacturers currently consider traditional DRAM and its simpler variants like Fast

Page Mode DRAM and EDO DRAM as end of life products. This section therefore empha

sizes more sophisticated DRAM technologies like SDRAM, SLDRAM and RAMBUS.

2.3.1 Fast Page M ode D R A M (FPM D R A M)

Fast page mode DRAM is a minor improvement over the conventional DRAM explained in

section 2.2, in that it allows multiple CAS cycles following a RAS cycle. This is good for

accessing sequential data within a row. The sense amplifiers hold the data corresponding

to the currently open page (row) within the memory array and this data can be accessed

relatively fast before issuing a final pre-charge operation to close the row.

2.3.2 Extended D ata Out D R A M (EDO D R A M)

EDO DRAM has an additional latch that stores the data while the row is being precharged,

permitting overlap of reading the data off the bus and precharging the row. It also permits

the data to remain valid longer.

2.3.3 Synchronous D R A M (SD R A M)

Though SDRAM uses a core similar to a traditional DR AM core it is fundamentally different

in that it synchronizes its operation to a system clock. W hile RAS and CAS are asynchronous

signals in the case of conventional DRAM, it is more appropriate to consider these as com

mands issued to an SDRAM chip at the edge of the clock. SDRAM internally pipelines

its operation. Though SDRAM has several tim ing constraints (e.g. A RAS following a

precharge must be issued only after a precharge delay), because of the pipelined operation a

CAS can be issued each cycle. SDRAMS are internally organized as several banks (typically

four) and operations on different banks can be overlapped. A smart memory controller can

§ t !!!!§!!!! ^ U C S -99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 9

use these features to ensure better performance by issuing optimal sequences of operations

and by managing open rows more effectively.

2.3.4 Synchronous Link D R A M (SLD R A M)

SLDRAM is an open standard high performance DRAM technology that follows an evolu

tionary approach from SDRAM to Dual Data Rate DRAM (DDR) [8]. SLDRAM uses a

multi-drop bus that connects a memory controller and up to eight SLDRAM devices. The

controller sends commands to SLDR AM deices over a portion of the bus called the Comman-

dLink that operates on both edges of the clock. Data is transferred over the 18 bit DataLink

portion of the bus and may be synchronized with one of two possible clock signals called

DCLKO and DCLK l. Two clocks are used to minimize the gap required when control of the

DataLink is transferred from one device to another. Like in the case of SDRAM, all internal

operations are pipelined.

2.3.5 D irect R A M B U S D R A M (D R D R A M)

DRDRAM represents a significant advance in DRAM technology in terms of both the se

mantic level and the electrical characteristics of the DR AM interface [311[30]. The interface

between the DRDRAM and the RAM BUS memory controller is called a RAMBUS channel.

Like in the case of SDR AM this interface is synchronous. However, to minimize clock to data

skew DRDRAM uses a source synchronous tim ing model. DRDRAM sends clock and data

in parallel and there are two separate clocks called ClockToMaster and ClockFromMaster.

Data send by DRDRAM to the controller is synchronous with ClockToMaster and data send

from the memory controller to DRDRAM is synchronous with ClockFromMaster. It trans

fers data on both edges of the clock permitting transfer rates of 600MHz or 800MHz and is

capable of a sustained bandwidth of 1 .6G B /s. The core operates at one eighth of the data

frequency. DRDRAM has a 16 bit data buse and separate row and column control buses.

The core is organized as 32 banks and four transactions can take place simultaneously. All

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 10

operations are internally pipelined. The unit of data transfer is a dual-oct or 16 bytes. Each

transfer takes four clock cycles over the 16 bit data bus.

2.3.6 R A M B U S D R A M (R D R A M)

Architecturally, RDRAM is like a more primitive version of DRDRAM described in the

previous section except that It operates the channel at 300MHz and can achieve only a peak

data rate of 600M B/s using a byte wide multiplexed address/data bus.

2.4 Advanced M em ory Controllers

This section describes two memory controllers that represent the state of the art. The Alpha

21174 controller is in production at the time of this writing while the RAM BUS RMC2

controller is still in the early stages of design.

2.4.1 T he A lpha 21174 M em ory Controller

The Alpha 21174 memory controller is an ASIC used in D i g it a l Personal W orkstations [33].

It interfaces with a set of SDRAM DIMMs and the 128 bit system bus on the workstation.

W hat sets it apart from traditional memory controllers is its ability to reduce memory latency

by exploiting open rows on the SDRAM devices. The 21174 memory controller manages the

open rows on its SDRAM devices as a cache. It uses a predictor for each DIMM to decide

whether to close the SDRAM row after each access. If a hit is predicted the row is left open

and if a miss is predicted the row is closed. To predict row hits and misses it uses a four

bit history for each DIMM to record hits and misses. Associated with each predictor is a

16 bit precharge policy register. This register is set by software to indicate whether the row

should be left open or precharged for each possible value of the four bit history. The adaptive

hot-row management provided a 23% improvement in measured best-case memory latency

and a 7% improvement in measured bandwidth for McCalpin’s STREAM benchmark [18].

2.5 R A M B U S M em ory Controller (RM C2)

The RMC2 memory controller from RAM BUS Inc has many features similar to the SDRAM

interface of the PVA unit described in this thesis though the PVA work pre-dates the RMC2

controller [32]. RMC2 is a constraint based memory controller in that it allows for both the

logical and tim ing constraints of a RAMBUS memory system and provides optimal channel

bandwidth possible without reordering transactions. It permits up to seven outstanding

transactions, permits both open-page and closed-page policies and autom atically keeps a

page open at the completion of a transaction if another issued transaction hits on the same

page. It is designed to accept and start one transaction each clock cycle.

3 R elated Work

There has been a tremendous amount of research on optimizing memory system performance.

Most of this work targets memories composed of SR AM devices, which have a uniform access

tim e and are faster than DRAM parts, but which increase the memory cost beyond what is

reasonable for commodity systems. In many cases it may not be straightforward to extend

these techniques to DRAM memory systems because of their non-uniform access time. More

importantly those techniques do not take advantage of the ability of modern parts like

SDRAM, Direct Rambus and SyncLink to overlap commands to different internal banks.

For instance, techniques like address skewing complicate the address arithmetic for each

bank too much to be viable in an access-ordering memory controller for dynamic memory

components. In this chapter we limit our evaluation of related work to that which deals with

vector accesses, especially those that load vectors from DRAM.

3.1 Access Scheduling and Access Ordering System s

Moyer defines access scheduling as those techniques that reduce load/store interlock delay by

overlapping computation with memory latency [28]. Access scheduling techniques attem pt

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s 11

to separate the execution of a load/store instruction from the execution of the instruction

that produces/consumes its operand, thereby reducing the delays that the processor sees

for memory requests. In contrast, Moyer defines access ordering to be any technique that

changes the order of memory requests to increase memory system performance. He then

presents compiler algorithms that optimize access ordering by unrolling loops and grouping

accesses to “streams” so that the cost of each DRAM page miss can be amortized over several

references to the same page [28].

The DEC Alpha 21174 memory controller described in section 2.4.1 implements a rel

atively simple access scheduling mechanism for an environment in which nothing is known

about future access patterns (and all accesses are treated as random cache-line fills). A four-

bit predictor tracks whether accesses hit or miss the most recent row in each row buffer, and

the controller leaves a row open only when a hit is predicted [33]. For McCalpin’s STREAM

benchmark [18], this simple policy yields best-case improvements in memory latency and

bandwidth of 23% and 7%, respectively.

The RMC2 memory controller described in section 2.5 tries to use timing and logical

constraints and skips pre-charge cycles when possible to provide optimal channel bandwidth.

However its heuristics are not as extensive as those of the PVA and it does not reorder

transactions.

Lee mimics Cray instructions on the Intel i860XR, using a purely software approach. He

treats the cache as a pseudo “vector register” by reading vector elements in blocks (using non

caching load instructions) and then writing them to a pre-allocated portion of cache [17]. The

benefits of these optimizations can be dramatic: loading a single vector via Moyer’s and Lee’s

schemes on a node of an iPSC /860 yields performance improvements between about 40% and

450%, depending on the stride of the vector [20]. Valero, et al. propose efficient hardware

to dynamically avoid bank conflicts in vector processors by accessing vector elements out

of order. They analyze this system first for single vectors [37], and then extend the work

for multiple vectors [38]. del Corral and Llaberia analyze a related hardware scheme for

avoiding bank conflicts among multiple vectors in complex memory systems [6]. These

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s 12

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 13

access scheduling schemes focus on vector computers whose memory systems are composed

of SRAM components (with uniform access time).

The system most similar to the PVA design presented in this thesis is the Command Vec

tor Memory System [5] (CVMS). The CVMS exploits parallelism and locality of reference

to improve the effective bandwidth for vector accesses from out-of-order vector processors

with dual-banked SDRAM memories. Rather than sending individual requests to specific

devices, the CVMS broadcasts commands requesting multiple independent words, a design

idea that we adopted. Section controllers receive the broadcasts, compute subcommands for

the portion of the data for which they are responsible, and then issue the addresses to the

memory chips under their control. The memory subsystem orders requests to each dual

banked device, attem pting to overlap precharge operations to each internal SDRAM bank

with access operations to the other. Simulation results demonstrate performance improve

ments of 15% to 54% compared to a serial memory controller. At the behavioral level, our

bank controllers resemble CVMS section controllers, but the specific hardware design and

parallel access algorithm is substantially different, as described in chapters 4 and 5.

The Command Vector Memory System ’s hardware scheme for computing the vector sub

commands is based on earlier access-scheduling work for vector multiprocessors [29]. Al

though the full details of their subcommand-generation algorithm have not yet been pub

lished, the authors state that for strides that are not powers of two, 15 memory cycles are

required to generate the subcommands [5]. The scheme that we have implemented and sim

ulated in Verilog is substantially faster, requiring at most five memory cycles to generate

subcommands for strides that are not powers of two. Both designs process power-of-two

strides in only two cycles. Their system relies on a crossbar interconnect, and the details of

how vector data are merged from the various section controllers have not yet been published.

Our design is based on a 128-bit bus that connects the bank controllers to the main memory

controller, and vector data is merged on this bus by alternately driving each 64-bit half.

Furthermore, the Command Vector Memory System is specifically designed for out-of-order

vector machines, where vector data are loaded into vector registers. Our system delivers the

vector data in cacheline- sized chunks intended for the on-chip L2 cache, but could easily be

adapted to interact with dedicated vector registers.

