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Abstract interpretation is a general fram ew ork for justifying inference schemes aimed at 

the static determ ination of run tim e properties of programs. The original developm ent of 

this fram ew ork was done by [Cousot 77]. Their form alism  was developed in the context 

of im perative program s and was based on a lattice theoretic formalism. Recently, a 

number of attem pts have been made to  extend these ideas to applicative programs. In 

reasoning about applicative programs, tw o issues become important; first, non­

term ination needs to be addressed, which means that we need to work with domains 

rather than sets, second, the underlying domain may be non -fla t if the language features  

Ia2y evaluation [M ycroft 80, M ycroft 83, Mishra 84]. Typically, the inference schemes used 

involve reasoning about the effect of functions on arbitrary  sets of values rather than  

sets which are convex, this precludes the use of the Plotkin powerdomain construction. 

So far only lim ited results have been obtained; [Mishra 84] develops a theory that works 

when the simplified domains are finite, and [M ycroft 83] develops a form alism  that works 

when the original domain is of finite height (i.e. all chains converge in a finite number of 

steps). The approach of the present paper is thus the most general available.

Our scheme uses a categorical form alism  to obtain a theory

*  that does not require that the sets be restricted to closed sets,

*  for which the lifting process does not cause any continuity anomaly,

*  which is not restricted to domains of finite height.

The power of the form alism  derives from the use of morphisms in a category to express 

the approximation relation. Morphisms do not merely express the fact of approximation 

but give precise details  of how tw o objects may approximate each other. This increased 

precision allows us to avoid the continuity problems of the other formalisms. 

Furthermore, because categories are equipped with a theory of limits, we are not

1. Introduction
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constrained to  ensure that our models are equipped w ith a partial order. This means that 

w e can essentially work w ith a preorder and still take limits; thus w e are not forced to  

restrict our sets to  be closed sets as is done in the standard powerdomain constructions 

[Plotkin 76], [Sm ythe 78].

Some of the standard term s that we use are defined in this paragraph. By domain we 

shall mean a com plete partial order, by powerdom ain we shall mean the constructions 

defined by [Plotkin 76] and others in which a com plete partial order is constructed out of 

some of the subsets of a com plete partial order. By the term  collecting semantics we  

mean the extension of a semantics from  functions defined on values to  functions (actually 

functors, as we shall see) defined on sets of values. We shall use the symbol "?" to stand 

for the least elem ent of a com plete partial order; and "X" for the product domain 

constructor. By abstract interpretation w e shall mean a "non-standard" semantics which 

is required to respect the standard semantics in an appropriate sense.

2. P r e v i o u s  C o n s t r u c t i o n s

A general fram ew ork for the abstract interpretation of imperative programs was first 

developed in [Cousot 77]. Cousot&Cousot pointed out that many seemingly unrelated  

program analysis schemes can be form alized as semantic models that "approximate" (in a 

precise form al sense) the standard semantics of programs. The chief virtue of this 

approach is its emphasis on semantic soundness of program analysis schemes expressed 

in a single unified fram ework. Program analysis schemes are justified by viewing them  to 

be abstractions of a canonical form  of the standard semantics, the collecting or static 

semantics. In this setting the collecting semantics of imperative programs is the "lifting" 

of the standard semantics to the powerset of the underlying set of values.

The inadequacy of the powerset oriented approach, in modelling inference schemes for
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applicative programs, was first shown by [M ycroft 81]. Inference schemes in the  

powerset oriented setting cannot capture term ination and are therefore weakly correct. 

Functions in lazy applicative languages are non-strict and may carry out useful 

com putation even when applied to a non-term inating expression. Hence inference 

schemes for applicative languages involve reasoning about termination (e.g. replacing 

c a ll-b y -n am e  by ca ll-by -va lue). Developing a theory of strong abstract interpretation  

forces the consideration of the underlying set of values to  be a domain (set+order 

structure) rather than an unstructured set. Consequently, the appropriate power 

construction must capture both the underlying order structure of the domain as well as 

ordinary set theoretic inclusion. Powerdomain constructions fam iliar from work in the  

semantics of indeterm inacy are therefore relevant.

