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' Abstract

Parallel Vector Access is a technique that exploits the regularity of vector or stream 
accesses to perform them efficiently in parallel on a multi-bank memory system. The perfor
mance of applications that have vector accesses may be improved using a memory controller 
that performs scatter/gather operations so that only the vector or stream elements that are 
accessed by the application are transmitted across the system bus. These scatter/gather 
operations can be speeded up by broadcasting vector operations to all banks of memory 
in parallel, each of which implements an algorithm to determine which elements of the re
quested vector they contain. This thesis presents the mathematical foundations behind one 
such algorithm for efficient parallel access of base-stride vectors on both word interleaved 
and cache-line interleaved memory systems. The design of a memory controller subcompo
nent that uses the Parallel Vector Access (PVA) algorithm to improve the performance of 
applications with strided access patterns is described. The hardware implementation issues 
behind such a memory controller are investigated. The the performance of such a memory 
controller on vector kernels is studied by gate level simulation and the results analyzed. Be
cause of the parallel approach, the PVA is able to load elements up to 32.8 times faster than 
a conventional memory system and 3.3 times faster than a pipelined vector unit, without 
hurting normal cache line fill performance.

Keywords: memory architecture, memory latency, memory bandwidth, bus utilization, 
cache efficiency
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1 Introduction
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Processor speeds are increasing much faster than memory speeds, so memory latency and 

bandwidth lim itations prevent many applications from making effective use of the tremen

dous computing power of modern microprocessors. The traditional approach to solving this 

mismatch has been to structure memory hierarchically by adding several levels of fast cache 

memory between the processor and the real memory. The fast cache memory improves 

overall performance by taking advantage of spatial and temporal locality to reduce average 

load/store latency. However caches may not be able to improve the performance of irregular 

applications that have poor locality. They might in fact exacerbate the problem by loading 

and storing entire cachelines even when the application uses only a few of the memory words 

in a cacheline. Moreover caches do not solve the bandwidth mismatch on the cachefill path. 

In cases where system bus bandwidth is the bottleneck, memory system performance can be 

improved only by utilizing this resource more efficiently.

Several applications that suffer from poor cache locality have predictable access patterns. 

Programs that operate on large multi-dimensional arrays are an example of this class of ap

plications. Though modern processors generate memory operations at several granularities, 

such operations are filtered through the cache and the real memory accesses are done by the 

cache controllers at cacheline grain size. Hence, memory operations are seen at the DRAM  

end at the granularity of the lowest level cacheline size. If an access to an array element 

misses in the cache, it will be seen by the DRAM as a cache line accesses. Conceptually a 

cacheline request can be considered a fixed length vector, and a memory controller serves 

requests to load or store fixed length vectors. When applications access their array elements 

in the same order as a memory vector, performance improves due to good cache and bus 

bandwidth utilization. When the sequence of memory elements accessed by an application 

belong to different memory vectors performance suffers. The former case happens when an 

application accesses an array stored in row major order along a row of the array. An ex
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ample of the latter case is when the same array is accessed along a column or a diagonal. 

Performance loss in the latter case is due to two reasons.

•  Poor cache utilization: The application uses only some elements of a memory vector, 

but the whole vector occupies space in the cache. The amount of data the cache can 

handle is therefore reduced.

•  Poor system bus utilization: The application uses only some elements of a memory 

vector, but the whole vector is transferred across the system bus. Hence, the amount 

of usable data that can be transferred across the bus is reduced.

Henceforth let us call a sequence of array elements accessed by an application that occupies 

the same number of memory words as a cacheline an application vector. The problem 

of irregular applications is that their performance suffers due to poor cache and system  

bus utilization because their application vectors do not match memory vectors. Memory 

vectors are currently unit stride vectors while application vectors may have some other 

pattern depending on the nature of the application. If a traditional memory controller can 

be extended to  understand application vectors that have patterns other than unit stride then 

applications with such patterns can benefit from better cache and system bus utilization.

Some of the common patterns for application vectors are:

•  Non-unit, but constant stride which occurs when an application accesses array elements 

along the column of an array, accesses particular fields of an array of records etc. We 

will refer to this pattern as BASE-STRIDE access.

•  The elements of the application vector are accessed indirectly using offsets or addresses 

contained in another vector. The latter case is common in sparse matrix computations. 

We will refer to this pattern as v e c t o r - i n d i r e c t  access.

•  The application vector for Fast Fourier Transform algorithms corresponds to a bit- 

reversal of the address of consecutive elements in an array that contains the data.



This thesis introduces a memory controller architecture that understands application vectors 

that follow a base-stride pattern in addition to the traditional unit stride pattern. It discusses 

architectural features that enable the memory controller to efficiently load and store base- 

stride vectors by operating multiple memory banks in parallel. In closing, it also provides 

some suggestions on how other common application vectors can be handled.

The domain of applicability extends from the traditional scientific vector processing to  

the realm of desktop computing. Several new instruction set extensions (e.g., Intel’s MMX 

for the Pentium [13], A M D ’s 3DNow! for the K6-2 [1], M IPS’s MDMX [24], Sun’s VIS for 

the UltraSPARC [35], and Motorola’s AltiVec for the PowerPC [27]) bring stream and vector 

processing to the domain of desktop computing. The results for some applications that use 

these vector extensions are quite promising [36, 34], even though the extensions do little 

to address memory system performance. All these extensions will benefit from a memory 

controller that understands application vectors.

The architectural features and algorithms used for this purpose will be collectively re

ferred to as P a r a l l e l  V e c t o r  A c c e s s  or P V A .  The organization of the main memory 

system assumed in the rest of this thesis is shown in figure 1 . The data paths are not shown 

in the figure. This thesis assumes that the processor has some means of communicating 

information about application vectors to the memory controller. Some indications of how 

this can be achieved can be found in section 3.2. The rest of this thesis assumes that the 

P V A  unit receives vector requests from the Vector Command Unit and returns results to it. 

The communication between the Vector Command Unit and the processor over the system  

bus are not relevant to the ideas discussed here.

To put the later discussion of the PVA in the appropriate context, chapter 2 provides 

a brief background of current memory technologies. Chapter 3 discusses related work in 

this area. Chapter 4 introduces the PVA algorithms for parallel base-stride access and sets 

the background for chapter 5 that describes the implementation architecture. Chapter 6
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describes the experiments that were done and analyzes their results. Chapter 8 concludes 

the results of this work and presents some directions for future research.

2 M emory Technology Background

The memory technology used for high performance vector processors has traditionally been 

SRAM while DRAM has been more common on almost all other macines. A major portion 

(often more than half) of the cost of a vector super computer consists of the cost of the 

memory system [15][10]. The reason for this preference of DRAM over SRAM becomes 

obvious when we consider that the largest DRAM chip available from a major manufacturer 

in 1999 was 256 Mbits while the largest SRAM part available from the same manufacturer is

4 Mbits [251[26], In addition the 4 Mbit SRAM chip is priced much higher than an SDRAM  

chip with 64 times the capacity. The 4 Mbit SRAM part has a cycle tim e of 10ns (max). 

The 256 Mbit SDRAM part too is capable of operating at 100 Mhz, i.e. with a clock cycle



tim e of 10ns. W hat sets the SRAMs performance apart from that of the SDRAM is that 

while the SRAM always has a fixed latency of 10ns, the SDRAM might take several clock 

cycles to access data. Theoretically, it is possible to apply one address to an SDRAM every 

cycle since it internally pipelines accesses. If this were practically possible, then the 256 M 

bit SDRAM part might be able to deliver performance close to that of the 4 Mbit SRAM 

part at a fraction of the cost. The current trends in DRAM technology can all be considered 

as interface modifications that are geared towords exploiting this ability to pipeline accesses 

to the maximum. RAM BUS, SLDRAM and the Alpha 21174 memory controller discussed 

later in this chapter are all examples of this trend. All these memory systems try to hide 

RAS and pre-charge latencies of DRAM as much as possible by exploiting row hits within a 

stream of accesses. To understand how these new memory technologies work let us look at

In SRAM every bit corresponds to a six transistor cell. For optimal layout the cells are often 

organized as a square matrix. Figure 2 shows the internal organization of a typical SRAM  

chip. The address bits Am..A0, consist of the row address (bits A 0..An ) and the column 

address (bits A n+x..Am ). The row decoder uses the row address to select an entire row 

within the memory array and portion of this row is selected by the column address decoder 

using the column address. Control signals like Chip Select, Output Enable and Write Control

In DRAM every bit corresponds to a single transistor cell which is implemented as a simple 

capacitive charge well. DRAM cells are more compact yielding much greater densities for 

DRAM over SRAM. Figure 3 shows the internal organization of a typical DRAM chip. 

Like SRAM, the cells are organized as a matrix. But unlike SRAM the address bits are
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Figure 2: Block Diagram of SRAM

multiplexed. The row and column decoders work like their counterparts in SRAM. The 

fundamental difference is that an analog sense amplifier is used to read the contents of a cell 

and the charge in the cell is drained after each read. The charge leaks over tim e and needs to 

be restored periodically and also after each read. For these reasons access to a DRAM word 

involves a more complex procedure than access to an SRAM word. First the row address is 

applied (RAS - Row Address Strobe) and the row decoder selects the appropriate row and 

then the column address is applied (CAS - Column Address Strobe). In the case of reads, 

after the data has been read, a pre-charge operation is done to restore the charge to the row 

that was read. Refresh circuitry is used to periodically (typically every 64ms) refresh the 

contents of each row.
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2.3 N ew  D R A M  Variants

Most manufacturers currently consider traditional DRAM and its simpler variants like Fast 

Page Mode DRAM and EDO DRAM as end of life products. This section therefore empha

sizes more sophisticated DRAM technologies like SDRAM, SLDRAM and RAMBUS.

2.3.1 Fast Page M ode D R A M  (FPM  D R A M )

Fast page mode DRAM is a minor improvement over the conventional DRAM explained in 

section 2.2, in that it allows multiple CAS cycles following a RAS cycle. This is good for 

accessing sequential data within a row. The sense amplifiers hold the data corresponding 

to the currently open page (row) within the memory array and this data can be accessed 

relatively fast before issuing a final pre-charge operation to close the row.

2.3.2 Extended D ata  Out D R A M  (EDO D R A M )

EDO DRAM has an additional latch that stores the data while the row is being precharged, 

permitting overlap of reading the data off the bus and precharging the row. It also permits 

the data to remain valid longer.

2.3.3 Synchronous D R A M  (SD R A M )

Though SDRAM uses a core similar to a traditional DR AM core it is fundamentally different 

in that it synchronizes its operation to a system clock. W hile RAS and CAS are asynchronous 

signals in the case of conventional DRAM, it is more appropriate to consider these as com

mands issued to an SDRAM chip at the edge of the clock. SDRAM internally pipelines 

its operation. Though SDRAM has several tim ing constraints (e.g. A RAS following a 

precharge must be issued only after a precharge delay), because of the pipelined operation a 

CAS can be issued each cycle. SDRAMS are internally organized as several banks (typically 

four) and operations on different banks can be overlapped. A smart memory controller can
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use these features to ensure better performance by issuing optimal sequences of operations 

and by managing open rows more effectively.