Another system similar to ours is the Stream Memory Controller (SMC) of McKee, et

al. [21]. The SMC combines programmable stream buffers and prefetching within a memory

controller that performs intelligent DRAM scheduling. The SMC dynamically reorders vec

tor or stream accesses to exploit parallelism among multiple banks and to exploit locality of

reference within DRAM page buffers. For most vector alignments and strides on a uniproces

sor system, simple ordering schemes were found to perform com petitively with sophisticated

ones [19].

3.2 D etecting Vectors

Another issue to consider when designing a vector access unit is how to detect the vector

accesses (streams). At one end of the design spectrum, the application programmer may be

required to identify vectors. Alternatively, the compiler could identify the vector accesses

and specify them to the memory controller. One simple and efficient means of recognizing

vectors uses Benitez and Davidson’s compiler algorithm to detect streams, which is similar

in complexity to strength reduction [2]. Vectorizing compilers can also provide the needed

vector parameters, and can perform extensive loop restructuring and other optimizations to

maximize vector performance [39]. At the other end of the spectrum lie hardware vector

or stream detection schemes, which may be implemented via reference prediction tables [4].

The PVA unit described in this thesis was designed in the context of the Impulse memory

controller which provides yet other ways of using vectors [cite]. Impulse supports multiple

views of the same data [3]. A region of memory may be remapped through a shadow address

space which effects an additional step of address translation. One possible shadow space

is a strided view of some other unit stride region of memory. When the processor accesses

data in the shadow space, the memory controller does scatter/gather accesses from the real

memory region that backs the shadow address region and compacts the strided data into

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 14

dense cache lines. Shadow spaces may be configured in the memory controller either directly

by the programmer or by a smart compiler. Either way, when the PVA unit is used with an

advanced memory controller like Impulse there is an efficient mechanism by which the PVA

can be informed about vector accesses and can return dense cache-lines to the processor.

Numerous studies have explored the use of specialized addressing schemes that tend to avoid

memory bank conflicts for commonly observed access patterns on vector machines. XOR-

tree based schemes and interleave methods that use 2k ± 1 modules are typical examples.

W hile such schemes are suitable for uniform-access components like SRAM access ordering

for non-uniform access memory components like SDRAM require performing address arith

metic which gets complicated when skewing schemes are used. Moreover as Hsu and Smith

demonstrate that it is useful to take advantage of spatial locality while using such compo

nents [10]. Their study concentrated on interleaving schemes for paged DRAM memory in

vector machines and did not cover any access ordering scheme. Their study indicated that

cache-line interleaving and block-interleaving are much superior to low-order interleaving

for many vector applications. Results from their study showed that cache-line interleaving

has performance nearly the same as block-interleaving for a moderate number (16-64) banks

beyond which block-interleaving performed better. It is possible that low-order interleav

ing may perform better when used along with access ordering and scheduling techniques.

Like address skewing techniques, block interleaving has the undesireable property that it

Assuming that the memory system has multiple outstanding addresses that need to be

accessed, it may be necessary to reorder the sequence of addresses to optimize overall perfor

mance. W hole bodies of literature exist on scheduling tasks in various domains [9]. Some of

the work in scheduling theory can act as starting points for implementing access re-ordering

systems. The optimal scheduling problem has been proven to be NP complete and many of

the approaches discussed in this section always generate an optimal solution if one or more

optimal solutions exist [cite-for-NP-completeness]. In general the algorithms in this area are

too complex to be implemented fast in hardware.

3.4.1 Online A lgorithm s

Online algorithms try to make decision using incomplete information often by trying to

approximate an optimal offline algorithm [14]. Good examples are OS page replacement

algorithms and what is known as the Ski Rental problem in the literature. There are variants

like deterministic online algorithms and randomized online algorithms.

3.4.2 R ate M onotonic Scheduling

Rate Monotonic Scheduling is a technique often used to analyze the schedulability of real

time tasks [401[16]. Such tasks are characterized by processing time Pj and repeat interval

7*. The release tim e of a task is the time at which it is given to the scheduling algorithm.

The task has an implicit deadline equal to the release time + repeat interval since RMS

does not permit two instances of the same task to be active at the same time. RMS theory

uses the resource (often processor) utilization factors of the tasks to assure schedulability.

For example RMS theory can guarantee that if the total processor utilization of a set of

tasks is 69% or less then they can be scheduled. Though it is very useful for real-time OS

schedulers, the dependency on repeat interval (which is not known in the case of memory

access streams) makes RMS unsuitable for use in memory access re-ordering hardware.

3.4.3 N onpreem ptive Earliest D eadline First (ED F) Scheduling

Unlike Rate Monotonic Scheduling the EDF algorithm is capable of scheduling tasks whose

deadline is not the same as the sum of the release time and repeat interval. It works as

follows:

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s 16

Given n tasks TX,T2, ...Tn arranged in order of their deadlines D i D 2,..-Dn and having

execution times of E x, E 2, .. .En respectively:

1. Schedule Tn in the interval [Dn — En, D n]

2. W hile more tasks remain to be scheduled do

Schedule task with latest deadline as late as possible

3. Move tasks forward as much as possible in tim e maintaining their order.

The pre-emptive version of this algorithm is provably optimal, but the nonpre-emptive ver

sion is more amenable to hardware implementation [16].

3.5 Operations Research/Logic M inim ization

The Transportation problem from Operations Research and the Binate Covering Problem

(BCP) often discussed in logic minimization literature are very similar in nature and aim at

generating provably optimal solutions for optimization problems that involve complex sets

of choices. The approach followed in both these algorithms is as follows.

Given a set of n possible partial solutions {So Si , S2, ...Sn- 1} each of which satisfy some

subset of a set of constraints, to find an optimal solution that satisfies all the constraints:

1. Assume So is included in the final solution.

2. Recursively solve the partial problem using the partial solution set {S i, S2, ...*S'n_ i} and

the set of constraints not already satisfied by S0.

3. Assume So is excluded from the final solution.

4. Recursively solve the partial problem using the partial solution set {S i, S 2, ...S'7l_1} and

the set of original constraints.

5. Chose the solution with the best cost.

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 17

Heuristic techniques, dynamic programming etc may be used to optimize these algorithms.

But they usually involve large matrix manipulations and lots of integer arithmetic which are

unsuitable for fast hardware implementation.

4 PVA Algorithms

As explained in Chapter 1 , B a s e - S t r i d e is a common and important type of application

vector. This chapter explains algorithms that a multi-bank memory system can use for

parallelizing this type of access.

4.1 Parallel Access to Base-Stride Vectors

Processing a base-stride type of application vector involves gathering strided words from

memory into a dense cache line for a read operation and scattering the contents of a dense

cache line to strided words in memory for a write operation. The PVA unit shown earlier

in figure 1 parallelizes this task by broadcasting a vector command to a collection of bank

controllers (BCs), each of which determines independently, and in tandem with the other

BCs, which elements of the vector (if any) reside in the DR AM it manages. This broadcast

approach to gather sparse data is potentially much more efficient than the straightforward

alternative of having a centralized vector controller issue the stream of addresses, one per

cycle, that correspond to the vector elements. However, to realize this performance potential

we need a method by which each bank controller can determine the addresses of the elements

that reside on its DRAM without sequentially expanding the entire vector. The primary

advantage of the PVA over similar designs is the efficiency of our hardware algorithms for

computing the subvector of each bank.

4.1.1 Term inology

We first introduce the terminology used in describing the PVA algorithms. B a s e - S t r i d e

vector operations are represented as a tuple, V = < B , S , L > , where V.B is the base address,

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s 18

V.S is the sequence stride, and V.L is the sequence length. We refer to the ith element in the

vector V as V[i\. For example, vector V = < A 4, 5 > designates elements ^4[0], A[4], ^4[8],

4̂[12], and ^4[16] of the array A where V[0] = ^[0], V[l] = A[4] and so on.

Let M be the number of memory banks, such that M = 2m. Let N be the number of

words in a cache-line, such that N = 2n.

Three functions implement the crux of our scheduling scheme.

• DecodeBank (addr) returns the bank number b for an address addr ; it is implemented

as a bit-select operation equivalent to (addr n) m o d M .

• FirstHi t (V,b) takes a vector V and a bank b and returns either the index of the first

element of V that hits in b or a value that indicates that no such element exists.

• NextHi t (S) returns an increment 8 such that if a bank holds V[n], it also holds V\n+8\.

4.1.2 T he Difficulty of Im plem enting F irstH it(V ,b) for Cache-line Interleave

In this section we derive an algorithm for FirstHit(V.b) and show why it is difficult to

implement FirstHit(V,b) for a cache-line interleaved memory. In a later section we will

introduce a technique of converting cache-line interleave to appear like word interleave for

the purpose of computing FirstHit(V,b) and an efficient implementation of FirstHit(V,b) for

word interleave.

A nalysis of F irstH it(V ,b) Let us analyze FirstHit() on a case by case basis to understand

it better so that we can find a more parallel approach for implementing it.

Case 0 : DecodeBank(V.B) = b

The easiest case is when DecodeBank(V.B) returns b. In other words V[0] is contained

in bank 6, so FirstHit() returns 0.

Let

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 19

D e fin it io n :

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s 2 0

• A b = (V.S mod N M) / N , the number of banks skipped between any two consecutive

elements V[i] and V[i+1]

• A 9 = (V.S mod N M) mod N and 9 = V.B mod N , the difference in offest within the

block between any two consecutive elements V[i] and V[i+1].

• 9 = V.B mod N , the offset within the block of the first element.

When D ecodeBank(V .B) ^ b, we have two more cases to consider.

C a se 1 : A 9 = 0

In this case no matter which banks the vector V hits, the offset within the block will

always be 9. If V[0] is contained in bank b' then V[l] is in bank (b' + A b) m o d M , V[2] in (b'+

2 A b) mod M and so on. Because of the properties of modulo arithmetic (b' + n * A b) mod M

is a repeating sequence for n = 0 ,1 , ..oo with a period of at most M. Hence, when A # = 0

FirstHit(V,b) may be defined as:

C a se 2 : N > A 9 > 0

If V[CI] is contained in bank b' at an offest of 9, then V[l] is in bank (V 4- A b + (9 +

A 9) / N) mod M , V[2] in (b' + 2 A b + (9 + 2 A 9) / N) mod M , etc and V[i] in (b' + iA b + (9 +

i A 9) / N) m o d M . There are two sub-cases.

C ase 2 .1 : 9 + (V.L - I) * A 9 < N

In this case the A #s never add up to exceed N. So the sequence of banks in case 2.1 is

the same as for case 1 and we may ignore the effect of A 9 on F irs tH i t (V ,b) and use the

same procedure as in case 1 .