In attem pting to provide a general fram ework (the collecting semantics) for specifying  

such analysis, M ycroft proposed the use of the now classical Plotkin  powerdomain as 

developed in [Plotkin 76]. The Plotkin powerdomain is restricted to modelling bounded 

indeterminacy [Apt 81] which implies that only selected subsets of the underlying domain 

are permissible and that in particular all infinite sets contain ?. This lack of expressive 

power sharply constrains the class of inference schemes that can be described in such a 

fram ework. For example, even simple inference schemes that involve describing infinite 

sets of values in the original domain by values in the abstract domain (e.g. analyzing 

integer valued applicative programs on the four point domain {POS, NEG, ZERO,?} ) cannot 

be expressed in this fram ework. Hence the Plotkin powerdomain is not suitable for 

specifying the collecting semantics.

In [Mishra 84] several practical examples of static inference involving streams (a non­

flat domain) w ere developed in the fram ew ork of abstract interpretation. It was pointed 

out that a collecting semantics for inference over non-flat domains posed difficult



problems, as a w ell-behaved powerdomain construction over a non-fla t domain with a 

sufficiently rich collection of sets was not available.

In [M ycroft 83] the collecting semantics for a restricted class of domains (domains with  

fin ite ascending chains -  fcfcpos) was developed. The construction remedied the 

problems with the inadequate expressive power of the Plotkin construction as described 

above. However, a number of problems remained. The continuity of functions "lifted" to 

the powerdom ain was lost; hence the fram ew ork forced the consideration of monotonic 

functions. The "lifting" functor from  the original function space to the function space 

over the powerdom ains was also not continuous. As the collecting semantics does not 

involve any loss of information as compared to the standard semantics, the loss of 

continuity appears counter-in tu itive. Further it was not clear how the construction might 

be adapted to describing inference schemes over domains which did not possess the  

fdcpo property (e.g. streams).

In [Abramsky 83] a category-theoretic  form ulation using multidomains (m ulti-set 

domains) was proposed as a suitable model for (unbounded) indeterm inate computation  

on arbitrary domains. From the point of view of static inference this approach is 

unsatisfactory, since m ulti-sets  over even finite domains do not possess the finite chain 

property1; hence static inference schemes are not effective.

3. T h e  P o w e r g r a p h  C o n s t r u c t i o n  for D e t e r m i n a t e  F u n c t i o n s

In this section we introduce a prelim inary construction that provides a suitable 

collecting semantics for a first order language that does not perm it the use of 

indeterm inate functions. We shall see that this construction does achieve many of the

 ̂aH chains converge in a finite number of steps



form al requirements for a collecting semantics. However, the inability to handle 

indeterm inate functions w ill render it useless for our purposes. This construction does 

play a useful pedagogical role in indicating the generalizations needed, and the com plete  

construction, given in the next section, will lean heavily on the material of this section. 

This construction does not use categories and will serve to  define the limits of what one 

can do in the context of com plete partial orders.

The first key observation we make is the following; when a function is extended 

pointwise to  act on sets of values, the precise correspondence between argum ent and 

result is preserved only by the singleton sets. Thus, with larger sets, one can no longer 

determ ine exactly which pairs of values correspond. This is the major reason for the  

breakdown of continuity that was discussed in the last section. This observation  

suggests that instead of lifting the action of functions from  individual values to  sets of 

values, we should instead lift the graph of the function to the collection of all its possible 

subgraphs. Accordingly this construction is called the powergraph construction.

