
A dap tive Isocurves Based R endering
for Freeform Surfaces

G ershon E lber and E la ine Cohen

UUCS-92-040

D e p a r tm e n t of C o m p u te r Science
U nivers ity of U ta h

Salt Lake City, U T 84112 USA

D ecem ber 2, 1992

A b s t r a c t

Freeform surface rendering is t rad i t io n a l ly pe rfo rm ed by ap p ro x im a t in g th e surface w ith
polygons an d th e n rendering th e polygons. Th is approach is ex trem e ly com m on because
of th e com plex ity in accu ra te ly render ing th e surfaces directly. Recently , several papers
p resen ted m e th o d s to render surfaces as sequences of isocurves. U nfo r tuna te ly , these m e th o d s
s ta r t by assum ing th a t an a p p ro p r ia te collection of isocurves has a lready been derived.
T h e a lgo r i thm s them selves n e ith e r au to m a tic a l ly c rea te an o p t im a l or a lm os t op t im a l set of
isocurves so th e whole surface would be correc tly rendered w ithou t having pixels red u n d a n t ly
v isi ted nor a u to m a tic a l ly co m p u te th e p a ra m e te r spacing requ ired be tw een isocurves to
g u a ra n tee such coverage.

In th is p ap e r , a new a lgo r i thm is developed to fill these needs. An a lgo r i thm is in troduced
th a t a u to m a tic a l ly c om pu tes a set of a lm ost o p t im a l isocurves covering th e en tire surface
area. T h is a lg o r i th m can be com bined w ith a fast curve render ing m e th o d , to m ake surface
render ing w ith o u t polygonal a p p ro x im a t io n prac tica l.

A d a p t i v e I s o c u r v e s B a s e d R e n d e r i n g

f o r

F r e e f o r m S u r f a c e s *

G ershon Elber^ and E la ine Cohen
D e p a r tm e n t of C o m p u te r Science

U nivers ity of U tah
Salt Lake City, U T 84112 USA

D ecem ber 2, 1992

A b s tra c t

Freeform surface rendering is traditionally performed by approxim ating the surface w ith polygons
and then rendering the polygons. T his approach is extrem ely com m on because o f the com plexity in
accurately rendering the surfaces directly. Recently, several papers [1, 16, 18, 25, 26, 23] presented
m ethods to render surfaces as sequences of isocurves. Unfortunately, these m ethods start by assum ing
that an appropriate collection o f isocurves has already been derived. The algorithm s them selves neither
au tom atically create an optim al or alm ost optim al set o f isocurves so the whole surface would be correctly
rendered w ithout having pixels redundantly visited nor autom atically com pute the param eter spacing
required between isocurves to guarantee such coverage.

In this paper, a new algorithm is developed to fill these needs. An algorithm is introduced that
au tom atically com putes a set o f a lm ost optim al isocurves covering the entire surface area. T his algorithm
can be com bined with a fast curve rendering m ethod, to m ake surface rendering w ithout polygonal
approxim ation practical.

1 I n t r o d u c t i o n

Most surface rendering systems render a set of polygons which approximate the model representation
instead of rendering the surfaces directly. Polygon rendering is usually more efficient and numerically
robust than direct surface rendering. Unfortunately, the polygonized model is only an approximation to
the real surface and aliasing occurs. Intensity (Gouraud) and normal (Phong) interpolation schemes [7]
were developed to overcome the visual effects caused by C'1 discontinuities across boundaries between
polygons. The piecewise linear appearance of the boundary and silhouette edges is improved by increasing,
as necessary, the number of polygons globally or adaptively [15]. Subdivision of trimmed surfaces into
polygons for rendering purposes is also a difficult problem [24]. On the other hand, rendering the surface
as a set of isocurves is appealing since this da ta is exact, eliminating some of the need for the anti-aliasing
techniques developed for rendering of polygonal approximation. Furthermore, rendering iso curves in this
way reduces the complexity necessary to support trimmed surfaces, as will be demonstrated, as well as
reducing the complexity involved in texture mapping computations. Several methods were developed in

’This work was supported in part by DARPA (N00014-88-K-0689). All opinions, findings, conclusions or recommendations
expressed in this document are those of the authors and do not necessarily reflect the views of the sponsoring agencies.

f Appreciation is expressed to IBM for partial fellowship support of the first author.