2.3.4 Synchronous Link D R A M  (SLD R A M )

SLDRAM is an open standard high performance DRAM technology that follows an evolu

tionary approach from SDRAM to Dual Data Rate DRAM (DDR) [8]. SLDRAM uses a 

multi-drop bus that connects a memory controller and up to eight SLDRAM devices. The 

controller sends commands to SLDR AM deices over a portion of the bus called the Comman- 

dLink that operates on both edges of the clock. Data is transferred over the 18 bit DataLink 

portion of the bus and may be synchronized with one of two possible clock signals called 

DCLKO and DCLK l. Two clocks are used to minimize the gap required when control of the 

DataLink is transferred from one device to another. Like in the case of SDRAM, all internal 

operations are pipelined.

2.3.5 D irect R A M B U S D R A M  (D R D R A M )

DRDRAM  represents a significant advance in DRAM technology in terms of both the se

mantic level and the electrical characteristics of the DR AM interface [311[30]. The interface 

between the DRDRAM  and the RAM BUS memory controller is called a RAMBUS channel. 

Like in the case of SDR AM this interface is synchronous. However, to minimize clock to data  

skew DRDRAM  uses a source synchronous tim ing model. DRDRAM  sends clock and data  

in parallel and there are two separate clocks called ClockToMaster and ClockFromMaster. 

Data send by DRDRAM  to the controller is synchronous with ClockToMaster and data send 

from the memory controller to DRDRAM  is synchronous with ClockFromMaster. It trans

fers data on both edges of the clock permitting transfer rates of 600MHz or 800MHz and is 

capable of a sustained bandwidth of 1 .6G B /s. The core operates at one eighth of the data 

frequency. DRDRAM  has a 16 bit data buse and separate row and column control buses. 

The core is organized as 32 banks and four transactions can take place simultaneously. All
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operations are internally pipelined. The unit of data transfer is a dual-oct or 16 bytes. Each 

transfer takes four clock cycles over the 16 bit data bus.

2.3.6 R A M B U S D R A M  (R D R A M )

Architecturally, RDRAM is like a more primitive version of DRDRAM  described in the 

previous section except that It operates the channel at 300MHz and can achieve only a peak 

data rate of 600M B/s using a byte wide multiplexed address/data bus.

2.4 Advanced M em ory Controllers

This section describes two memory controllers that represent the state of the art. The Alpha 

21174 controller is in production at the time of this writing while the RAM BUS RMC2 

controller is still in the early stages of design.

2.4.1 T he A lpha 21174 M em ory Controller

The Alpha 21174 memory controller is an ASIC used in D i g it a l  Personal W orkstations [33]. 

It interfaces with a set of SDRAM DIMMs and the 128 bit system bus on the workstation. 

W hat sets it apart from traditional memory controllers is its ability to reduce memory latency 

by exploiting open rows on the SDRAM devices. The 21174 memory controller manages the 

open rows on its SDRAM devices as a cache. It uses a predictor for each DIMM to decide 

whether to close the SDRAM row after each access. If a hit is predicted the row is left open 

and if a miss is predicted the row is closed. To predict row hits and misses it uses a four 

bit history for each DIMM to record hits and misses. Associated with each predictor is a 

16 bit precharge policy register. This register is set by software to indicate whether the row 

should be left open or precharged for each possible value of the four bit history. The adaptive 

hot-row management provided a 23% improvement in measured best-case memory latency 

and a 7% improvement in measured bandwidth for McCalpin’s STREAM benchmark [18].



2.5 R A M B U S M em ory Controller (RM C2)

The RMC2 memory controller from RAM BUS Inc has many features similar to the SDRAM  

interface of the PVA unit described in this thesis though the PVA work pre-dates the RMC2 

controller [32]. RMC2 is a constraint based memory controller in that it allows for both the 

logical and tim ing constraints of a RAMBUS memory system and provides optimal channel 

bandwidth possible without reordering transactions. It permits up to seven outstanding  

transactions, permits both open-page and closed-page policies and autom atically keeps a 

page open at the completion of a transaction if another issued transaction hits on the same 

page. It is designed to accept and start one transaction each clock cycle.

3 R elated Work

There has been a tremendous amount of research on optimizing memory system performance. 

Most of this work targets memories composed of SR AM devices, which have a uniform access 

tim e and are faster than DRAM parts, but which increase the memory cost beyond what is 

reasonable for commodity systems. In many cases it may not be straightforward to extend 

these techniques to DRAM memory systems because of their non-uniform access time. More 

importantly those techniques do not take advantage of the ability of modern parts like 

SDRAM, Direct Rambus and SyncLink to overlap commands to different internal banks. 

For instance, techniques like address skewing complicate the address arithmetic for each 

bank too much to be viable in an access-ordering memory controller for dynamic memory 

components. In this chapter we limit our evaluation of related work to that which deals with 

vector accesses, especially those that load vectors from DRAM.

3.1 Access Scheduling and Access Ordering System s

Moyer defines access scheduling as those techniques that reduce load/store interlock delay by 

overlapping computation with memory latency [28]. Access scheduling techniques attem pt
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to separate the execution of a load/store instruction from the execution of the instruction  

that produces/consumes its operand, thereby reducing the delays that the processor sees 

for memory requests. In contrast, Moyer defines access ordering to be any technique that 

changes the order of memory requests to increase memory system performance. He then 

presents compiler algorithms that optimize access ordering by unrolling loops and grouping 

accesses to “streams” so that the cost of each DRAM page miss can be amortized over several 

references to the same page [28].

The DEC Alpha 21174 memory controller described in section 2.4.1 implements a rel

atively simple access scheduling mechanism for an environment in which nothing is known 

about future access patterns (and all accesses are treated as random cache-line fills). A four- 

bit predictor tracks whether accesses hit or miss the most recent row in each row buffer, and 

the controller leaves a row open only when a hit is predicted [33]. For McCalpin’s STREAM  

benchmark [18], this simple policy yields best-case improvements in memory latency and 

bandwidth of 23% and 7%, respectively.

The RMC2 memory controller described in section 2.5 tries to use timing and logical 

constraints and skips pre-charge cycles when possible to provide optimal channel bandwidth. 

However its heuristics are not as extensive as those of the PVA and it does not reorder 

transactions.

Lee mimics Cray instructions on the Intel i860XR, using a purely software approach. He 

treats the cache as a pseudo “vector register” by reading vector elements in blocks (using non

caching load instructions) and then writing them to a pre-allocated portion of cache [17]. The 

benefits of these optimizations can be dramatic: loading a single vector via Moyer’s and Lee’s 

schemes on a node of an iPSC /860 yields performance improvements between about 40% and 

450%, depending on the stride of the vector [20]. Valero, et al. propose efficient hardware 

to dynamically avoid bank conflicts in vector processors by accessing vector elements out 

of order. They analyze this system first for single vectors [37], and then extend the work 

for multiple vectors [38]. del Corral and Llaberia analyze a related hardware scheme for 

avoiding bank conflicts among multiple vectors in complex memory systems [6]. These

UUCS-99-006: A Parallel Vector Access Unit for SD R A M  M emory System s  12
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access scheduling schemes focus on vector computers whose memory systems are composed 

of SRAM components (with uniform access time).

The system most similar to the PVA design presented in this thesis is the Command Vec

tor Memory System [5] (CVMS). The CVMS exploits parallelism and locality of reference 

to improve the effective bandwidth for vector accesses from out-of-order vector processors 

with dual-banked SDRAM memories. Rather than sending individual requests to specific 

devices, the CVMS broadcasts commands requesting multiple independent words, a design 

idea that we adopted. Section controllers receive the broadcasts, compute subcommands for 

the portion of the data for which they are responsible, and then issue the addresses to the 

memory chips under their control. The memory subsystem orders requests to each dual

banked device, attem pting to overlap precharge operations to each internal SDRAM bank 

with access operations to the other. Simulation results demonstrate performance improve

ments of 15% to 54% compared to a serial memory controller. At the behavioral level, our 

bank controllers resemble CVMS section controllers, but the specific hardware design and 

parallel access algorithm is substantially different, as described in chapters 4 and 5.

The Command Vector Memory System ’s hardware scheme for computing the vector sub

commands is based on earlier access-scheduling work for vector multiprocessors [29]. Al

though the full details of their subcommand-generation algorithm have not yet been pub

lished, the authors state that for strides that are not powers of two, 15 memory cycles are 

required to generate the subcommands [5]. The scheme that we have implemented and sim

ulated in Verilog is substantially faster, requiring at most five memory cycles to generate 

subcommands for strides that are not powers of two. Both designs process power-of-two 

strides in only two cycles. Their system relies on a crossbar interconnect, and the details of 

how vector data are merged from the various section controllers have not yet been published. 

Our design is based on a 128-bit bus that connects the bank controllers to the main memory 

controller, and vector data is merged on this bus by alternately driving each 64-bit half. 

Furthermore, the Command Vector Memory System is specifically designed for out-of-order 

vector machines, where vector data are loaded into vector registers. Our system delivers the



vector data in cacheline- sized chunks intended for the on-chip L2 cache, but could easily be 

adapted to interact with dedicated vector registers.

Another system similar to ours is the Stream Memory Controller (SMC) of McKee, et 

al. [21]. The SMC combines programmable stream buffers and prefetching within a memory 

controller that performs intelligent DRAM scheduling. The SMC dynamically reorders vec

tor or stream accesses to exploit parallelism among multiple banks and to exploit locality of 

reference within DRAM page buffers. For most vector alignments and strides on a uniproces

sor system, simple ordering schemes were found to perform com petitively with sophisticated 

ones [19].

3.2 D etecting Vectors

Another issue to consider when designing a vector access unit is how to detect the vector 

accesses (streams). At one end of the design spectrum, the application programmer may be 

required to identify vectors. Alternatively, the compiler could identify the vector accesses 

and specify them to the memory controller. One simple and efficient means of recognizing 

vectors uses Benitez and Davidson’s compiler algorithm to detect streams, which is similar 

in complexity to strength reduction [2]. Vectorizing compilers can also provide the needed 

vector parameters, and can perform extensive loop restructuring and other optimizations to  

maximize vector performance [39]. At the other end of the spectrum lie hardware vector 

or stream detection schemes, which may be implemented via reference prediction tables [4]. 

The PVA unit described in this thesis was designed in the context of the Impulse memory 

controller which provides yet other ways of using vectors [cite]. Impulse supports multiple 

views of the same data [3]. A region of memory may be remapped through a shadow address 

space which effects an additional step of address translation. One possible shadow space 

is a strided view of some other unit stride region of memory. When the processor accesses 

data in the shadow space, the memory controller does scatter/gather accesses from the real 

memory region that backs the shadow address region and compacts the strided data into

UUCS-99-006: A Parallel Vector Access Unit for SD R A M  M em ory System s  14



dense cache lines. Shadow spaces may be configured in the memory controller either directly 

by the programmer or by a smart compiler. Either way, when the PVA unit is used with an 

advanced memory controller like Impulse there is an efficient mechanism by which the PVA 

can be informed about vector accesses and can return dense cache-lines to the processor.