Given domains D and E, we may reinterpret functions f:D----- > E  as taking an elem ent d

of D to the pair < d ,f(d )> , in other words a point does not get mapped to  its image but to 

the corresponding point in the graph of the function. We shall denote these reinterpreted  

functions f9. These functions are defined as acting from the domain D to D X E. To make 

the form alism  more sym m etric we shall take instead of D the domain D X ?, where ? is 

the on e-p o in t domain. It is easy to see that D X ? is canonically isomorphic to the

domain D. The arity of the reinterpreted functions is:

. D X ? ----- >  D X E.

It is easy to  see that f 9 is m onotonic and continuous iff f is monotonic and continuous.

We now construct the powergraph domains as consisting of suitable subsets of the 

cross product domains defined above. As a first attempt, we begin with the observation
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that w e would like to reason about the action of functions on arbitrary subsets of the  

domain D, so the 'pow er" construction should include all subsets of the domains D X ? 

and D X E. The partial order should try to reflect the following intuition: a subgraph may 

"improve" by expanding in size or by giving more precise information about the result

values. This suggests the following partial order on D X E:

Def. 3.1 K1 O  K2 if there exists a function i from K1 to 
Kj such that if i(x) ■ y then >r1(x)= ir^y) and ir2(x) < = E (y).

Unfortunately, this is not a partial order on the collection of all subsets of D X E. Consider 

the follow ing tw o subsets of D X E:

K1 = { < d ,e 1 > ,< d ,e 3> ,< d ,e 5> ....}
K2 = { < d ,e 2> ,< d ,e 4 > ,< d ,e 6> ....}
where d is some elem ent of D and {e v e2,e3,...} form s an 
increasing chain in E. Then clearly we can find maps from  K1 to  
K2 and vice versa satisfying the above conditions.

A further objection to including all subsets of D X E is that several of these subsets 

cannot possibly be the subgraphs of functions. Thus we are led to the follow ing  

restriction on the subsets of D X E to be included in our power construction: all the sets 

must have at m ost one occurrence of an elem ent from  D as the first component of a pair. 

The putative partial order defined above is now really a partial order. We shall write  

G(D,E) to denote this domain. Formally we define:

D ef 3.2 G(D,E) is the collection of all subsets of D X E satisfying 
if K c G(D,E) and x,y t K then ^ (x )  /=  7r 1 (y).
G(D,E) is equipped with the partial order defined above.

Theorem  3.3: G(D,E) is a com plete partial order.

Proof: G(D,E) is clearly a poset. The empty set is the least element. Consider a directed  

set of elem ents of G(D,E), {Kg} where the <*s belong to some indexing set. For each pair 

Ka,Kb with Kg < =  Kb there is an injection i b from  Kg to Kb satisfying the conditions above. 

Furthermore, this injection is the only one between Ka and Kb satisfying the conditions of 

Def 3.1. It then follows that if K < =  K. and K. <  = K then i = i , o i h„. Now wea b b c ac ab be

construct the least upper bound for the directed set. Consider any elem ent d of D which



appears as the first com ponent of a pair in any of the sets Ka. The elem ent d will appear 

at most once in any pair in any single set. Take all pairs which have d as the first 

component. The maps iab will connect all these pairs into a directed subset of D X

E. Take the lim it of this directed set in 0  X E, we know this limit exists because D X E is 

a com plete partial order. W e obtain a pair < d ,e > , the set K is obtained by collecting all 

such pairs for every elem ent of 0  that occurs as the first com ponent of a pair in any of 

the Ka. It is easy to  see that the K so constructed is the least upper bound of the  

directed set {Ka}.

The lim it constructed above is in fact a direct lim it  construction in the category  

theoretic sense. When we generalize G(D,E) to a category we will essentially use the  

same construction to obtain limits. The com plete partial order G(D,?) is easily seen to be 

canonically isomorphic to the domain of a ll  subsets of D ordered by inclusion. Thus our 

powergraph construction allows us to  reason about arbitrary subsets of D. W e now show  

that the “lifting" of functions from  D to E has many pleasing properties.

