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Abstract

We present a new method for applying multiple semantic constraints based on 
discrete relaxation. A separate graph is maintained for each constraint relation 
and used in parallel to achieve a consistent labeling. This permits both local and 
global analysis without recourse to complete graphs. Here local means with 
respect to a paricular constraint graph, and thus actually includes global spatial 
relations on the features; e.g., parallel edges on an object will be neighbors in the 
parallel constraint graph even though they are far apart in Euclidean space. 
Another major result is a technique for handling occlusion by incorporating the 
use of spatially local feature sets in the relaxation-type updating method.
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1. Introduction
One of the problems in computer vision is to identify the set of objects present in a given image. This 

is, in essence, the Scene Labelling Problem. The problem can be mapped into what has been variously 

called the Consistent Labelling Problem [ 13], the Satisfying Assignment Problem [ 10], the Constraint 

Satisfaction Problem [ 17], Waltz Filtering [24], etc. We will refer to it as the Consistent Labelling Problem 

(CLP). It has been shown this problem is NP-complete. There have been several approaches to solving 

the problem, including: backtracking, graph matching, relaxation, etc.

The approach used here is based on discrete relaxation. However, there are some major philosophical 
differences. As explained later, we distinguish between different types of constraints during the process 

of relaxation. Many approaches based on relaxation make use of only the local constraints as opposed to 

global constraints. They tend to ignore the global constraints because occlusion sometimes prevents 

their use. We argue that they can be useful, and under certain circumstances they may be extremely 

advantageous. The model proposed in this paper uses both types of constraints. Also, with the advent of 
parallel computers it is imperative to look at the problem again and see if the approaches are suitable for 
parallel processing or not. This is especially important in light of the fact that the problem at hand has an 

exponential growth rate. For an example of the use of multiple semantic constraints with stochastic 

relaxation, see Faugeras and Proce [9].

We give a formalism to describe the 2-d scene analysis problem as a Consistent Labelling Problem. 
We also explore the suitability of the approach for parallel processing.

1.1. The Consistent Labelling Problem (CLP)
Although there are several variations, the CLP can be formulated as follows. Given,

• A set of items or units, U = {w1, u2, ..., un}.

• Each unit u{, has a domain Dj, which is the set of acceptable labels. Often the units all have 
the same domain. In that case *  D2 = .... *  Dn = D. Also, D *  [Dv Dz....... . Dn}.

A labelling L -  (Lv L2.........LK), where k £ n, L, -  (u,. I;), u, e U and l( e Dv Lj’s are called unit-labels.

Without loss of generality, we can assume that all ufs are distinct. If k < n, then the labelling is a partial 

labelling and if k = n, then it is called a complete labelling.

A unit can have any label which is in its domain. Usually, however, there are restrictions on the labels 

a set of units can have simultaneously in order to be consistent. These constraints are expressed by a 

Constraint Relation R. Potentially R can be an n-ary relation.

A pair of unit-labels Lj = (u,, I,), Lj = (uja I.) are consistent if and only if (u,t l|, Uj, lj) e R. A given labelling 

L = (L ,, L2.......Lk) is consistent if unit-labels Lj and Lj, are consistent for all i, j £ k.

The goal of the labelling problem is to find a complete consistent labelling, given a set of units U, the 

domains of these units D, and the constraint relation R.
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<CLP> ::= ( U, D, R ).

Other formulations of the problem ask for all solutions, but it doesn’t change the nature of the problem. 
If a complete consistent labelling can not be obtained, then the largest (or "best") partial labelling should 

be found.

1.2. Solutions to CLP
The consistent labelling problem can be solved in many ways. The most straightforward method is 

what is called the Generate and Test method. Here we enumerate all the possible configurations and 
then select those which are consistent. It should be obvious that this method is going to be extremely 
slow for problems with large U and D. For example, if |U| *  10, and |D| ■ 10, then the number of possible 

configurations is 1010. In many cases the labels assigned to the first few units make the whole labelling 
inconsistent and this can be detected early, during the configuration process. This observation could 

save a lot computation. .

A better method, which takes advantage of the above observation is standard backtracking. Here, we 

start with a single unit and assign a label to it from its domain. Then we select another unit from the rest 
of the units, and assign a label to it, from its domain such that the partial labelling built so far is consistent. 
If at any point we can’t find such a label, then we back up one step and give the next possible label to the 

unit which was last assigned a consistent label and continue the process. If we manage to assign labels 

to all the units consistently then we have found a solution, and if we run out of labels then there is no 

solution.

Although standard backtracking is more efficient than the generate and test method, it is still not good 
enough for many practical applications. There have been several approaches to overcome this problem. 
Gashnig [10] attempted to solve this within the backtracking framework and gave two new backtrack-type 

algorithms:
• BACKMARK - where all redundant pair-tests are eliminated.

• BACKJUMP - where it is possible to backtrack across multiple levels, instead of just one 
level.

These two algorithms do indeed show better performance than the standard backtrack algorithm, as 

shown by Gaschnig. Haralick and Elliot [11] gave another algorithm called Forward C heckings  improve 

backtracking, which performs better than these in some cases. However, these results are only known to 

hold on problems where the labeling of each unit is constrained by all the other units.

Haralick et al. [12] have described two look-ahead operators <t>, ¥  to reduce the computation during the 

backtracking process. Haralick and Shapiro [13,14] generalized these operators to have arbitrary look 

aheads.