Numerous studies have explored the use of specialized addressing schemes that tend to avoid 

memory bank conflicts for commonly observed access patterns on vector machines. XOR- 

tree based schemes and interleave methods that use 2k ±  1 modules are typical examples. 

W hile such schemes are suitable for uniform-access components like SRAM access ordering 

for non-uniform access memory components like SDRAM require performing address arith

metic which gets complicated when skewing schemes are used. Moreover as Hsu and Smith 

demonstrate that it is useful to take advantage of spatial locality while using such compo

nents [10]. Their study concentrated on interleaving schemes for paged DRAM memory in 

vector machines and did not cover any access ordering scheme. Their study indicated that 

cache-line interleaving and block-interleaving are much superior to low-order interleaving 

for many vector applications. Results from their study showed that cache-line interleaving 

has performance nearly the same as block-interleaving for a moderate number (16-64) banks 

beyond which block-interleaving performed better. It is possible that low-order interleav

ing may perform better when used along with access ordering and scheduling techniques. 

Like address skewing techniques, block interleaving has the undesireable property that it

Assuming that the memory system has multiple outstanding addresses that need to be 

accessed, it may be necessary to reorder the sequence of addresses to optimize overall perfor

mance. W hole bodies of literature exist on scheduling tasks in various domains [9]. Some of



the work in scheduling theory can act as starting points for implementing access re-ordering 

systems. The optimal scheduling problem has been proven to be NP complete and many of 

the approaches discussed in this section always generate an optimal solution if one or more 

optimal solutions exist [cite-for-NP-completeness]. In general the algorithms in this area are 

too complex to be implemented fast in hardware.

3.4.1 Online A lgorithm s

Online algorithms try to make decision using incomplete information often by trying to 

approximate an optimal offline algorithm [14]. Good examples are OS page replacement 

algorithms and what is known as the Ski Rental problem in the literature. There are variants 

like deterministic online algorithms and randomized online algorithms.

3.4.2 R ate M onotonic Scheduling

Rate Monotonic Scheduling is a technique often used to analyze the schedulability of real

time tasks [401[16]. Such tasks are characterized by processing time Pj and repeat interval 

7*. The release tim e of a task is the time at which it is given to the scheduling algorithm. 

The task has an implicit deadline equal to the release time +  repeat interval since RMS 

does not permit two instances of the same task to be active at the same time. RMS theory 

uses the resource (often processor) utilization factors of the tasks to assure schedulability. 

For example RMS theory can guarantee that if the total processor utilization of a set of 

tasks is 69% or less then they can be scheduled. Though it is very useful for real-time OS 

schedulers, the dependency on repeat interval (which is not known in the case of memory 

access streams) makes RMS unsuitable for use in memory access re-ordering hardware.

3.4.3 N onpreem ptive Earliest D eadline First (ED F) Scheduling

Unlike Rate Monotonic Scheduling the EDF algorithm is capable of scheduling tasks whose 

deadline is not the same as the sum of the release time and repeat interval. It works as 

follows:

UUCS-99-006: A Parallel Vector Access Unit for SD R A M  M emory System s  16



Given n tasks TX,T2, ...Tn arranged in order of their deadlines D i D 2,..-Dn and having 

execution times of E x, E 2, .. .En respectively:

1. Schedule Tn in the interval [Dn — En, D n]

2. W hile more tasks remain to be scheduled do 

Schedule task with latest deadline as late as possible

3. Move tasks forward as much as possible in tim e maintaining their order.

The pre-emptive version of this algorithm is provably optimal, but the nonpre-emptive ver

sion is more amenable to hardware implementation [16].

3.5 Operations Research/Logic M inim ization

The Transportation problem from Operations Research and the Binate Covering Problem  

(BCP) often discussed in logic minimization literature are very similar in nature and aim at 

generating provably optimal solutions for optimization problems that involve complex sets 

of choices. The approach followed in both these algorithms is as follows.

Given a set of n possible partial solutions {So Si ,  S2, ...Sn- 1} each of which satisfy some 

subset of a set of constraints, to find an optimal solution that satisfies all the constraints:

1. Assume So is included in the final solution.

2. Recursively solve the partial problem using the partial solution set {S i, S2, ...*S'n_ i}  and 

the set of constraints not already satisfied by S0.

3. Assume So is excluded from the final solution.

4. Recursively solve the partial problem using the partial solution set {S i, S 2, ...S'7l_1} and 

the set of original constraints.

5. Chose the solution with the best cost.
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Heuristic techniques, dynamic programming etc may be used to optimize these algorithms. 

But they usually involve large matrix manipulations and lots of integer arithmetic which are 

unsuitable for fast hardware implementation.

4 PVA Algorithms

As explained in Chapter 1 , B a s e - S t r i d e  is a common and important type of application 

vector. This chapter explains algorithms that a multi-bank memory system can use for 

parallelizing this type of access.

4.1 Parallel Access to Base-Stride Vectors

Processing a base-stride type of application vector involves gathering strided words from 

memory into a dense cache line for a read operation and scattering the contents of a dense 

cache line to strided words in memory for a write operation. The PVA unit shown earlier 

in figure 1 parallelizes this task by broadcasting a vector command to a collection of bank 

controllers (BCs), each of which determines independently, and in tandem with the other 

BCs, which elements of the vector (if any) reside in the DR AM it manages. This broadcast 

approach to gather sparse data is potentially much more efficient than the straightforward 

alternative of having a centralized vector controller issue the stream of addresses, one per 

cycle, that correspond to the vector elements. However, to realize this performance potential 

we need a method by which each bank controller can determine the addresses of the elements 

that reside on its DRAM without sequentially expanding the entire vector. The primary 

advantage of the PVA over similar designs is the efficiency of our hardware algorithms for 

computing the subvector of each bank.

4.1.1 Term inology

We first introduce the terminology used in describing the PVA algorithms. B a s e - S t r i d e  

vector operations are represented as a tuple, V  = <  B , S , L  > , where V.B  is the base address,
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V.S is the sequence stride, and V.L is the sequence length. We refer to the ith element in the 

vector V  as V[i\. For example, vector V  = <  A  4, 5 >  designates elements ^4[0], A[4], ^4[8], 

4̂[12], and ^4[16] of the array A where V[0] =  ^[0], V[l] =  A[4] and so on.

Let M  be the number of memory banks, such that M  =  2m. Let N  be the number of 

words in a cache-line, such that N  =  2n.

Three functions implement the crux of our scheduling scheme.

•  DecodeBank (addr) returns the bank number b for an address addr ; it is implemented 

as a bit-select operation equivalent to (addr n ) m o d M .

• FirstHi t (V,b)  takes a vector V  and a bank b and returns either the index of the first 

element of V  that hits in b or a value that indicates that no such element exists.

• NextHi t (S)  returns an increment 8 such that if a bank holds V[n], it also holds V\n+8\.

4.1.2 T he Difficulty of Im plem enting F irstH it(V ,b ) for Cache-line Interleave

In this section we derive an algorithm for FirstHit(V.b) and show why it is difficult to 

implement FirstHit(V,b) for a cache-line interleaved memory. In a later section we will 

introduce a technique of converting cache-line interleave to appear like word interleave for 

the purpose of computing FirstHit(V,b) and an efficient implementation of FirstHit(V,b) for 

word interleave.

A nalysis of F irstH it(V ,b ) Let us analyze FirstHit() on a case by case basis to understand 

it better so that we can find a more parallel approach for implementing it.

Case 0 : DecodeBank(V.B)  =  b

The easiest case is when DecodeBank(V.B) returns b. In other words V[0] is contained 

in bank 6, so FirstHit() returns 0.

Let
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•  A b =  (V.S mod N M ) / N , the number of banks skipped between any two consecutive 

elements V[i] and V[i+1]

•  A 9 =  (V.S mod N M )  mod N  and 9 =  V.B mod N , the difference in offest within the 

block between any two consecutive elements V[i] and V[i+1].

•  9 =  V.B mod N , the offset within the block of the first element.

When D ecodeBank(V .B) ^  b, we have two more cases to consider.

C a se  1 : A 9 =  0

In this case no matter which banks the vector V hits, the offset within the block will 

always be 9. If V[0] is contained in bank b' then V[l] is in bank (b' +  A b ) m o d M ,  V[2] in (b'+  

2 A  b) mod M  and so on. Because of the properties of modulo arithmetic (b' +  n *  A  b) mod M  

is a repeating sequence for n =  0 ,1 , ..oo with a period of at most M.  Hence, when A #  =  0 

FirstHit(V,b) may be defined as:

C a se  2 : N  >  A 9 >  0

If V[CI] is contained in bank b' at an offest of 9, then V[l] is in bank (V 4- A b +  (9 +  

A 9 ) / N )  mod M , V[2] in (b' +  2 A b +  (9 +  2 A 9 ) / N )  mod  M , etc and V[i] in (b' +  iA b  +  (9 +  

i A 9 ) / N ) m o d M .  There are two sub-cases.

C ase  2 .1  : 9 +  (V.L -  I) * A  9 < N

In this case the A #s never add up to exceed N. So the sequence of banks in case 2.1 is 

the same as for case 1 and we may ignore the effect of A 9 on F irs tH i t (V ,b )  and use the 

same procedure as in case 1 .

C ase  2 .2  : 9 +  (V.L -  1) * A 9  >  N

Let

D ecodeBank(V.B ) — b, i f  DecodeBank(V.B)  >  b

DecodeBank(V.B)  4- M  — b, i f  DecodeBank(V.B)  <  b

{
d /A b ,  i f  d <  V.L and A b  divides  d 

no hit, otherwise



In this case, when ever AOs add up to reach N, the bank as calculated by cases 1 and

2.1 need to be incremented by 1 . This increment can cause the calculation to shift between 

multiple cyclic sequences. It is not easy to define FirstHitQ in this case.

Examples:

In the following examples assume M=8 and N =4.

1 . Let B—0, S =  8, L=16.

This is case 1 with 9 — 0, A 6 =  0, A b =  2.

The repeating sequence of banks hit by this vector is 0,2,4,6,0,2,4,6 ,...

2. Let B = 5, S =  8, L=16.

This is case 1 with 6 =  1, A d  =  0, A b — 2.

The repeating sequence of banks hit by this vector is 1,3,5,7,1,3,5,7,...

3. Let B = 0, S =  9, L=4.

This is case 2.1 with 9 =  0, A 6 =  1 , A b =  2.

The sequence of banks hit by this vector is 0,2,4,6 .

4. Now consider B = 0, S =  9, L=10.

This is case 2.2 with 8 =  0, A d  =  1 , A b =  2.