Let f9 be a function from  D X ? to  D X E. This function can be extended pointwise to  

obtain a function F9 from  G(D,?) to G{D,E). It is clear that F9 is continuous and m onotonic  

iff f9 is also continuous and monotonic. It is also true that the lifting process is itself 

monotonic and continuous. The fact that it is monotonic is easy to see so we shall only 

prove continuity explicitly.

Theorem  3.4: Let f9n be a chain of functions that converges to 
f9. Let S be any subset of D X ?. Then the sequence F9n(S) 
converges to  F9(S) in G(D,E).

Proof: Consider any pair < d ,? >  in S. In every set in F9n(S) there is a pair of the form  

< d ,fn(d )>  and this will in fact be the only pair which has d as its first com ponent in each 

set. Furthermore the map tn from F9n(S) to F9n+1(S) will map < d ,fn(d )>  to < d ,fn+1(d )> . 

The sequence { < d ,fn(d )> }  thus form s a chain in D X E connected by the in maps. The



8

least upper bound of this chain is clearly < d ,f(d )>  or ffl(< d ,? > ). Thus the least upper 

bound o f F*n($) w ill consist of exatly those elem ents of the form < d ,f(d )>  fo r each 

< d ,? >  in S. th is  set is exactly the set F9(S). W e should have actually shown this for a 

directed set of functions rather than a chain but the proof goes through in exactly the  

same way. Thus the lifting action is continuous.

We now consider the problem of embedding the domains D X ? and D X E into the

domains G(D,1) and D,E. We would like these embedding maps to be continuous and

monotonic. Since G(D,1) is canonically isomorphic to the domain of subsets of D ordered

by inclusion we can define an embedding function:

* :[D  X ? ] ----- >  [D X E] given by * (d )  = {< d ',? > |d '< = Dd}.

This function is clearly continuous and monotonic. If we attem pt to use a sim ilar 

definition for embedding D X E into G(D,E) we will not succeed because the embedding of 

< d ,e >  should be the cartesian products of the sets {d '|d '< = d } and {e '|e '< = e }, this set 

cannot be a m em ber of G(D,E) since it will, in general, contain several pairs with the same 

first component. Thus we cannot embed the domains D X ? and D X E into the  

corresponding powergraph domains. In the next section, we will be able to perform the  

embedding by using the categorical construction to allow more sets in G(D,E).

An im portant point that w e now address is the issue of function composition. Suppose 

that w e are considering functions from  D to D instead of from D to E. Then we can 

com pose functions, this composition will have to be carried over into out graph domains. 

Let f,h be functions from D to  D. Then f9 and h9 will be functions from D X ? to D X 

D. The composition of f9 and h9, written f9*h 9, must satisfy:

(f o h)9(< d ,? > ) = < d ,h (f(d ))>  = (f9*h g)(< d ,? > ).

Expressed in term s of projections and pairings we may write:

(f9*h 9)(< d ,? > ) = < d , * 2(h9(<7r2(fg(< d ,? > )) ,? > ))>
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= < 1r l (< d ,? > ),# 2(h3( < 1r2(f3 (<d ,? > )) ,? > ))>

To express this as ordinary function composition we introduce the fo llow ing tw o  

combinators:

P0(f9) = Xx.<w2(fg(x)),?>
P ^f9) = Xx. < tt 1 (x),ir2(f9(x)) >

We can now express the *  composition operator as: 

f9*h 9 = P, o h9 o P0 o f9.

Once w e are equipped with function composition, we can express the meaning of 

recursively defined functions via standard fixed point theory.

The collecting semantics for a first order language can now be obtained in a 

straightforward fashion. Given the standard semantics as a function m from  Syn, the set 

of syntactic forms, to the semantic domains we then interpret functions as the pointwise  

extensions of their graph analogues and arguments to functions as arbitrary sets of 

values from  the relevant domain. The collecting semantics thus obtained involves no loss 

of information with respect to the standard semantics and preserves continuous and 

monotonicity.

