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Abstract 
We apply morphing to the problem of generating the initial mesh for finite element simu­

lations. This algorithm reduces mesh adaptation time by integrating physical and geometric 
constraints to provide a near optimal initial mesh. We apply this method to large-scale 
bioelectric field problems involving the complex geometries of the human body. 
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Abstract 
We apply morphing to the problem of generating the initial mesh for finite element 
simulations. This algorithm reduces mesh adaptation time by integrating physical 
and geometric constraints to provide a near optimal initial mesh. We apply this 
method to large-scale bioelectric field problems involving the complex geometries of 
the human body. 

Introduction 

Over the past two decades, the techniques of computer modeling and simulation have 
become increasingly important to the fields of bioengineering and medicine. Although 
biological complexity outstrips the capabilities of even the largest computational sys­
tems, the computational methodology has taken hold in biology and medicine and has 
been used successfully to suggest physiologically and clinically important scenarios 
and results. 

One class of important applications in computational medicine are volume con­
ductor problems which arise in electrocardiography and electroencephalography. The 
solution to these problems have utility in defibrillation studies and in impedance 
imaging tomography, and they are important in the detection and location of arrhyth­
mias and in the localization and analysis of spontaneous brain activity in epileptic 
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patients l . In general, these methods are a form of electric and potential field imaging 
and can be used to estimate the electrical activity inside a bounded volume conduc­
tor, either from potential measurements on an outer surface or directly from interior 
bioelectric sources. 

The bioelectric fields that arise in the human body are, in general, governed by 
Maxwell's equations. Because of the time scale of bioelectric signals within the vol­
ume conductors of the thorax and skull, charge is distributed throughout the volume 
virtually instantaneously such that we can invoke a quasi-static approximation. The 
bioelectric fields can thus be described by the Poisson equation for electrical conduc­
tion, if we know the current distribution within the volume, or by Laplace's equation, 
if we know the voltage distribution on a bounded surface. This yields the general 
formulation, 

\7 . (() \7 <1» = - I sv (1) 

where () is the conductivity tensor, <I> is the potential, and Isv the cardiac source­
current density. Two primary problems can be formulated from Equation (1). The 
first is the direct problem in electrocardiography (ECG): given a subset of potentials 
on the surface of the heart, or a description of the primary current sources within the 
heart, calculate the electric and potential fields within the body and upon the surface 
of the torso. The second is the problem of cardiac defibrillation: given known currents 
or voltages which are applied from external sources (e.g. defibrillation electrodes), 
determine the distribution of applied current throughout the heart. 

To solve these problems, we have constructed a geometric model of the human 
thorax [1,2] from 116 MRI scans recorded in 5 mm increments. Images were digitized 
into a set of discrete contours (poly-lines) and after some smoothing, addi tional points 
were added between the contours and the images were tesselated into a discrete set of 
elements - triangles for two-dimensional models and tetrahedra for three-dimensional 
models. 

A finite element (FE) analysis is then utilized to approximate the bioelectric fields 
throughout the discretized geometry according to (1). A problem which immediately 
arises in constructing such discrete models and the primary topic of this paper is, 
how does one know) a priori) what is an appropriate level of mesh discretization 
which balances solution accuracy and computational efficiency? While at this point, 
there does not exist an answer to this question, we have taken a step towards seeking 
a plausible (if not optimal) approximation. 

Traditionally, in adaptive finite element methods, one would start with a dis­
cretization of the geometry which conforms to the topology of the solution domain. 
Then a finite element solution would be computed and an error analysis performed to 
find elements which need refinement. Additional elements would be included (or the 
order of the basis function increased) and this would continue in an iterative fashion 
until some a priori convergence criteria had been reached. 

1 In this paper, we will focus upon primarily applications in cardiology, but note that the methods 
we develop are directly applicable to electroencephalography and other problems in computational 
medicine. 
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Figure 1: Surface boundaries from a single slice of MRI data 

Mesh refinement would be unnecessary if one could somehow guess the final mesh 
from the start. In the face of complex geometries and inhomogeneities, this seems 
to be an impossible task. However, if we could get close in the initial stage, fewer 
refinement steps would be required to reach the final stage. For our grid to be nearly 
optimal, it must accurately reflect the geometry and the physics of our system. Ef­
fectively, it must be composed of small patches in the areas of high gradient and 
maintain the integrity of all boundaries. 