1

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 2

recent years to render curves and a ttem pt to render surfaces using isocurves [1, 16, 18, 23, 25, 26]. However,
previous methods do not automatically extract an optimal or almost optimal set of isocurves from a surface
S so the rendering of S using the isocurves and those methods cannot be guaranteed to not miss any pixel
representing the surface in image space. In [23] this problem is partially addressed by using a heuristic
subdivision based approach. The surface is subdivided each time the isocurves spacing varies more than
a specified tolerance, an approach which can lead to rendering a large number of small patches in which
the fixed initialization cost per curve when using the (adaptive) forward differencing algorithm would
greatly increase the to ta l cost of rendering tha t surface. In [25], isocurves at equally spaced intervals,
u = nSu, are used and which can lead to pixels either being missed or redundantly rendered, as can be
seen in the middle of Figure 1 (a) and in the center of Figure 2 (a). In [26]., the isocurves are adaptively
spaced using bounds extracted from the convex hull of the distance function between two adjacent isocurves,
d (v) = f (u - \ - 6 u , v) — f (u , v) . Each isocurve continues to span the entire u domain of the surface. Therefore,
the redundancy demonstrated in Figures 1 (a) and 2 (a) would continue to reduce optimality in [26].

This paper presents an algorithm th a t produce curves which are not extremely redundant and do not
miss pixels. The new algorithm adapt ive ly extracts isocurves and covers the entire surface in an almost
optimal way. The polygon primitive is replaced by an isocurve drawn with finite thickness.

In the ensuing discussion we will need the concept of valid coverage

D e f in i t io n 1 A se t o f isocurves C o f a given surface S is called a valid coverage with respect to some
constant 6 i f f o r any poi nt p on S there is a point , q, on one of the i socurves in C, such that \\p — <?|| 2 < S,
where || • H2 de no te s Euclidean distance.

Surface rendering algorithms using isocurves should comply with definition 1 where <*> is in the order of
half of the image pixel size. All pixels representing S in the image are then guaranteed to be covered by
at least one isocurve. Definition 1 assumes S is in the viewing space. A surface in viewing space has its x
and y coordinates aligned with the image plane coordinates u, and v. T ha t is, u = x and v = y. However,
the 2 coordinate of the surface is still accessible. The viewing space automatically accounts for distant
and small surfaces which requires less effort to render, since the perspective transformation has already
been applied. Under some conditions, it is sufficient to compute the iso-distance using the x and y surface
components only, since coverage of the image plane is the concern. Unfortunately, ignoring z may result
with incorrect rendering when the right conditions are not met. We will discuss this issue further later.

The op t im a l i t y of the valid coverage is the second concern:

D e f in i t io n 2 A coverage f o r a g iven surface is cons idered optimal i f it is val id and the accumulated length
o f i ts path is minimal , over all valid coverages.

If one could compute the param eter spacing required for a valid coverage for a given surface in a given
scene, extraction of all isocurves at tha t spacing might be suboptimal as can be seen from the middle of
the surface in Figure 1 (a) and the center of the surface in Figure 2 (a). Furthermore, since isocurves speed
varies across the param eter space, local dynamic change of the param eter spacing is required as seen in
Figures 1 (b) and 2 (b), to improve the coverage optimality.

Using isocurves as the coverage for a surface, we define adjacency and i so-dis tance between isocurves.

D e f in i t io n 3 Two isocurves of surface S (u , v) , C \ (u) - S (u , v i), u € [iif, "u-f] and C 2 (u) = S (u , v 2),
u € [u^, u |], v\ < V'2 , f r o m a given se t C o f i socurves f o r m in g a val id coverage f o r S are considered adjacent
if, along the ir c o m m o n dom a in U = [ii®, Uj] fl [uj, there is no o ther isocurve f r o m C. between them. That
is, there does not exist Ca(u) = S (u , v 3) € C, u £ ['u.3, such that Vi < V3 < V2 and [wl/u-j] C\U 7̂ 0.

D e f in i t io n 4 The iso-distance curve between two i socurves C \ (u) = S (u , v j), C 2(u) = S (u , V 2), is
\ \C1(u) - C 2(u) \ \2.