To illustrate the absence of the continuity anomaly noted by [Mycroft 83] we consider

their example, discussed in section 2. Let f; denote the sequence of functions: 

f(n ) = if n < =  i then 1 else ?.

Now consider the action of this sequence of functions on the set N. First we express 

each function in its graph form and then lift these to obtain the sequence of functions F9j 

from  G(N?,?) to G(N7,N?). When we apply the functions F9( to N we obtain a sequence of 

members of G(N?,N?) which form a chain. If we consider any integer m we see that the 

sequence of injections that establish the approximation relation in G(N,,N?) form s an 

unique "thread" through m with the second com ponent of each pair in such a thread
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being ? until the mth elem ent is reached, whereupon the second components all becom e

1. Taking the least upper bound in G(N?,N?), we get the set N X {1}. This is exactly w hat 

we would get if w e took the least upper bound of the sequence of functions f 9{ and lifted 

the result and then applied the lift of the limit function to N (actually to  N X {?}).

4. T h e  Categorical C o n s t r u c t i o n

In this section we will generalize the construction described in the prior section so that 

w e can handle indeterm inate functions and provide embeddings of the underlying  

domains in the "power-dom ains". The new ingredients needed are the introduction of 

categories rather than domains and a relaxation of the restrictions on the sets in G(D,E). 

The use of categories in semantics has been advocated by [Lehmann 76] and by 

[Abramsky 83]. Our approach uses a different construction for the objects and 

morphisms and also defines limits in a different fashion. The intuition behind the use of 

categories is that objects may approximate other objects in different ways, the morphisms 

express these different senses of approximation. The purely order theoretic approach  

merely expresses the fact of approximation.

We define the category of subgraphs of a pair of domains D, E by:

D ef 4.1 PG(D,E), the category of subgraphs of the pair of complete 
partial orders D and E has objects consisting of all subsets of D X E and 
morphisms are functions which satisfy the following condition: If f is a 
morphism from P to  Q then if f(x)=y then ir.,(x) <  1 (y) and

w 2M <=,e * 2 ^ -

Unlike the preceding construction, we do not require that the objects contain at most one 

elem ent with a given first component, thus we allow the objects to  be subgraphs of 

relations. A consequence of this is that the morphisms are not injections. It is clear that 

morphisms may exist in both directions between a pair of objects. Thus the morphisms 

do not define a partial order. The category PG(D,?) has exactly the same definition as 

G(D,E), with E replaced by the one point domain ?. The category D,? no longer is the
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Now we interpret functions from 0  to E as functors between PG(D,?) and PG(D,E). Let f

be a function from  D to E. The functor F = Lift(f) is defined in the following way:

D ef 4.2: Let P be an object of PG{D,?). F{P) is the object 
{< d ,e > |< d ,? >  t P and e = f(d )} of PG(D,E). Let * be a morphism  
from P to  Q in PG(D,?). The morphism F{«) from  F(P) to F(Q) maps 
each pair < d ,f (d )>  in F(P) to the pair < *(d ),f(*(d ))>  in F(Q).

The fact that functions from  D to E can be interpreted as functors is the categorical way  

of expressing monotonicity. Notice that F(«) would not be a morphism if f w ere not 

monotonic.

We now prove that the lifting of a continuous function f, yields a continuous functor

F. Let Xg be a fam ily of objects in PG(D,?) with morphisms Mab from  Xg to  Xb form ing a 

com m uting diagram and having X as the direct lim it w ith morphisms »a from  Xa to  

X. Apply F to this com m uting diagram to obtain a corresponding com m uting diagram in 

PG(D,E), the claim is that F(X) is the limit of the diagram in PG(D,E). Consider any elem ent 

< d  .e >  in F(X ), this elem ent will be part of a chain in D X E formed by the morphismsa a a

F(Mab) <n PG(D,E). Since D X E is a com plete partial order w e know that this chain will 

have a limit < d ,e > ;  thus < d ,e >  is a m ember of the limit object in PG(D,E) and all 

members of the lim it object in PG(D,E) arise in this fashion. Furthermore, we know that e 

= f(d) where d is the lim it of the chain formed by the d s. Thus we know that < d ,? >  

must be in the object X, and thus < d ,e >  must be in F(X). It is easy to  see that the 

morphisms behave in the required way under F. Thus F is continuous.