To generate a grid with these properties, we "morph" or interpolate between the 
shapes of internal source boundaries and external insulating boundaries. Morphing 
provides the geometric characteristics of the mesh, and the rate of the morph controls 
the density of the mesh. The intermediate interpolated shapes are resampled in space 
and "time" to provide the actual mesh points. For models with simple topologies, this 
method produces results similar to mapping methods for grid generation[3]. However, 
as we will demonstrate, the morphing method is also capable of handling domains 
with complex topologies. 

Methods 

As an initial testbed, we have constructed an algorithm to generate meshes for a two­
dimensional slice of our thorax data. A single trans-thoracic slice is taken from the 
MRI data, and a mesh is constructed using the boundaries obtained from segmenting 
this slice. The tissue boundaries (body, fat, muscle, lungs and heart) obtained from 
one slice of a male patient is shown in Figure 1. In two dimensions, the boundaries 
of the voltage sources, current sources, internal geometries, and the exterior of the 
model are closed planar curves. 

A curve in two-dimensional space may be represented in several different ways. 
These representations can be divided into three classes: parametric, explicit, and 
implicit[4]. For this application, we will exploit the properties of the implicit repre-
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sentation in order to perform shape interpolation. 

Let 11 and h be the implicit representations of two curves, Cl and C2. A blend 
function between Cl and C2 can be created by linearly interpolating between them. If 
we use t (for time) as our interpolant, then we can define this resulting blend function 
1m as: 

Im(x, y, t) = (1 - t)Il(x, y) + th(x, y) 

At time t = 0, Im(x, y, 0) = h(x, y), and at time t = 1, Im(x, y, 1) = h(x, y). For 
o < t < 1, there is a smooth transition between 11 and 12. 

Beyond simple geometric shapes, the implicit representation for a curve is usually 
not obtainable. This is particularly true for curves which were generated from real 
world data. There are at least two methods of obtaining an implicit representation 
for a curve from data points. 

1. Function fitting: Find Aj , Xj and Yj, such that: 

for the known data points. 

2. Signed distance function. Let I (x, y) be < 0 if (x, y) is inside the polygon 
formed by the data points, and I(x, y) > 0 if (x, y) is outside that polygon. 
I(x, y) = 0 if (x, y) is on the polygon. II(x, y)1 = the smallest distance to 
any point on the polygon. Thus I(x, y) is a "signed distance" from the polygon 
edges. This method could also be applied to higher order curves such as splines. 

We chose the 2nd option because of the simplicity of implementation, and it's 
faithful reproduction of the original curve. 

Different Distributions 

The primary goal is to create an initial mesh which reflects areas of high gradients in 
the domain, while at the same time conforming to the topology of the solution domain. 
The boundary conditions and sources give rise to these gradients. For the human 
thorax model, the heart is considered to be a voltage source, and the body exterior 
an insulating boundary, while any additional defibrillator electrodes are modeled as 
current sources. We make the following assumptions about the different boundary 
conditions. 

1. Dirichlet: Produce gradients which have a ~ falloff, meaning that the size of 
the elements should be directly proportional to r. This would correspond to 
a voltage source in our problem domain, such as the endogenous fields of the 
heart. 
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2. Neumann: Specified by 'Vq,'n = f. For our purposes, the Neumann boundary 
conditions are used in two different ways. 

(a) f = 0: Used to specify an insulating boundary. In this case, the boundary 
has no effect on the final mesh other than shape. The body exterior is an 
insulating boundary. 

(b) f = g( X, y): Used to specify a current source. In this case, the gradients 
exhibit a r12 falloff from the boundary, which would make the size of the 
elements proportional to r2. Defibrillator electrodes are modeled as current 
sources. 

Thus, the proper distribution for a voltage source (element size proportional to 
r'), would require equally spaced contours, and the proper distribution for a current 
source (element size proportional to r2), would require contours spaced proportionally 
to r'. The proper distributions are given by the following interpolations: 

Voltage source: 
tDboundary(X,y) + (1- t)Dvsource(x,y) = 0 

Current source: 
2 (2 ) t Dboundary(X, y) + 1 - t ) Disource(X, Y = 0 

where Dboundary, Dvsource and Disource are the signed distance functions for the respec­
tive boundaries. 