The sequence of banks hit by this vector is 0,2,4,6,1,3,5,7,2,4 Note that when the 

cumulative effect of A 6 (1 in this case) exceeds N there is a shift from the sequence

0,2,4 ,6 to the sequence 1,3,5,7. For some values of B,S and L the banks hit by a vector 

may cycle through several such sequences or may have multiple sequences interleaved.

In the next section we use the insights gained from the case by case examination of FirstHitQ  

to derive a generic algorithm that can handle all the cases.

D eriving an A lgorithm  for F irstH it(V ,b ) In this section we derive an algorithm that 

can handle all the cases of FirstHitQ and show why it is not a good idea to implement it in
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hardware. Later we present a method of transforming the problem into one which is suitable 

for hardware implementation.

Since we previously defined 0 =  V.B mod N  in section 4.1.2, we have 

9 <  N  (0)

Define S 0 =  V.S r n o d N M  and S - i  =  N M

Then the problem of FirstHit() is essentially that of finding the least integers p\ and p 2 such 

that 0 < 9  +  PlS0 -  p2N M  - d N  <  N 2 

Let 7  =  9 — d N

We need to find p x and p 2 st, 0 <  7  +  p i S 0 — p 2N M  < N  (1)

i.e. —7  <  p i S 0 -  p 2N M  <  N  — 7 

i.e. 7  >  p 2N M  — p i S 0 >  7  — N

i.e. S0 +  7  >  p 2N M  — (pi — l)So >  Sq +  7  — iV (2)

To solve for p x and p 2 one at a time we can substitute the above inequality with S0 +  7  >  

p 2N M  mod  S0 >  S 0 +  7  -  TV if S0 >  S 0 +  7  -  TV (3)

(3) is satisfied if 0 >  7  — N .  i.e. if iV >  7 . i.e. if iV >  9 — dN.  i.e. if (d +  1 ) N  >  9. Which 

is true by (0).

After solving for p2 we can set pi =  p2N M / S o  or pi =  1 +  p 2N M / S 0 and one of these two 

values will satisfy (2).

But p 2N M  mod  S0 =  p2( N M  mod  S0) mod  S0. Substituting S t =  N M  mod  So

we need to solve S  +  7  >  p2S\ mod  S0 >  S0 +  7  — iV

To solve S 0 +  7  >  p2S x mod  S 0 >  S0 +  7  — iV we need to find p3 st

‘S'o +  7 >  P2S 1 — P3‘S’o >  So +  7  — iV

i.e. - S 0 -  7  <  P3S0 -  P2S 1 <  - S 0 -  7  +  N

2To visualize this situation, consider two impulse trains, one starting at time =  9 — dN  with 

period= V .S  mod N M , and the other starting at time=0 with period=NM. The inequality is solved at the 

p i th period of the first wave if the edges of both the waves are a distance less than N apart. The analogy 

helps to illustrate that while it is easy to solve such inequalities in a continuous domain, it is harder to solve 

them in a discrete domain - i.e. the integral period of the waveforms when their edges are closer than N.
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i.e. - 7  <  (p3 +  1)50 -  P2S 1 <  - 7  +  TV

i.e. 0 <  7  +  (/>3 +  1 )5 0 — p2S x <  N  (4)

Notice that (4) is of the same format as (1). At this point the same algorithm can be 

recursively applied. Recursive application can be terminated whenever we have an S?; such 

that Si <  N  at steps (1) or (4). Since each Si — S?;_i m o d S ^ 2 the S'jS reduce monotonically. 

Hence the algorithm will always terminate.

A simpler version of this algorithm that has 7  =  9 can be used for NextH it(). The C 

code for the NextH itf) function is shown below.
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unsigned NextHit(unsigned theta, unsigned stride, 
unsigned NM)

unsigned sl, s2;
unsigned p3_plus_l, p2,pl_minus_l, carry;

if (stride < N)

if(theta+stride < N) 
return 1; 

p3_plus_l = (NM-theta)/stride; 
if(p3_plus_l &&

((theta + p3_plus_l * stride) 7. NM < N)) 
return p3_plus_l; 

return p3_plus_l+l;
>

if ( (sl = NM "/, stride) <= theta) 
return NM/stride; 

if( sl < N )

p2 = (stride-N+theta)/sl + 1;
>

else

s2 = stride % sl;
p3_plus_l = NextHit(theta,s2,sl);
p2 = (p3_plus_l * stride + theta)/sl;

}

carry = 1;
if((p2 * NM) '/» stride <= stride-N+theta) 

carry = 0;
>

pl_minus_l = (p2 * NM)/stride; 
return pl_minus_l + carry;

}

The recursive nature of the algorithm is not a problem for hardware implementation since 
the algorithm terminates at the second level for most inputs that correspond to reasonable 
values of N and M for memory systems. The recursion can be unravelled by inlining the 
algorithm once at the only recursive call site. This algorithm is not suitable for a fast
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hardware implementation because it contains several division and modulo operations by 
numbers which may not be powers of 2.

Having demonstrated that a straight forward analytical solution for FirstHitQ cannot 
result in a low latency implementation for cache-line interleaved memory, we need to look at 
m ethods of transforming the problem to one that can result in a fast hardware implementa
tion at a reasonable cost.

4.1.3 A Sim plified Approach using W ord Interleaving

It is possible to convert all possible cases of FirstHitQ to the simple case 1 by changing the 
way we view memory. For the sake of generality, let us extend our memory interleave scheme 
so that each bank is W machine words wide. Assume that we have M banks each containing 
blocks of size W  * N  words. Figures 4.1.3 and 5 show the physical view and logical view of 
a memory system with N =2, W = 4 and M =2.

In the physical view we consider the system as a two bank memory system with two 
memory-words (a memory-word being four machine words) per block. In the logical view  
we can think of the same two bank system as consisting of 16 logical banks L0-L15. Each 
logical bank has W =1 and N = l .  In general a WxNxM memory may be considered to be 
WxNxM logical banks denoted by L0 to L WNM-\-

Assuming that each logical bank has its own FirstHit logic, all possible vector accesses 
may be handled using case 1 alone. This happens because A d  =  (V.S mod N M )  m o d N  =  
(V.S mod M )  mod  1 =  0 when N = l .  The cost of the transformation is that we now need 
WNM copies of the FirstHit logic where we initially needed only M. This does not directly 
result in the hardware cost bloating by a factor of W N because of our empirical observation 
that the combined WNM copies of the logic reduce in size by a factor more than N when 
optimized. Although we need W N copies of some of the datapath elements of the bank 
controller, the datapath itself is much simpler than the one required for the algorithm from 
section 4.1.2. The increased hardware cost is the price paid for making the problem solvable.

In the explanations that follow we will consider only word interleaved memory organiza
tions (i.e. W = N = 1 ) since all other organizations may be converted to a logical equivalent 
with W and N equal to  one. Memory systems with W or N greater than one are equivalent 
for the purpose of this discussion to a memory system and W = N = 1 and W N banks sharing 
a common bus.

4.1.4 Improved A lgorithm s for F irstH it() and N extH itQ

In section 4.1.3 we showed that it is possible to predict the bank hit sequence for a cache-line 
interleaved memeory system using an equivalent word interleaved memory system. In this 
section we derive improved algorithms for F ir s tH i tQ  and N e x tH i tQ  for word interleaving 
which can thus be used for cache-line interleaving as well. These algorithms permit us to  
access base-stride vectors in parallel without sequentially expanding the addresses of the 
individual vector elements. Since this section deals exclusively with word interleaving, the 
parameter N =1 is omited in the following discussion.

Definitions:
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Let M  =  2m denote the number of word-interleaved memory banks.
Let V  be a vector and let bQ =  Decode B a n k (V .B ), i.e., bo is the bank where the first element 
of V  resides.
Let d be the distance modulo M between some bank b and bo, i.e., d =  (b — bo) mod M  as 
defined in section 4.1.2.

L em m a  4 .1  To find the bank access pattern of a vector V with stride V.S, it suffices to 
consider the bank access pattern for stride V.S mod, M .

P r o o f:  Let S  =  qsM  +  Sm, where Sm =  S m o d M  and qs is some integer. Let b0 =  
DecodeBank(V.B) .  For vector element V[n] to hit a bank at modulo distance d  from bo, it 
must be the case that (n * S) mod M  =  d. Therefore, for some integer qj : 

n * S =  qd * M  +  d 
n * (q„M +  Srn) =  qd +  d, 
n * Sm =  (qd - n *  qs) M  +  d 

Therefore (n * Srn) mod M  =  d.
Thus, if vector V  with stride V.S hits bank b at distance d for V[n],  then vector Vx with 

stride V i.Si, where V.S\ =  (V.S mod M ) ,  will also hit b for V\ [n].

E x p la n a tio n : In effect lemma 4.1 says that only the least significant m  bits of the stride 
(V.S)  are required to find the bank access pattern of V.  This is because if element V[n] 
of vector V  with stride V.S hits bank b, then element V\[n] of vector Vx with stride 
Vi-Si =  (V.S mod M)  will also hit bank b. Henceforth, references to any stride S  will 
denote only the least significant m  bits of V.S.

D e fin it io n : Every stride S  can be written as a  * 2s, where a  is odd. Using this notation, s 
is the number of least significant zeroes in S's binary representation.

e .g . S' =  6 =  3 * 2 1,S ' =  7 =  7 * 2 0, S' =  l * 2 3

L em m a  4 .2  Vector V hits on bank b iff d is some multiple of 2s.

P ro o f: Assume that at least one element V[n] of vector V  hits on bank b. For this to 
be true, (n * S) mod  M  =  d.

Therefore, for some integer q:
n * S  =  q * M  +  d
n * a * 2 s =  q * M Jr d  =  q * 2 m +  d,
d =  n * a  * 2s — q * 2rn =  2s (n * a  — q2m~s)

Thus, if some element n of vector V  hits on bank b, then d is a multiple of 2s.

E x p la n a tio n : In effect lemma 4.2 says that after the initial hit on bank bQ, every 2sth bank 
will have a hit. Note that the index of the vector may not necessarily follow the same 
sequence as that of the banks that are hit. The lemma only guarentees that there will 
be a hit.
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e .g . if S =  12 , and thus s =  2 (because 12 =  3 * 22), then only every 4th bank controller 
may contain an element of the vector, starting with 60 and wrapping modulo M. Note 
that even though every 2s banks may contain an element of the vector, this does not 
mean that consecutive elements of the vector will hit every 2s banks. Rather, some  
element(s) will correspond to each such bank. For example, if M  — 16, consecutive 
elements of a vector of stride 10 (s =  1) hit in banks 2 ,1 2 ,6, 0 ,10 , 4 ,14, 8, 2, etc.

Lemmas 4.1 and 4.2 let us derive extremely efficient algorithms for F ir s tH i tQ  and N e x tH i tQ  
Let Ki  be the smallest vector index that hits a bank b at a distance modulo M  of d =  i * 2 s 

from 6q. In particular, let K \  be the smallest vector index that hits a bank 6 at a distance 
d =  2s from bo.

