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ABSTRACT

The LMS Adaptive Noise Cancellation algorithm has
been applied to the removal of high-level white noise from
audio signals. Simulations and actual acoustically
recorded signals have been processed successfully, with
excellent agreement between the results obtained from
simulations and the results obtained with acoustically
produced data. A study of the filter length required in
order to achieve a desired noise reduction level in a
hard-walled room is presented. The performance of the
algorithm in this application is described and required
modifications are suggested.

A multichannel processing scheme is presented which
allows the adaptive filter to converge at independent
rates in different frequency bands. This is shown to be
of particular use when the interfering noise is not white.
Careful implementation of the scheme allows the problem to
be broken into several smaller ones which can be handled
by independent processors, thus allowing longer filter

lengths to be processed in real time.
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CHAPTER 1

INTRODUCTION

Research Objectives

In this research, Adaptive Noise Cancellation (ANC)
has been applied to the enhancement of speech signals in
environments where the noise corrupting a signal contains
as much energy as the speech itself, or more. The bulk
of the research performed has had as its objective the
evaluation of the algorithm's performance for this appli-
cation. 1In order to evaluate this performance, the
problem has been approached in four stages. The first
stage was the creation of completely controlled synthetic
situations and application of the technique. The second
was application of the technique to actual situations.
The third stage was the evaluation of problems noted, and
searching for feasible explanations, with verification at
each stage. And finally, suggestion and testing of
solutions to the encountered difficulties was performed.
For more information about the actual experiments them-
seives, the reader is referred to chapter 4.

In following this approach, the following research

objectives have been achieved:



1) Adaptive Noise Cancellation has been successfully
applied to the removal of high level white noise from
noisy speech signals for the first time.

2) A technique capable of enhancing speech in extremely
noisy environments has been made available to speech
processors.

3) A tool capable of adaptively removing non-stationary
noise has been applied to speech problems.

4) A "multichannel" modification of ANC which improves
its performance by improving its convergence charac-
teristics has been developed and implemented success-
fully.

5) A quantification of results which can be expected

from ANC under varying conditions has been made.

Content Review

In this research, noise cancellation techniques have
been applied to audio signals. The goal has been to
improve the intelligibility of speech produced in an
acoustically hostile environment. It has been assumed
that this need has arisen because of a desire to encode
the speech for low bandwidth digital transmission.

Chapter 1 continues with a description of the problem
being addressed and a review of previous work. Chapter 2
then describes the noise cancelling system, along with its
mathematical foundations, and the noise generation model

to which it is particularly applicable. In chapter 3,



many practical aspects of the problem are discussed and
"multichannel processing" is described. This technique
is proposed as a solution to several of the problems
encountered in the implementation of noise cancellation
for actual use. A description of the experiments per-
formed and their results follows in chapter 4. The
interpretation of the results is reserved for chapter 5.
Related developments and descriptions of some properties
of the noise cancellation algorithm are found in the

appendices.

Historical Context

In recent years military cryptographers and others
interested in secure communication channels have placed
increased importance on digital communication links. 1In
order to meet low-bandwidth requirements, several digital
encoding schemes have been developed. These schemes, such
as Linear Predictive Coding (LPC), take advantage of the
characteristics of speech, making possible low-bandwidth
digital transmission of speech signals. Unfortunately,
these schemes are typically sensitive to noise in the
environment. While many noise-reduction schemes have
been tried, none have proved successful in extremely
noisy environments or in environments with nonstationary
noise sources. There is a need for the development of
techniques which can provide noise reduction in these

situations. This research concerns the application of a



noise cancellation technique which is capable of working
in extremely noise environments and powerful enough to
deal with certain kinds of non-stationarity in the
environment.

While noise reduction has long been desirable to
minimize the problems mentioned, it has taken on increased
importance in recent years. The advent of low-cost,
high-speed digital hardware has made possible the use of
complex digital encoding schemes for transmitting speech
digitally in low-bandwidth channels. While such vocoders
perform in quiet environments, they often fail miserably
in acoustically hostile environments. The sources of
these failures can often be classified into four cate-
gories: silence detection, spectral estimation, voiced-
unvoiced determination, and pitch period estimation [1].
Unfortunately a scheme which improves performance in one
of these areas, does not necessarily aid in the others.

Noise reduction techniques have generally fallen into
one of three categories: linear filtering, model fitting,
and noise cancellation. The traditional approach has been
some sort of linear filtering, while model fitting has
been used less often, and noise cancellation has been used
even less frequently.

Many methods have been proposed for determining
linear filters for removal of different types of noise.

All of these attempt to improve the signal-to-noise ratio



by attenuating frequencies where the signal-to-noise ratio
is poor and emphasizing those frequencies where the
signal-to-noise ratio is better. The pioneering work of
Wiener [2] resulted in perhaps the most often used example
of these methods. Kalman filtering [3] is also included
in this group, and demonstrates the capability of these
techniques to handle nonstationary processes. A drawback
to using linear filtering techniques for noise reduction
is that the desired signal is also passed through the
filter and is thereby modified (see fig. 1.1). Distress-
ingly, signals whose quality has been improved by such
methods do not always retain an intelligibility improve-
ment when subsequently digitally encoded for low bit rate

transmission ([4].
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Figure 1.1 LINEAR FILTERING

Model fitting methods use a priori information about
the class of signals to be transmitted. Parameters
describing the signal are determined and sent. The signal
estimate is then synthesized from the estimated parameters.

Transmission of a single digital bit is such a scheme



which has found wide use because of its inherent noise
reduction capability. Linear Predictive Coding is another
such technique which has found wide use in the speech
processing community. In the field of speech encoding it
is perhaps the best known of these methods, though it is
not particularly effective for noise reduction. The
Homomorphic vocoder developed by Neil Miller at the
University of Utah [5] is another example of model fitting
techniques.

Noise reduction by model fitting suffers from two
major problems. Developing a model which is not sensitive
to noise, is a formidable, if not impossible task. And
when an acceptable model is derived, it is still necessary
to estimate its parameters accurately if noise reduction
is to be achieved. In the presence of noise, such parame-
ter estimation is not a trivial matter. In fact, it is in
this area that many of the often used coding techniques

such as LPC appear to fail in noisy environments [6] (see

fig. 1.2).
NOISE MODEL
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Figure 1.2 MODEL FITTING



Noise-cancellation methods are significantly differ-
ent in philosophy from other noise-reduction techniques.
They attempt to estimate the actual disturbing noise in
the time domain and perform an algebraic subtraction of
the noise estimate to produce a signal estimate. These
procedures have been used for antenna side-lobe cancella-
tion [7]1-[8], digital channel equalization [9], telephone
channel echo cancellation [10]-[13], noise reduction in
electro~-cardiography [14], and spectral line enhancement
[15]. An especially desirable attribute of these methods
is that if the noise has been generated according to the
modelled form, the signal can be recovered unaltered. 1In
practice, the signal estimates obtained from such tech-
niques are compatible with LPC methods. This is because
the signal's phase is not altered by passing through a
filter (see fig. 1.3). They do, however, require a noise
reference channel and, while being conceptually simple,

they are often computationally demanding.