Waltz [24] took another approach to solve the problem. The basic idea is to initially assign all possible 

labels to all the units and remove a label from the label-set of a unit if it is found that the label is not 
compatible with any of the labels of the others. Removing a label from a unit in turn makes some labels
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of some other units inconsistent. This process continues until there is no label of any unit can be 

removed or the label set of one unit becomes empty. In the former case, it is still necessary to search for 
an unambiguous solution, while in the latter situation, no solution exists. Convergence to a consistent set 
of labels depends on the nature of the problem and the constraint set R. Rosenfeld et al. [23] have 

described a modified version of Waltz’s filtering algorithm which is a parallel, iterative procedure and was 

also generalized to allow probabilities to be asociated with the labels.

Mackworth [17] and others use yet another approach to reduce the computation during the 
backtracking process. For binary constraints, the problem can be nicely formulated using graphs, where 

the nodes correspond to the units and the arcs represent the constraints between the units. Each node 

also has an associated label-set, which gives the possible labels for the unit. Montanari [19] explores the 

fundamental properties of such networks and their applications. Mackworth [17] gives three consistency 

tests, Node Consistency, Arc Consistency, and Path Consistency, which prevent the thrashing behavior 
of the backtrack algorithms. He also gives several algorithms to achieve the above three consistencies in 

networks. These consistency checks are done first and then the backtracking process is applied. 
Recently Mohr and Henderson have given an optimal algorithm for arc consistency and an improved 
algorithm for path consistency [18].

1.3. Complexity of CLP
In this section we analyze the complexity of the CLP. As Knuth [16] points out, it is difficult to analyze 

the backtracking algorithms without actually running programs. Even then the results are not very 

convincing, since it is not obvious why and if they should hold in a totally different problem domain. 
Gaschnig [10] took the experimental approach to study the complexity of different algorithms.

Since it is known that CLP is NP-Complete [19], it is not so important to find the complexity of the 
various algorithms used to solve the CLP, since the worst case complexity is going to be exponential 
anyway. What is more important is to determine if a particular algorithm is consistently better than the 

others. Even this is not a straightforward problem. Gaschnig [10] and Haralick and Elliot [11] have 

experimental results for the efficiency of some of these algorithms.

1.4. Application of Relaxation to Scene Analysis
Relaxation techniques have been successfully applied to several problems. Gaschnig investigated the 

application of relaxation to the n-queens problem, criptarithmatic problems, the Soma Cube and Instant 
Insanity. Henderson and Davis used it for syntactic shape analysis [8,15]. The application with which we 

are concerned here is Scene Analysis. The problem is to locate and identify all the objects in a given 

scene. There are several methods to locate the objects. If we locate the boundary of the object then it 
unambiguously determines the object. Also sometimes a set of features, if located in the right 
configuration, can determine the location and orientation of the object. So, in order to locate the objects, 
we must locate the various features (or the boundary edges). Once these features are obtained from the 
image, they can be assigned a set of possible labels depending on the problem at hand. Then the
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relaxation procedure can be applied to produce a consistent set of labels and backtracking is used to find 

a solution.

1.5. Parallel Relaxation
Since the worst case execution time for the problem at hand is exponential, it might be worthwhile to 

explore if the problem lends itself to a parallel execution model. Also, now that multiprocessors are 

available we can actually test these models, not just theoretically analyze them. In this paper, we 

describe a model which exploits the parallelism in the relaxation process.

1.6. Local vs Global Constraints
One of the first steps in locating an object is to locate its features. We can recognize objects on the 

basis of global features, like number of holes, size of various segments, total area of the segments, 
perimeter, etc. Alternatively we can also use local features to locate objects. Here we use local features 

like corners, holes, etc. We look for certain structure with respect to these local features in the image, 
and if we can find such a structure then we can locate the object.

Both methods have their advantages and disadvantages. A system based on global feature matching 

is prone to mistakes, particularly when the object is occluded or even partially defective. On the other 
hand, if the object is completely isolated in the scene under consideration then the method is very 

straightforward and efficient. A system using local features is probably more sophisticated and is more 

robust in a general scene. But it is also very time consuming.

A method based on local features can use only the local constraints, i.e., constraints between nearby 

features. This is useful in many circumstances, when the object is partially occluded and chances are 

that some of the features would be visible and they can be used to identify the object. However, there are 

instances when it would be very useful to have global constraints also. And in certain instances it is 

necessary to use global constraints to identify an object. For example, the object in Figure 1(a), as seen 

in Figure 1(b) can never be identified using local features alone since all the holes are occluded. 
However, by using global constraints like the parallelism and perpendicularity of sides, we can easily 

identify the object.

1.7. Scene Analysis Using Local Features
Recently several successful 2-D scene analysis systems have been proposed based on the use of 

local features [2], [6], [3]. Of course, many of the very first systems proposed were based on global 
features; for example, Fourier coefficients and moment invariants. In order to give a basis of comparison, 
we briefly describe a system which uses local features to recognize objects in a scene. It is described in 

detail in [5]. Most of the terms used in this section are from the above reference. Then we analyse the 
algorithm for its complexity.
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Figure 1. An object and a scene with the object

1.7.1. LFF Method
The Local Feature Focus (LFF) method has two major components: a training system and a run-time 

system. During the training phase, the object models are fed into the system and the system comes up 
with a set of strategies for recognition of each type of object. For each object it gives a list of features, 
which are termed focus features along with a set of neighboring features. The idea is that if the focus 
feature is found in the image along with the neighboring features in the right configuration/with respect to 

the distance and orientation, then the object’s location and orientation can be unambiguously determined.

The steps during the run-time can be summarized as follows:
1. Locate potentially all useful local features in the image.

2. Locate a Focus Feature. If there are none available in the image, then Quit.

3. Get the set of near-by features for the focus feature.

4 Select those features which satisfy certain criteria, i.e., those features which have a 
corresponding occurrence in the actual image.