Consider two circles of radius 1 and radius 2, represented by the implicit equation 
vx2 + y2 - R: 

• For a voltage source on the inner circle: 

fm(x, y, t) t(JX2 + y2 - 2) + (1- t)(Jx2 + y2 -1) 

Jx 2+y2-(I+t) 

producing circles of radius 1 + t . 
• For a current source on the inner circle: 

fm(x, y, t) t2 ( Jx 2 + y2 - 2) + (1 - t2) ( Jx2 + y2 - 1) 
J X2 + y2 - (1 + t2) 

producing circles of radius (1 + t 2
). 
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For problems with non-circular boundaries, these interpolations are used to give 
the approximate distributions. If the sources are on the outer circle, different distri­
butions must be formulated. 

For a single problem which contains multiple sources of one type, they are com­
bined into a single "metasource" by using the minimum value obtained from each of 
the implicit equations . 

If a single domain contains both voltage sources (Dirichlet boundaries), and cur­
rent sources (Neumann boundaries), then the resulting curves must be combined. 
Since the interpolation is done differently for the two cases, they cannot be combined 
into a single "metasource" . Therefore, we combined the two contours at each contour 
level. This is done to the implicit representations with the following function: 

f(x, y) = Ifv(x, y)fc(x, y)1 Or (Jv(x, y), fc(x, y)) 

where the Or function is defined as : 

{ 
-1 

Or (a,b) = 1 
if a < 0 or b < 0 
if a >= 0 and b >= 0 

This produces the union of the two curves, with the overlapping region removed. 

Building the Mesh 

The first step in building the mesh is to locate the isocontours. For each t value, 
the linear combination of our sources and boundary produces an implicit function 
for which we wish to trace the zero-set. Our trace algorithm finds a point on this 
set for each source, and traces along it until the contour is complete. The contour is 
then resampled to contain a fixed number of points. We repeat this process for each 
isocontour, and finally utilize a Delauney triangulation method to mesh our points 
into an optimal configuration. 

Results 

A mesh generated using the morphing algorithm is shown in Figure 2. Figure 3 
shows the same space meshed using evenly spaced points, and Figure 4 shows this 
space meshed using random points. All three mesh discretizes the region between 
the epicardium and the torso boundary (skin) for a single slice of MRI data. The 
gray lines show the mesh discretization obtained by each of the methods, and the 
dark lines show iso-voltage contours generated from the endogenous fields of the 
heart. The iso-voltage contours on each of the meshes were obtained by solving 
Laplace's equation for electrical conduction using experimentally obtained voltages as 
the Dirichlet boundary conditions . Initial simulations show that the mesh generated 
using the morphing algorithm is effective in reducing the number of iterations required 
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to fully adapt the mesh. Observe that the element sizes in Figure 2 reflect the ~ falloff 
of the fields induced by the heart, yielding a more accurate solution to the vol tage field. 
In addition, the final number of nodes in our fully adapted mesh is significantly lower 
than the number of nodes produced from algorithms with standard initial meshes. 
Complete descriptions of these results will be included in the final paper. 

Another set of meshes is shown for a region with two current sources (as would be 
the case for modeling defibrillation electrodes) in Figures 5, 6 and 7. These figures 
show the algorithm's performance with multiple sources. It is worth noting that the 
element sizes in Figure 5 reflect the r12 falloff of the fields induced by current sources. 

Future Work 

Ultimately, we will expand these tools to work for three-dimensional spaces. Most of 
the extensions are straightforward - isocontours become isosurfaces, and the same 
linear morphing still applies, but the surfaces are more difficult to parameterize. We 
would also like to use coherence obtained from the point generation algorithm in 
conjunction with an incremental Delauney Triangulation algorithm to optimize the 
triangulation process. 
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Figure 2: Heart and Torso meshed using Morphing algorithm (237 points) 

Figure 3: Heart and Torso meshed using regularly sampled points (237 points) 

Figure 4: Heart and Torso meshed using randomly placed points (237 points) 
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Figure 5: Heart and Torso meshed using Morphing algorithm (508 points) 
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Figure 6: Heart and Torso meshed using regularly sampled points (506 points) 

Figure 7: Heart and Torso meshed using randomly placed points (508 points) 
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