A daptive Isocurves B ased R endering G. Elber and E. Cohen 3

Figure 1: Isocurves are obviously not an optimal solution as a valid coverage for this surface (a). Adaptive
isocurves are more optimal and their coverage is valid as well (b).

Figure 2: Utah teapot lid. Constant parameter spacing causes redundancy in coverage (a) mostly elimi­
nated by adaptive extraction of isocurves (b). Both provide a valid coverage with respect to same <5.

Section 2 provides the background for the algorithm developed in section 3. Rendered results using
this new isocurve based method are presented in section 4. The implementation uses the NURBs surface
representation in the A lpha .l solid modeler.

2 B a c k g r o u n d

Suppose C \ (u) = S (u , V i) and C 2 (u) = S (u , v 2) are two adjacent isocurves in a parametric surface S (u , v)
with common u domain [?/,;, ?/e] from a given set of curves C. Let R be a region of S over the domain
[u^t/e] x [^1, ^ 2]- Let R be a ruled surface approximation for R , R.(u, v) = C i (u) * v -f C 2 (u) * (1 - v),
v e (0 , 1).

L e m m a 1 7 / A 12(,u) = | |C i(u) — <̂ 2("w)112 < ̂ f o r all u, then C = { C \ (u) , C 2 (u) } is a valid coverage of R
with respect to | .

P r o o f C \ (u) and C 2 {u) are adjacent between u s and u e and no isocurve in C exists between them by
definition 3. In order for Ci('u) and C 2 {u) to form a valid coverage for R, for any point p 6 R , there must
exist a point q in either C \ { u) or C 2 {u) such tha t \\p — 9H2 < f . Given a point p € R , there exists some
v* such tha t p £ R (u , v *) curve, p = R (u * , v *) . Therefore p is on the line from C \ (u *) to C 2 (u*) which

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 4

is bounded in length to be not greater than 6, since by hypothesis A i 2(u*) < 6. In other words, either
| | C i K) - p\\2 < f or \\C2(u*) - p \ \ 2 < f (or both). ■

Lemma 1 provides a condition on the validity of the coverage of a ruled surface, R , by two of its
boundary curves, C \ { u) and C 2(u). One might need to further verify th a t R sufficiently approximates
R. This might necessitate the computation of a bound on the distance between R and R [11], curvature
analysis of R [9], or alternatively analysis of the speed variance of R [10]. We will refer to this approximation
validity condition as { R r ^ R) .

For S — 1 pixel, the special rendering case, the surface is approximated by strips of ruled surfaces, each
approximately a pixel wide, usually a more accurate approximation than the, polygons used for rendering.
Hence, unless subpixel results are wanted (in which case S can be made smaller) it is not necessary to do
further bounding on the distance between R and R.

As stated in lemma 1, this condition is sufficient, but is it nccessary th a t A ^ u) < S? For a very
skewed surface resulting from a non isornetric mapping this condition could be too restrictive since the
isodistance could be much larger than the real minimal distance between the curves. One might, expect the
penalty for this assumption to be quite high. In practice, it was found to be reasonably well behaved for
such surfaces as is demonstrated in section 4 since the highly non-isometric mapping is frequently isolated
to be in small regions of the domain, and even then provided competitive results compared to methods
using nonadaptive isoparametric curves.

The iso-distance function A j2(w) between the two isocurves C \ (u) = (cf (u), cy(u) , c |(u)) and C 2(u) —
(c2(u) , c2(u) , c 2(u)) in the surface S can be efficiently computed and is equal to:

A 12(u) = ^ (c f («) - C*(u))2 + (c \ (u) - Cy2(u)) 2 + (cf(«) - cz2{ u) y . (1)

The sum, difference, and product of two scalar curves are closed for polynomial (Bezier), piecewise
polynomial (B-spline), or rational representations (NURBs). Furthermore, efficient algorithms exist, as
we shall show below, for finding the form of the sum and product in the Bezier representation. On the
other hand, square roots are not representable, in general, and therefore, are not closed under the above
domains. Instead, one can find and use the representation for the square of the iso-distance, as is done in
section 3:

A?2(u) = (ci M - c2(«))2 + { c \ (u) - Cy2(v.))2 + (cj(u) - cf2(u)) 2. (2)

In order to symbol ical ly represent A l 2(u) as a scalar Bezier or NURBs curve, one must be able to
represent the scalar curve which is the symbolic sum, difference, and product of scalar curves, as a single
Bezier or NURBs curve. Methods to represent the result of the above operators applied to Bezier or
NURBs curves, as a single Bezier or NURBs curves are briefly presented below.