C ase 2 .2 : 9 + (V.L - 1) * A 9 > N

Let

D ecodeBank(V.B) — b, i f DecodeBank(V.B) > b

DecodeBank(V.B) 4- M — b, i f DecodeBank(V.B) < b

{
d /A b , i f d < V.L and A b divides d

no hit, otherwise

In this case, when ever AOs add up to reach N, the bank as calculated by cases 1 and

2.1 need to be incremented by 1 . This increment can cause the calculation to shift between

multiple cyclic sequences. It is not easy to define FirstHitQ in this case.

Examples:

In the following examples assume M=8 and N =4.

1 . Let B—0, S = 8, L=16.

This is case 1 with 9 — 0, A 6 = 0, A b = 2.

The repeating sequence of banks hit by this vector is 0,2,4,6,0,2,4,6 ,...

2. Let B = 5, S = 8, L=16.

This is case 1 with 6 = 1, A d = 0, A b — 2.

The repeating sequence of banks hit by this vector is 1,3,5,7,1,3,5,7,...

3. Let B = 0, S = 9, L=4.

This is case 2.1 with 9 = 0, A 6 = 1 , A b = 2.

The sequence of banks hit by this vector is 0,2,4,6 .

4. Now consider B = 0, S = 9, L=10.

This is case 2.2 with 8 = 0, A d = 1 , A b = 2.

The sequence of banks hit by this vector is 0,2,4,6,1,3,5,7,2,4 Note that when the

cumulative effect of A 6 (1 in this case) exceeds N there is a shift from the sequence

0,2,4 ,6 to the sequence 1,3,5,7. For some values of B,S and L the banks hit by a vector

may cycle through several such sequences or may have multiple sequences interleaved.

In the next section we use the insights gained from the case by case examination of FirstHitQ

to derive a generic algorithm that can handle all the cases.

D eriving an A lgorithm for F irstH it(V ,b) In this section we derive an algorithm that

can handle all the cases of FirstHitQ and show why it is not a good idea to implement it in

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 21

hardware. Later we present a method of transforming the problem into one which is suitable

for hardware implementation.

Since we previously defined 0 = V.B mod N in section 4.1.2, we have

9 < N (0)

Define S 0 = V.S r n o d N M and S - i = N M

Then the problem of FirstHit() is essentially that of finding the least integers p\ and p 2 such

that 0 < 9 + PlS0 - p2N M - d N < N 2

Let 7 = 9 — d N

We need to find p x and p 2 st, 0 < 7 + p i S 0 — p 2N M < N (1)

i.e. —7 < p i S 0 - p 2N M < N — 7

i.e. 7 > p 2N M — p i S 0 > 7 — N

i.e. S0 + 7 > p 2N M — (pi — l)So > Sq + 7 — iV (2)

To solve for p x and p 2 one at a time we can substitute the above inequality with S0 + 7 >

p 2N M mod S0 > S 0 + 7 - TV if S0 > S 0 + 7 - TV (3)

(3) is satisfied if 0 > 7 — N . i.e. if iV > 7 . i.e. if iV > 9 — dN. i.e. if (d + 1) N > 9. Which

is true by (0).

After solving for p2 we can set pi = p2N M / S o or pi = 1 + p 2N M / S 0 and one of these two

values will satisfy (2).

But p 2N M mod S0 = p2(N M mod S0) mod S0. Substituting S t = N M mod So

we need to solve S + 7 > p2S\ mod S0 > S0 + 7 — iV

To solve S 0 + 7 > p2S x mod S 0 > S0 + 7 — iV we need to find p3 st

‘S'o + 7 > P2S 1 — P3‘S’o > So + 7 — iV

i.e. - S 0 - 7 < P3S0 - P2S 1 < - S 0 - 7 + N

2To visualize this situation, consider two impulse trains, one starting at time = 9 — dN with

period= V .S mod N M , and the other starting at time=0 with period=NM. The inequality is solved at the

p i th period of the first wave if the edges of both the waves are a distance less than N apart. The analogy

helps to illustrate that while it is easy to solve such inequalities in a continuous domain, it is harder to solve

them in a discrete domain - i.e. the integral period of the waveforms when their edges are closer than N.

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s 22

i.e. - 7 < (p3 + 1)50 - P2S 1 < - 7 + TV

i.e. 0 < 7 + (/>3 + 1)5 0 — p2S x < N (4)

Notice that (4) is of the same format as (1). At this point the same algorithm can be

recursively applied. Recursive application can be terminated whenever we have an S?; such

that Si < N at steps (1) or (4). Since each Si — S?;_i m o d S ^ 2 the S'jS reduce monotonically.

Hence the algorithm will always terminate.

A simpler version of this algorithm that has 7 = 9 can be used for NextH it(). The C

code for the NextH itf) function is shown below.

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 23

unsigned NextHit(unsigned theta, unsigned stride,
unsigned NM)

unsigned sl, s2;
unsigned p3_plus_l, p2,pl_minus_l, carry;

if (stride < N)

if(theta+stride < N)
return 1;

p3_plus_l = (NM-theta)/stride;
if(p3_plus_l &&

((theta + p3_plus_l * stride) 7. NM < N))
return p3_plus_l;

return p3_plus_l+l;
>

if ((sl = NM "/, stride) <= theta)
return NM/stride;

if(sl < N)

p2 = (stride-N+theta)/sl + 1;
>

else

s2 = stride % sl;
p3_plus_l = NextHit(theta,s2,sl);
p2 = (p3_plus_l * stride + theta)/sl;

}

carry = 1;
if((p2 * NM) '/» stride <= stride-N+theta)

carry = 0;
>

pl_minus_l = (p2 * NM)/stride;
return pl_minus_l + carry;

}

The recursive nature of the algorithm is not a problem for hardware implementation since
the algorithm terminates at the second level for most inputs that correspond to reasonable
values of N and M for memory systems. The recursion can be unravelled by inlining the
algorithm once at the only recursive call site. This algorithm is not suitable for a fast

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 24

hardware implementation because it contains several division and modulo operations by
numbers which may not be powers of 2.

Having demonstrated that a straight forward analytical solution for FirstHitQ cannot
result in a low latency implementation for cache-line interleaved memory, we need to look at
m ethods of transforming the problem to one that can result in a fast hardware implementa
tion at a reasonable cost.

4.1.3 A Sim plified Approach using W ord Interleaving

It is possible to convert all possible cases of FirstHitQ to the simple case 1 by changing the
way we view memory. For the sake of generality, let us extend our memory interleave scheme
so that each bank is W machine words wide. Assume that we have M banks each containing
blocks of size W * N words. Figures 4.1.3 and 5 show the physical view and logical view of
a memory system with N =2, W = 4 and M =2.

In the physical view we consider the system as a two bank memory system with two
memory-words (a memory-word being four machine words) per block. In the logical view
we can think of the same two bank system as consisting of 16 logical banks L0-L15. Each
logical bank has W =1 and N = l . In general a WxNxM memory may be considered to be
WxNxM logical banks denoted by L0 to L WNM-\-

Assuming that each logical bank has its own FirstHit logic, all possible vector accesses
may be handled using case 1 alone. This happens because A d = (V.S mod N M) m o d N =
(V.S mod M) mod 1 = 0 when N = l . The cost of the transformation is that we now need
WNM copies of the FirstHit logic where we initially needed only M. This does not directly
result in the hardware cost bloating by a factor of W N because of our empirical observation
that the combined WNM copies of the logic reduce in size by a factor more than N when
optimized. Although we need W N copies of some of the datapath elements of the bank
controller, the datapath itself is much simpler than the one required for the algorithm from
section 4.1.2. The increased hardware cost is the price paid for making the problem solvable.

In the explanations that follow we will consider only word interleaved memory organiza
tions (i.e. W = N = 1) since all other organizations may be converted to a logical equivalent
with W and N equal to one. Memory systems with W or N greater than one are equivalent
for the purpose of this discussion to a memory system and W = N = 1 and W N banks sharing
a common bus.

4.1.4 Improved A lgorithm s for F irstH it() and N extH itQ

In section 4.1.3 we showed that it is possible to predict the bank hit sequence for a cache-line
interleaved memeory system using an equivalent word interleaved memory system. In this
section we derive improved algorithms for F ir s tH i tQ and N e x tH i tQ for word interleaving
which can thus be used for cache-line interleaving as well. These algorithms permit us to
access base-stride vectors in parallel without sequentially expanding the addresses of the
individual vector elements. Since this section deals exclusively with word interleaving, the
parameter N =1 is omited in the following discussion.

Definitions:

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 25

Let M = 2m denote the number of word-interleaved memory banks.
Let V be a vector and let bQ = Decode B a n k (V .B), i.e., bo is the bank where the first element
of V resides.
Let d be the distance modulo M between some bank b and bo, i.e., d = (b — bo) mod M as
defined in section 4.1.2.

L em m a 4 .1 To find the bank access pattern of a vector V with stride V.S, it suffices to
consider the bank access pattern for stride V.S mod, M .

P r o o f: Let S = qsM + Sm, where Sm = S m o d M and qs is some integer. Let b0 =
DecodeBank(V.B) . For vector element V[n] to hit a bank at modulo distance d from bo, it
must be the case that (n * S) mod M = d. Therefore, for some integer qj :

n * S = qd * M + d
n * (q„M + Srn) = qd + d,
n * Sm = (qd - n * qs) M + d

Therefore (n * Srn) mod M = d.
Thus, if vector V with stride V.S hits bank b at distance d for V[n], then vector Vx with

stride V i.Si, where V.S\ = (V.S mod M) , will also hit b for V\ [n].

E x p la n a tio n : In effect lemma 4.1 says that only the least significant m bits of the stride
(V.S) are required to find the bank access pattern of V. This is because if element V[n]
of vector V with stride V.S hits bank b, then element V\[n] of vector Vx with stride
Vi-Si = (V.S mod M) will also hit bank b. Henceforth, references to any stride S will
denote only the least significant m bits of V.S.

D e fin it io n : Every stride S can be written as a * 2s, where a is odd. Using this notation, s
is the number of least significant zeroes in S's binary representation.

e .g . S' = 6 = 3 * 2 1,S ' = 7 = 7 * 2 0, S' = l * 2 3

L em m a 4 .2 Vector V hits on bank b iff d is some multiple of 2s.

P ro o f: Assume that at least one element V[n] of vector V hits on bank b. For this to
be true, (n * S) mod M = d.

Therefore, for some integer q:
n * S = q * M + d
n * a * 2 s = q * M Jr d = q * 2 m + d,
d = n * a * 2s — q * 2rn = 2s (n * a — q2m~s)

Thus, if some element n of vector V hits on bank b, then d is a multiple of 2s.