5. Make Object-feature to Image-feature assignments and transform it into a graph.

6. Find all the maximal cliques of the graph and hypothesize the object using them.

7. Verify the hypotheses. If the hypothesis succeeds, mark all the visible features of the object 
in the image as explained. Go to 2.
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1.7.2. Analysis of the LFF method
Let,
The total number of features in the image be N(.
The number of line segments defining the boundary of the object be Nt .
The total number of features in the object be Nf.
The number of focus features for the object be Np
The average number of nearby features for each focus feature be Nn.
The average number of possible labels for a nearby feature in the image be Na.

Now we analyze the algorithm defined in the previous section, step by step. We are ignoring the 

complexity of step 1, since the time it takes is proportional to the size of the image and is (most often) 
independent of the scheme used.

Step 1: 0(image size), since features must be extracted from the entire image.

Step 2. O(constant), since the list of focus features can be built when the local features are 
being extracted from the image.

Step 3: O(constant), since the nearby features can be put in some kind of property listoi the 
focus feature. An indexing scheme could also be used, with the same effect.

Step 4: 0 (N n N,), since we essentially have to go through the whole list of the image features 
for each nearby feature, which takes on the average takes (Nn N,) / 2 steps.

Step 5: 0 (N n Na)2, since the number of vertexes in the graph is (Nn-Na) and for building the 
graph we have to check for compatibility of each pair of vertexes of the graph.

Step &. This is a slightly complex step to analyze. The general problem of finding maximal 
cliques of a graph is known to be NP-complete [1, 4], However, if the graph is planar then it 
can be done in linear time with respect to the number vertexes [21]. Using Kuratowski’s 
theorem[7], a planar graph cannot have K5 or K33 as a subgraph. This reduces the 
problem to finding only K4s, and K3s in the graph, which can be done in linear time. So, the 
best case for this step is 0(Nn Nt ) and the worst case complexity is 0(kf<x)), where x is 
(Nn Na) and k is a constant.

Step 7: 0 (N # + Nf), since we have to loop over the list of segments of the object and then we 
also have to loop over the list of the features for that object.

So, the total complexity for each of iteration through steps 2 to 7 is the sum of all the above 

complexities. And the complexity of the whole algorithm is NF times the above factor, since we have to 

loop over the list of focus features.

Since step 6 in the worst case takes exponential time, the worst case complexity of the algorithm is 

also exponential.
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2. Scene Analysis using both Local and Global Constraints
In this section we describe a scheme to do scene analysis which uses both local and global 

constraints. It also lends itself well to a parallel execution model. We analyze the model and compare it 
with some other models, especially the LFF method described in the previous section.

The first step in scene analysis, before any attempt to locate objects in the scene is to identify what are 

the possible objects which can be in the scene. We also need to extract a list of features from the image 

and their locations. They form the basis for all computations done in order to identify the objects which 

are actually in the scene.

2.1. Models for the Objects
A model for an object is defined using the location and orientation of features, a.g., holes, corners, 

boundary edges, etc., with respect to a fixed coordinate frame. These features are named/numbered and 

constitute the label-space for the CLP. We also have constraints between these features. The 

constraints could in general be n-ary, where n is the number of features in the model. However, often it is 

sufficient to consider only binary constraints.

Let the set of models be M and the number of models be n. So, M -  (M,, M2..........Mn}. Each of these

models M, is defined by, M| =* (F™, C["), where Ff” is the set of features and C™ is the set of binary 

constraints for model M|.

Although all the constraints in C™ are binary, there are differences between them. For example, let's 

say that we have two boundary edges E1 and E2. Also, let's assume that E1 is both parallel to and longer 
than E2. The two constraints can be expressed as predicates para lle lEv E2) and longer{Ev E2), 
respectively. Here, even though both are binary constraints, they are of different types. For one thing the 

parallel constraint is symmetric, while the longer constraint is not. Also, they have different semantics.

A constraint can equivalently be represented as a relation. In the above example (Ev E2) belongs to 

both parallel and longer relations. So, the constraint set for each model can be expressed as a set of 
relations, each with different meanings.

C™ = { R™. R™.........R™ }, where R™ c  F™ X F™, 1 £ j £ k,.

Let Cm -  u t ,  C,m.

The relations here are not just abstract relations. Here the relations also have a physical meaning 
associated with them. For example, if (a,b) e longer relation, then it also means a is physically longer 
than b.
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2.2. Information from the Image
After an image is acquired, the different feature instances are extracted from it. After that all the 

computation and analysis is bases on these extracted features. Now the main problem is to associate 

these feature instances with the features of some models. The features thus obtained from the image are 

related to each other in some ways. For example, the image may have two holes and a corner, and we 

can have constraints like abov^Comer.Hole,), or b/gge^Hole^Holeg). Obviously we could form many 

relations, each with different different physical meaning to relate these features. However, we choose 
only those which are used to define the constraints between the features in the models.

So, the scene can be represented as:

S = ( Fs, Cs ), where

F5 is the set of features in the image and

Cs = { R*.

R2....... K }. Rf c  F5 X F3.

There is a direct correspondence between the two sets Cm and Cs. For each relation Rf in Cs there is

an equivalent relation R™ in Cm which has the same physical interpretation, although the domains of both 

relations are different.

2.3. Scene Analysis as CLP
Now we formulate scene analysis (SA) as a Consistent Labelling Problem (CLP) as defined in section

1.3. The set of units which needs to be labelled is the set of feature instances found in the image. For 
simplicity in analysis here, we assume that the domain of each of these units is the union of the features 

in all the models. In practice, however it would be the set of features in all models which are of the same 

type as the unit (feature instance). For example, if the given feature instance is of type hole, then only 

those features in the models of type hole can be in its domain. Obviously, the constraints in the models 

should be included in the constraint set for the CLP. We also have to include the constraints in the image 
since they also constrain the labelling process.