2 .1 C u r v e A d d i t i o n

The symbolic computation of sum and /o r difference of two scalar Bezier or NURBs curves is achieved by
computing the sum and /o r difference of their respective control points [5, 6 , 12], once the two curves are in
the same space. This requirement can be met by representing them as curves with the same order (using
degree raising [3, 4] on the lower order one, if necessary) and the same continuity (using refinement [2] of
knot vectors for NURBs). Specifically, in A j 2(u) computation (equation (2)), C \ (u) and C 2(u) are adjacent
isocurves and therefore share the same order and continuity (knot vector) [12],

C 1(t) ± C 2(t) = Y j P lB l T{ t) ± Y j Q iB l { t)
i=0 i=0

9

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 5

= (3)
t=0

2 .2 P r o d u c t C u r v e

Representation for the product of two scalar curves is the second symbolic tool required
curves [5, 6 , 12], .

m n
c ^ c ^ t) =

1=0 j=0 '
m+7i

= E ^ f lr +n(o ,
*:=0

CMP')
where R k = £

' : a \m+n/* > J
i + j — k

It is also necessary to use representation of scalar products as part of representing sums of rational scalar
curves [12].

Finding a representation for the product of two NURBs is far more difficult. A direct algorithmic
approach has recently been developed [20] which supports symbolic computation of the coefficients of the
product after finding the knot vector of the product curve. Since the direct approach is computationally
expensive and complex to implement, one might choose to exploit the B-spline representation uniqueness
property and compute the coefficients of the product by solving an equivalent interpolation problem [12].
Alternatively, one may consider subdividing the curves into Bezier segments at all the interior knots,
compute the product, and merge the result back. However, the continuity information along the interior
knots may be lost.

2 .3 Z e r o S e t o f C u r v e s

In addition to the above symbolic computation, the capability to compute the zero set of a scalar curve
C (u) is required. A simple subdivision based algorithm exploiting the convex hull property of both Bezier
and B-spline curves can be formulated [17].

One can easily extend a zero set (root) finding algorithm to find the solution(s) of C \ u) = K for some
constant K by subtracting K from all the coefficients of C (u) to form a new curve C (u) in which the
solution set of C { u) = K is equivalent to tha t of the zero set of C (u):

. For Bezier

(4)

C (u) = C (u) - I (

= £ (P ; - K) B ? (u) (5)
i = 0

using equation (3), since J2i=o KB^{ u) = K .

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 6

3 A l g o r i t h m

Using the tools presented in section 2, we are ready to introduce the algorithm. Given two isocurves,
C \ (u) and C 2 (u) , on a surface 5(tt, v) , one can symbolically compute the square of the iso-distance, A f2(M)>
between them. Furthermore, given some tolerance 6, one can compute the parameters along the curves
where they are exactly 8 iso-distance apart by computing the zero set of (A i2(m) - t>2), using equation (5)
and a zero set (root) finding algorithm. By subdividing C i (u) and C 2 (u) at these param eters, the resulting
set of pairs of curves, (CJ(m), have the property tha t their corresponding iso-distances are closer
than 8 or entirely farther apart than tha t , over their open interval domain. If the two curves have iso­
distance less than 6, then the Euclidean distance tolerance condition is already met for th a t pair and the
algorithm can terminate. If, however, the iso-distance between the two curves is too large, a middle isocurve
between them, C i 2 (u) , is introduced and the same iso-distance test is invoked for the pairs { C \ (t) , C i 2 (t) }
and { C i 2 (t) , C 2(t) } .

Starting with the two u boundaries or two v boundaries of the surface, the algorithm invokes this iso­
distance test recursively and insures th a t two adjacent isocurves will always be closer than some specified
distance 8 by verifying the iso-distance is not greater than 8. A middle isocurve is introduced only when
the iso-distance is larger than 6, resulting with iso-distances between adjacent isocurves, as computed, will
rarely be closer than | . Furthermore, since the resulting set of isocurves covers the entire surface S , the
set of isocurves tha t result may serve as a valid coverage for S with distance 8.