E x p la n a tio n : In effect lemma 4.2 says that after the initial hit on bank bQ, every 2sth bank
will have a hit. Note that the index of the vector may not necessarily follow the same
sequence as that of the banks that are hit. The lemma only guarentees that there will
be a hit.

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 27

e .g . if S = 12 , and thus s = 2 (because 12 = 3 * 22), then only every 4th bank controller
may contain an element of the vector, starting with 60 and wrapping modulo M. Note
that even though every 2s banks may contain an element of the vector, this does not
mean that consecutive elements of the vector will hit every 2s banks. Rather, some
element(s) will correspond to each such bank. For example, if M — 16, consecutive
elements of a vector of stride 10 (s = 1) hit in banks 2 ,1 2 ,6, 0 ,10 , 4 ,14, 8, 2, etc.

Lemmas 4.1 and 4.2 let us derive extremely efficient algorithms for F ir s tH i tQ and N e x tH i tQ
Let Ki be the smallest vector index that hits a bank b at a distance modulo M of d = i * 2 s

from 6q. In particular, let K \ be the smallest vector index that hits a bank 6 at a distance
d = 2s from bo.

Since hits b we have:
(Ki * S) mod. M = d
Ki * a * 2s = (qj * 2m 4- i * 2s) where is the least integer such that M divides Ki * S

producing remainder d.
Therefore,

K _ (Qi * + i)
1 a

Also, by definition, for K \ , distance d = 1 * 2s.
Therefore,

K _ (gi * 2— + 1)

a

where q\ is the least integer such that a evenly divides q\ * 2m~s + 1 .

T h e o r e m 4 .3 F irs tH i t (V , b) = K{ = (K \ * i) m o d 2 m~s .

P roof: By induction.

B asis: K\ = K^ m od 2m~s. Note that this is equivalent to proving that K \ < 2m~s. By
lemma 4.2, the vector will hit banks at modulo distance 0, 23, 2 * 2s, 3 * 2s etc from
bank 60- Every bank that is hit will be revisited within M / 2 S = 2m-,<l strides. The
vector indices may not be continuous, but the change in index before 6o is revisited
cannot exceed 2m~s. Hence K \ < 2m~s. QED.

In d u c tio n step : Assume that the result holds for i = r.
Then K r = (g*-*2 ~ +r) = * r) m o d 2m~s, where qr is the least integer such that a
evenly divides qr * 2m~s + r.
This means that K \ * r = Q r * 2m~s + K r — Qr * 2m-s + ^r*2 ~ +r -̂ for some integer
Qr- a
Therefore: K x * r + K x = Q r * 2m~s + (g -2"-'+r+gi .2"» and ^ * (r + 1) = Q r *
2m—s _|_ (<?r + <?i)*2m~,s-|-(r-|-l)

Since q\ and qr are the least such integers it follows that the least integer qr+i such
that a evenly divides gr+1 * 2m~s + (r + 1) is (qr + q-Q .

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 28

By the definition of K i , +(r+1) _
Therefore: K x * (r + 1) = Qr * 2m~s + K r+X, or K r+X = (K x * (r + 1)) mod 2rn~s.
Hence, by the principle of mathematical induction, K j = (K x * i) mod 2m~s Vi > 0.

P ro o f: That the least integer qr+1 such that a evenly divides qr+\ * 2m_s + (r + l) is (qr + q\)■
If possible let there be another number qi < qr + such that a evenly divides x =
q t * 2 m ~ s + (r + 1) .

Since a divides y = qx * 2m~s + 1, it should also divide x — y — (qi — q-i) * 2m~s + r. But
since we earlier said that qt < qr + qx , we have found a new number qrX = qt — qx which
is less than qr and yet satisfies the requirement that a evenly divides qri * 2m~s + r .
This contradicts our assumption that qr is the least such number. Hence qi does not
exist and qr+\ = qr + q\.

T h e o r e m 4 .4 N e x tH i t (S) = 5 — 2m~s.

P roof: Let the bank at distance d — i * 2s have a hit.
Then: Ki * S = qi * M + d.
Since there is a hit at vector index Ki + 5 on the same bank, we have:
(Ki + 8) * S = q j * M + d for some integer qj.
Subtracting the two equations, we get: (Ki + £) * S — Ki * S = 6 * S = 6 * a * 2s =
(q j - q i) * M = (q j - q i) * 2 m .

5 _ (qj —qi)*2rn~s
<7 '

Recall that o is an odd number. The only way a can divide a multiple of a power of
two is if (qj — q^ = a. Therefore, S — 2m~s.

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s 29

4.2 Im plem entation Strategies for F irstH it() and N extH it ()
Using theorems 4.3 and 4.4, each bank controller can independently determine the sub-vector
elements for which it is responsible given b, M , V.S mod M, and V.B mod M as inputs.
Several options exist for implementing F ir s t FIit() in hardware; which one makes the most
sense depends on the parameters of the memory organization. Note that the values of Ki
can be calculated in advance for every legal combination of M, V.S mod, M , and V.B mod M.
If M is sufficiently small, an efficient PLA (programmable logic array) implementation could
take d = (b — b0) mod S and V.S as inputs and return K j. Larger configurations could use a
PLA that takes S and returns the corresponding K x value, and then multiply K \ by a small
integer i to generate Ki. Block-interleaved systems with small interleave factor N could use
N copies of the F i r s t H i t i) logic (with either of the above organizations), or could include
one instance of the F ir s tH i t () logic to compute Ki for the first hit within the block, and
then use an adder to generate each subsequent K i+X. The various designs trade off hardware
space for latency and parallelism. N e x t H i t Q can be implemented using a small PLA that
takes S as input and returns 2m~s (i.e., J). Optionally, this value may be encoded as part
of the F i r s t H i t Q PLA. In general, most of the variables used to explain the functional
operation of these components will never be calculated explicitly; instead, their values will
be compiled into the circuitry in the form of look-up tables.

Given appropriate hardware implementations of F ir s tH i tQ and N e x t H i t Q , the bank
controller for bank b performs the following operations (concurrently, where possible):

1. Calculate bo = DecodeBank(V.B) via a simple bit-select operation.

2. Find N e x tH i t (S) = 5 = 2rn~s via a PLA lookup.

3. Calculate d = (b — b0) mod M via an integer subtraction-without-underfiow operation.

4. Determine whether or not d is a multiple of 2s via a table lookup. If it is, return the
K \ or K{ value corresponding to stride V.S. If not, return a “no h it” value, to indicate
that b does not contain any elements of V.

5. Tf b contains elements of V, F irs tH i t (V , b) can either be determined via the PLA
lookup in the previous step or be computed from K \ as (K x *i) mod 2m~s. In the latter
case, this only involves selecting the least significant m — s bits of (K x * (rf > s)). If
S is a power of two, this is simply a shift and mask. For other strides, this requires a
small integer multiply and mask.

6. Tssue the address a d d r = V.B + V.S * F irs tH i t (V ,b) .

7. Repeatedly calculate and issue the address addr = addr + (V.S <C (m — s)) using a
shift and add.

4 . 3 S o m e P r a c t i c a l I s s u e s

4 .3 .1 S ca lin g th e M e m o r y S y s te m

S c a lin g M e m o r y S y s te m C a p a c ity To scale the vector memory system M and N need
to be kept fixed while adding DRAM chips to extend the physical address space. This may
be done in several ways. One method would be to have a bank controller for each slot where
memory can be added. All the bank controllers corresponding to the same physical bank
number would operate in parallel and would be identical. Simple address decoding logic may
be used along with the address generated by the bank controller to enable the memory’s chip
select signal only if the address issued belongs on a particular memory. Another method
would be to use a single bank controller for multiple slots, but to maintain different current
row registers in order to keep track of the current row inside the different chips which form
a single physical bank.

S c a lin g th e N u m b e r o f B a n k s The ability to scale the PVA unit to a large number of
banks depends on the implementation choice of F ir s tH i t . For systems that use a PLA to
compute the firsthit index, the complexity of the PLA grows as the square of the number
of banks, which limits the effective size of such a design to around 16 banks. For systems
with a small number of banks interleaved at block-size N , replicating the F i r s tH i t logic N
tim es in each bank controller is optimal. For very large memory systems, regardless of their
interleave factor, it is best to implement a PLA that generates K i , adding a small amount of
logic to then calculate K^. The complexity of the PLA in this design increases approximately
linearly with the number of banks, the rest of the hardware remains unchanged.

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 30

4.3.2 Interaction w ith the Paging Schem e

The opportunity to do parallel fetches for long vectors is present only when a significant part
of the vector is continuous in physical memory. Performance will be optimal if each large
data-structure that is frequently accessed fits entirely in one super-page. In that case the
memory controller can issue longer vector operations on the vector bus. If the data-structure
cannot be contained in a single superpage then the memory controller can split a single vector
operation into multiple vector operations such that each sub-vector is contained on a single
superpage. Given a vector V, one way of doing this would be to find the distance of V .B from
the page boundary and divide it by the stride to find how many elements lie on the page and
then issue a single vector bus operation for those many elements. However, this operation
involves a division and is expensive. A more reasonable approach is to compute a lower
bound on the number of vector elements that lie on a page and issue a vector bus operation
for those many elements. An algorithm that does this is given below. It assumes that the
memory controller has access to the page table and the function mrnc_tlb_lookup(vaddress)
returns the physical address corresponding to virtual address vaddress and the size of the
superpage it is contained in. It is assumed that the size of a superpage is always a power of
2.

SplitVector(V)
{
shift_val = index of most significant power

of 2 in V.S;
base = V.B;
length = V.L;

while(length > 0)

(phys_address,page_size) = mmc_tlb_lookup(base);
lower_bound =

(page_size - terminate(phys_address)
+ 1) >> shift.val;

// terminate(phys_address) returns least
// significant n bits of
// phys_address where page_size == 2~n

issue on vector bus <base, V.S, lowerbound>

// While banks are busy operating on the
// vector we issued compute new base address
length = length - lowerbound;
base = base + V.S * lowerbound;

>
>

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 31

The operation lowerJbound = (p a g e s i z e — terrninate(phys-a,ddress) + 1) s h i f t - va l
actually just inverts the least significant n bits (assuming page_size is 2n) of phys_address,
adds one to it and shifts the value. In effect this algorithm replaces the division in the exact
approach with a fast operation, issues the vector operation and then does a multiply, TLB
lookup, etc. while the memory is busy executing the previously issued vector operation.
The effectiveness of parallel vector access will depend greatly on how effectively the system
is able to create and manage super-pages.