Literature Review

Before describing the work completed during this
research, let us review related earlier work. In doing
this it is well to remember that much of the renewed
emphasis in noise reduction in speech signals is a result
of the development of the Linear Predictive Coding scheme
by Atal and Hanauer [16]. McAulay [l1] and Makhoul [17],

among others, pointed out the less than desirable
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Figure 1.3 NOISE CANCELLING

performance achieved by this scheme in the presence of
noise. Yegnanarayana described the causes of some of
these failures, as well as criticized possible solutions
to the problems [6].

Many techniques were then applied to the problem of
improving speech intelligibility in noisy environments.
These techniques have fallen into two broad categories:
preprocessing techniques, which attempt to remove the
noise before spectral coding takes place, and algorithm
modifications, which attempt to integrate noise reduction
with the encoding process itself.

Most of the preprocessing work that has been done has

been linear filtering for noise removal. Frequently  this



has been along the lines suggested by Wiener [2]. A
review of linear filtering methods and developments of
recent years has been published by Kailath [18]. Included
in that paper is an extensive bibliography to which the
reader is referred for more linear filtering references.

A small amount of work has been done in defining models to
be used as preprocessors; Boll's SABER algorithm is such a
development [19].

A majority of the algorith modifications which have
béen proposed have been modelling changes to incorporate
new capabilities or refine o0ld ones. Boll [20], with
Predictive Noise Cancellation, proposed a method of
modelling the noise and, hence, minimizing its effects.
Atashroo [21] proposed a method of pole-zero modelling
to get a better spectral fit. And Christiansen, in
a word recognition context, proposed modifying the
autocorrelations of the noisy signal under the assumption
that the signal and noise were uncorrelated [22]. He then
concluded that such a scheme was not promising since the
assumption, while true statistically and for long time
averages, was almost never true over the short time
windows used in Linear Predictive Coding analysis.

Only recently has much work been put into algorithm
modifications to increase the accuracy of parameter
estimates. This work has centered around stochastic

estimation techniques. The reader is referred to an early



10
paper by Bode and Shannon [23] and a more recent text by
Box and Jenkins [24] for more information about modelling
and parameter estimation.

In this resarch, Adaptive Noise Cancellation has been
applied as a pre-filtering technique of noise reduction.
This technique uses an algorithm related to one proposed
by Robbins and Monroe [25] and analyzed by Sakrison [26]
to remove the noise from the noisy signal algebraically.
Its basic form was developed by Widrow and Hoff [27], and
described by Widrow [28], Senne [29], Kaunitz [l14], and
Widrow, et al. [30].

Senne [29] analyzed the behavior of the algorithm
under assumptions of Gaussian inputs and independent
reference noise measurements. Daniell [31] extended the
convergence proofs to include certain types of correlated
noise measurements, and Kim and Davisson analyzed the
effects of "M-dependence" and requirements to guarantee
convergence under such conditions [32]. Kaunitz [14]
extended the conditions under which the algorithm con-
verges by implementing a random reference noise sampler
for the purpose of updating the filter. Widrow, et al.
[33] also analyzed the algorithm's performance under
certain nonstationary conéitions.

A simpler algorithm was proposed by Moschner [34] and
researchers at Bell Laboratories [12] which was more

easily implemented but had less favorable convergence



11
properties. McSherry [35] and Nagumo and Noda [36]
suggested the use of a slightly different gradient search
approach which allowed the algorithm to maintain a con-
stant adaptation "time-constant" even though its energy
fluctuated widely. Gitlin, Mazo, and Taylor [37] dis-
cussed the design of gradient algorithms for digital
applications, and Frost [38] described an algorithm which
was adaptive, but subject to equality constraints.

Noise cancellation has been applied to many problems
in the past. Riegler and Compton [7] and Widrow, et al.
[38] applied the technique to antenna intereference
rejection. Lucky [9] suggested its use for digital
channel equalization, while Sondhi [10], Mueller [11],
Rosenberger and Thomas [13], and Weinstein [12] have
described its use for echo cancellation in the telephone
network. Glover [15] described its use for the extraction
of narrow band signals or noise. And Kaunitz [14] per-
formed experiments using it for noise reduction in electro-
cardiography. He also performed some experiments wherein
highly stylized noise was removed from a noisy speech
signal which was meant to simulate an aircraft cockpit.
Widrow, et al. [30] reported many of these results and
uses in a review of noise cancelling developments late

in 1975.



CHAPTER 2

SYSTEM DESCRIPTION

Optimization Criterion

Noise cancellation is achieved by algebraically
subtracting a noise estimate from the current noisy
signal. Since this could easily result in an increase in
noise power at the output of the system, rather than the
desired decrease, we ought to examine the mechanism by
which this is avoided.

Let us assume that we are given x(t), the sum of two
mutually uncorrelated signals, s(t) and n(t), and a third
signal v(t), which is mutually uncorrelated with s(t). We

can then form a signal estimate
(2.1) s(t) = x(t) - u(t) = s(t) + [n(t) - u(t)l],

where u(t) is a noise estimate which we will constrain to

be a linearly filtered version of v(t).

Then
— 2 _ 2
(2.2) s(t) = s{(t) + 2s(t) [n(t) - u(t)]
£ [n(t) - u(t)]1?
and

E{s(t)?} + 2E{s(t) [n(t) - u(t)l}

+E {In(t) - u(t)1%) .

(2.3) E{s(t)

—~
1]
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Since s(t) is uncorrelated with v(t) (and hence u(t)),
(2.4) E{S(£)%} = E(s(t)?} + E{In(t) - u(t)1?}

The mean power of the signal estimate is the sum of the
mean power of the signal and the mean power of the noise
estimation error [n(t) - u(t)].