Features can have the same name in different models. To disambiguate them each feature in the 
model is prefixed by the model name. For example, feature Hole in model Part will be referred to as 

Part_Hole. We assume that no two models have the same name and the set of features F™ for each 

model is augmented to remove ambiguities, if any. So, the scene analysis problem in terms of a CLP is: 
SA *  ( U, D, R ), 
where,

U - F s, D - u ^  Ff", R - ( u ^  qm)uC|.
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2.4. Network Model for Relaxation
In this section we briefly describe a graph/network model which is the underlying basis for the 

relaxation process explained in section 2.6. This is similar to the network model used by Mackworth [17] 
and others in the sense that the nodes represent the units to be labelled and the constraints are 

represented by the arcs in the graph. However, there are several differences. What we have here is 

conceptually closer to a set of graphs than a single graph.

Instead of one graph, we have a set of graphs, one for each of the relations in the image. We also 
have a set of graphs, corresponding to the object models. This set of graphs is used to represent the 

constraints in the model. Let Gm, be the composite graph to represent the set of model graphs and Gs, 
denote the same for the image graph.

2.4.1. Model Graphs

Gm =* { G™, Gg.......... G™ }, where n is the number of models being considered. Each of the G™ also
consists of a set of graphs corresponding to the various relations in the constraints.

G™ = { G^, G™..........G ^ }, where k( is the number of relations in C™.

Each G™ is a graph and can be represented by: G™ =* < Fj”, E™ >, where edge (x,y) is in E™, iff (x,y) e

C™. The nodes of the graph are the features in the image which need to be labelled and the arcs 

represent a relation.

2.4.2. Image Graphs
Unlike the model graphs, we have only one composite image graph, since we are concerned about 

only one image at a time. However, the composite image graph, Gs,is again composed of a set of 
graphs, one for each of the relations in the image. So,

Gs = { G®, G \ , ........G  ̂ }, where ks is the number of relations used in the image graphs.

Each of these graphs corresponds to a relation in the image. So,

Gf = < F5, E* >, where edge (x,y) is in E®, iff (x,y) e R*.

2.5. An Example
Before proceeding any further, we present an example to make things clearer. The example is simpler 

than the scenes one would normally find in actual cases. But it is only used to explain the concepts. 
Figure 2 shows two simple industrial parts, taken from [20]. We would refer to it as Part1 and Part2, 

respectively. The set of features for each part consists of only its boundary edges.
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Figure 2. Part, and Part2

M -  { Partv Part2 }.

Party -  ( F?, C ? ), Part2 -  ( F™, C2 ).

F1]1 -  (B182, B2B3, A4B3, A3A4, A3B4.........A2B7, B5B7, B5B6, B1B6, B1B2}.

C7 -  { parallel, perpendicular, longer-than, equal-length).

F2 = { X1X2, X2X3, X3X4.X4X1 }.

C™ =■ {parallel, perpendicular, longer-than, equal-length}.

We have four relations to express the constraints in the model for Party These four relations are given 

in Figure 3. The relations are not complete. It just gives an idea of what these relations looks like. Part2 

has similar relations.
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Parallel Perpendicular

(A3B4 A1B8) 
(A1B8 A2B7) 
(A2B7 B5B6) 
(B1B6 A3A4)

(B1B2 B2B3) 
(B2B3 A4B3) 
(A4B3 A3A4) 
(A3A4 A3B4)

Longer-than Equal-Length

(B1B6B1B2) 
(B1B6 A3A4) 
(B1B2 B2B3) 
(A3A4 B2B3)

(B1B2 B5B6) 
(A3A4 A1A2) 
(A4B3 A3B4) 
(A1B8 A2B7)

Figure 3. Constraint Relations in Party

2.6. The Relaxation Process
In this section we describe how the actual relaxation process is executed and how it fits in a parallel 

processing framework. The first step is to build all the graphs, i.e., all the model graphs and the image 

graphs. With each node in the image graph we associate a set of labels, which represents the set of 
features it could be. It should be pointed out that, although we treated the graphs separately in the 

previous sections, they need not be really disjoint in actual implementation. Since the node set of all the 

image graphs is the same, they could be shared. The same applies to the model graphs, too. The 

topology of all these graphs remains unchanged during the relaxation process. What changes is the label 
set attached to each of the nodes in the image graph. The model graphs remain completely unchanged.

Once the graphs are constructed, the next step is to enforce the Node, Arc, and Path consistencies in 

the image graphs. This is where the system lends itself to parallel execution. We have these graphs 

which are independent in the sense that they represent totally different types of constraints. We may 

have one graph to incorporate the size constraints, e.g., Edge, is longer than Edge2. We may also have 
another graph to represent the directional constraints, e.g., Edge^ is parallel to Edge2, etc. The size and 

directional constraints are independent. However, they share the same set of nodes. To exploit 
parallelism we create a process for each of the constraint types. So, in the above example, we will have 

four processes, trying to enforce consistencies in the parallel, perpendicular, longer-than and equal-length 

graphs. Hence the relaxation process is now distributed or split into sub-processes or levels which work 

on individual constraint types. The sub-processes structure is given in Figure 4. The controlling process 
is described in Figure 5.