5 Im plem entation
The design space for a PVA unit is enormous: the type of DRAM, the number of banks,
the interleave factor, and the implementation strategy for F ir s tH i t () can all be varied to
trade hardware complexity for performance. For instance, lower-cost solutions might let a
set of banks share bank controllers and BC buses, multiplexing the use of these resources.
To demonstrate the feasibility of our approach and to derive tim ing and hardware com
plexity estim ates we have developed and synthesized a Verilog model of a prototype design
representing one point in this large design space.

We produced an initial FPGA implementation on an IKOS Hermes emulator with 64 Xi-
4000 FPG As, and then used this implementation to derive timing estimates [12]. During the
later stages only software simulation of the Verilog model was done. The software simulation
used the latencies derived from the synthesized version tested on the hardware. During the
later stages, the full design was not emulated because of the inordinate amount of time and
effort required to push the design through the whole toolpath before it can be mapped on
to the hardware emulator and also because some of the tools turned out to have bugs. The
PVA unit’s Verilog description consists of about 3600 lines of code. Details of the hardware
complexity may be found in section 1

5.1 Param eters of the Prototype Im plem entation
The prototype implementation of the PVA is designed to be incorporated into an adaptable
memory controller [ref:Impulse] for the M IP S R 10000 processor. Many of the parameters
of the system are thus dictated by those of the target processor. Our implementation has 16
banks of word-interleaved SDRAM (32-bit wide) with a dedicated bank controller for each
bank. We drive Micron 256 Mbit 16 bit wide SDR AM parts, each of which has four internal
banks, and thus four independent row or page buffers [23]. Our PVA unit design assumes
an L2 cache line of 128 bytes, and therefore operates on vector commands of 32 single-word
elements. We first describe the implementation of the Vector Bus (shown earlier in figure 1)
and the BCs, and then show how the controllers work in tandem.

5.2 Im plem entation Architecture
5.2 .1 V ector B us

As illustrated in Figure 1, the bank controllers communicate with the rest of the memory con
troller via a shared, split-transaction Vector Bus that multiplexes requests and data. During

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 32

a vector request cycle, it supports a 32-bit address, a 32-bit stride, a three-bit transaction
ID, a two-bit command, and some control information. During a data cycle, it supports 64
bits of data. The MIPS R10000 processor has a 64-bit system bus, and thus the PVA unit
can send or receive a data word directly on this bus every cycle. No intermediate unit is
needed to merge data collected by multiple bank controllers: when read data is returned
to the processor, the BCs take turns driving their part of the cache line onto the system
bus. Electrical limitations require a turn-around cycle whenever bus ownership changes.
To avoid these delay cycles, we use a 128-bit, BC bus, driving alternate 64-bit halves ev
ery other data cycle. In addition to the 128 multiplexed lines, the BC bus includes eight
transaction-complete indication lines shared by all BCs.

5.2.2 Bank Controllers

For a given vector read or write command, each Bank Controller (BC) is responsible for iden
tifying and accessing the (possibly null) subvector that resides in its bank. The architecture
of this component, shown in figure 6, consists of:

1. a FirstHit predictor that determines whether elements of a given vector request hit in
this bank. If there is a hit and the stride is a power of two, this subcomponent also
performs the F ir s tH i tQ address calculation;

2. a Request FIFO that queues vector requests for service;

3. a Register File that provides storage for the vector requests in the Request FIFO;

4. a FirstHit Calculation module that determines the address of the first element that
hits this bank when the stride is not a power of two;

5. an Access Scheduler that drives the SDRAM, reordering read, write, bank activate,
and precharge operations to maximize performance;

6. a set of Vector Contexts within the Access Scheduler to represent the vector requests
currently being serviced;

7. a Scheduling Policy Module within each Vector Context to dictate the scheduling policy;
and

8. a Staging Unit that consists of (i) a Read Staging Unit to store read-data waiting to be
assembled into a cache line, and (ii) a Write Staging Unit to store write-data waiting
to be sent to the SDRAMs.

We briefly describe each of these subcomponents below. Note that we have implemented
several bypass paths to reduce communication latency among some parts of the BC; these
are essential to efficient operation. The details of the bypass paths may be found in section
5.2.3. The main modules of a BC deal with the computations required to do parallel vector
access, scheduling SDRAM accesses efficiently, and staging data.

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s 33

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s 34

SDRAM Bus

Figure 6: Bank controller internal organization

P a r a lle liz in g L ogic The parallelizing logic consists of the FirstHit Predict (FHP) module,
the Register File (RF), the Request FIFO (RQF) and the FirstHit Calculate (FHC) modules.
The FHP module watches vector requests on the BC bus, determining whether or not any
element of a vector request will hit this bank. If a hit is indicated, and the stride is a power of
two it calculates the address and index of the first vector element that hits this SDRAM bank.
It then signals the RQF to queue the request, the calculated address, and the firsthit index.
If the stride is a power of two, the request queued by the RQF has an “address calculation
complete” (ACC) flag set to indicate that address calculation has been completed. The RF
subcomponent provides intermediate storage for vector requests not yet assigned to vector
contexts. It contains as many entries as the number of outstanding transactions permitted
by the BC bus, eight in our implementation. The Request FIFO (RQF) module implements
the state machine and tail pointer required to maintain the Register File as if it were a queue.
Requests written into the Register File whose ACC flag were not set by the FHP require
further processing. The FHC module computes the firsthit address for vector requests whose
stride is not a power of two. It maintains a pointer (workptr) into the Register File and
scans the ACC flag of newly queued requests. For requests whose ACC flag is zero because
the stride is not a power of two, the FHC multiplies the firsthit index previously calculated
by the FHP by the stride and adds it to the base address to generate the firsthit address,
and writes the modified address back into the register file with the ACC flag set. Since this
calculation requires a multiply and add, it incurs a two-cycle delay. When the scheduler
is busy, this delay is completely hidden, since the FHC module works in parallel with the

scheduler. When the Access Scheduler (SCHED) sees the ACC bit set for the entry at the
head of the RQF it knows that there is a vector request ready for issue.

A c c e ss S ch ed u ler The Access Scheduler (SCHED) along with its subcomponents, the
Vector Contexts (VCs) and Scheduling Policy Unit (SPU) modules, is responsible for: (i)
expanding the series of addresses corresponding to a vector request, (ii) ordering the stream
of read, write, bank activate, and precharge operations so that multiple vector requests
can be issued optimally, (iii) making row activate/precharge decisions, and (iv) driving the
SDRAM. The SCHED module decides when to keep a row open, while reordering decisions
are made by the SPUs contained within the SCHED’s Vector Contexts (we implement four
VCs in the current design).

Each Vector Context (VC) can hold a vector request whose accesses are ready to be
issued to the SDRAM. It determines the series of addresses required to fetch a particular
vector via a series of shifts and adds, as described in chapter 4, and issues the reads, writes,
and precharge operations in cooperation with other VCs. The VCs share a datapath to
the Access Scheduler that is used to send it the highest priority pending SDRAM operation
required by any of the VCs. The VCs arbitrate for this datapath such that at most one of
them can access it in any cycle, where the oldest pending operations have highest priority.
Vector operations are injected into VC_0. Whenever a vector operation completes, at most
one per cycle, any other pending operations “shift right” into the next higher numbered free
VC (if any). To give the oldest pending operations higher priority, we daisy-chain the access
scheduler requests from VC_N to VC_0 such that a lower numbered VC can place a request
on the shared AC datapath if and only if no higher numbered VC wishes to do so.

The VCs attem pt to minimize precharge overhead by giving accesses that hit in an
open internal bank priority over requests that need to access a different internal bank on
the same SDRAM module, as follows. One bank.Jiitjpredict, bank-more-hiLpredict, and
bank.close-predict line per internal bank are used to coordinate this operation. The AS
broadcasts the address of the current row of each open internal bank to the VCs. When a
VC determines that it has a pending request that would hit in an open row, it drives the
shared line corresponding to the internal bank of the open row to tell the AS not to close the
row - in other words, we implement a wired OR operation. Similarly VCs that have a pend
ing request that misses in the internal bank use the bank-close-predict line to tell the AS to
close the row. Scheduling Policy Units (SPUs) within each of the VCs decide together which
VC can issue an operation during the current cycle. This decision is based on their collective
state as observed on the bankJiit-predict, bank-moreJiit-predict, and bank-close-predict lines.
Separate SPUs are used to isolate the scheduling heuristics within sub-modules so we can
experiment with various scheduling policies without making significant changes to the rest
of the BC.

The goal of our scheduling algorithm is to improve performance by maximizing row hits
and hiding latencies by operating other internal banks while a given internal bank is being
opened or precharged. A heuristic that achieves this goal is to promote row opens and
precharges above read and write operations, as long as they do not conflict with the open
rows being used by some other VC. This heuristic has the effect of opening rows as early
as possible. When no previous VC can issue a read or write due to a conflict or a need to

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 3-5

wait for a bank open/precharge to complete, VCs with lower priority can issue their reads or
writes. Also, when an older request completes, this policy ensures that a newer request will
be ready even if it uses a different internal bank, allowing multiple vector operations to be
done in close succession. Another heuristic that improves performance is to do operations
out of order as long as the VC whose read or write is to be issued has correct bus polarity
(i.e., data travels in the same direction as the last data transfer on the bus). See section 5.2.4
to know why this restriction is required. The scheduling algorithm within each SPU is given
below.