Since hits b we have:
(Ki  * S) mod. M  =  d
Ki * a * 2s =  (qj * 2m 4- i * 2s) where is the least integer such that M  divides Ki  * S  

producing remainder d.
Therefore,

K  _  (Qi *  +  i)
1 a

Also, by definition, for K \ ,  distance d =  1 * 2s.
Therefore,

K  _  (gi * 2—  +  1) 

a

where q\ is the least integer such that a  evenly divides q\ * 2m~s +  1 .

T h e o r e m  4 .3  F irs tH i t (V ,  b) =  K{ =  (K \  * i) m o d 2 m~s .

P roof: By induction.

B asis: K\  =  K^ m od 2m~s. Note that this is equivalent to proving that K \  <  2m~s. By 
lemma 4.2, the vector will hit banks at modulo distance 0, 23, 2 * 2s, 3 * 2s etc from 
bank 60- Every bank that is hit will be revisited within M / 2 S =  2m-,<l strides. The 
vector indices may not be continuous, but the change in index before 6o is revisited 
cannot exceed 2m~s. Hence K \  <  2m~s. QED.

In d u c tio n  step : Assume that the result holds for i =  r.
Then K r =  (g*-*2 ~ +r) =  * r ) m o d  2m~s, where qr is the least integer such that a  
evenly divides qr * 2m~s +  r.
This means that K \  * r =  Q r * 2m~s +  K r — Qr * 2m-s +  ^r*2 ~ +r -̂ for some integer
Qr- a
Therefore: K x * r  +  K x = Q r * 2m~s +  (g -2"-'+r+gi .2"» and ^  * (r +  1) =  Q r *
2m—s _|_ (<?r + <?i )*2m~,s-|-(r-|-l)

Since q\ and qr are the least such integers it follows that the least integer qr+i such 
that a  evenly divides gr+1 * 2m~s +  (r +  1 ) is (qr +  q-Q .
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By the definition of K i , +(r+1) _
Therefore: K x * (r +  1) =  Qr * 2m~s +  K r+X, or K r+X =  ( K x * (r +  1)) mod 2rn~s. 
Hence, by the principle of mathematical induction, K j =  (K x * i ) mod 2m~s Vi >  0.

P ro o f: That the least integer qr+1 such that a  evenly divides qr+\ * 2m_s +  (r +  l )  is (qr +  q\ )■ 
If possible let there be another number qi <  qr +  such that a  evenly divides x =  
q t *  2 m ~ s  +  ( r  +  1 ) .

Since a  divides y  =  qx * 2m~s +  1, it should also divide x  — y  — (qi — q-i) * 2m~s +  r. But 
since we earlier said that qt <  qr +  qx , we have found a new number qrX =  qt — qx which 
is less than qr and yet satisfies the requirement that a  evenly divides qri * 2m~s +  r . 
This contradicts our assumption that qr is the least such number. Hence qi does not 
exist and qr+\ =  qr +  q\.

T h e o r e m  4 .4  N e x tH i t ( S )  =  5 — 2m~s.

P roof: Let the bank at distance d — i * 2s have a hit.
Then: Ki * S  =  qi * M  +  d.
Since there is a hit at vector index Ki  +  5 on the same bank, we have:
(Ki +  8) * S  =  q j * M  +  d for some integer qj.
Subtracting the two equations, we get: (Ki  +  £) * S — Ki  * S  =  6 * S  =  6 * a  * 2s =  
( q j  -  q i )  *  M  =  ( q j  -  q i )  *  2 m .

5 _  (qj —qi)*2rn~s
<7 '

Recall that o  is an odd number. The only way a  can divide a multiple of a power of 
two is if (qj — q^ =  a. Therefore, S — 2m~s.
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4.2 Im plem entation Strategies for F irstH it() and N extH it ()
Using theorems 4.3 and 4.4, each bank controller can independently determine the sub-vector 
elements for which it is responsible given b, M ,  V.S mod M,  and V.B  mod M  as inputs. 
Several options exist for implementing F ir s t  FIit() in hardware; which one makes the most 
sense depends on the parameters of the memory organization. Note that the values of Ki  
can be calculated in advance for every legal combination of M, V.S mod, M , and V.B mod M.  
If M  is sufficiently small, an efficient PLA (programmable logic array) implementation could 
take d =  (b — b0) mod S  and V.S as inputs and return K j. Larger configurations could use a 
PLA that takes S  and returns the corresponding K x value, and then multiply K \  by a small 
integer i to generate Ki.  Block-interleaved systems with small interleave factor N  could use 
N  copies of the F i r s t H i t i )  logic (with either of the above organizations), or could include 
one instance of the F ir s tH i t ( )  logic to compute Ki  for the first hit within the block, and 
then use an adder to generate each subsequent K i+X. The various designs trade off hardware 
space for latency and parallelism. N e x t H i t Q  can be implemented using a small PLA that 
takes S as input and returns 2m~s (i.e., J). Optionally, this value may be encoded as part 
of the F i r s t H i t Q  PLA. In general, most of the variables used to explain the functional 
operation of these components will never be calculated explicitly; instead, their values will 
be compiled into the circuitry in the form of look-up tables.



Given appropriate hardware implementations of F ir s tH i tQ  and N e x t H i t Q , the bank 
controller for bank b performs the following operations (concurrently, where possible):

1. Calculate bo =  DecodeBank(V.B) via a simple bit-select operation.

2. Find N e x tH i t ( S )  =  5 =  2rn~s via a PLA lookup.

3. Calculate d =  (b — b0) mod M  via an integer subtraction-without-underfiow operation.

4. Determine whether or not d is a multiple of 2s via a table lookup. If it is, return the 
K \  or K{  value corresponding to stride V.S. If not, return a “no h it” value, to indicate 
that b does not contain any elements of V.

5. Tf b contains elements of V, F irs tH i t (V ,  b) can either be determined via the PLA 
lookup in the previous step or be computed from K \  as ( K x *i) mod 2m~s. In the latter 
case, this only involves selecting the least significant m — s bits of ( K x * (rf >  s)). If
S  is a power of two, this is simply a shift and mask. For other strides, this requires a 
small integer multiply and mask.

6. Tssue the address a d d r =  V.B +  V.S * F irs tH i t (V ,b )  .

7. Repeatedly calculate and issue the address addr  =  addr  +  (V.S <C (m — s )) using a 
shift and add.

4 . 3  S o m e  P r a c t i c a l  I s s u e s

4 .3 .1  S ca lin g  th e  M e m o r y  S y s te m

S c a lin g  M e m o r y  S y s te m  C a p a c ity  To scale the vector memory system M and N need 
to be kept fixed while adding DRAM chips to extend the physical address space. This may 
be done in several ways. One method would be to have a bank controller for each slot where 
memory can be added. All the bank controllers corresponding to the same physical bank 
number would operate in parallel and would be identical. Simple address decoding logic may 
be used along with the address generated by the bank controller to enable the memory’s chip 
select signal only if the address issued belongs on a particular memory. Another method  
would be to use a single bank controller for multiple slots, but to maintain different current 
row registers in order to keep track of the current row inside the different chips which form 
a single physical bank.

S c a lin g  th e  N u m b e r  o f  B a n k s  The ability to scale the PVA unit to a large number of 
banks depends on the implementation choice of F ir s tH i t .  For systems that use a PLA to 
compute the firsthit index, the complexity of the PLA grows as the square of the number 
of banks, which limits the effective size of such a design to around 16 banks. For systems 
with a small number of banks interleaved at block-size N ,  replicating the F i r s tH i t  logic N  
tim es in each bank controller is optimal. For very large memory systems, regardless of their 
interleave factor, it is best to implement a PLA that generates K i ,  adding a small amount of 
logic to then calculate K^. The complexity of the PLA in this design increases approximately 
linearly with the number of banks, the rest of the hardware remains unchanged.
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4.3.2 Interaction w ith  the Paging Schem e

The opportunity to do parallel fetches for long vectors is present only when a significant part 
of the vector is continuous in physical memory. Performance will be optimal if each large 
data-structure that is frequently accessed fits entirely in one super-page. In that case the 
memory controller can issue longer vector operations on the vector bus. If the data-structure 
cannot be contained in a single superpage then the memory controller can split a single vector 
operation into multiple vector operations such that each sub-vector is contained on a single 
superpage. Given a vector V, one way of doing this would be to find the distance of V .B from 
the page boundary and divide it by the stride to find how many elements lie on the page and 
then issue a single vector bus operation for those many elements. However, this operation 
involves a division and is expensive. A more reasonable approach is to compute a lower 
bound on the number of vector elements that lie on a page and issue a vector bus operation 
for those many elements. An algorithm that does this is given below. It assumes that the 
memory controller has access to the page table and the function mrnc_tlb_lookup(vaddress) 
returns the physical address corresponding to virtual address vaddress and the size of the 
superpage it is contained in. It is assumed that the size of a superpage is always a power of
2.

SplitVector(V)
{
shift_val = index of most significant power 

of 2 in V.S;
base = V.B;
length = V.L;

while(length > 0)

(phys_address,page_size) = mmc_tlb_lookup(base); 
lower_bound =

(page_size - terminate(phys_address)
+ 1) >> shift.val;

// terminate(phys_address) returns least 
// significant n bits of 
// phys_address where page_size == 2~n

issue on vector bus <base, V.S, lowerbound>

// While banks are busy operating on the 
// vector we issued compute new base address 
length = length - lowerbound; 
base = base + V.S * lowerbound;

>
>
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The operation lowerJbound =  (p a g e s i z e  — terrninate(phys-a,ddress) +  1) s h i f t - va l  
actually just inverts the least significant n bits (assuming page_size is 2n) of phys_address, 
adds one to it and shifts the value. In effect this algorithm replaces the division in the exact 
approach with a fast operation, issues the vector operation and then does a multiply, TLB 
lookup, etc. while the memory is busy executing the previously issued vector operation. 
The effectiveness of parallel vector access will depend greatly on how effectively the system  
is able to create and manage super-pages.

5 Im plem entation
The design space for a PVA unit is enormous: the type of DRAM, the number of banks, 
the interleave factor, and the implementation strategy for F ir s tH i t ( )  can all be varied to 
trade hardware complexity for performance. For instance, lower-cost solutions might let a 
set of banks share bank controllers and BC buses, multiplexing the use of these resources. 
To demonstrate the feasibility of our approach and to derive tim ing and hardware com
plexity estim ates we have developed and synthesized a Verilog model of a prototype design 
representing one point in this large design space.