After the consistencies are enforced, we find all the solutions using standard backtracking or one of 
modified schemes described in section 1.2. Hopefully, the amount of backtracking would be much less 

now that the networks are arc and path consistent.
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type
state = ( changed, unchanged, working)-,

process relaxG(i: integer); 
begin 

repeat 
Status[i] := working;
Enforce Arc, Node and Path consistencies in the ith graph; 
If there is change in the iabel-set of any node then 

Status[i] := Changed 
Else

Status[i] := Unchanged] 
until terminate; 

end;

Figure 4. Subprocesses Structure

var
m : integer; (* number of graph types *) 
n : integer; (* number of models *) •
k : integer; (* number of features in the image *) 

process relaxS(scene, models); 
begin 

var i, temp : integer;
Count ; integer;
status : array [1 .. m] of state;
N : Set of nodes;
Ljji : Set of Features;

N ;= F8; (* Features in image are nodes *)

I . n cm.
®~all •“  u i=1 ’

build the image and model graphs;
for i := 1 to k do Label-set of node N| := La)l;
for i := 1 to m do Status[i] := changed;

Count := 0;
for i ;= 1 to m do fork-process(relaxG, i);

while ( Count = m ) do 
begin 

temp := 0; 
for i := 1 to m do

if ( Status[i] = unchanged) then 
temp := temp + 1;

Count ;= temp; 
end;

terminate := true; 
find-solutions(); 

end;

Figure 5. Controlling Process
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In order to prove the correctness of the of the algorithms in the previous section, we state the following 

proposition.

Proposition. If a label L is removed from the label set of a node N in any graph, then the node N can't 
have the label L in any complete consistent labelling.

The proof is fairly obvious. For a labelling to be consistent it must be consistent in all the underlying 

graphs types. Once a label in a node is removed by a process relaxG working on graph i, it is not 
consistent with respect to constraint type i. That means, it cannot be part of a globally consistent 

labelling. So, we don't lose any solutions by the above procedure.

The correctness of the algorithm is also obvious. After consistency checks are enforced, we use 

backtracking to find all the solutions and reject all those labels which don't lead to complete consistent 

solutions.

2.7. Efficiency Considerations
In section 2.6 we described an algorithm to solve the scene analysis problem. In section 2.6 we proved 

that it is both correct and complete. However, the performance of the algorithm given is very poor. In this 

section we analyze its efficiency and give some improvements to make it more efficient.

2.7.1. Complexity
The inefficiency of the above algorithm can be seen very clearly at the step where we assign the initial 

label-set to each of the nodes in the image graph. We assign La!| to label-sets of all the nodes. Laj| is the 
union of all the all the features of all the models which can be in the scene.

. n m, _m
*“all = u i«1 u  j-1 i,j‘

Clearly, this is a very large set. Even though many of the labels would be removed during the first few 

iterations of the relaxation process, this is definitely a major source of inefficiency.

2.7.2. Improvements
One simple and obvious improvement to the algorithm can be made by deleting those labels from the 

label-set of a feature which are not of the same type. For example if the feature in the image is a hole, it 
makes little sense in assigning a label which is a corner or a boundary edge. Although this is a very 

simple modification, it should considerably reduce the initial size of the label-set of the nodes.

However, it doesn't solve the problem entirely. One of the reasons the above method is so inefficient is 

because we are trying to do too many things at the same time. Although we are enforcing the constraints 

in different graphs in parallel, which is obviously a great help, we are still in essence trying to label all the 
features of the image at the same time. Since this in general, is going to be a very tough problem to 

handle.(a scene may have a hundred features), it might be worthwhile to break the problem into smaller 
problems and try to solve them (Divide and Conquer paradigm). We should perhaps note here again that
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we are dealing with a NP-complete problem. Since in the worst case it is going to take exponential time 

anyway, all we are trying to do is to gain speed-up wherever possible.

One way to break the problem into smaller (hopefully simpler) ones, is to divide the scene into a set of 
smaller sub-scenes and try to do the analysis on these. Although it might sound very simple, there are 

problems with this scheme. The most obvious one is how are we going to do the subdivision?

One simple way is to divide it into an m by n rectangular grid. Here again the problem is how would 

one go about choosing optimal values for m and n. Also, there might be duplication of effort since, an 

object may be spread over more than one rectangle.

The problem with the rectangular grid scheme is that we have no basis for performing the subdivision. 
We are essentially using heuristics to choose the values of m and n. Instead we should be using the 

image and the models to guide our sub-division process. In the next section we propose a method which 

is based on the understanding of the models and the image.

2.8. New Model
As mentioned in the previous section, the basic idea is to let the models and the image direct the 

process of dividing the scene into sub-scenes. There are two key observations which should be noted.
1. A feature instance in the image can belong to only a few objects. For example, if the 

feature under consideration is a hole, then it can only belong to objects which have holes.

2. If a feature instance in the image is hypothesized to belong to a particular object, then the 
other features of the object should be located within a certain distance of it.

What the first observation means is that, a feature can belong to only certain objects and it should have 

only the labels corresponding to the features of these objects. The second implies that it is useless to 
consider the the portion of scene which could not have any features of the object under consideration. 
The above two observations form the basis of the subdivision of the scene into sub-scenes.

The algorithm which uses these ideas is given in Figures 6 and 7. The process relaxM  is the top level 
process which spawns processes to work on sub-scenes. The process relaxSS works on the subscene 

and for each possible object it tries to perform relaxation and find if the hypothesis is true.

process relaxM; ■
' begin

while (there is an unmarked feature in the image) do 
begin

f := first unmarked feature;
O := find-objects(Z); (* find objects it can be a part of *)

, for (every object 0| in O) do
fork-process(relaxSS, Oj, /); .

end;
end;

Figure 6. Top Level Process
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process relaxSS(0 : object, f : feature); 
begin

S := features-in-bounding-circle(0, f) 
for each feature f in S do mark(f); 
relaxS(S, O);
if object O is confirmed then 

mark all its features as explained,
T := all there features in S;
If T is not empty then 
begin

unmark every feature in set T; 
restart process relaxM; 

end; 
end;

Figure 7. Process for working on a sub-scene

Process relaxM  controls the top level division of the scene into sub-scenes. Function find-objects 

returns all the objects which can have a particular feature. A very simple indexing scheme can be used 

(See section 2.8.1) to do this. Once a feature is chosen and the objects it can belong to are associated 
with it, process relaxSS works to see if any of the objects actually are in the scene. This could be done in 

parallel as shown in the processes relaxS and relaxG. The process finds all the features in the bounding 

circle of the feature. The radius of the bounding circle is determined beforehand and is available, see 
section 2.8.2. The process then marks off these features, since they potentially could be explained. 