Since the mean power of the signal is fixed, mini-
mizing the mean output power minimizes the power in the
noise estimation error, which is equal to the power in the
signal estimation error. Therefore, minimizing the mean
output power causes the signal estimate s(t) to be a least
mean squares fit to the signal s(t). The minimization, of
course, must be carried out by choosing an h(t) (the
impulse response of the filter through which v(t) is
passed to generate u(t)) which minimizes the power in

s(t). We, then, are looking for h(t) which satisfies

Min[E{5(t)?2

h(t)

|

In practical situations additional uncorrelated
noises may be present. For development details of such a
situation refer to Appendix A, where the conditional mean

of such a process is calculated.

Block Solution

Since it is intended to implement noise cancellation

using a digital filter, it seems that a solution for h(t)
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in vector notation is now appropriate. Let v X

n’ 8

n’ “n’

etc. be the value of the corresponding signal at time nT,
where T is the sampling interval. (We implicitly assume a
band-limited signal at this point.)

Define the vectors

r Yn hl,n
Vn-1 ?2,n
(2.5) Vn = . Hn = . i
Vn-L+2 hL—l,n
| Vn-L+1 ] by n i

where L is the length of the filter to be estimated and Hn

is the filter. We then have

(2.6) i =¥ 5 =@ty .
n n n n n

The sample signal estimate is calculated by subtracting

u from x_.
n n

(2.7) S =X_-u_.=%x_=-V_"H =x_-H_V
Squaring yields
(2.8) 5.2 = (x - u)?

nn n n nn n

]
>

And taking the expected value gives



(2.9) E{gnz} - E{xnz} - 2E{annTHn}

T T
+ E{Hn A Hn}

Assuming a stationary channel H gives

(2.10) E(s %} = B{x %1% - Blx v Thu + a"Elv v Thu .
Defining

(2.11) P = E{ann}

and

(2.12) R = Elv v T}

we have, at this point assumed that P and R are not
functions of time,

yielding

T

(2.13) E(S_ - 2pTH + uTRE

which is a quadratic function of H, hence has a unique
minimum H*. Because of our assumptions of stationarity
this filter will also be stationary. By differentiating

with respect to the elements of H we get
(2.14) V=~ 2P + 2RH .
Setting V = 0 to find the optimal H, we get

(2.15) H* = R "P .

15
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In reviewing the implications of this result, we
should remember that it is quite possible for H to be a
stationary channel, while x(t) and v(t) are not stationary
processes. It is the product of the inverse of the
auto-covariance matrix and the cross-correlation vector
which must be stationary. If both change with time in
such a manner that their product remains constant, the
optimal channel will be stationary. It is this condition,
in practice, which is required to be nearly true.

In order to calculate this optimal filter, an esti-
mate of the auto-correlation matrix R and the cross-
correlation vector P must be made. The necessity of
inverting R precludes allowing the time response of the
filter to have extremely large numbers of active (non-
zero) points. We must be satisfied with a finite length
filter, albeit an optimal finite filter. We must, through
knowledge of the process, or by arbitrary decree, specify
the length of the filter, and the amount of delay to be
incorporated to allow the creation of an effectively
non-causal filter. The specification of these parameters
can be thought of as specifying the "active interval" or
"domain" of the filter.

In performing the experiments described as "block
analyses," the active intervals of the filters were chosen
to correspond with the active intervals chosen for the

"adaptive analyses." The filters themselves were
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calculated using a standard Levinson's recursion algorithm
[40] operating on auto- and cross-correlation estimates
which were calculated by averaging sample correlations of
shorter "blocks." The sample correlations were calculated
by taking straightforward inner products of appropriate
data vectors. All such inner products were of the same
length for any given experiment, and no zeroes were
appended to any data vector. That is, the sample cor-
relations were not calculated as "windowed" correlations,
but as true sample correlations. Succeeding "blocks" were
disjoint, and the union of all used blocks was the entire
signal set. Thus, the final optimal filter estimate is a
globally optimal finite filter for the active interval

specified.

Adaptive Solution

In practice, the channel to be estimated cannot
always be guaranteed to be stationary. For this reason it
is felt that a non-terminating adaptive estimator is most
applicable. That is, we want to use an estimator which
continues to adapt even after it has achieved a good
channel estimate.

Since we want to calculate H adaptively we might

try a standard steepest descent algorithm
(2.16) H = H_ - uv

where the parameter p controls convergence and stability.
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Unfortunately, we do not have access to Vn, SO must be
satisfied with a gradient estimate en' Widrow [28] has

suggested the use of

(2.17) v = —2sn v

n n

which yields the algorithm

(2.18) Hn+l = Hn + 2uSnVrl .

Others have suggested many similar, but slightly different
algorithms to which we have referred in chapter 1.
By defining the expected value of H as M it is simple

to see that

1 n,-1

P - [I -2uR] R "P .

i

[T -2ur1™ H, + R™

(2.19) Mn 0

By diagonalizing R, it is a short step to show that

(2.20)  lim{u_} = R 'p for 0 < u < 4=
N+ max
where Amax is the largest eigenvalue of the matrix R. The

variance of the estimate can also be forced below any
arbitrary positive limit as n gets large for V. uncor-
related with Vj for k#j [29]. Under further assumptions
convergence has also been shown for special cases of
correlated Vj' Asymptotic behavior, residual error,

and nonstationary behavior in special cases have also

been investigated elsewhere.
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Since the algorithm converges to R-lP, it is of some
interest to look briefly at its characteristics under
conditions similar to those used in calculating the
conditional expectation of S in Appendix A. That is, let
the reference noise V be the sum of two mutually uncor-
related random variables. One of these (N) can be cor-
related with the noise in the noisy signal, while the

second (M2) is to be uncorrelated with the noisy signal.

Then

(2.21) V= N+ M2

and

(2.22) R=E(VV T} =E{N. + M2 )(N_+ M2 )7}

nn n n n n

o T T T
= E{NnNn + Nnmzn + Mann + M2nM2n }
= Ryn * Ruom2 7

SO

(2.23) R7Ip = [R._ + R 171p

. NN M2M2

_ -1 -1
= Ryn ~ Ryn[Ryn * Ruomz! 1P -

The braced terms show the Wiener Filtering performed to
obtain N from V, while the remaining terms perform the
transformation mentioned in Appendix A. Since it is now
being performed without a priori knowledge of the statis-

tical behavior of x{(t) and v(t), only the subsequent



20
subtraction is performed, leaving the final filtering
described in the appendix undone. Of course, if statis-
tics are known, the final filtering operation should
be performed.

Since the optimal filter is a function of the inverse

of R, R™L

P (eqg. 2.15), it seems appropriate to consider
the conditioning of R. If R is singular, additional
conditions must be imposed to obtain an optimal solution
[39]. This does not mean, in general, that there is no
solution, simply that it is not unique. This condition is
frequently encountered in practice when the interfering
noise is periodic, or nearly periodic. While channel
estimation is not completely possible in such cases, it is
only necessary to estimate the channel accurately in those
frequency bands where significant interfering energy is
present. Even though the channel estimate may be con-

sidered poor in such a situation, the noise reduction

achievable may be significant.