We produced an initial FPGA implementation on an IKOS Hermes emulator with 64 Xi- 
4000 FPG As, and then used this implementation to derive timing estimates [12]. During the 
later stages only software simulation of the Verilog model was done. The software simulation 
used the latencies derived from the synthesized version tested on the hardware. During the 
later stages, the full design was not emulated because of the inordinate amount of time and 
effort required to push the design through the whole toolpath before it can be mapped on 
to the hardware emulator and also because some of the tools turned out to have bugs. The 
PVA unit’s Verilog description consists of about 3600 lines of code. Details of the hardware 
complexity may be found in section 1

5.1 Param eters of the Prototype Im plem entation
The prototype implementation of the PVA is designed to be incorporated into an adaptable 
memory controller [ref:Impulse] for the M IP S  R 10000  processor. Many of the parameters 
of the system are thus dictated by those of the target processor. Our implementation has 16 
banks of word-interleaved SDRAM (32-bit wide) with a dedicated bank controller for each 
bank. We drive Micron 256 Mbit 16 bit wide SDR AM parts, each of which has four internal 
banks, and thus four independent row or page buffers [23]. Our PVA unit design assumes 
an L2 cache line of 128 bytes, and therefore operates on vector commands of 32 single-word 
elements. We first describe the implementation of the Vector Bus (shown earlier in figure 1) 
and the BCs, and then show how the controllers work in tandem.

5.2 Im plem entation Architecture
5.2 .1  V ector  B us

As illustrated in Figure 1, the bank controllers communicate with the rest of the memory con
troller via a shared, split-transaction Vector Bus that multiplexes requests and data. During
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a vector request cycle, it supports a 32-bit address, a 32-bit stride, a three-bit transaction 
ID, a two-bit command, and some control information. During a data cycle, it supports 64 
bits of data. The MIPS R10000 processor has a 64-bit system bus, and thus the PVA unit 
can send or receive a data word directly on this bus every cycle. No intermediate unit is 
needed to merge data collected by multiple bank controllers: when read data is returned 
to the processor, the BCs take turns driving their part of the cache line onto the system  
bus. Electrical limitations require a turn-around cycle whenever bus ownership changes. 
To avoid these delay cycles, we use a 128-bit, BC bus, driving alternate 64-bit halves ev
ery other data cycle. In addition to the 128 multiplexed lines, the BC bus includes eight 
transaction-complete indication lines shared by all BCs.

5.2.2 Bank Controllers

For a given vector read or write command, each Bank Controller (BC) is responsible for iden
tifying and accessing the (possibly null) subvector that resides in its bank. The architecture 
of this component, shown in figure 6, consists of:

1. a FirstHit predictor  that determines whether elements of a given vector request hit in 
this bank. If there is a hit and the stride is a power of two, this subcomponent also 
performs the F ir s tH i tQ  address calculation;

2. a Request FIFO that queues vector requests for service;

3. a Register File that provides storage for the vector requests in the Request FIFO;

4. a FirstHit Calculation module that determines the address of the first element that 
hits this bank when the stride is not a power of two;

5. an Access Scheduler that drives the SDRAM, reordering read, write, bank activate, 
and precharge operations to maximize performance;

6. a set of Vector Contexts within the Access Scheduler to represent the vector requests 
currently being serviced;

7. a Scheduling Policy Module within each Vector Context to dictate the scheduling policy; 
and

8. a Staging Unit that consists of (i) a Read Staging Unit to store read-data waiting to be 
assembled into a cache line, and (ii) a Write Staging Unit to store write-data waiting 
to be sent to the SDRAMs.

We briefly describe each of these subcomponents below. Note that we have implemented 
several bypass paths to reduce communication latency among some parts of the BC; these 
are essential to efficient operation. The details of the bypass paths may be found in section 
5.2.3. The main modules of a BC deal with the computations required to do parallel vector 
access, scheduling SDRAM accesses efficiently, and staging data.
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SDRAM Bus

Figure 6: Bank controller internal organization

P a r a lle liz in g  L ogic The parallelizing logic consists of the FirstHit Predict (FHP) module, 
the Register File (RF), the Request FIFO (RQF) and the FirstHit Calculate (FHC) modules. 
The FHP module watches vector requests on the BC bus, determining whether or not any 
element of a vector request will hit this bank. If a hit is indicated, and the stride is a power of 
two it calculates the address and index of the first vector element that hits this SDRAM bank. 
It then signals the RQF to queue the request, the calculated address, and the firsthit index. 
If the stride is a power of two, the request queued by the RQF has an “address calculation 
complete” (ACC) flag set to indicate that address calculation has been completed. The RF 
subcomponent provides intermediate storage for vector requests not yet assigned to vector 
contexts. It contains as many entries as the number of outstanding transactions permitted 
by the BC bus, eight in our implementation. The Request FIFO (RQF) module implements 
the state machine and tail pointer required to maintain the Register File as if it were a queue. 
Requests written into the Register File whose ACC flag were not set by the FHP require 
further processing. The FHC module computes the firsthit address for vector requests whose 
stride is not a power of two. It maintains a pointer (workptr) into the Register File and 
scans the ACC flag of newly queued requests. For requests whose ACC flag is zero because 
the stride is not a power of two, the FHC multiplies the firsthit index previously calculated 
by the FHP by the stride and adds it to the base address to generate the firsthit address, 
and writes the modified address back into the register file with the ACC flag set. Since this 
calculation requires a multiply and add, it incurs a two-cycle delay. When the scheduler 
is busy, this delay is completely hidden, since the FHC module works in parallel with the



scheduler. When the Access Scheduler (SCHED) sees the ACC bit set for the entry at the 
head of the RQF it knows that there is a vector request ready for issue.

A c c e ss  S ch ed u ler  The Access Scheduler (SCHED) along with its subcomponents, the 
Vector Contexts  (VCs) and Scheduling Policy Unit (SPU) modules, is responsible for: (i) 
expanding the series of addresses corresponding to a vector request, (ii) ordering the stream  
of read, write, bank activate, and precharge operations so that multiple vector requests 
can be issued optimally, (iii) making row activate/precharge decisions, and (iv) driving the 
SDRAM. The SCHED module decides when to keep a row open, while reordering decisions 
are made by the SPUs contained within the SCHED’s Vector Contexts (we implement four 
VCs in the current design).

Each Vector Context (VC) can hold a vector request whose accesses are ready to be 
issued to the SDRAM. It determines the series of addresses required to fetch a particular 
vector via a series of shifts and adds, as described in chapter 4, and issues the reads, writes, 
and precharge operations in cooperation with other VCs. The VCs share a datapath to 
the Access Scheduler that is used to send it the highest priority pending SDRAM operation 
required by any of the VCs. The VCs arbitrate for this datapath such that at most one of 
them can access it in any cycle, where the oldest pending operations have highest priority. 
Vector operations are injected into VC_0. Whenever a vector operation completes, at most 
one per cycle, any other pending operations “shift right” into the next higher numbered free 
VC (if any). To give the oldest pending operations higher priority, we daisy-chain the access 
scheduler requests from VC_N to VC_0 such that a lower numbered VC can place a request 
on the shared AC datapath if and only if no higher numbered VC wishes to do so.

The VCs attem pt to minimize precharge overhead by giving accesses that hit in an 
open internal bank priority over requests that need to access a different internal bank on 
the same SDRAM module, as follows. One bank.Jiitjpredict, bank-more-hiLpredict, and 
bank.close-predict line per internal bank are used to coordinate this operation. The AS 
broadcasts the address of the current row of each open internal bank to the VCs. When a 
VC determines that it has a pending request that would hit in an open row, it drives the 
shared line corresponding to the internal bank of the open row to tell the AS not to close the 
row -  in other words, we implement a wired OR operation. Similarly VCs that have a pend
ing request that misses in the internal bank use the bank-close-predict line to tell the AS to 
close the row. Scheduling Policy Units (SPUs) within each of the VCs decide together which 
VC can issue an operation during the current cycle. This decision is based on their collective 
state as observed on the bankJiit-predict, bank-moreJiit-predict, and bank-close-predict lines. 
Separate SPUs are used to isolate the scheduling heuristics within sub-modules so we can 
experiment with various scheduling policies without making significant changes to the rest 
of the BC.

The goal of our scheduling algorithm is to improve performance by maximizing row hits 
and hiding latencies by operating other internal banks while a given internal bank is being 
opened or precharged. A heuristic that achieves this goal is to promote row opens and 
precharges above read and write operations, as long as they do not conflict with the open 
rows being used by some other VC. This heuristic has the effect of opening rows as early 
as possible. When no previous VC can issue a read or write due to a conflict or a need to
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wait for a bank open/precharge to complete, VCs with lower priority can issue their reads or 
writes. Also, when an older request completes, this policy ensures that a newer request will 
be ready even if it uses a different internal bank, allowing multiple vector operations to be 
done in close succession. Another heuristic that improves performance is to do operations 
out of order as long as the VC whose read or write is to be issued has correct bus polarity 
(i.e., data travels in the same direction as the last data transfer on the bus). See section 5.2.4 
to know why this restriction is required. The scheduling algorithm within each SPU is given 
below.

Schedule()
{
if the VC is ready

If bank_actv is asserted
Do nothing this cycle and propagate the 
datapath lock since some other VC wants 
to do a bank activate/precharge

else
if the datapath lock could be acquired

Issue the read/write operation and update 
the address information in the context 
with the value returned by the next 
address calculation logic in the datapath.
Propagate 0 to the next VCs datapath lock 
input.

else
Do nothing this cycle and propagate the 
datapath lock

else
if the VC is blocked

if bank_hit_predict for the current bank is 
not asserted and datapath lock could be 
acquired

Issue a precharge/bank activate.
Propagate 0 to the next VCs datapath 
lock input.

else
Do nothing this cycle and propagate the 
datapath lock 

else // i.e. The VC is empty 
Do nothing this cycle and propagate the datapath lock

}

R o w  M a n a g em en t A g o r ith m  To obtain better performance this heuristic has to be 
combined with intelligent management of open rows. If we believe that the next access 
will be to another row, then closing the row immediately after it is accessed (by using an
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autoprecharge along with a read or write) gives the best performance. If the next access is 
likely to be to the same row, then it is better to leave that row open. The access scheduler 
decides whether to leave a row open after an access or to close it by examining the state of 
the bank_hit_predict, bank_morehit_predict, bank_close_predict and bank_actv_predict lines 
and a one bit (per internal bank) autoprecharge_predictor. The autoprecharge_predictor is 
set whenever the very first operation of a new vector request is issued. The predictor is set to 
one if the row that open last within the internal bank matches the row of the address of the 
first vector element irrespective of whether there is a hit or not. If sufficient information to 
accurately decide the best row policy is not available when the new vector request completes, 
the predictors value is used to decide whether the row should be closed or not. The one bit 
predictor is sufficient to detect most simple loops. The actual algorithm used is:

ManageRowO
{
if none of the VCs have issued any operation 

send a nop to the SDRAM
else

Let b be the bank corresponding to the current 
operation.
if the operation was the very first one for a 

vector context
autoprecharge.predict[b] =

(last row address on bank b == row 
address of the firsthit address)

if the operation is a read or a write 
if the vector request is complete

if bank_morehit_predict[b] is asserted 
leave the row open 

else
if(bank_close_predict[b] or 

autoprecharge_predict[b]) 
auto precharge the row

else
leave the row open 

else // Vector request not complete
if the next address hits on the same bank or 

bank_morehit_predict[b] is asserted 
leave the row open

else
auto precharge the row

>

S ta g in g  U n it s  The Staging Units (SUs) store the data returned by the SDRAMs for a 
VC-generated read operation and the data provided by the memory controller for a write.
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In the case of a gathered vector read operation, the SUs on the participating BCs cooperate 
to merge vector elements into a cache line that is sent to the memory controller front end. 
as described in section 5.2.1. In the case of a scattered vector write operation, the SUs 
at each participating BC will buffer the write data sent by the front end. Associated with 
each vector pending operation is a transaction-complete line on the BC bus, driven by the 
SUs. This line acts as a wired OR that deasserts whenever all BCs have serviced a particular 
gathered vector read or scattered vector write operation. In the case of a read, when the line 
eventually goes low the memory controller issues a STAGE_READ command on the vector 
bus, indicating which pending vector read operation’s data is to be read. In the case of a 
write, the line going low indicates to the memory controller that the corresponding data has 
been committed to SDRAM.