Then actual relaxation is done on this sub-scene using the object’s model. If it turns out that indeed the 
object is in the sub-scene, then all the features which have been labelled by the relaxation process are 

marked as explained and all the other features are unmarked. This process also restarts the main 
process if necessary.

2.8.1. A Simple Indexing Scheme
Function find-objects in the process relaxM takes a feature and returns a set of objects it can be a part 

of. This can be done by a brute force method, by searching each object for its feature-list and checking if 
it has the given feature as a member. It is a simple but a very inefficient method. To make it faster, a 

simple indexing scheme is very effective. The objects are indexed using the features as the keys and 

when we need the objects for a given feature, it is a one step operation. The computation needed for 
making the index tables is done before run-time and is a one time step. Also, new objects can be added 

to the list incrementally, without totally reconstructing the index tables.

Figure 8 shows a hypothetical set of objects and their features. From it we construct the index tables 

which are given in Figure 9.
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F, = { round-hole, square-hole}.
F2 = { square-hole, triangular-hole}.
F3 = { round-hole, square-hole, triangular-hole).
F4 = { round-hole).
F5 = { square-hole}.

Figure 8. A set of objects

triangular-hole :: { M2, M3 }. 
square-hole :: { M1t M2, M4, M5 }. 
round-hole :: { Mv M3, M4 }.

Figure 9. Index tables for the objects in Figure 8

This indexing can be extended further on the basis of certain measures of the features. For example, if 
M, has round-holes of only a certain size, which is different from those of M3 and M4 then the round-holes 

can be further indexed with the size as the key. However, not all features may have such a measure.

2.8.2. Bounding Circle
Here we describe a simple method to determine the bounding circle for a feature of an object. This 

helps in breaking up a scene into sub-scenes on which the relaxation is done. Like the index tables, this 

is done before run-time and is a one time computation. We associate with each feature of the object, a 

position in two dimensions. So each pair of features /■ and (j has a distance measure dtj associated with 

it. We choose the Euclidean distance as the measure of distance. The radius of the bounding circle, /■ 
for the feature / j  is the maximum of the distances associated with it.

■ Max ( j ) V  j : /j e F.

Figure 10 describes the computation.

function BCircle(/, F) : real; 
begin 

var max, dist: real;

max >  0.0;
for all features /• in F do 
begin 

dist := distance^, /j); 
if ( dist > max) then max :* dist; 

end;

BCircle := max; 
end;

Figure 10. Procedure for computing the radius of the Bounding Circle

M = { M,, M2, M3, M4, Ms).

Function distance computes the Euclidean distance between the positions of the two features.
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2.8.3. Comments
The approach we have proposed in this section works better in certain situations than others. Here 

some of those situations are described. Since our subdivision is based on the scene itself and for the 
bounding circle we use the worst case estimate, if the objects are very close together, we would use 

features of both objects for the relaxation process and it would slow down the process. On the other 
hand if the two objects are close together, then the chances are that many features of one (or some of 
both) would not be visible. So, the number of features we have to deal with may not be as bad as it may 

seem.

If however, the objects are spread out without much overlap, the relaxation process would reach a 

solution really fast. Also, even if the objects are overlapping in the physical space, but fairly disjoint in the 

feature space, then also, the convergence to the solution is fast, since those features which can't belong 
to the object under consideration are ignored, thereby effectively reducing the number of initial labels the 

node in the graph can have. For example, if one object has only square holes and another has only 

round holes, then even if the square and the round holes may lie close to each other in the image, we 

would not include the round holes in the list of features in the bounding circle for a square hole.

3. Extending Relaxation for Occluded Scenes
So far we have not given the details of how the relaxation process actually works for occluded scenes. 

In this section, it is described in detail, since it has been transformed into a very different form. Although 

the relaxation process works fine for non-occluded scenes, it doesn’t work well if the scene is occluded. 
The basic reason is that if a constraint is missing in the image, it doesn’t mean that the constraint actually 

doesn’t hold. It is possible that a constraint is not satisfied because some or all of the associated units 
are occluded. So the constraints don’t have the same discriminating power in occluded scenes. In 

unoccluded scenes, we use the boundary edges directly to describe the constraints, but this can’t be 
done in occluded scenes.

Also, some of the constraints have to be used or interpreted differently. For example, if a boundary 
edge X is longer than another edge Y in the model, it doesn’t follow that the corresponding edge for X in 

the image will be longer than the corresponding edge for Y. In fact, if a boundary edge W is longer than 

another boundary edge Z in an image, no definite conclusion can be made about them from this 

information alone.

However some of these constraints can be used under certain circumstances. For example, if there 

are only a few boundary edges which are longer than some absolute amount and we find an edge in the 

image which is longer than this threshold, then it has to be one of the above edges. But this doesn’t 
constrain the problem enough to reduce the solution set of the other labels.

One way to get around this problem, is to use only local features like holes, corners, etc. and 

constraints between them. Instead of using constraints between the sides (or boundary edges), we use 

constraints between the lines between the locations of features. We refer to these vectors as
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inter-feature vectors (or iv’s). The advantage of using these iv's instead of the sides is that, unlike the 

sides, they are either present or absent; i.e., they cannot be partially missing or broken up into different 
parts because of occlusion. If both the features constituting an iv are present in the image, then the iv is 

defined, otherwise it is not. We can use the same constraints as before, but now they are between these 

iv’s instead of the sides. Before they were binary constraints, but now they are essentially 4-ary 

constraints.