Schedule()
{
if the VC is ready

If bank_actv is asserted
Do nothing this cycle and propagate the
datapath lock since some other VC wants
to do a bank activate/precharge

else
if the datapath lock could be acquired

Issue the read/write operation and update
the address information in the context
with the value returned by the next
address calculation logic in the datapath.
Propagate 0 to the next VCs datapath lock
input.

else
Do nothing this cycle and propagate the
datapath lock

else
if the VC is blocked

if bank_hit_predict for the current bank is
not asserted and datapath lock could be
acquired

Issue a precharge/bank activate.
Propagate 0 to the next VCs datapath
lock input.

else
Do nothing this cycle and propagate the
datapath lock

else // i.e. The VC is empty
Do nothing this cycle and propagate the datapath lock

}

R o w M a n a g em en t A g o r ith m To obtain better performance this heuristic has to be
combined with intelligent management of open rows. If we believe that the next access
will be to another row, then closing the row immediately after it is accessed (by using an

UUCS-99-006: A P nr nil el Vector Access Unit for SD R A M M em ory System s 36

autoprecharge along with a read or write) gives the best performance. If the next access is
likely to be to the same row, then it is better to leave that row open. The access scheduler
decides whether to leave a row open after an access or to close it by examining the state of
the bank_hit_predict, bank_morehit_predict, bank_close_predict and bank_actv_predict lines
and a one bit (per internal bank) autoprecharge_predictor. The autoprecharge_predictor is
set whenever the very first operation of a new vector request is issued. The predictor is set to
one if the row that open last within the internal bank matches the row of the address of the
first vector element irrespective of whether there is a hit or not. If sufficient information to
accurately decide the best row policy is not available when the new vector request completes,
the predictors value is used to decide whether the row should be closed or not. The one bit
predictor is sufficient to detect most simple loops. The actual algorithm used is:

ManageRowO
{
if none of the VCs have issued any operation

send a nop to the SDRAM
else

Let b be the bank corresponding to the current
operation.
if the operation was the very first one for a

vector context
autoprecharge.predict[b] =

(last row address on bank b == row
address of the firsthit address)

if the operation is a read or a write
if the vector request is complete

if bank_morehit_predict[b] is asserted
leave the row open

else
if(bank_close_predict[b] or

autoprecharge_predict[b])
auto precharge the row

else
leave the row open

else // Vector request not complete
if the next address hits on the same bank or

bank_morehit_predict[b] is asserted
leave the row open

else
auto precharge the row

>

S ta g in g U n it s The Staging Units (SUs) store the data returned by the SDRAMs for a
VC-generated read operation and the data provided by the memory controller for a write.

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s 37

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 38

In the case of a gathered vector read operation, the SUs on the participating BCs cooperate
to merge vector elements into a cache line that is sent to the memory controller front end.
as described in section 5.2.1. In the case of a scattered vector write operation, the SUs
at each participating BC will buffer the write data sent by the front end. Associated with
each vector pending operation is a transaction-complete line on the BC bus, driven by the
SUs. This line acts as a wired OR that deasserts whenever all BCs have serviced a particular
gathered vector read or scattered vector write operation. In the case of a read, when the line
eventually goes low the memory controller issues a STAGE_READ command on the vector
bus, indicating which pending vector read operation’s data is to be read. In the case of a
write, the line going low indicates to the memory controller that the corresponding data has
been committed to SDRAM.

5.2.3 B ypass Paths

The description in the previous section is actually a simplified version of that in our imple
mentation. To improve performance we have implemented several bypass paths that reduce
communication latency among some parts of the BCs. For example, there is a bypass path
from the FHP module straight to the input port of the last VC within the access schedulers
window which reduces the latency when the Request FIFO is empty and the stride is a power
of 2. Similarly there is a bypass path from the output of the firsthit calculate module to
the input port of the last VC within the access schedulers window which helps to reduce
the latency by 1 cycle in cases where the stride is not a power of two but there is only one
outstanding request in the bank controller. If this bypass path did not exist then the FHC
module would have to write the value back to the register file before the request becomes
visible to the access scheduler. As explained before the bank controller design hides latency
when the controllers have multiple outstanding requests. In the case where a single request
is issued to an idle bank controller the bypass paths significantly help in reducing latency.

5.2.4 D ata Hazards

Reordering reads and writes may violate consistency semantics. To maintain acceptable
consistency semantics and to avoid turnaround cycles, the following restriction is required:
a VC may issue a read/write only if the bus has the same polarity and no polarity reversals
have occurred in any preceding (older) VC. The gist of this rule is that elements of different
vectors may be issued out-of-order as long as they are not separated by a request of the
opposite polarity. This policy gives rise to the following consistency semantics:

1. RAW hazards cannot happen.

2. WAW hazards may happen if two vector write requests not separated by a read happen
to write different data to the same location.

We assume that the latter event is unlikely to occur in a uniprocessor machine. If the L2
cache has a write-back and write-allocate policy, then any consecutive writes to the same
location will be separated by a read. If stricter consistency semantics are required a compiler
can be made to issue a dummy read to separate the two writes.

5.2.5 T im ing Considerations

SDRAM s have various timing restrictions on the sequence of operations that can be per
formed. To maintain these tim ing restrictions we use a set of small counters called restimers
each of which enforces one timing parameter by asserting a “resource available” line when
the corresponding operation may be performed. The control logic of the VC window works
like a scoreboard and ensures that all timing restrictions are met by letting a VC issue an
operation only when all the resources it needs including restimers and the datapath can
be acquired. Electrical considerations require one-cycle bus turnaround delay whenever the
bus polarity is reversed, i.e., when a read is immediately followed by a write or vice-versa.
Precharge and row open operations are not subject to such restrictions. The SCHED units
attem pt to minimize turnaround cycles while reordering accesses.

5.2.6 Overall O peration

The overall operation of the PVA unit can be understood from the folowing example. As
sume that a vector read needs to be performed with base address B and stride S and that
transaction id t is free. The memory controller first issues a VEC-READ command with
address B, stride S and transaction id t. The staging units of the bank controllers assert the
transaction complete line for t in response to the read command. Note that the transaction
complete lines are active low. The bank controllers notice this command on the bus and the
first hit predict modules of each bank controller decides if its bank is going to get a hit or
not. If there is a hit, it computes the firsthit index. In the case of a power of two stride the
first hit predict modules also compute the firsthit address for their respective banks. The
vector request gets queued in the Request FIFO. At this point the first hit calculate module
detects a new entry in the Request FIFO and completes the address calculation if S was
not a power of two. When the access scheduler detects an entry at the head of the FIFO
that has its “address calculation com plete” flag set it dequeues the entry from the FIFO and
enters it into a vector context. The VC then opens the necessary banks and issues the read
operations. Since all the bank controllers are working in parallel the read time is reduced.
As the data comes back from each SDRAM, the corresponding staging unit buffers the data
in transaction buffer t. When each staging unit detects that all the data that hits on its
bank has been collected, it deasserts the transaction line for t. When all staging units de-
assert the line, the memory controller detects that the transaction has completed and issues
a STAGE_READ command for transaction id t. In response to this command the staging
units that have the zeroth and first words of the data drive it on the BC bus followed by the
units that have the second and third words of data and so on. and In 16 cycles all 128 bytes
of the data are returned to the memory controller. To avoid electrical limitations alternate
halves of the bus are used every other cycle as explained in section 5.2.1. The case for a
vector write is similar except that the memory controller issues a STAGE-WRITE command
for transaction id t first followed by 16 cycles during which it transmits 64 bits of data in
each cycle. In the end it sends a VEC_WRITE command with address B, stride S and
transaction id t. It may continue to issue other operations after issuing the VEC_WRITE
command. When the data has been commited to SDRAM the transcation line for t will be
deasserted.

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 39

5.3 Hardware Com plexity
The results of synthesizing our unoptimized hardware prototype for the IKOS library for
Xilinx FPG As are shown in table 1 [11]. We used the synthesized design to measure the
delay through the critical path, which is through the multiply-and-add circuit required for
calculating FirstHit for non-power-of-two strides. Our multiply-and-add unit has a delay
of 29.5ns. We expect that a an optimized CMOS implementation will have a delay less
than 20ns making it possible to complete this operation in two cycles at 100MHz. The
other critical paths are fast enough to operate at 100MHz even in our FPGA implementa
tion. The FHP unit has a delay of 8.3ns and SCHED has a delay of 9.3ns. CMOS timing
considerations are usually very different from those for FPGAs, and thus the optimization
strategies differ significantly. Our FPGA delays represent an upper bound — the custom
CMOS implementation will be much faster.

6 Performance Evaluation
To evaluate the performance of the hardware prototype of the PVA unit described in 5,
we benchmarked it against three other memory systems using several vector style kernels.
This chapter describes the details of our benchmarks and compares the performance of the
different memory systems.

6.1 M em ory System s Evaluated
We used four different memory systems in our performance evaluation. The characteristics
of each are described below.

P V A : This is the PVA hardware prototype described in chapter 5. The DRAM tech
nology used is 256 Mbit, 16 bit wide SDRAM organized as 16 banks each of which is 32 bits
wide. RAS and CAS latencies are both two cycles. L2 cache line size is assumed to be 128
bytes, so the maximum length of a vector is 32 words.

C a ch e lin e in ter lea v ed ser ia l S D R A M : This memory system is an idealized, 16-
module SDRAM system optimized for cache line fills. The memory bus is 64 bits, and L2
cache lines are 128 bytes. The SDRAMs modeled require two cycles for each of RAS and
CAS, and are capable of 16-cycle bursts. We optimistically assume that precharge latencies
can be overlapped with activity on other SDRAMs (and we ignore the fact that writing lines
takes slightly less time than reading), thus each cache line fill takes 20 cycles (two for RAS,
two for CAS, and 16 for the data burst). The number of cache lines accessed depends on the
length and stride of the vectors; this system makes no attem pt to gather sparse data within
the memory controller.

G a th e r in g p ip e lin e d ser ia l S D R A M : This memory system is a 16-module, word-
interleaved SDRAM system with a closed-page policy. As before, the memory bus is 64 bits,
and vector commands access 32 elements (128 bytes, since the present system uses 4-byte
elements). Instead of performing cache line fills, this system accesses each vector element
individually. Although accesses are issued serially, we assume that the memory controller can
overlap RAS latencies with activity on other banks for all but the first element accessed by
each command. We optim istically assume that vector commands never cross DRAM pages,

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 40

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s 41

Type Count
AND2 1193

D Flip-flop 1039
D Latch 32

INV 1627
MUX2 183

NAND2 5488
NOR2 843
OR2 194

XOR2 500
PULLDOWN 13

TRISTATE BUFFER 1849
On-chip RAM 2K bytes

Table 1 : Synthesis summary

and thus DRAM pages are left open during the processing of each command. Precharge costs
are incurred at the beginning of each vector command. This system requires more cycles to
access unit-stride vectors than the cache line interleaved system we model, but because it
only accesses the desired vector elements, its relative performance increases dramatically as
vector stride goes up.

P a r a lle l V ec to r A c c e ss S R A M : This memory system appearsunder the labels “min
parallel vector access SRAM” and “max parallel vector access SRAM” in later graphs. They
respectively model the minimum and maximum performance of an idealized SRAM vector
memory system with the same parallel access scheme developed for our SDRAM system.
Based on static RAM, this system incurs no precharge or RAS latencies: all memory accesses
take a single cycle. Comparing the performance of our PVA SDRAM system to the PVA
SRAM one gives us a measure of how well our system hides the extra latencies associated
with dynamic RAM.