5.2.3 B ypass Paths

The description in the previous section is actually a simplified version of that in our imple
mentation. To improve performance we have implemented several bypass paths that reduce 
communication latency among some parts of the BCs. For example, there is a bypass path 
from the FHP module straight to the input port of the last VC within the access schedulers 
window which reduces the latency when the Request FIFO is empty and the stride is a power 
of 2. Similarly there is a bypass path from the output of the firsthit calculate module to  
the input port of the last VC within the access schedulers window which helps to reduce 
the latency by 1 cycle in cases where the stride is not a power of two but there is only one 
outstanding request in the bank controller. If this bypass path did not exist then the FHC 
module would have to write the value back to the register file before the request becomes 
visible to the access scheduler. As explained before the bank controller design hides latency 
when the controllers have multiple outstanding requests. In the case where a single request 
is issued to an idle bank controller the bypass paths significantly help in reducing latency.

5.2.4 D ata Hazards

Reordering reads and writes may violate consistency semantics. To maintain acceptable 
consistency semantics and to avoid turnaround cycles, the following restriction is required: 
a VC may issue a read/write only if the bus has the same polarity and no polarity reversals 
have occurred in any preceding (older) VC. The gist of this rule is that elements of different 
vectors may be issued out-of-order as long as they are not separated by a request of the 
opposite polarity. This policy gives rise to the following consistency semantics:

1. RAW hazards cannot happen.

2. WAW hazards may happen if two vector write requests not separated by a read happen 
to write different data to the same location.

We assume that the latter event is unlikely to occur in a uniprocessor machine. If the L2 
cache has a write-back and write-allocate policy, then any consecutive writes to the same 
location will be separated by a read. If stricter consistency semantics are required a compiler 
can be made to issue a dummy read to separate the two writes.



5.2.5 T im ing Considerations

SDRAM s have various timing restrictions on the sequence of operations that can be per
formed. To maintain these tim ing restrictions we use a set of small counters called restimers  
each of which enforces one timing parameter by asserting a “resource available” line when 
the corresponding operation may be performed. The control logic of the VC window works 
like a scoreboard and ensures that all timing restrictions are met by letting a VC issue an 
operation only when all the resources it needs including restimers and the datapath can 
be acquired. Electrical considerations require one-cycle bus turnaround delay whenever the 
bus polarity is reversed, i.e., when a read is immediately followed by a write or vice-versa. 
Precharge and row open operations are not subject to such restrictions. The SCHED units 
attem pt to minimize turnaround cycles while reordering accesses.

5.2.6 Overall O peration

The overall operation of the PVA unit can be understood from the folowing example. As
sume that a vector read needs to be performed with base address B and stride S and that 
transaction id t is free. The memory controller first issues a VEC-READ command with 
address B, stride S and transaction id t. The staging units of the bank controllers assert the 
transaction complete line for t in response to the read command. Note that the transaction 
complete lines are active low. The bank controllers notice this command on the bus and the 
first hit predict modules of each bank controller decides if its bank is going to get a hit or 
not. If there is a hit, it computes the firsthit index. In the case of a power of two stride the 
first hit predict modules also compute the firsthit address for their respective banks. The 
vector request gets queued in the Request FIFO. At this point the first hit calculate module 
detects a new entry in the Request FIFO and completes the address calculation if S was 
not a power of two. When the access scheduler detects an entry at the head of the FIFO  
that has its “address calculation com plete” flag set it dequeues the entry from the FIFO and 
enters it into a vector context. The VC then opens the necessary banks and issues the read 
operations. Since all the bank controllers are working in parallel the read time is reduced. 
As the data comes back from each SDRAM, the corresponding staging unit buffers the data 
in transaction buffer t. When each staging unit detects that all the data that hits on its 
bank has been collected, it deasserts the transaction line for t. When all staging units de- 
assert the line, the memory controller detects that the transaction has completed and issues 
a STAGE_READ command for transaction id t. In response to this command the staging 
units that have the zeroth and first words of the data drive it on the BC bus followed by the 
units that have the second and third words of data and so on. and In 16 cycles all 128 bytes 
of the data are returned to the memory controller. To avoid electrical limitations alternate 
halves of the bus are used every other cycle as explained in section 5.2.1. The case for a 
vector write is similar except that the memory controller issues a STAGE-WRITE command 
for transaction id t first followed by 16 cycles during which it transmits 64 bits of data in 
each cycle. In the end it sends a VEC_WRITE command with address B, stride S and 
transaction id t. It may continue to issue other operations after issuing the VEC_WRITE 
command. When the data has been commited to SDRAM the transcation line for t will be 
deasserted.
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5.3 Hardware Com plexity
The results of synthesizing our unoptimized hardware prototype for the IKOS library for 
Xilinx FPG As are shown in table 1 [11]. We used the synthesized design to measure the 
delay through the critical path, which is through the multiply-and-add circuit required for 
calculating FirstHit for non-power-of-two strides. Our multiply-and-add unit has a delay 
of 29.5ns. We expect that a an optimized CMOS implementation will have a delay less 
than 20ns making it possible to complete this operation in two cycles at 100MHz. The 
other critical paths are fast enough to operate at 100MHz even in our FPGA implementa
tion. The FHP unit has a delay of 8.3ns and SCHED has a delay of 9.3ns. CMOS timing  
considerations are usually very different from those for FPGAs, and thus the optimization  
strategies differ significantly. Our FPGA delays represent an upper bound —  the custom  
CMOS implementation will be much faster.

6 Performance Evaluation
To evaluate the performance of the hardware prototype of the PVA unit described in 5, 
we benchmarked it against three other memory systems using several vector style kernels. 
This chapter describes the details of our benchmarks and compares the performance of the 
different memory systems.

6.1 M em ory System s Evaluated
We used four different memory systems in our performance evaluation. The characteristics 
of each are described below.

P V A : This is the PVA hardware prototype described in chapter 5. The DRAM tech
nology used is 256 Mbit, 16 bit wide SDRAM organized as 16 banks each of which is 32 bits 
wide. RAS and CAS latencies are both two cycles. L2 cache line size is assumed to be 128 
bytes, so the maximum length of a vector is 32 words.

C a ch e lin e  in ter lea v ed  ser ia l S D R A M : This memory system is an idealized, 16- 
module SDRAM system optimized for cache line fills. The memory bus is 64 bits, and L2 
cache lines are 128 bytes. The SDRAMs modeled require two cycles for each of RAS and 
CAS, and are capable of 16-cycle bursts. We optimistically assume that precharge latencies 
can be overlapped with activity on other SDRAMs (and we ignore the fact that writing lines 
takes slightly less time than reading), thus each cache line fill takes 20 cycles (two for RAS, 
two for CAS, and 16 for the data burst). The number of cache lines accessed depends on the 
length and stride of the vectors; this system makes no attem pt to gather sparse data within 
the memory controller.

G a th e r in g  p ip e lin e d  ser ia l S D R A M : This memory system is a 16-module, word- 
interleaved SDRAM system with a closed-page policy. As before, the memory bus is 64 bits, 
and vector commands access 32 elements (128 bytes, since the present system uses 4-byte 
elements). Instead of performing cache line fills, this system accesses each vector element 
individually. Although accesses are issued serially, we assume that the memory controller can 
overlap RAS latencies with activity on other banks for all but the first element accessed by 
each command. We optim istically assume that vector commands never cross DRAM pages,
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Type Count
AND2 1193

D Flip-flop 1039
D Latch 32

INV 1627
MUX2 183

NAND2 5488
NOR2 843
OR2 194

XOR2 500
PULLDOWN 13

TRISTATE BUFFER 1849
On-chip RAM 2K bytes

Table 1 : Synthesis summary

and thus DRAM pages are left open during the processing of each command. Precharge costs 
are incurred at the beginning of each vector command. This system requires more cycles to 
access unit-stride vectors than the cache line interleaved system we model, but because it 
only accesses the desired vector elements, its relative performance increases dramatically as 
vector stride goes up.

P a r a lle l V ec to r  A c c e ss  S R A M : This memory system appearsunder the labels “min 
parallel vector access SRAM” and “max parallel vector access SRAM” in later graphs. They 
respectively model the minimum and maximum performance of an idealized SRAM vector 
memory system with the same parallel access scheme developed for our SDRAM system. 
Based on static RAM, this system incurs no precharge or RAS latencies: all memory accesses 
take a single cycle. Comparing the performance of our PVA SDRAM system to the PVA 
SRAM one gives us a measure of how well our system hides the extra latencies associated 
with dynamic RAM.

6.2 Experim ental M ethodology
Table 2 lists the kernels used to generate the results presented here, copy, saxpy  and scale 
are from the BLAS (Basic Linear Algebra Subprograms) [7], and tridiag is a tridiagonal 
gaussian elimination fragment, the fifth Livermore Loop [22], vaxpy denotes a “vector axpy” 
operation that occurs in matrix-vector multiplication by diagonals. We choose loop kernels 
over whole-program benchmarks for this initial study because: (i) our PVA scheduler only 
speeds up vector accesses, (ii) kernels allow us to examine the performance of our PVA 
mechanism over a larger experimental design space, and (iii) kernels are small enough to 
permit the detailed, gate-level simulations required to validate the design and to derive timing 
estimates. Performance on larger, real-world benchmarks —  via functional simulation of the 
whole memory system or performance analysis of the hardware prototype we are building
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—  will be necessary to demonstrate the final proof of concept for the design presented here. 
These studies have been left as future work.

Recall that the bus model we target allows only eight outstanding transactions. This 
limit prevents us from unrolling most of our loops to group multiple commands to a given 
vector, but we examine performance for this optimization on the two kernels that access 
only two vectors, copy and scale. In our experiments, we vary both the vector stride and the 
relative vector alignments (placement of the base addresses within memory banks, within 
internal banks for a given SDRAM, and within rows or pages for a given internal bank). 
All application-vectors are 1024 elements (32 cache lines) long, and the strides are equal 
throughout a given loop. In all, we have evaluated PVA performance for 240 data points 
(eight access patterns x six strides x five relative vector alignments) for each of four different 
memory system models.