However, the constraints still don't have the discriminating power to drive the relaxation process, since 
the constraint set in the image is incomplete. Initially each unit has all the labels of the model in the 
label-set. We delete a label at a node if a certain constraint is not satisfied. But now we are not sure if 
the constraint is unsatisfiable, or is just not satisfied because of occlusion. So, in order to drive the 
relaxation process we need to seed the label-set of some units and then let relaxation take over. The 

goal is to get some positive information from the scene and then propagate it. The next two subsections 

describe how the iv's are created and how the initial seeding is done.

3.1. Creation of Inter-Feature Vectors
An inter-feature vector is defined to be the vector between two feature locations. The magnitude of the 

vector is the distance between the two feature locations. If there are N features under consideration, then 

there could be as many as N * (N-1) iv’s. This could be too large to be manageable, particularly in an 
image where there could be a large number of features. To avoid this problem, we connect only the 

features which are within a certain distance of each other. This distance is not arbitrarily chosen, rather it 
is computed for each model separately so as to keep the number of iv's small. For example, for the 
object in Figure 9, there are 28 iv’s for a distance threshold of 2.1.

3.2. Initial Seeding of Label-Sets
The goal of the seeding process is to reduce the label-sets of some units, drastically if possible so that 

it will the drive the relaxation engine. This means we need to find the peculiar properties of some 

features, their locations or their relationships. Since we are using the iv’s as the basis for the constraints, 
we look for using the iv’s as the basis for our constraints, we decided to look for peculiarities among these 

iv’s. Two such quantities are used here and we found them very useful for the seeding process. They 

are:
• The magnitude of the inter-feature vector (or the distance between the corresponding two 

feature locations).

• The angle between two inter-feature vectors. The two iv’s are chosen such that they have 
exactly one common end point, i.e., they share one feature.

We group these quantities and try to find quantities which are very unique. In our case we say a 

quantity is unique, if it doesn't occur more than a certain number times in the above groups. We 

determine this by histogramming. Figure 11 gives a brief outline of how this process works. It should be 

noted that all these things (threshold-distance, inter-feature vectors, histogramming, etc.) are done for the 

models beforehand. This computation is performed only once.
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procedure ComputeSpecialDistances; 
begin

Compute the threshold-distance-, 

for i>  1 to No-of-Features do 

for j:=i+1 to No-of-Features do
If distance(feature[i], feature[j]) <=* threshold-distance then 

iv = Make-inter-feature-vector(feature[i], featureQ]);
Append(IVs, iv) 

endif;
size := GetSize(IVs, error)
H := Make-histogram(IVs.size) 
for i:-1 to size do

if H[i] <= Nunique then
Append(Special-Length-List, details(i));

endif;
Store the Special-Length-List in Model;

end;

Figure 11. Computation of Special Distances

Function details collects some more information about the inter-feature vectors which correspond to the 

i’th histogram entry (for example, the associated features, etc.). Function GetSize computes the size of 
the histogram. It is computed such that two consecutive entries in the histogram are at least error apart. 
All the special distances are collected in a list and become a part of the model. Special angles are also 
computed by a similar procedure and are stored in the model. A special-distance is actually not a single 

quantity, but it has a range associated with it. The idea is that if the distance between two units in the 

image is in this range, then the two units should correspond to the two features in the model.

In the case of the objects given in section 4.1, we found that there are a few special lengths and angles 
for each of the models, that are fairly unique in the sense that, there is practically no other quantity which 

is close to these special quantities in terms of their magnitude. This information can be used to seed the 

label-set of units in the image. '

3.3. Labelling Process
The process of labelling starts with type-checking. Initially each unit (primitive) in the image is given all 

the labels of the desired model. Then, if the types of the unit and any of its labels are not consistent then 

those labels are removed from the label-set (see section 2.8.1). The next step is the seeding process. 
Before the actual seeding can be done, the inter-feature vectors and the angles are constructed for the 

image. The distance used is the threshold-distance used by the model. After the lengths and the angles 

are constructed, they are searched for the special angles and lengths. If any of the distances (or angles)
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match a special distance (or angle) for the model, then the label-sets of the associated units are updated.

Then the control is passed on to the relaxation process, and finally to the backtracking operator. Due 

the changed nature of the problem, the structure of the relaxation process has been changed 
considerably, too. In the next section, we give the motivation and the structure of the new version of the 

relaxation process.

3.4. Split-Level Relaxation Process
The main reason to change the structure of the relaxation process is that there is no way to use 

positive information in relaxation. For example, if during the seeding process we infer that the primitive X 
can be either A or B, then we really can't use this information in any way more than if the label-set of X 

had A and B without seeding. Relaxation treats all the nodes equally and is not able to use the 

information from seeding, which is very powerful and positive information. As a matter of fact, it is 
possible for node X to lose all its labels, during relaxation just because it lacks support at some other 
primitive which may not even belong to the model.