Data Generation

The manner of data generation is irrelevant to the
preceding developments. But, by suggesting a data
generation scheme, greater appreciation for the noise
cancellation procedure can be fostered and difficulties
more easily understood. It is clear that if the data can
be accurately modelled as shown in figure 2.1, and if the

channel can be accurately modelled as a finite length all-



21

zero filter, perfect noise cancellation can be achieved if

the estimated linear filter, H, is set equal to G.

SIGNAL
SOURCE

’/

Y

NOISE
SOURCE —f

Figure 2.1 BASIC DATA GENERATION MODEL

Figure 2.2 shows a model which resembles actual
acoustic signal generation more closely. 1Its equivalence
to the previous model (as shown in figure 2.3) gives us
hope that a high degree of noise cancellation is still
possible.

Additional noise sources, such as extra uncorrelated
noises at the noisy signal and noise reference pick-ups,
degrade performance, but are easily analyzed, as was done

above. If these extra sources happen to be mutually
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correlated, the channel estimator is faced with the task
of estimating a combination of two separate channels.
Since no such equivalent channel exists, the amount of
noise reduction which can be achieved is highly dépendent

upon the signals involved.

SIGNAL
SOURCE % £

X
SOURCE G, [

Loy

Figure 2.2 SIMPLE DATA GENERATION MODEL
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NOISE

SOURCE ' SR

Figure 2.3 EQUIVALENT DATA GENERATION MODEL



CHAPTER 3

PRACTICAL CONSIDERATIONS

Real Time Performance

Since an objective of this research has been to apply
a relatively untried procedure to the problem of noise
reduction in acoustically hostile environments, the rate
at which the procedure can operate is of considerable
importance. If the adaptive filter is updated at the
sampling rate, we must perform two multiplies and addi-
tions for each point in the active interval of the filter
during each sampling interval. One of these multiplies
and additions is performed to produce the output of the
adaptive filter, and the other is performed in the process
of updating the filter itself. Of course there are a few
additional operations which can be viewed as overhead,
since they do not depend on the filter length. 1If the
number of points in the filter's active interval is large,
this task is formidable. In order to accomplish it, some
type of parallel processing may need to be performed.

The most straightforward application of parallel
processing could be called time-domain parallelism. In
applying this procedure the troublesome calculations

are broken into sets of smaller calculations which can



be performed at the necessary rate by several processors
working simultaneously.

The troublesome operations are

(3.1) u = H_Ty

and

H

n+1 Hn + 2usnvn

Let us partition H_ and Vn’ so that

jso)
]
s}

and

We see that equation 3.1 may be rewritten as

u, = uy + u, .
We also see that
H1n+l = H1n ' 2uSnV1n J
while
Honer = Hpp + 2us, Vo,
where
_ T
By = By Vg
and
_ T
Mg = By Von

The problem has been broken into two smaller problems

which can be handled by separate arithmetic units.

Further division could, of course, be performed until the

24
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problem has been reduced to a size which can be performed
by available units working in parallel.

A second application of parallel processing tech-
niques could be viewed as frequency division parallelism
of multi-channel processing, though all of the processing
is performed in the time domain (see fig. 3.1). In this
scheme, the reference noise is passed thorugh a bank of
band-pass filters. It is preferable if these filters are
of equal bandwidths occupying separate frequency bands,
and having the same linear phase. The bands, when con-
sidered as a whole, should span the part of the spectrum
occupied by the original reference noise. These con-
straints simplify implementation and visualization of the
process, but are not constraints arising from the mathe-
matical description of the procedure. Besides allowing
parallel processing, this process performs significantly
better than the standard ANC technique in some situations
where the adaptive filter fails to converger properly when
implemented in the standard manner. A further description

is found in the following subsection.

Multichannel Processing

Multichannel processing is a procedure which allows
parallel processing of noisy signals. In addition, it
improves the convergence properties of the noise cancel-
ling algorithm. If the reference noise itself is not

white, a seQere problem may be encountered while employing
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Figure 3.1 BLOCK DIAGRAM OF MULTICHANNEL PROCESS

the standard ANC algorithm. Convergence is not neces-
sarily guaranteed in such cases, and if it does take
place, the rate at which it occurs is not easily estima-
ted. 1If the noise has varying spectral densities in
different frequency bands, it will converge at different

rates in the different bands, if it converges at all.

26
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This is because the stability of convergence and conver-
gence rate are related to the energy in the noise refer-
ence signal. For a more detailed description of these
properties the reader is referred to appendix B. If an
attempt is made to increase the adaptation rate in order
to achieve a desired convergence rate in a band with low
energy ,the estimation process may go unstable; the
signal estimation error will be increased.

This seemingly difficult problem can be dealt with in
two ways. First, it can be ignored. If the noisy signal
does not contain significant energy in the frequency bands
where the reference noise has low energy, it may not be
necessary to have an accurate channel estimate in those
bands; after all, it is noise reduction, not channel
estimation, which we desire. And second, the signal may
be treated as "piecewise white," that is, it may be
divided into frequency bands which contain nearly constant
spectral densities. These bands may be used as inde-
pendent noise reference inputs and multi-channel process-~
ing employed. Because the different frequency bands can
then be estimated by independent noise cancellers, the
convergence rates of each band may be specified inde-
pendently, thus allowing all bands to converge at the same
rate (or different rates), even though the reference

energy in each band is different.
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A description of the basic process, shown in figure
3.1, follows. The output of one of the band-pass filters
is applied to a noise cancelling processor as the noise
reference input, while the noisy signal is applied as the
other input; the resulting signal estimate is then applied
as the noisy signal to a second, independent noise cancel-
ling processor, which uses as its noise reference input,
the output of a second of the band-pass filters. The
resulting signal estimate can be subsequently treated as a
noisy signal, and the procedure continued by putting in
tandem further independent processors until all of the
available reference inputs have been used.