6.2 Experim ental M ethodology
Table 2 lists the kernels used to generate the results presented here, copy, saxpy and scale
are from the BLAS (Basic Linear Algebra Subprograms) [7], and tridiag is a tridiagonal
gaussian elimination fragment, the fifth Livermore Loop [22], vaxpy denotes a “vector axpy”
operation that occurs in matrix-vector multiplication by diagonals. We choose loop kernels
over whole-program benchmarks for this initial study because: (i) our PVA scheduler only
speeds up vector accesses, (ii) kernels allow us to examine the performance of our PVA
mechanism over a larger experimental design space, and (iii) kernels are small enough to
permit the detailed, gate-level simulations required to validate the design and to derive timing
estimates. Performance on larger, real-world benchmarks — via functional simulation of the
whole memory system or performance analysis of the hardware prototype we are building

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 42

— will be necessary to demonstrate the final proof of concept for the design presented here.
These studies have been left as future work.

Recall that the bus model we target allows only eight outstanding transactions. This
limit prevents us from unrolling most of our loops to group multiple commands to a given
vector, but we examine performance for this optimization on the two kernels that access
only two vectors, copy and scale. In our experiments, we vary both the vector stride and the
relative vector alignments (placement of the base addresses within memory banks, within
internal banks for a given SDRAM, and within rows or pages for a given internal bank).
All application-vectors are 1024 elements (32 cache lines) long, and the strides are equal
throughout a given loop. In all, we have evaluated PVA performance for 240 data points
(eight access patterns x six strides x five relative vector alignments) for each of four different
memory system models.

It must be emphasized that the performance evaluation makes the assumption of an
infinitely fast CPU that issues memory requests as soon as possible (subject to availability
of bus resources). As such the performance numbers here represent the maximum pressure
the memory system can be submitted to. Speed up experienced by vector applications will
be subject to several criteria like the percentage of vectoriseable memory accesses, the issue
width of the processor, number of outstanding L2 cache misses permitted etc. But in general
it is safe to assume that the faster the processor consumes data, the closer it is to the peak
conditions described here and the greater the mismatch between the processor and memory
speed and data consumption rate and bus bandwidth the better the performance of a PVA
system over a traditional memory system.

6.3 Perform ance Results
Figures 7 and 8 show the comparative performance for our four memory models on strides 1,
2, 4, 8, 16, and 19 for each of the kernels. Figures 9 and 10 show comparative performance
across all benchmarks for each of strides 1, 4, 8, 16 and 19. The annotations above each bar
indicate execution tim e normalized to the minimum PVA SDRAM cycle time for each access
pattern. Bars that would be off the y scale are drawn at the maximum y value and annotated
with the actual number of cycles spent. For cases where the minimum equals the maximum
execution tim e for the PVA SRAM model, we include only the former bar. The sets of
bars labeled “copy2” and “scale2” represent unrolled versions of those kernels for which
read and write vector commands are grouped (so the PVA unit sees two consecutive vector
commands for the first vector, then two for the second, and so on). This optimization only

Kernel Access Pattern
copy
saxpy
scale
swap
tridiag
vaxpy

for (i = 0; i < L * S;
for (i = 0; i < L * S;
for (i = 0; i < L * S;
for (i = 0; i < L * S;
for (i = 0; i < L * S;
for (i = 0; i < L * S;

i + = S) y[i] = x[i];
i + = S) y[i] + = a * x[i];
i + = S) x[i] = a * x[i];
i + = S) {reg = x[i]; x[i] = y[i]; y[i] = reg;}
i + = S) x[i] = z[i] * (y[i] - x[i-l]);
i + = S) y[i] + = a[i] * x[i];

Table 2: Kernels used to evaluate our design

improves performance for the PVA SDR AM system s, y ield ing only a slight advantage over the
unoptim ized versions of the same benchmark. If more outstanding transactions were allowed
on the processor bus, greater unrolling would deliver larger perform ance im provem ents.

6.3.1 E xplanation of Perform ance Trends

The perform ance improvem ent offered by the PVA is because o f three reasons :

1. Fewer accesses to SD R A M since the m em ory controller loads or stores individual words
lines rather than w hole cache lines.

2. B etter SD RA M bandw idth by operating m ultiple SD R A M banks in parallel.

3. Lower latency by smart scheduling policy for SD R A M banks.

4. Better utilization of bus bandwidth by com pacting vector elem ents into cache-lines.

For unit-stride access patterns (dense vectors or cache-line fills), our PVA unit performs
about the same as a cache-line interleaved system that perforins only line fills. As shown in
figure 9 (a), norm alized execution tim e for the latter system is between 100% (for copy and
sca le) and 109% (for copy2 , scale2, sw ap and vaxpy) of the PVA un it’s m inim um execution
tim e for our kernels. T he PVA is able to outperform the cache-line interleaved system
because of its sm art scheduling policy.

As stride increases, the relative perform ance of the cache-line interleaved system falls off
rapidly. At stride four, norm alized execution tim e rises to between 307% (for sc a le) and
408% (for v a x p y) of the PVA system ’s, and at stride 16, norm alized execution tim e rises to
between 638% (for scale) to 1112% (for t r id iag) . At a prime stride like 19 execution tim e
rises to between 2878% (for scale) to 3278% (for swap). The PV A ’s better perform ance is
m ainly due to reasons 1, 2 and 4.

It is not possible to iso late the effect of each of 1, 2 and 4 because the am ount o f parallelism
changes with the stride. So it is not possible to vary the stride and the degree o f parallelism
independently.

As explained in chapter 4, for a stride of S — a * 2s every 2Hh bank will have a hit.
Thus the degree o f parallelism available is M / 2 s . To see the effect o f stride and available
parallelism on m em ory latency observe the results of the scale kernel in figure 7 (c). Since
th is particular benchm ark reads and writes to just one vector it is independent of the effects
of relative vector alignm ent. This figure shows latency gradually increasing w ith stride till
stride 19 is reached. N ote that 19 = 1 9 * 2°. Hence the degree o f parallelism is m axim um
and the PVA is able to operate all 16 of its banks in parallel even though traditional m em ory
system s perform poorly on prime number strides like 19. Perform ances for both our SD RA M
PVA system and the SRAM PVA system for stride 19 are sim ilar to the corresponding results
for unit-stride access patterns. In contrast, the serial gathering SD RA M and the cache-line
interleaved system s yield perform ances much more like those for stride 16.

Som e relative vector alignm ents are more advantageous than others, as evidenced by the
variations in the SD R A M PVA performance in figure 11 (a). The SRAM version of the
PVA system in figure 11 (b) shows sim ilar trends for the various com binations o f vector

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s 43

cy
cl

es

cy
cle

s
cy

cle
s

cy
cl

es

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s 46

■ min parallel vector access SDRAM
Q max parallel vector a cc©ss SDRAM
0 min parallel vector access SRAM
□ max parallel vector access SRAM
Q gathering pipelined serial SDRAM
□ cache line interleaved serial SDRAM

(d) Stride 8

Figure 9: Comparative performance of all kernels with fixed stride

(a) Stride 16

(b) Stride 19

Figure 10: Comparative performance of all kernels with fixed stride - continued

stride and relative alignm ents, although its perform ance is slightly more robust. For small
strides that hit more than two SD RA M banks, the m inim um and m axim um execution tim es
for our PVA system differ only by a few percent. For strides that hit one or two of the
SD R A M com ponents, though, relative alignm ent has a larger im pact on overall execution
tim e. Such strides have a lot of operational overhead (SDR AM R A S /C A S latencies and
precharge latencies) that cannot be overlapped w ith other operations and thereby hidden.

T he key point to be noticed in figure 11 (b) is that the PVA SD R A M unit is able to
perform remarkably close to PVA SRAM . In that figure, it m ay be seen that the PVA
m echanism is able to use SDRAM to achieve a perform ance equivalent to that of SRAM
or in the worst case at m ost 15% slower. This is proof that the scheduling heuristics built
into the PVA are extrem ely successful in hiding the overhead cycles associated with using
SD R A M instead of SR AM. It m ay be seen in 11 (b) that in two cases the SD RA M PVA unit
outperform s SRAM . This result is an artifact of slight im plem entation differences between
both the units that cause an additional 27 cycle delay for each experim ent while running the
kernels on the SRAM PVA unit. In reality, if both PVA units were identical SD RA M will
com e close to the perform ance o f SRAM , but will not outperform it.

7 C onclusion
An algorithm to im plem ent parallel access to base-stride vectors was designed and a hard
ware prototype which im plem ents the algorithm was designed and sim ulated. The proto
type dem onstrated the feasibility of im plem enting the PVA algorithm in hardware and the
benchm arks indicate significant perform ance im provem ents when using this technique. The
perform ance o f the PVA unit varied from the sam e as that o f a cache-line oriented mem ory
system for unit accesses to 32.8 tim es faster for strided accesses. Studies of how this scheme
will interact with virtual m em ory and functional sim ulation o f full-program benchmarks need
to be done.

It is interesting to note that the industry seem s to have started using approaches sim ilar
to those described in th is thesis. In particular, the RM C2 “constraint-based” m em ory con
troller from R A M BU S Inc uses constraints sim ilar to the PVA back-end and uses a sim ple
rule to skip unnecessary precharge operations. Our work pre-dates the RM C2 controller doc
um entation. As such, the design o f the R.MC2 controller can be considered an independent
validation of som e of the design concepts presented in th is thesis.

T he general technique of m aking the m em ory controller aware o f application vectors can
be carried forward to com m on patterns other than base-stride. For exam ple, the PVA unit
described here can be extended to handle vector indirect scatter-gather operations by per
form ing the operation in two phases: (i) loading the indirection vector into the appropriate
bank controllers and then (ii) loading the appropriate vector elem ents. Loading the indi
rection vector is sim ply a unit-stride vector load operation. A fter the indirection vector is
loaded, its contents can be broadcast across the vector bus. Each bank controller can easily
determ ine which elem ents of the vector reside in its SD RA M by snooping th is broadcast and
perform ing a sim ple bit-m ask operation on each address broadcast (two per cycle). Then,
each bank controller can perform its part of the vector indirect gather operation in parallel,
and the result can be coalesced from the staging units in much the sam e way as is now done

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 49

for strided accesses. Another exam ple is handling the bit-reversal phase of a Fast Fourier
Transform algorithm . The data for such algorithm s is norm ally stored as a sequence of com
plex num bers, but the algorithm has to re-order the data into a form that is more am enable
to later processing. This reordering phase called bit reversal has extrem ely bad cache locality
for large data sets. It is quite easy to make the m em ory controller aware of the bit-reversed
application vector pattern and let it gath er/sca tter sequential data into bit-reversed form.
It can be done by reversing som e number of low order bits of the address and using the
new address to access memory, increm enting the original address and repeating the address
reversal till a cache line worth of data is fetched or stored. The scatter/gath er operation on
bit-reversed vectors is inherently sequential for word-interleaved memory system s, but can
be parallelized for block interleaved m em ory system s.