This reincarnation of ordinary functions as functors does not carry over to the situation  

where the functions are indeterminate. Suppose X and Y are objects in PG(D,?) w ith * a 

morphism from  X to Y. Suppose r is a relation from  D to E. Define a map R from  the  

objects of PG(D,?) to the objects of PG(D,E) in the following way. The action of R is to

powerset of 0  ordered by inclusion.
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form the collection of all pairs which are related with first components appearing as the

first com ponent of a pair in the original object. Thus 

R(X) = { < d ,e > |< d ,? > tX  and < d ,e > «  r}.

Thus relations can be interpreted as maps between the set of objects in PG(D,?) and the  

set of objects in PG(D,E); the fact that it is not a functor can be understood in the 

following way. A morphism expresses approximation between objects in a detailed  way, 

thus when one is dealing with a function applied to sets of values it is natural to expect 

that one can establish a precise correspondence between the original objects and the 

image objects. With relations, however, a given value may be related to  several different 

values, and therefore a natural morphism cannot be found. W hat com putability concept 

should be applied to relations ? Our proposal is the following:

D ef 4.3: A relation r is called quasi-monotonic if whenever d < = d ' then  
for every x in r(d) there exists a y in r(d') with x<=y .

The concept analogous to continuity that we propose is:

Def 4.4: A relation r is called quasi-continuous if given a directed 
set {d > (the as belong to some index set) which converges to  d then 
every directed set {e g} that can be formed by choosing appropriate 
elements from  the sets r(d J  converges to  an element belonging to r(d).

Using these concepts, what can be said about the maps R that arise as the lifting of

quasi-m onotonic and quasi-continuous relations ? Given objects X and Y in PG(D,?) with

a morphism « in PG(D,?) from X to Y we obtain objects R(X) and R(Y) in PG(D,E). There is

no canonical morphism in PG(D,E) from R(X) to R(Y), but if r is quasi-m onotonic then we

can guarantee that there exists some morphism from R(X) to R(Y). This is easy to see, for

every < d ,e >  in R(X) there must be a < d ',e '>  in R(Y) with d < = d ' and e < = e ' by the

definition of quasi-m onotonic. Similarly, the quasi-continuous condition means that if we

apply R to every m em ber of a diagram in PG(D,?) with a direct limit X, we can obtain, in

general, several different diagrams in PG(D,E) with direct limits. The lim it objects will all

be contained in R(X). An R with such properties will be called a quasi-functor.
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The category PG(D,E) has 4 as the initial object. Limits in this category are constructed  

in essentially the same way as in the preceding section. W e illustrate the new features  

that arise by allowing subgraphs of relations via a few  simple examples. Let {e n}  be a 

chain in E and d a fixed elem ent of D. Consider the sequence of objects {S n} in PG(D,E), 

where Sn = { < d ,e m> |m = > n } . Define morphisms in from Sn to Sn+1 by 

‘n(< d ,e m> ) “ < d ,e m+1 > . The lim it of this system is { < d ,e > } ,  where e is the least upper 

bound of {e n}. Now suppose we define the following fam ily of sets. The set Sn contains 

all pairs of the form  < d ,e m>  for odd m if n is odd and even m if n is even. W e can use 

the same maps as w e used before to obtain a direct system. The direct lim it of this 

system is also { < d ,e > } .