Assuming isocurves are generated as constant v isoparametric curves, we can now formally s ta te the
algorithm. Algorithm 1 is the complete algorithm for an almost optimal extraction of isocurves to form
a valid coverage. Line (1) in Algorithm 1 is the isodistance square computation as of definition 4 and
computed using equation (2). If Z is empty, a single test at a single point may classify the pair, as is done
in line (2) of Algorithm 1. If the pair is found to be close enough, no new curve is introduced and the empty
set is returned in line (3). Otherwise, a new curve between the two curves is created and the algorithm
is invoked recursively in lines (4) and (5). Alternatively, when Z is not empty, we subdivide C i { u) and
C2(u) at all u € Z in line (6) of the algorithm. The iso-distance between the sub-curve pairs resulted from
the subdivision is always less than 8 or always more than tha t in their entire domain. Therefore, each
pair in the recursion in line (7) is classified into the Z empty cases above. Although omitted for clarity in
Algorithm 1, the recursions invoked at line (7) of Algorithm 1 should provide A j 2(^) so it would not be
computed again. The union set returned in line (7), is the coverage set for the domain between the two
curves.

The fact th a t the output consists of isocurves only simplifies further computation such as trimming the
isocurves according to surface trimming curves, as is shown in section 4.

The resulting set of isocurves introduced through this algorithmic process forms a valid coverage while
no two adjacent isocurves have iso-distance greater than the tolerance distance 6. In the limit, as 8
approaches zero, no two isocurves will have iso-distance less than | . The speed in the v (ruled direction
of R) of a region, R , between two adjacent isocurves, Ci(w,) and C 2 {u) , becomes constant, and an isocurve
introduced in the middle of the parametric domain of R, will also be equally spaced between C i { u) and
C 2 (u) . Therefore, the coverage redundancy is bounded, since virtually no adjacent isocurves will have
iso-distance of less than

A highly non-isometric mapping from parametric space to the Euclidean representation may reduce the
algorithm efficiency since the iso-distance metric is a less accurate measure of the real minimum distance.
In practice, it was found to be reasonably behaved.

There are some subtleties tha t have not yet been discussed. If the surface V M i n boundary is the same
as the V M a x boundary, the algorithm will find their (zero) iso-distance below the distance tolerance 8
and quit immediately. A cylinder is one such example in which the V M i n and V M a x boundary seams are
shared. One should guarantee such cases are detected before invoking Algorithm 1. One way to guarantee

A daptive Isocurves B ased R endering G. Elber and E. Cohen 7

A l g o r i t h m 1

I n p u t :
S (u , v) , i n p u t s u r f a c e .
6 , maximum d i s t a n c e betw een i s o c u r v e s .

O u t p u t :
S, t h e s e t of c o n s ta n t v i s o c u r v e s of S (u , v) a d ja c e n t w i th in 6, c o v e r in g 5 .

A lg o r i th m :
a d a p I s o C r v s (S , S)
b e g in

C \ (u) , C 2('ti) i s o c u r v e s of 5 in u d i r e c t i o n a t V M i n , V M a x .
r e t u r n

{ C , { u) } U
a d a p I s o C r v s A u x (S , 6 , u , V M i n , V M a x , C \ (u) , C 2(u)) U
{ C 2(u) }.

end
end

a d a p I s o C r v s A u x (S , 6 , V M i n , V M a x , C \ (u) , C 2(u))
b e g in

U M a x , U M i n <= C \ (u) , C 2(u) common u domain.
(1) A ^2(u) sq u a re d i s o - d i s t a n c e betw een C i(u) and C 2(u) .

Z <= z e ro s e t o f (A j2(w) — t>2) •
i f Z empty th e n

R S s u b s u r f a c e betw een C \ (u) and C 2(u) .
R C \ (u) * v + C 2(u) * (1 - v) , v G (0 , l) .