Though it is possible to build in knowledge of com m on application vectors into a m em ory
controller (e.g. a bit-reversed application vector for D SP environm ents and m ulti-m edia),
it would be im portant to study how knowledge of application vectors can be programmed
at run tim e into m em ory controllers so that they can use this apriori inform ation to keep
pace w ith the processor in spite of the vast speed difference between processor and memory.
However the above exam ples of indirection and bit-reversed vectors seem to suggest that
the kind of processing required to sca tter/ga th er such application vectors would be quite
com plicated and it may not be possible to im plem ent such transform ations w ithin a general
purpose framework.

In sum mary, the parallel vector access unit described in this thesis shows great prom ise for
im proving the m em ory perform ance of applications that use base-stride style vector access.
The perform ance results are also an indicator of the im provem ents that could be obtained
by raising the sem atic level o f the processor m em ory interaction by providing the mem ory
controller w ith the knowledge of the m em ory access pattern of applications.

R eferences
[1] A d v a n c e d M ic r o D e v i c e s . Inside 3D N ow !(tm) technology,

h ttp ://w w w .am d .com /p rod u cts/cp g /k 623d /in sid e3d .h tm l.

[2] B e n i t e z , M ., a n d D a v i d s o n , J. Code generation for streaming: An access/execute
m echanism . In Proceedings o f the 4 th S ym p o s iu m on A rch itec tura l S upport f o r P ro g ra m
m ing Languages an d O perating S y s te m s (Apr. 1991), pp. 132-141.

[3] C a r t e r , J . , H s i e h , W ., S t o l l e r , L., S w a n s o n , M ., Z h a n g , L., B r u n v a n d ,
E ., D a v i s , A ., K u o , C . - C . , K u r a m k o t e , R ., P a r k e r , M ., S c h a e l i c k e , L., ,
AND T a t e y a m a , T . Impulse: B u ild in g a sm arter m em ory controller. In Proceedings o f
the Fifth A n n u a l S ym p o s iu m on High P er fo rm a n ce C o m p u te r A rch itec tu re (Jan. 1999),
pp. 70-79 .

[4] C h e n , T .-F . D a ta P refe tch ing f o r High P er fo rm a n ce Processors. P hD thesis, Univ. of
W ashington, July 1993.

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 50

http://www.amd.com/products/cpg/k623d/inside3d.html

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M emory System s 51

[5

[6

[7

[8

[9

1CI

11

12

13

14

15

16

17

18

19

C o r b a l , J ., E s p a s a , R ., a n d V a l e r o , M . Com m and vector mem ory system s:
High perform ance at low cost. Tech. Rep. U PC -D A C -1999-5, U niversitat P olitecn ica de
Catalunya, Jan. 1999.

d e l CORRAL, A ., AND L l a b e r i a , J. Access order to avoid inter-vector conflicts in
com plex m em ory system s. In Proceedings of the Ninth International Parallel Processing
Symposium (1995).

D o n g a r r a , J ., D u C r o z , J ., D u f f , I ., a n d H a m m e r l i n g , S. A set of level 3 basic
linear algebra subprogram s. A C M Transactions on Mathematical Software 16, I (Mar.
1990), 1-17.

G i l l i n g h a m , P . SLDRAM Architectural and Functional Overview.
h ttp ://w w w .sld ram .com /D ocu m en ts/S L D R A M w h ite970910 .p d f, August 1997.

H a l l , L. A . Approxim ation Algorithm s for Scheduling. In Approximation Algorithms
for NP-Hard Problems , D. N. Hochbaum , Ed. PW S Publishing Company, 1997, pp. 1
43.

H su , W ., a n d S m i t h , J . Perform ance of cached D R A M organizations in vector super
com puters. In Proceedings of the 20th Annual International Symposium on Computer
Architecture (M ay 1993), pp. 327-336.

IK O S S y s t e m s . IKOS
h ttp ://w w w .ik os.com /p rod u cts/lib raries/in d ex .h tm l.

Libraries, 1999.

IK O S S y s t e m s . V irtualL ogic, 1999. h ttp ://w w w .ik o s .co m /p ro d u cts /v s li/in d ex .h tm l.

In t e l . MM X program m er’s reference m anual,
h ttp ://d ev e lo p er . in te l.com /d rg /m m x/M an u a ls/p rm /p rm .h tm .

Ir a n i , S ., AND K a r l i n , A . R . O nline C om putation. In Approximation Algorithms for
NP-Hard Problems , D . N. Hochbaum, Ed. P W S Publishing Company, 1997, pp. 521—
559.

K o n t o t h a n a s s i s , L. I ., S u g u m a r , R . A ., F a a n e s , G . J ., S m i t h , J . E ., a n d
S c o t t , M . L. Cache performance in vector supercom puters. In Proceedings of Super
computing ’94 (Nov. 1994), pp. 255-264.

K r i s h n a , C . M ., a n d S h i n , K . G . Real-time Systems. M cGraw-Hill, 1997.

L e e , K . The NAS860 Library User’s Manual. N A SA Am es Research Center, Mar.
1993.

M c C a l p i n , J. Stream: Sustainable m em ory bandw idth in high perform ance com put
ers. h ttp ://w w w .cs .v irg in ia .ed u /strea m /, 1999.

M c K e e , S. Maximizing Memory Bandwidth for Streamed Computations. P hD thesis,
School of Engineering and Applied Science, University o f Virginia, May 1995.

http://www.sldram.com/Documents/SLDRAMwhite970910.pdf
http://www.ikos.com/products/libraries/index.html
http://www.ikos.com/products/vsli/index.html
http://developer
http://www.cs.virginia.edu/stream/

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 52

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

M c K e e , S . , a n d W u l f , W . Access ordering and memory-conscious cache utiliza
tion. In Proceedings of the First Annual Symposium on High Performance Computer
Architecture (Jan. 1995), pp. 253-262.

M c K e e , S. A ., e t a l . Design and evaluation of dynamic access ordering hardware. In
Proceedings of the 10th A C M International Conference on Supercomputing (Philadel
phia, PA, May 1996).

M c M a h o n , F . The livermore fortran kernels: A computer test of the numerical per
formance range. Tech. Rep. UCR.L-53745, Lawrence Livermore National Laboratory,
December 1986.

M i c r o n T e c h n o l o g y , I n c . 256mb:
h ttp ://w w w .m icron.com /m ti/m sp/pdf/datasheets/256M SD R A M .pdf.

Sdram.

M IP S T e c h n o l o g i e s , I n c . MIPS extension for digital media with 3D.
h ttp://w w w .mips.com/Docum entation/isa5_tech_brf. pdf.

M i t s u b i s h i S e m i c o n d u c t o r s .
4194304-bit (262144-Word by 16-bit) CMOS STATIC RAM. http://w w w .m itsubishi-
chips.com /data/datasheets/m em ory/m em pdf/ds/d99019. pdf, 1998.

M i t s u b i s h i S e m i c o n d u c t o r s . 256M Synchronous DRAM. http://w w w .m itsubishi-
chips.com /data/datasheets/m em ory/m em pdf/ds/a99005.pdf, July 1999.

M o t o r o l a . Altivec(tm) technology programming interface manual, rev. 0.9.
http: / / www.mot.com/SPS/Pow erPC /teksupport / teklibrary / manuals / altivecpim.pdf,
Apr. 1999.

M o y e r , S. Access Ordering Algorithms and Effective Memory Bandwidth. PhD thesis,
School of Engineering and Applied Science, University of Virginia, May 1993.

P e i r o n , M . , V a l e r o , M . , A y g u a d e , E . , a n d L a n g , T . Vector multiprocessors w ith
arbitrated m em ory access. In Proceedings of the 22nd Annual International Symposium
on Computer Architecture (June 1995).

R a m b u s , In c . 256/288-M bit Direct RDRAM (Advance Information.
http://w ww .ram bus.com /developer/dow nloads/rdram 256d.pdf, September 1998.

R a m b u s , I n c . Rambus technology overview,
http://w ww .ram bus.com /developer/dow nloads/TechO V.pdf.

DL-0040-00, 1999.

R a m b u s , I n c . RMC2 D ata Sheet (Advance Information.
http://w w w .ram bus.com /developer/dow nloads/rm c2_overview.pdf, August 1999.

S c h u m a n n , R. Design of the 21174 memory controller for DIGITAL personal work
stations. Digital Technical Journal 9: 2 (Jan. 1997).

SU N . The VIS advantage: Benchmark results chart VIS performance. W hitepaper
WPR.-0012.

http://www.micron.com/mti/msp/pdf/datasheets/256MSDRAM.pdf
http://www.mips.com/Documentation/isa5_tech_brf
http://www.mitsubishi-
http://www.mitsubishi-
http://www.mot.com/SPS/PowerPC/teksupport
http://www.rambus.com/developer/downloads/rdram256d.pdf
http://www.rambus.com/developer/downloads/TechOV.pdf
http://www.rambus.com/developer/downloads/rmc2_overview.pdf

UUCS-99-006: A Parallel Vector Access Unit for SD R A M M em ory System s 53

[35] S u n . VIS instruction set user’s manual.
h ttp ://w w w .su n .com /m icroelectron ics/m an u als/805-1394 .p d f.

[36] T y l e r , J ., L e n t , J ., M a t h e r , A ., a n d N g u y e n , H . Altivec: Bringing vector tech
nology to the powerpc processor family. In Proceedings of the 1999 IEEE International
Performance, Computing, and Communications Conference (Feb. 1999).

[37] V a l e r o , M ., L a n g , T ., L l a b e r i a , J ., P e i r o n , M ., A y g u a d e , E ., a n d N a v a r r o ,
J. Increasing the number of strides for conflict-free vector access. In Proceedings of the
19th Annual International Symposium on Computer Architecture (M ay 1992), pp. 372
381.

[38] V a l e r o , M ., L a n g , T ., P e i r o n , M ., a n d A y g u a d e , E . Conflict-free access for
stream s in m ulti-m odule m em ories. Tech. Rep. U PC -D A C -93-11, U niversitat Politecnica
de Catalunya, Barcelona, Spain, 1993.

[39] W o l f e , M . Optimizing Supercompilers for Supercomputers. M IT Press, Cambridge,
M assachusetts, 1989.

[40] Z a l e w s k i , J. W hat Every Engineer Needs to Know about R ate-M onotonic Scheduling:
A Tutorial. In Advanced Multimicroprocessor Bus Architectures, J. Zalewski, Ed. 1995,
pp. 321-335.

http://www.sun.com/microelectronics/manuals/805-1394.pdf