We now need to  argue that the lifting process is itself continuous. Suppose that f ; is a 

sequence of functions from  D to E which converges to f. Suppose that the corresponding  

functors are F; from PG(D,?) to PG(D,E). Let X be an object of PG(D,?). We need to show  

that the "sequence" of objects Fj(X) converges to F(X). An im m ediate problem arises; in 

categories limits are defined for diagrams not for sequences. It makes no sense, a priori, 

to talk about the limits of sequences of objects alone; w e need to have a diagram. We 

claim that it is natural to construct the following diagram. Define functions <j>t from  X to 

each of the F^XJs by $ j(< d ,? > ) = < d ,fj(d )> . These functions will all be bijections. Now  

w e define morphisms from  Fj(X) to Fj(X) in PG(D,E). If w e require that the entire 

diagram com m ute it is easy to see that the only possible morphisms are those that agree 

on the first components. The situation now reduces to that of the previous section, 

where we saw that the lim it in PG(D,E) was indeeed F(X) where F is the functor 

corresponding to X. Thus limit is called the X-indexed limit. We claim that this is the 

natural extension of the lim it concept for sequences of continuous functions from  one 

com plete partial order to another.
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The domains D X ? and D X E can be embedded into the categories PG(D,?) and PG(D,E) 

in the following way. We define a map AD from [D X ?] to PG(D,?) by < d ,? > |—: > { < d ,? > }  

and similarly w e can define ADE from [D X E] to PG(D,E). It is easy to see that these  

maps are continuous and monotonic.

We thus obtain the following diagram relating the various categories and domains, 

f
[D X ?]------------------------------ >[D X E]

\l/ \l/

I I

PG(D,?)----------------------------- >PG(D,E)

F

The functions f are lifted as before to functors from PG(D,?) to PG(D,E). The diagram  

commutes so we see that the collecting semantics is precisely equivalent to  the standard  

semantics.

Since we are not interested in modelling indeterminate operators in the standard 

semantics we do not need to discuss the union operation. It is worth noting that the  

union operation can be expressed as ordinary set union in our categories. This is 

because our use of categories has allowed us to handle arbitrary sets; we do not require 

any particular closure property to be obeyed. This offers the prospect of being able to  

develop a general theory of indeterm inate operators along the categorical form alism  of 

the present paper. Such an investigation has been initiated and results will be reported in 

a forthcoming report.
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In this section we show that abstract interpretation can be form ally related to the  

collecting semantics as described in the last section. This will provide a general 

fram ework fo r showing that particular abstractions are in fact semantically sound. The 

key idea of abstract interpretation is that the abstracted domains should be simplified in 

some suitable sense. Crudely speaking, this means that the abstracted domains should 

have few er elem ents than the original domains. Thus an elem ent of the abstracted  

domain should represent a set of elem ents from the original domain. In this section we  

shall use D and E to stand for the "standard" semantic domains and A and B fo r the  

corresponding simplified domains.

An abstract interpretation is form ally defined through a pair of quasi-functors from  

PG(D,?) to PG(A,?) and from PG{D,E) to PG(A,B); the quasi-functors are usually w ritten  as 

71 and 72 respectively. To see why the maps cannot be functors consider the following  

situation. Suppose that the object X in PG(D,?) consists of the pairs < d r ? >  and < d 2,?>  

and suppose that the object Y in PG(D,?) consists of the pairs < d 3,?>  and < d 4,?>. 

Suppose further that there is a morphism <r from X to Y with <r(<dr ? > ) = < d 3,?> and 

f f(< d 2,?> ) = < d 4,?>. Now, under an abstraction it is possible that d1 and d2 get identified  

but that d3 and d4 do not. While it is not clear w hat morphism should be established  

from the image of X to  the image of Y, it is clear that some morphism can be found. 

Thus, by using a quasi-functor rather than a functor, we are acknowledging that certain  

details of how a computation would progress are lost but we respect as much of the 

structure of the original category as we can.

The abstraction maps, > 1 and y2, must be restricted further; they must com m ute with 

the set union operation in PG(D,?) and PG(D,E). This means that the actions of the 

abstraction maps are given by their actions on the singleton sets and are essentially

5. Abstract Interpretation
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pointwise extensions o f abstraction functions ar^D— > A  and «2:B— > ^- The roost 

important condition th a t we need to  express is the acceptability condition of [Mishra 84]. 