It must be emphasized that the performance evaluation makes the assumption of an 
infinitely fast CPU that issues memory requests as soon as possible (subject to availability 
of bus resources). As such the performance numbers here represent the maximum pressure 
the memory system can be submitted to. Speed up experienced by vector applications will 
be subject to several criteria like the percentage of vectoriseable memory accesses, the issue 
width of the processor, number of outstanding L2 cache misses permitted etc. But in general 
it is safe to assume that the faster the processor consumes data, the closer it is to the peak 
conditions described here and the greater the mismatch between the processor and memory 
speed and data consumption rate and bus bandwidth the better the performance of a PVA 
system over a traditional memory system.

6.3 Perform ance Results
Figures 7 and 8 show the comparative performance for our four memory models on strides 1,
2, 4, 8, 16, and 19 for each of the kernels. Figures 9 and 10 show comparative performance 
across all benchmarks for each of strides 1, 4, 8, 16 and 19. The annotations above each bar 
indicate execution tim e normalized to the minimum PVA SDRAM cycle time for each access 
pattern. Bars that would be off the y scale are drawn at the maximum y value and annotated 
with the actual number of cycles spent. For cases where the minimum equals the maximum  
execution tim e for the PVA SRAM model, we include only the former bar. The sets of 
bars labeled “copy2” and “scale2” represent unrolled versions of those kernels for which 
read and write vector commands are grouped (so the PVA unit sees two consecutive vector 
commands for the first vector, then two for the second, and so on). This optimization only

Kernel Access Pattern
copy
saxpy
scale
swap
tridiag
vaxpy

for (i =  0; i < L * S; 
for (i =  0; i < L * S; 
for (i = 0; i < L * S; 
for (i = 0; i < L * S; 
for (i = 0; i < L * S; 
for (i = 0; i < L * S;

i + =  S) y[i] =  x[i]; 
i + =  S) y[i] + =  a * x[i]; 
i + =  S) x[i] =  a * x[i]; 
i + =  S) {reg = x[i]; x[i] = y[i]; y[i] = reg;} 
i + =  S) x[i] = z[i] * (y[i] - x[i-l]); 
i + =  S) y[i] + =  a[i] * x[i];

Table 2: Kernels used to evaluate our design



improves performance for the PVA SDR AM system s, y ield ing only a slight advantage over the  
unoptim ized versions of the same benchmark. If more outstanding transactions were allowed  
on the processor bus, greater unrolling would deliver larger perform ance im provem ents.

6.3.1 E xplanation of Perform ance Trends

The perform ance improvem ent offered by the PVA is because o f three reasons :

1. Fewer accesses to  SD R A M  since the m em ory controller loads or stores individual words 
lines rather than w hole cache lines.

2. B etter SD RA M  bandw idth by operating m ultiple SD R A M  banks in parallel.

3. Lower latency by smart scheduling policy for SD R A M  banks.

4. Better utilization of bus bandwidth by com pacting vector elem ents into cache-lines.

For unit-stride access patterns (dense vectors or cache-line fills), our PVA unit performs 
about the same as a cache-line interleaved system  that perforins only line fills. As shown in 
figure 9 (a), norm alized execution tim e for the latter system  is between 100% (for copy  and 
sca le)  and 109% (for copy2 , scale2, sw ap  and vaxpy)  of the PVA un it’s m inim um  execution  
tim e for our kernels. T he PVA is able to  outperform  the cache-line interleaved system  
because of its sm art scheduling policy.

As stride increases, the relative perform ance of the cache-line interleaved system  falls off 
rapidly. At stride four, norm alized execution tim e rises to  between 307% (for sc a le ) and 
408% (for v a x p y ) of the PVA system ’s, and at stride 16, norm alized execution tim e rises to  
between 638% (for scale)  to  1112% (for t r id iag ) .  At a prime stride like 19 execution tim e  
rises to  between 2878% (for scale) to  3278% (for swap). The PV A ’s better perform ance is 
m ainly due to reasons 1, 2 and 4.

It is not possible to  iso late the effect of each of 1, 2 and 4 because the am ount o f parallelism  
changes with the stride. So it is not possible to  vary the stride and the degree o f parallelism  
independently.

As explained in chapter 4, for a stride of S  — a  * 2s every 2Hh  bank will have a hit. 
Thus the degree o f parallelism  available is M / 2 s . To see the effect o f stride and available  
parallelism  on m em ory latency observe the results of the scale  kernel in figure 7 (c). Since 
th is particular benchm ark reads and writes to  just one vector it is independent of the effects 
of relative vector alignm ent. This figure shows latency gradually increasing w ith stride till 
stride 19 is reached. N ote that 19 =  1 9 *  2°. Hence the degree o f parallelism  is m axim um  
and the PVA is able to  operate all 16 of its banks in parallel even though traditional m em ory  
system s perform poorly on prime number strides like 19. Perform ances for both our SD RA M  
PVA system  and the SRAM  PVA system  for stride 19 are sim ilar to the corresponding results 
for unit-stride access patterns. In contrast, the serial gathering SD RA M  and the cache-line  
interleaved system s yield perform ances much more like those for stride 16.

Som e relative vector alignm ents are more advantageous than others, as evidenced by the  
variations in the SD R A M  PVA performance in figure 11 (a). The SRAM  version of the  
PVA system  in figure 11 (b) shows sim ilar trends for the various com binations o f vector
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■ min parallel vector access SDRAM 
Q max parallel vector a cc©ss SDRAM 
0 min parallel vector access SRAM
□ max parallel vector access SRAM 
Q gathering pipelined serial SDRAM
□ cache line interleaved serial SDRAM

(d) Stride 8

Figure 9: Comparative performance of all kernels with fixed stride



(a) Stride 16

(b) Stride 19

Figure 10: Comparative performance of all kernels with fixed stride - continued





stride and relative alignm ents, although its perform ance is slightly more robust. For small 
strides that hit more than two SD RA M  banks, the m inim um  and m axim um  execution tim es 
for our PVA system  differ only by a few percent. For strides that hit one or two of the  
SD R A M  com ponents, though, relative alignm ent has a larger im pact on overall execution  
tim e. Such strides have a lot of operational overhead (SDR AM  R A S /C A S  latencies and 
precharge latencies) that cannot be overlapped w ith other operations and thereby hidden.

T he key point to be noticed in figure 11 (b) is that the PVA SD R A M  unit is able to  
perform remarkably close to PVA SRAM . In that figure, it m ay be seen that the PVA  
m echanism  is able to  use SDRAM  to achieve a perform ance equivalent to  that of SRAM  
or in the worst case at m ost 15% slower. This is proof that the scheduling heuristics built 
into the PVA are extrem ely successful in hiding the overhead cycles associated with using  
SD R A M  instead of SR AM. It m ay be seen in 11 (b) that in two cases the SD RA M  PVA unit 
outperform s SRAM . This result is an artifact of slight im plem entation differences between  
both the units that cause an additional 27 cycle delay for each experim ent while running the 
kernels on the SRAM  PVA unit. In reality, if both PVA units were identical SD RA M  will 
com e close to the perform ance o f SRAM , but will not outperform  it.

7 C onclusion
An algorithm  to im plem ent parallel access to  base-stride vectors was designed and a hard
ware prototype which im plem ents the algorithm  was designed and sim ulated. The proto
type dem onstrated the feasibility of im plem enting the PVA algorithm  in hardware and the 
benchm arks indicate significant perform ance im provem ents when using this technique. The 
perform ance o f the PVA unit varied from the sam e as that o f a cache-line oriented mem ory 
system  for unit accesses to  32.8 tim es faster for strided accesses. Studies of how this scheme 
will interact with virtual m em ory and functional sim ulation o f full-program  benchmarks need 
to  be done.

It is interesting to note that the industry seem s to  have started using approaches sim ilar 
to  those described in th is thesis. In particular, the RM C2 “constraint-based” m em ory con
troller from R A M BU S Inc uses constraints sim ilar to the PVA back-end and uses a sim ple 
rule to  skip unnecessary precharge operations. Our work pre-dates the RM C2 controller doc
um entation. As such, the design o f the R.MC2 controller can be considered an independent 
validation of som e of the design concepts presented in th is thesis.

T he general technique of m aking the m em ory controller aware o f application vectors can 
be carried forward to  com m on patterns other than base-stride. For exam ple, the PVA unit 
described here can be extended to handle vector indirect scatter-gather operations by per
form ing the operation in two phases: (i) loading the indirection vector into the appropriate 
bank controllers and then (ii) loading the appropriate vector elem ents. Loading the indi
rection vector is sim ply a unit-stride vector load operation. A fter the indirection vector is 
loaded, its contents can be broadcast across the vector bus. Each bank controller can easily  
determ ine which elem ents of the vector reside in its SD RA M  by snooping th is broadcast and 
perform ing a sim ple bit-m ask operation on each address broadcast (two per cycle). Then, 
each bank controller can perform its part of the vector indirect gather operation in parallel, 
and the result can be coalesced from the staging units in much the sam e way as is now done
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for strided accesses. Another exam ple is handling the bit-reversal phase of a Fast Fourier 
Transform algorithm . The data for such algorithm s is norm ally stored as a sequence of com 
plex num bers, but the algorithm  has to  re-order the data into a form that is more am enable  
to  later processing. This reordering phase called bit reversal has extrem ely bad cache locality  
for large data  sets. It is quite easy to  make the m em ory controller aware of the bit-reversed  
application vector pattern and let it gath er/sca tter  sequential data  into bit-reversed form. 
It can be done by reversing som e number of low order bits of the address and using the  
new address to  access memory, increm enting the original address and repeating the address 
reversal till a cache line worth of data is fetched or stored. The scatter/gath er  operation on 
bit-reversed vectors is inherently sequential for word-interleaved memory system s, but can 
be parallelized for block interleaved m em ory system s.

Though it is possible to  build in knowledge of com m on application vectors into a m em ory  
controller (e.g. a bit-reversed application vector for D SP environm ents and m ulti-m edia), 
it would be im portant to  study how knowledge of application vectors can be programmed  
at run tim e into m em ory controllers so that they can use this apriori inform ation to  keep 
pace w ith the processor in spite of the vast speed difference between processor and memory. 
However the above exam ples of indirection and bit-reversed vectors seem to  suggest that 
the kind of processing required to  sca tter/ga th er  such application vectors would be quite  
com plicated and it may not be possible to  im plem ent such transform ations w ithin a general 
purpose framework.

In sum mary, the parallel vector access unit described in this thesis shows great prom ise for 
im proving the m em ory perform ance of applications that use base-stride style vector access. 
The perform ance results are also an indicator of the im provem ents that could be obtained  
by raising the sem atic level o f the processor m em ory interaction by providing the mem ory 
controller w ith the knowledge of the m em ory access pattern of applications.
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