If the process is implemented directly as described,
convergence benefits may be derived, but the number of
calculations required to be performed by each processor
will be increased. Since the active interval of the
filter remains constant, the number of calculations
required is proportional to the number of processors
performing them. Thus, each processor must perform as
many calculations as if it were doing the job alone. If
the bandwidth of each band-pass filter is constrained to
be less than a factor of N smaller than the bandwidth
allowed by the sampling rate, however, the number of
operations required of each processor can be reduced by a
factor of N. This can be achieved by effectively down-

sampling the noise reference inputs by a factor of N,
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since their bandwidths allow it., This down-sampling can
be performed without the need for a complicated interpola-
tion scheme at the filter output if it is done by simply
allowing only one filter point in N to be non-zero. Only
those points, then, are used in performing the necessary
calculations. While this causes frequency-domain aliasing
of the filter itself (it appars to be under-sampled with
respect to the original sampling rate), the incoming
reference data has already been filtered to prevent it
from containing spectral components in any but one of the
reduced bandwidth spectral copies. Each of the inde-
pendent noise cancellers can thus be required to perform a
smaller number of calculations than that required if the

job were being done by a single processor.

Other Suggested Modifications

In examining the performance characteristics of the
basic noise cancellation algorithms described in chapter
2, it has become apparent that certain deficiencies exist.
By altering the algorithms slightly some of these defi-
ciencies can be minimized. Among the properties requiring
improvement are the ability to deal with nonstationary
input signals, convergence, and convergence rate stability.
If the block analysis approach is implemented, rather
than an adaptive approach, a large delay is introduced
into the system. Furthermore, if the signals are not

stationary, block analysis is not likely to produce any



30
sort of optimal filter for any particular segment of the
signal. It attempts to generate a filter which results in
the minimum total output power, but may do a very poor
job on some segments of the signal. In short, it was not
developed for nonstationary signals. By block processing
short segments, however, it could be adapted for use with
some kinds of nonstationary signals.

If the adaptive procedure is implemented, the primary
difficulties center on the convergence properties of the
algorithm. Previous developments of convergence rate and
signal estimation error have relied on the assumption that
the eigenvalues of the noise reference auto-covariance
matrix are constant and equal (see appendix B). This is
related directly to requirements of stationarity of the
reference noise. It relates, in particular, to the
assumptions that the reference noise has a constant
energy, and is white. 1In practice, these assumptions
could be quite unfounded. The consequences of the
violation of these assumptions are quite direct. The
convergence rate of the adaptive filter becomes time-
varying, causing pos;ible instabilities, and the signal
estimation accuracy also becomes time-varying. Since
this problem is caused by the dependence of conver-
gence on the eigenvalues of R (and hence the energy of
the noise reference signal) it can be alleviated by

implementing some sort of automatic gain control. This
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may be introduced in both input signal paths and the
may be introduced in both input signal paths and the
output signal path, or in the feedback path alone. A
simple solution has been described by McSherry [35] and
Nagumo and Noda [36]. It results in equation (2.18) being

modified to be

Further Problem Aspects

It should be recognized that there are many other
facets of noise cancellation which must be considered in
order to attain the degree of performance desired. While
some of these may seem trivial, and others beyond our
control, we should at least be aware of problems that
exist.

A knowledge of the type of noise to be removed is
essential. While details may be unimportant, the general
characteristics of the noise must be known before a noise
cancellation strategy is specified. For example, if the
noise is periodic, or nearly periodic, an entirely differ-
ent noise cancellation strategy will be employed than that
described for the removal of broad-band noise. The adap-
tation rates and filter lengths specified will undoubtedly
be different in the two cases. Periodic noise can be
eliminated with a much shorter filter than can white

noise, the adaptation rate can be made correspondingly
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faster with no loss in accuracy, and the noise-reduction
can often be accomplished without an independent reference
noise measurement. For more details concerning the
removal of narrow-band noise the reader is referred to
Glover [15].

Since the noise cancelling filter is to be imple-
mented as a transversal digital filter, several additional
constraints are implied. First, by the mere act of
specifying digital processing we have implied that many
conditions will be met. The signals to be digitized will
be band-limited to a frequency corresponding to half the
sampling rate; a certain amount of quantization error will
be allowed; the sampling will be done accurately at the
ends of uniform time intervals. Second, by using a
transversal filter, we have constrained the filter to be
causal and finite. It is to be a causal and truncated
Wiener Filter. Of course, introduction of appropriate
delays can result in a filter which is effectively non-
causal, but still finite. The determination of such
delays is not a well defined procedure, but must be done
experimentally for any given application, though they can
often be arbitrarily specified because of an understanding
of the physics of a particular problem.

While a truly optimal filter may exist, which is
independent of noise characteristics, when the filter is

constrained to be of finite length, no such filter may
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exist. The optimal filter, under such a constraint, may
be very dependent on the type of noise present.

Other effects of using a finite length filter depend
largely on the environment. If the transfer functions of
the environment which transform the noise produced by the
source into the noise interfering with the signal at the
signal sensor, and the reference noise picked up by the
reference sensor, can be modelled as linear filters, the
problem is reduced to estimation of G2—1Gl (see fig.

2:3),

Though they are actually characterized by many poles

and zeroes, if G, and G

1

zero filters, as can probably be expected, the difficulty

2 (fig. 2.2) can be modelled as all

in estimating the optimal filter arises because of the
need to effectively invert G2. If, as hoped, it was an
all zero (Moving Average) process, its inverse will be an
all-pole (Auto-Regressive) process. It is highly unlikely
that G2 is a "minimum phase" process, since it is a
physically realized process which will undoubtedly
introduce phase dispersion. It will have zeroes outside
the unit circle in the z-plane. 1Its inverse will, there-
fore, have poles outside the unit circle, apparently
threatening to cause the inverse to be unstable. This can
be avoided, however, by recognizing that such a system

corresponds to an impulse response which is stable, but

doubly infinite in length, It must be non-causal and



non-truncated. Of course if these singularities are well

away from the unit circle, the response will be dominated

by rapidly decaying exponential envelopes. As they

approach zero we may choose to truncate them and use only

those points where the

response has had more significant
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energy. This allows us to approximate the required doubly

infinite recursively generated filter, with a finite

transversal filter. As the zeroes of G2 and the actual

poles of Gl approach the unit circle, however, the

number of points which
interval of the filter
to maintain a constant

appendix B for more on

we must allow in the active
to be estimated grows if we desire
error. The reader is referred to

the subject of filter truncation.



CHAPTER 4

EXPERIMENT DESCRIPTION

Basic Experiments

In order to evaluate Adaptive Noise Cancellation as a
technique for noise reduction in audio signals, many
experiments were performed. These experiments were
performed in four groups. They were designed to identify
potential performance, actual performance, problem areas,
and evaluate possible solutions.