(2) i f A \ 2((U M a x - \ - U M i n) / 2) < S2 and (Rr^>R) v a l i d th e n
(3) r e t u r n <j>.

e l s e
V M i d <= (V M i n + V M a x) / 2.
C \ 2(u) <= i s o c u r v e o f 5 a t V Mi d , from U M i n t o U M a x .
r e t u r n

(4) a d a p I s o C r v s A u x (S , 6 , V M i n , V M i d , C \ (u) , C \ 2(u)) U
{ C 12O) } U

(5) a d a p I s o C r v s A u x (S , S , V M i d , V M a x , C \ 2(u) , C 2(u)) .
end

e l s e
(6) S u b d iv id e C \ (u) , C 2(u) a t a l l u1 £ Z i n t o { C \ (u) , C^w)} p a i r s .
(7) r e t u r n (J; a d a p I s o C r v s A u x (S , 6 , V M i n , V M a x , C \ (u) , C 2(u)) .

end
end

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 8

it is to insure the surface has no silhouette from the rendering direction (See [8] for silhouette detection).
An alternative heuristic may be to always enforce at least one subdivision of the surface, which solves the
problem for surfaces such as cylinders.

Another consideration is determination of which parametric direction should be used for isocurves
extraction, u isocurves or v isocurves. In our implementation, we compute the maximum iso-distance
between the u surface boundaries and the v surface boundaries, and prefer the direction with the smaller
maximum. This heuristic promotes fewer, longer isocurves over numerous shorter ones in the hope tha t it
will minimize the number of curves to be drawn.

Other image rendering aspects should be considered as well. The valid coverage is only one necessary
condition. The surface normal for each pixel is also required for shading. An unnormalized representation
of the surface normal, n (u , v) = x can be computed symbolically [12], and represented as a vector
surface whose coordinate functions are products and differences of surface partial derivatives.

Each isocurve output from Algorithm 1 is then piped into the curve Tenderer and is accompanied by the
associated isocurve from the normal surface h. The curve Tenderer uses the normal curve to compute the
normal at all required locations. It is evident tha t the order of the normal curve is usually higher than tha t
of the shape curve. Some curve Tenderers th a t use (adaptive) forward differencing [1, 16, 18, 25, 26] are
implemented in hardware and are tuned to certain, usually low, orders. In such a case, the normal curve
could be approximated as a sequence of lower (cubic) splines using known techniques for approximating
higher order splines as lower order ones [12, 13, 14].

So far, we considered the iso-distance computed in coverage validation (definition 1) as the Euclidean
distance in the viewing space. Under some conditions, it is sufficient to consult just the x and y components
of the surface. If the projection of the surface in viewing space to the image plane is one to one, then
only x and y need to be consulted. Ignoring z, two isocurves in S can have zero distance in the image
plane (T ha t is, they intersect in the image plane as can be seen in Figure 3 (a)), while distant apart in
the viewing or object space (as seen in Figure 3 (b)), violating the one to one mapping requirement. If
a surface has silhouette curves in the image plane, using only x and y in the computation of for
two isocurves could result in invalid coverage, as would be the case in Figure 3, if A f2('«) were computed
without using 2;. Preprocessing S to detect existence of silhouette curves in the image plane is equivalent
to making sure the mapping is one to one. Therefore, one can easily determine if the iso-distance should
be computed using z or without it, by determining if there are surface silhouettes.

4 R e s u l t s

Several results are presented in this section, in addition to a discussion of some considerations on the
complexity of the algorithm.

Figure 4 presents the well known Utah teapot model and a chess set rendered using the adaptive
isocurve extraction algorithm.

Most techniques developed for enhancing image rendering quality can be applied to curve rendering.
For example, Figure 5 shows a wood texture mapped version of the teapot. The fact th a t an isocurve is
rendered only simplifies the texture mapping computation since one of the surface param eters (and the
corresponding texture param eter) is fixed.

Surface isocurves are rendered into the Z-buffer one at a time with minima] memory overhead so
complex scenes introduce no difficulties. Figures 4 and 5 show a complex chess scene rendered using this
new algorithm.

Figures 6 and 7 demonstrates the use of solid texture to define a virtual planet and a camouflaged
plane, using techniques presented in [21, 22], rendered using this isocurve based renderer.

Given a trimmed surface S, approximating it into a set of polygons for rendering is a difficult pro-

A daptive Isocurves B ased R endering G. Elber and E. Cohen 9

A u (u) = 0-

(a)

Figure 3: If S has silhouettes (dotted) in image plane, and only x and y are consulted in A i 2(u) compu­
tation, A j2(u) may be found by Algorithm 1 to be wrongly zero, terminating prematurely.