We divide the nodes (primitives) into two groups. The nodes whose labels are fixed during the seeding 

process, are called the strong nodes and others are called weak nodes. The strong nodes signify positive 

information. The strong nodes, always remain strong, while the weak nodes may be elevated to strong 

status. During relaxation, a strong node can affect the label-set of another (either strong or weak) node. 
This prevents the nodes which are not really a part of the model from affecting the label-sets of other 
nodes. Those units which survive the first iteration, i.e., whose label-set is not empty at the end of the 
iteration, are then changed to strong nodes. Those nodes which do not survive the first iteration, are not 
considered further and are not considered to be not part of the model. After that, the relaxation process 

works as usual. ■

3.4.1. A Second Approach
Another way to solve the problem of weak nodes deleting the labels of strong nodes is to allow a label 

at a node to remain, if there is at least one support for it from any one other node. (In standard discrete 

relaxation, a label remains iff it has support from all neighboring nodes.) This is motivated by the fact that 
some of the constraints may be unsatisfied due to occlusion. It should be noted however that, there has 

to be support for the label in each of the possible graph types. This is fairly effective, but takes more time, 
since the labels are deleted after all the constraints are processed. The effect of change can only be 

perceived during the next iteration. In split-level relaxation, we delete a label once it is determined that 
there is no support, and the change can be used by the next constraint during the same iteration.

3.5. Discussion
In this section we point out some of the advantages and disadvantages of this approach. Clearly the 

success of the method depends on the special-lengths and angles. If they are occluded, then the method 

may take a longer time than usual. During the process, it might lose all the labels in which case it would
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not recognize the object. Or it may reduce the label-sets of some nodes and leave the rest of the work to 

the backtracking procedure, which can be expensive.

However, if there are enough special distances and angles, then even if some are missing, the method 

will work very well. Our experience is that this will work fine, if we can reduce the label-sets of two or 
three nodes to about 2 or 3. Also, it is not unusual to find about 4 or 5 special distances and angles. If 
they are not enough, we could increase the threshold distance (for connection) to include more inter
feature vectors, thereby increasing the possibility of finding more special distances and angles. Of 
course, this increases the cost of computation, both for the model and the image. The positive side of 
this is the fact that, these computations can be done ahead of time, more than once if necessary to arrive 

at an optimal set of special distances and angles. Once this is done, it is a part of the model of the object 

and need not be recomputed.

Also, this takes care of a certain amount of error in both the model and the image. As pointed out 
before, the special distances have a range associated with them. So, if there is any error the initial 
seeding is not affected. This makes the system more robust.

4. Implementation and Results
Most of the above ideas were implemented in PSL (Portable Standard Lisp) [22]. The compiled code 

was run on a VAX-8600. The actual runtimes can be vastly improved if implemented on a lisp machine 

like the Symbolics 3600.

The system works in two phases. In the first phase, all the models are input and the threshold 

distance, special lengths and angles are determined and stored in the model structure. This is only a 
one-time cost and is similar to the training phase of Local Feature Focus [5]. The input is at a somewhat 
intermediate level of description. What is input to the program is a list of local features, their locations and 

the constraints between them. The different types of constraints used are parallel, perpendicular, 

adjacent, longer-than, etc.

In the second phase, an image description is given along with the set of constraints associated with the 

local features in it. We also give a model to be searched for in the image. We only check for node and 

arc consistency. The AC-3 algorithm as defined by Mackworth [17] is used for enforcing the consistency. 
Although, we look for a single object in an image, it would be be a straight-forward extension to look for 
multiple objects in the same image. We essentially follow the model given in section . The image 

description is similar to that for the models.

At the end of relaxation process, control is passed on to a backtracking procedure which does further 
consistency checks and lists out all the solutions. The output is a listing of local features in the image and 

the corresponding features in the object. If the label-set of a primitive is empty, it is labelled as unknown.



21

4.1. Unoccluded Object Recognition
We now present some results obtained using the algorithms described. First, we give the run-times for 

recognizing unoccluded objects. Next we give the same for some occluded scenes.

Figure 12 gives the time taken to recognize three parts shown in Figures 13, 14, 15 in unoccluded 

scenes. It also, gives the number of different types of constraints and total number of constraints used. It 
should be noted here, that the number of constraints and the constraint types are not optimized (See 
section 5 for further discussion). Here only the boundary edges are used for recognition.

Object RunTime Constraint Total Number
NO (msec) types of constraints

1 . 357 5 43

2 476 6 33

3 85 4 15

Figure 12. Table showing results for unoccluded scenes

Figure 13. Object No 1
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Figure 18. Occluded Scene No 2
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4.2. Occluded Object Recognition
Next we present some results for occluded scenes. Figures 17,18,19 show three scenes where some 

parts are occluded. These scenes were searched for occurrence of objects 1, 2 and 3 respectively. 
Figure 16 gives the time taken to recognize these parts in the corresponding scene. There are two run 
times in the table, corresponding to the two schemes used (see section 3.4).

Scene RunTime(1) RunTime(2)
No (msec) (msec)

1 1360 6307

2 1581 2074

3 3791 26452

Figure 16. Table showing results for occluded scenes

Figure 17. Occluded Scene No 1
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Figure 19. Occluded Scene No 3
(
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5. C onclusions and Extensions
In this paper we have formulated the scene analysis (SA) problem as a consistent labelling problem 

(CLP). We also gave a solution to the problem within the framework of discrete relaxation methods. 
However, the approach is based on a different perspective in order to exploit the inherent parallelism in 

the problem and to account for occlusion. We have also recommended several variations to improve the 
efficiency of the computation. Also, unlike many other works we have used constraints of arity greater 
than 2. Infact, we effectively handle unary, binary, ternary and 4-ary constraints.

Although the approach sounds attractive, particularly if a multi-processor is accessible, it by no means 

solves all the problems. First, we are still dealing with 2-D models. Extending it to 3-D has its obvious 
challenges. Although we do take into account a certain amount of error, both in the models and during 

the low level processing, the error measurements are not based on any sound theory to analytically 

determine them.

We have also shown that global constraints can be useful and we can effectively use them with local 
constraints. Another problem we have not considered is the optimality of the constraint set. We have 

used the constraints which were obvious in the models and the image. However, some of them are 

redundant and there should be a systematic way to eleminate the redundancy.
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