An experimental data base was created which made
possible the comparison of different experimental results.
A General Radio Company type 1390-B random noise generator
was used as a primary noise source. Its output was
low-pass filtered to 3.2 KHz and sampled at a rate of 6.67
KHz for use as a nearly white gaussian noise source which
could be used repeatedly. A Hewlett-Packard model 209A
oscillator used as a square wave dJenerator was also used
to generate a similarly recorded, nearly periodic noise
sample. This sample was made highly nonstationary by
varying the frequency adjustment of the square-wave
generator in a semi-random fashion while digitization was
taking place. These samples were then concatenated and
used as noise sources for both synthetic and accoustically

recorded experiments.
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A number of FIR filters were then created in order to
allow a group of entirely synthetic experiments to be
performed. Five such filters have been used for the
majority of the experimental work. A low-pass filter with
its cutoff frequency at approximately 1500 Hz and a triple
band-pass filter were created to allow an evaluation of
the technique's promise (see fig. 4.1). Two room-channel
estimates were made from actual measurements of a room's
response in order to simulate, digitally, an actual room
[41] . And a fifth filter was created by specifying the
locations of a set of zeroes in the z-plane. This filter
had frequency bands with different, nearly constant gains
and was used in studying certain convergence properties of
the algorithm (see fig. 4.2).

The noise base samples were passed through these
filters and measurements were made to determine the energy
contained in these signals before and after filtering.

The energies measured later allowed signal-to-noise ratios
to be easily specified when digitally creating noisy
speech signals by adding scaled versions of these signals

to digitally recorded speech signals.

Noise Reduction Measurements

In order to evaluate performance, it was necessary to
define a procedure for determination of signal improvement.
The noise reduction figure was calculated as the ratio of

output power to noisy signal input power averaged over



37

o4
O

.B@RE+R 6.300E+4
4 531E-1 2 4 L

-9.516E-2
2‘169E—19 H(F)

AN

-10

-1.344E+2 2
©.000E+0 3.333E+3

LOW PASS CHANNEL

H(T)
1l . @0QCE+0 1.270E+2
3.875E-2 10
o jivl\f/%\f/ r}k1(J\R/J\A J\\P‘V
{1
-2.807E-2
-6 .5S05E+0 H(F)
-1e E IT T il ULk
-1.118E+2 2
© . 900E+0Q 3. 33IE+3

THREE BAND PASS CHANNEL

Figure 4.1 TWO SYNTHETIC CHANNELS



38

- e 3. 200E+1
S.478E-1 2

1N
k

_51

-8.076E-1
4 783E+0 SPECTRUM

) /

-2 /

—

-2.8808E+1 2
© . 000E+Q 3.333E+3

Figure 4.2 A MULTI-LEVEL SYNTHETIC CHANNEL (G2)

8192 data samples during a period of no speech activity.
During this time, the signal could be assumed to be zero,
meaning that any input or output signals would be entirely
noise. While this is not an acceptable method of noise
measurement for many techniques, because of the nature of
this technigue of noise reduction, it is felt that the
method is proper and results representative of its true

performance can be thus obtained.

Synthetic Experiments

For the initial experiments digitally recorded speech

signals were added to the filtered noise segments and used
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as the noisy signals applied to the ANC algorithm, while
the corresponding unfiltered noise segments were used as
the noise reference input signals. For actual room
simulation the noise filtered through one of the room
channel estimates was used as the noise reference, while
the noise filtered through the other channel was scaled
and added to the digitized speech signal for use as the
noisy signal. Typical results can be seen in figures 4.3,
4.4 and 4.5.

During these experiments, it was found that perfect
cancellation could be achieved during extended periods of
no speech activity. Of course, any non-zero signal at the
output caused the adaptive feedback mechanism to actively
adapt the estimated filter, even though it had achieved a
perfect estimate. By referring to equation 2.18, it will
be noted that the amount of such degradation is signal
dependent. By using a slow adaption rate, however, this
degradation can be kept below any desired positive level.

When white gaussian noise was used as the interfer-
ing noise, accurate channel estimates were obtained for
both low-pass and multi-band-pass channels. When the
highly correlated, nearly periodic noise samples were
used, the channel estimates did not converge to the known
channels. But the noise reduction in these cases was
worsened only during times of changing noise charac-

teristics. The filter readily adapted to new noise
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characteristics. Though the channel estimate did not
converge to the known channels in these cases, the goal of

noise reduction was still achieved.

Room Simulations

It was decided to predict the degree of cancellation
possible in a hard-walled room about fifteen feet square.
Estimates of its transfer function from a point near one
wall to points in the room were made. The previously

recorded noise was then digitally convolved with each of
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the room estimates and two separate experiments were
performed on the resulting signals.

In the first of these, the original noise signal was
used as the reference noise, and one of the filtered
signals was used as the noisy signal. No speech was added
to this signal for this experiment. While the original
room estimates were 4096 points in length, the adaptive
filter was constrained to a length of 3000 points. An
adaptation time-constant of approximately 0.4 seconds was
specified. Noise reduction of -25 dB was measured for
this experiment.

In the second experiment, the reference noise was
provided by one of the digitally filtered signals, while
the noisy signal was the output from the other room
channel estimate. Again 3000 points were specified for
the adaptive filter's length, half of them before t = 0.

The resulting noise reduction measured was -12 dB.

Multichannel Experiments

The final group of synthetic experiments performed
were the multichannel experiments. It is easy to con-
ceive of a situation where the noise source is very
broad-band and the noise received at the signal sensor
exhibits similar characteristics, but the reference noise
sensor, due to physical constraints, must be placed in a
position where some segment of the noise spectrum has been

greatly attenuated. 1In such a situation, it is imperative
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that the channel be estimated accurately in all frequency
bands, since the noise interfering with the signal has
significant energy at all frequencies, even though the
reference noise does not. Such a situation presents a
particularly difficult challenge to the adaptive noise
cancellation algorithm. Feeling that the problem could be
minimized by the application of the multichannel process-
ing scheme referred to in chapter 3, experiments were
performed to evaluate the effectiveness of that technique
in such a situation.

In order to perform such an evaluation, the filter
shown in figure 4.6a was generated and used as the channel
G2 while Gl was forced to be the identity system. The
standard ANC algorithm was then applied, attempting to
estimate Gz—l. The reference noise was then divided into
two frequency bands, and the multichannel processing
technique applied. A total equivalent filter was then
calculated for comparison with the estimate of the single
channel scheme. A block analysis was also performed for
comparison.