Figure 4: Utah teapot and a chess set adaptive isocurves rendered images.

Figure 5: Wood texture mapped on teapot model. Marble texture mapped chess set scene.

A daptive Isocurves B ased R endering G. Elber and E. Cohen 10

Figure 6 : A virtual planet texture image using isocurves rendering.

Figure 7: A camouflage texture using isocurves rendering of an F16 model

A daptive Isocurves B ased R endering G. Elber and E. Cohen 11

Figure 8 : Trimmed NURBs model using adap. isocurves.

cess since the polygons must be properly trimmed [24, 19], However, since this algorithm produces only
isocurves, the clipping process is significantly simplified. A piston bridge model from a Diesel engine
consisting of 27 trimmed NURBs surfaces was rendered in Figure 8 using wood texture.

One might also consider adaptively rendering the surface using variable width curves. Starting with
very few but widely drawn isocurves, one could immediately provide a coarse shape of the surface which
could be refined hierarchically into a more accurate image using more isocurves. Figure 9 shows six steps
of such a process.

Consider the computational complexity of Algorithm 1. Let the number of isocurves in the output be
N . For each isocurve in the output set, Algorithm 1 computes an iso-distance curve in line (1), for each of
his neighbors when recursion occurs in lines (4) and (5). Since all but the first boundary curves have two
neighbors, the number of iso-distance computations between curves is equal to 2N — 2. Using the Bezier
and or the B-spline representation, each iso-distance curve computation of a polynomial curve involves
with 3 scalar curve subtractions, 3 scalar curve products and 2 scalar curve additions (equation (2)). All
in all, the number of curve operations is linear in the number of curves in the output. The number of
addition, subtraction and products for rational curves is somewhat higher because of the more complex
addition and subtraction required, but is still linear in the output size.

Timing comparisons are difficult since they strongly depend on the complexity of the images and the
realism tha t is a ttem pted. All images throughout this paper have been created using a simple curve
rendering technique tha t renders piecewise linear approximations to each curve. W ithout any special op­
timization, our implementation was time competitive with a regular adaptive polygonal based Tenderer
which is part of the Alpha_l solid modeler and produced equal quality imagery in approximately the same
time. Furthermore, even though curves where rendered as piecewise linear polylines in our implementation,
the computed highlights and rendering have more realistic appearance, as is demonstrated by the images
throughout this paper, due to a better surface normal approximation. Usage of (adaptive) forward differ­
encing might improve the overall algorithm performance, and further remove aliasing introduced by the
isocurve piecewise linear approximation used. It is the au thors’ view that the software based computation
per pixel (the shading model used), performed far more times than any other operation, has far higher
cost than any other high level computation such as polygonal approximation or isocurve extraction.

A daptive Isocurves Based R endering G. Elber and E. Cohen 12

Figure 9: Six steps in coarse to fine rendering using adaptive isocurves.

5 C o n c l u s i o n

A new algorithm is presented tha t automatically computes an adaptive valid coverage of a surface using
isocurves. The existing ability to efficiently render curves combined with the almost optimal isocurves
extraction method presented here makes isocurves rendering of surfaces a feasible alternative to polygon
based rendering of surfaces. The simplicity of the algorithm, compared to the complexity involved in
polygonal approximation of surfaces and especially, trimmed surfaces, and the need to deal with two
dimensional polygonal entities during the scan conversion process, could make the isocurve rendering
approach even more a ttractive in hardware based systems. The algorithm presented here efficiently reduces
the problem of surface rendering to a simpler problem of curve rendering.

R e f e r e n c e s

[1] S. Chang, M. Shantz and R. Rocchetti. Rendering Cubic Curves and Surfaces with Integer Adaptive
Forward Differencing. Computer Graphics, Vol. 23, Num. 3, pp. 157-166, Siggraph Jul. 1989.

[2] E. Cohen, T. Lyche, and R. Riesenfeld. Discrete B-splines and subdivision Techniques in Computer-
Aided Geometric Design and Computer Graphics. Computer Graphics and Image Processing, 14,
87-111 (1980).