The standard ANC algorithm provided -1.5 dB noise
reduction in this perverse environment, while the multi-
channel scheme attained a level of -35 dB noise reduction.
Figures 4.6 and 4.7 show the channel G, and the estimates

2

of its inverse obtained via the various procedures.
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Acoustically Recorded Experiments

Other experiments were performed in an actual acous-
tic environment. The digitized noise sources were played
through a single multielement BOSE loudspeaker and
digitally recorded through two separate SONY ECM-270
microphones placed at varying locations in the previously
mentioned, hard-walled room. A speaker was situated near
one of the microphones and spoke into it to provide the
noisy signal, while the other microphone provided a signal
which was used as the noise reference signal. For some
problem evaluation work, the noise reference was picked up
by electrically monitoring the speaker driving signal
rather than through a second microphone. The active
interval of the filters being estimated was arbitrarily
chosen to be centered around t = 0. This was accomplished
by delaying the noisy signal by half as many points as
were specified as the length of the filter to be estimated.

A single channel room estimation was performed using
the previously mentioned electrically monitored speaker
driving signal as the reference noise, and a simultane-
ously acoustically recorded signal as the noisy signal.
This corresponded to forcing G2 in figure 2.2 to be an
identity system. The noise reduction achieved in this
experiment was -24 dB.

Many experiments were performed using one acous-

tically recorded signal as the reference noise and a
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simultaneously recorded signal as the noisy signal.
Varying filter lengths were specified and two methods of
estimating the noise cancelling filter were employed. One
set of experiments used the block analysis approach
described in chapter 2 to derive a single stationary
filter which was used in the noise canceller. The second
set employed the standard ANC procedure.

The results of these experiments are compared in
figure 4.8. The variation from record to record when
using the block analysis method of filter determination
was considerable. For some experiments, results degraded
by up to 20 dB from those shown were observed in some
records. Improvements of several dB in other records were
not uncommon. The results shown, however were the improve-
ment achieved in regions of little fluctuation, and
correspond to the same records used for the adaptive
filtering results. The results obtained with the adaptive
filter were much more consistent from record to record
except where they improved considerably (at least 10 dB
for the longest filter length) during periods of highly

correlated noise.
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CHAPTER 5

CONCLUSIONS

Observations on Results

The performance of the experiments presented in
chapter 4 has provided much information and insight into
the behavior of Adaptive Noise Cancellation. An analysis
of the significance of thé reported results is now
presented.

The implementation of synthetic channels with short
active intervals provided helpful understanding of the
effects of deviation from the conditions assumed in
mathematical analyses of the ANC process. When the
reference noise measurements are not statistically inde-
pendent, as they are not when the noise is nearly peri-
odic, the adaptive filter is not guaranteed to converge to
the optimal filter., Experimental examination of its
performance under these conditions, however, showed that
noise reduction was as good as, or better than that
achieved when a white noise source was employed. Further
examination of the adaptive filter's impulse response
showed that such estimates of the channels were excellent
in frequency bands where significant noise energy was

present, and very poor where no noise was present. This
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was not unexpected, since the adaptive filter's impulse
response is a linear combination of previous reference
noise sample vectors. The optimal filter was not unique
for such noise. As the frequency of the noise was varied,
however, degradation occured because the filter was not an
accurate channel estimate at all frequencies.

The error caused by adapting after achieving a
perfect channel estimate emphasized the fact that there is
a feedback path from the signal output to the channel
estimate. This is evident from the description of the
adaptive process found in equation 2.18. 1If rapid adapta-
tion rates were chosen, this caused an effect much like an
echo to be noticed at the signal estimate output.

A comparison of the results obtained from synthetic
and actual rooms (-25 dB vs., -24 dB in the single channel
case, and -12 dB vs. -10.5 dB for the two channel case)
indicates that the assumption that a room can be modelled
as a linear, stationary channel is valid. The near
agreement of the results also implies that the introduc-
tion of spatially distributed noise sources, such as
multi-element loudspeakers, is not a cause of great
degradation in performance if such distribution is con-
fined to a relatively small region.

Perhaps the most significant results reported are
those produced by multichannel processing. The intro-

duction of multichannel processing significantly improved
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noise cancellation performance for the cases tested. The
improved performance can be directly attributed to improved
convergence of the adaptive filter, and specifically to
the capability of the multichannel technigue to allow
different convergence rates in different bands. It is
possible that the single channel technique would even-
tually converdge to the optimal channel, or that a dif-
ferent adaptation rate would improve its performance. 1In
either case, however, it would effectively converge in
different frequency bands at different rates, and in the
case of faster adaptation, a higher residual error would
remain. When coupled with the increased filter length
capacity available from multichannel processing (due to
its inherent parallel processing nature) it is felt that
its development has been significant.

The comparisons of filter length versus noise reduc-
tion for acoustically produced signals show relative
performance losses caused by filter truncation. They are
applicable to a single, hard-walled, acoustically live
room about fifteen feet square, and ought not to be
considered universally attainable levels. While the near
agreement of the block analysis technique and the ANC
algorithm indicates that the results are accurate, it is
possible that extending the length of the data samples
processed could result in changes to the reported results.

That is, though the noise reduction levels reported
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appeared to be relatively stable, the exceeding length of
time required to perform the experiments on the long
filter lengths due to the software implementation of the
ANC algorithm on a general purpose computer (DEC PDP-10),
precluded the use of exceedingly long data segments.

The absolute noise reduction obtainable for a given
filter length is extremely dependent upon the physical
environment where the process is being employed. For this
reason, it is impractical to assume that the levels
reported will be obtained in any particular situation. 1If
the process is to be implemented in a less reverberant
environment, however, considerably better performance
would be expected.

The comparisons of the ANC approach and the global
block analysis yield some surprises. The first of these
is that the ANC approach consistently performed Setter
than the supposedly optimal channel estimate. This was
because the block estimate was calculated over the entire
noise sample, which was nonstationary. It consisted of
alternating segments of white gaussian noise and a highly
correlated noise sample produced by a square-wave genera-
tor, as described previously. The block analysis not
developed under such assumptions and attempted to
minimize the total output energy. In doing so, it often
allowed slightly poorer signal estimates for many blocks

in return for one particularly good estimate for a shorter
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period. In addition, the adaptive technique was not
constrained to perform the estimation of a single channel,
but was allowed to vary it to improve estimation on a
point by point basis. And the second surprise is the
anomaly seen for the 3000 point block estimate. This was
the result of the failure of Levinson's recursive inver-
sion algorithm [40] to obtain an accurate channel esti-

mate.