[3] E. Cohen, T. Lyche, and L. Schumaker. Degree Raising for Splines. Journal of Approximation Theory,
Vol 46, Feb. 1986.

[4] E. Cohen, T. Lyche, and L. Schumaker. Algorithms for Degree Raising for Splines. ACM Transactions
on Graphics, Vol 4, No 3, pp. 171-181, Jul. 1986.

[5] G. Farin. Curves and Surfaces for Computer Aided Geometric Design Academic Press, Inc. Second
Edition 1990.

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 13

[6] R. T. Farouki and V. T. Rajan. Algorithms For Polynomials In Bernstein Form. Computer Aided
Geometric Design 5, pp 1-26, 1988.

[7] J. D. Foley and A. Van Dam. Computer Graphics, Principles and Practice, Second Edition. Addison-
Wesley Systems Programming Series, Jul. 1990.

[8] G. Elber and E. Cohen. Hidden Curve Removal for Free Form Surfaces. Computer Graphics, Vol. 24,
Num. 4, pp. 95-104, Siggraph Aug. 1990. '

[9] G. Elber and E. Cohen. Second Order Surface Analysis Using Hybrid Symbolic and Numeric Operators
Submitted for publication. ,

[10] G. Elber and E. Cohen. Hybrid Symbolic and Numeric Operators as Tools for Analysis of Freeform
Surfaces. Technical Report UUCS-92-023, University of Utah.

[11] G. Elber and E. Cohen. Model Fabrication using Surface Layout Projection. To be published.

[12] G. Elber. Free Form Surface Analysis using a Hybrid of Symbolic and Numeric Computation. Ph.D.
thesis, University of Utah, Computer Science Department, 1992.

[13] J. Hoschek. Approximate Conversion of Spline Curves. Computer Aided Geometric Design 4, pp
59-66, 1987.

[14] J. Hoschek, F. J. Schneider, and P. Wassum. Optimal approximate conversion of spline surfaces.
Computer Aided Geometric Design 6 , pp 293-306, 1989.

[15] B. V. Herzen and A. H. Barr. Accurate Triangulations of Deformed, Intersecting Surfaces. Computer
Graphics, Vol. 21, Num. 4, pp. 103-110, Siggraph Jul. 1987.

[16] R. V. Klassen. Integer Forward Differencing of Cubic Polynomials: Analysis and Algorithms. ACM
Transaction on Graphics, Vol. 10, Num. 2, pp 152-181, Apr. 1991.

[17] J. M. Lane and R. F. Riesenfeld. Bounds on a Polynomial BIT 21 (1981), 112-117.

[18] S. Lien, M. Shantz, and V. P ra t t . Adaptive Forward Differencing for Rendering Curves and Surfaces.
Computer Graphics, Vol. 21, Num. 4, pp. 111-118, Siggraph Jul. 1987.

[19] T. McCollough. Support for Trimmed Surfaces. M.S. thesis, University of Utah, Computer Science
Departm ent, 1988.

[20] K. Morken. Some Identities for Products and Degree Raising of Splines. To appear in the journal of
Constructive Approximation.

[21] D. R. Peachey. Solid texturing of Complex Surfaces. Computer Graphics, Vol. 19, Num. 3, pp. 333-342,
Siggraph Jul. 1985.

[22] K. Perlin. An Image Synthesizer. Computer Graphics, Vol. 19, Num. 3, pp. 333-342, Siggraph Jul.
1985.

[23] A. Rappoport. Rendering Curves and Surfaces with Hybrid Subdivision and Forward Differencing.
ACM Transaction on Graphics, Vol. 10, Num. 4, pp.323-341, Oct. 1991.

[24] A. Rockwood, K. Heaton, and T. Davis. Real-Time Rendering of Trimmed Surfaces. Computer
Graphics, Vol. 23, Num. 3, Siggraph Jul. 1989.

A daptive Isocurves B ased R endering G. Elber and E. Cohen 14

[25] M. Shantz and S. L. Lien. Shading Bicubic Patches. Computer Graphics, Vol. 21, Num. 4, pp.
189-196, Siggraph Jul. 1987.

[26] M. Shantz and S. Chang. Rendering Trimmed NURBS with Adaptive Forward Differencing. Computer
Graphics, Vol. 22, Num. 4, pp. 189-198, Siggraph Aug. 1988.