Summary

Many experiments have been performed which indicate
that Adaptive Noise Cancellation is capable of signifi-
cantly reducing noise in audio signals if properly applied.
The results of the research reported indicate that ANC
techniques are promising for use in practical situations
where audio noise levels are so high that other techniques
are not apvrlicable. The situation must be such that the
additional costs of this type of processing can be justi-
fied. Requirements for two signal measurements must be
justified and sufficient computing power must be availa-
ble. For audio signal processing, some sort of automatic
gain control must be provided. If parallel processing is
to be used due to the length of the adaptive filter
required, or if knowledge of the environment and noise
source indicates that convergence problems are likely,
implementation of the multichannel processing scheme

presented appears to be a desirable, effective solution.



55

Future Work

Though the ANC technique has been shown to be effec-
tive for noise reduction in audio signals, there is still
work to be done to understand it more fully and improve
its performance. Some work must be done on channel
estimation of proposed operating environments for ANC
implementation. Such work could be coupled with further
truncation error development to predict achievable per-
formance for a given environment. Alternatively, using
noise samples from such environments alone, or in con-
junction with channel estimates, accurate simulations of
such environments could be made to determine the regquired
adaptive filter lengths necessary for attaining the
desired noise redu«. ion levels., Experimental work con-
cerning development of band-pass filters for use with the
multichannel process might also be performed to optimize
performance and minimize observed ringing of the total

equivalent filter's response in the cross-over bands.



APPENDIX A

CALCULATION OF THE CONDITIONAL MEAN

Let us assume that we have four jointly independent,
Zzero mean Gaussian Random Variables, S, N, ml, and m2, and
that their variances are known. Furthermore, let us

assume that we can measure directly only the sums

(A.1) X =S+ N+ml and V = N + m2

Then the mean of £(SI1X,V), where f£(.) is the probability
density of (.), is the MMSE estimate of S. Let us, then,

calculate E(SIX,V). Applying Bayes' Theorem

(a.2) £(51X,V) = —F

The denominator of this expression serves only to
normalize the distribution; the form, and hence the mean
of the distribution, can be determined from the numerator
alone. We may proceed directly to calculate the numera-
tor. The conditional variance of X, given S, is simply

2 2

ON + oml . The covariance between X and V, given S, is

(A.3) COV[X,V] = E{(N + ml) (N + m2)} = °N2 )

The covariance matrix of the augmented vector (X,V) is

thus



57

(A.4) R

and the conditional mean vector is
(A.5) M= (s,0)T .

The inverse of R is

2 2 2
ON + °m2 —oN
-5 2 2 2
(A.6) R—l _ oN 0N t oml
) (o 2 + o 2)(o 2 + o 2) - g 4
N ml N m2 N

£(X,V S) is proportional to
exp{-.5[X-S,V] R"l[x—s,VJT} .

Since we are looking for

(A.7) S = E{sIX,¥} ,

let us find the terms involving S.

We find

{(6.% + o_.%)s - 2[(0N2

N m2
2
+0m2)+0

2

N V]s}

2
+0m2)X-o

2 2 2 2
2[°N (oml ml om2 ]

to which we add (since we must multiply by f(s))

S
2 .
208

If we then normalize the S term we are left with -2S as

the coefficient to S, yielding
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og” [loy™ + op92yx 0 2V]
7 3 72 2

ml “m2 + Ug (ON + “m2 )

(A.8) g =

2
+ °m2 ) + o

Thus we see that S is a linear combination of X and V.

(A.9) S = aX + bV
where
(ONZ + °m22)
(A.10) a =
o 2(0 ¢ + ¢ 2) + o o 2 + o 2(0 2 + ¢ 2)
N ‘“"ml m2 ml "m2 S N m2
and
& 2
(A.11) b=-a-—; N .
o + 0
N m2
rewriting a
5 2
(A.12) a = B .
2 2 2 i °N
s |1 %1 * 9m2 2 2

we see, by careful examination, that the least mean
squares estimate of S is formed by first calculating a
Wiener filtered estimate of N using only the known sta-
tistics and V. This estimate is then subtracted from X,
and the result is filtered to minimize the effects of the
remaining noise, including ml and the residual from our
misestimation of N. Had one of the measured signals
contained not N, but a signal correlated with N, an

additional coloration of V would have been required.



APPENDIX B

CHARACTERISTICS OF THE LMS ALGORITHM

AND NOISE CANCELLATION

The LMS algorithm developed by Widrow and Hoff has
been applied to the problem of noise cancellation in many
contexts. Many of its properties have been written about
frequently. Some of them are briefly described here. Most
can be found described in more detail in reference [28].

In chapter 2, equations 2.19 and 2.20, it was shown
that the channel estimate H converged to the optimal

solution for 0 < y < 1 . This condition is related

max
to the total reference noise input power by

2y
Y+l y

L
Amax < TRIR] = g E{

If we assume ergodicity and compute the expected value as
a time-average, we see that the input power is an upper
bound on the maximum eigenvalue of R. It is the sum of
all of the eigenvalues. Since R is positive definite,
each of the eigenvalues must be positive. In the special
case where all of the eigenvalues are equal, such as when
R represents truly white, stationary noise, this bound is
larger than necessary by a factor of L, where L is the

dimension of the vector V.
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The weights of the adaptive filter adapt in such a
way that their time-history is the sum of L complex

exponentials with time-constants

1

i=2u—A i=l,2,ooo,L
T i

where the A, are the eigenvalues of R. If they are all

equal,

_ 1
¥ =93

Since the mean squared error is a quadratic function
of the weight values, the time-constant representing the

rate at which the mean squared error approaches its final

value is

T X
mse 2

If perfect noise cancellation cannot be achieved, a
"misadjustment" measure defined as the ratio of the excess

mean squared error to the minimum mean squared error has

been defined. It has been shown to be

=

1}
N} —
Il &= %
.-1||—'

i=1l i
for statistically stationary processes. It is propor-
tional to the number of weights, L, and inversely

proportional to the time constant. From equation 2.6

we see that the optimal noise estimate is
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N+L-1
Uy ) hi*vn—-l
1=N
and we can actually get
N+§—l -
u_ = h. v
n ioN 1 "n-1i

showing that we have two major sources of error. The
first source is the error in the estimation of the h.

This error can be decreased by increasing the time
constant of adaptation (decreasing the adaptation con-
stant u) or by decreasing the number of taps in the active
interval of the filter. It is this error which gives rise
to the misadjustment mentioned.

The second source of error is the truncation of the
infinite summation. We, thereby, assume that all trun-
cated h are zero. If they are not, increasing the active
interval of the filter (adding more terms) may result in a
better noise estimate. It should be noted that increasing
the number of terms indefinitely will not result in
increasingly accurate noise estimates. As the truncation
error decreases, the error in parameter estimation
increases, and the misadjustment error increases. Of
course, a correspondingly longer time-constant can be

specified in order to reduce the misadjustment error.
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