This condition arises from  the need to control the behavior of the inverse of the  

abstraction maps. W e define maps and 02 from  to PG(D,?) and from  PG(A,B) to

PG(D,E) respectively. 0̂  is defined as:

Let U be an object of PG(A,?), then
0,(U ) = {< d ,? > |7 l ( {< d ,? > } )  U}.

The map 02 is defined analogously. These maps are called the concretization maps. W e  

note that these maps, and $z, are not quasi-functors; essentially this is because the  

pre-im ages of sets in PG(A,?) may contain lim it elements. W e will therefore not be able 

to find morphisms between the preimages of related sets, in general. This arises because 

our abstraction may have an in fin ite  elem ent being represented by a finite e lem ent of the  

abstracted domains. W e introduce an operator fin  which takes an object and returns the

subset consisting of all the fin ite  elements. The maps |S1 and 02 are required to satisfy:

D ef 5.1 :if U,V are objects of PG(A,?) (resp. PG(A,B)) and there ,
exists a morphism from  U to  V then there exists a morphism from  
fin(0., (resp. 02)(U)) to fin(/91 (resp.02)(V)).

Thus if the domains A and B w ere to contain only finite elem ents, then the maps /31 and 

02 would indeed be quasi-functors.

Given a function from D X ? to  D X E which lifts to  the functor F from  PG(D,?) to 

PG(D,E), we must show how to interpret this as a quasi-functor from  PG(A,?) to PG(A,B). 

First we note that 0., and 02 define closure operators on D X ? and D X E. This may be 

seen in the following way. Since is quasi-continuous we see that if all the mem bers  

of a directed set in D X ? are abstracted to a particular elem ent of A X ?, say z, then the  

least upper bound of that directed set must also be abstracted to  z. Now consider the  

action of 0, o 7 , on objects in PG(D,?). This map satisfies the conditions for a closure 

operator [Cohn 65]. The closed sets in PG(D,?) are closed under least upper bounds in D



17

X ?. Similarly, the composition 02 o y2 defines a closure operator on the objects in 

PG(D,E). Now given a functor F from PG(D,?) to PG(D,E), we define the associated quasi­

functor RF from PG(A,?) to  PG(A,B) by:

Def 5.2:RF = o F o y2.

We need to dem onstrate that this is indeed a quasi-functor. We shall explicitly show that 

Rp is quasi-m onotonic, showing quasi-continuity is essentially similar. Let U and V be 

objects in PG(A,?) with a morphism * from  U to V. Now the objects /31 (U) and ^ (V )  in 

PG(D,?) will not, in general, have a morphism between them , but fin(0.,{U)) and finOS^V)) 

will have some morphism between them . Furthermore, the sets (3,(11) and 0.,(V) are 

closed; under the action of F they stay closed, because F is a functor. Once again, there  

will not be a morphism from FGS^U)) to F(/31 (V)), but there will be a morphism from  

f in fF ^ fU )))  to f in (F 0 1(V))) in PG(D,E). Because y2 is a quasi-functor there will be a 

morphism from 7 2(fin(F(01(U)))) to 72(fin(F(/S1(V)))) in PG(A,B). Since the closures of 

fin(F(|J1(U)) and fin(F(/31(V))) generated by 02 o y2 are precisely F ^ fU ) )  and FOJ^V)) 

respectively, we see that ^ (F O ^ U ))) = 72(F(fin(/J1(U)))), the same reasoning can be applied 

to V. Now we already know that we can find a morphism from  ■y2(F(fin(^1(U)))) to  

■v2(F(fin(/31 (V)))), it follows then that we can find a morphism from Rp(U) to Rp(V) in PG(A,B).

Because the composition of a quasi-functor with a quasi-functor is a quasi-functor we 

can reinterpret functors from PG(D,?) to PG(D,E) as quasi-functors from  PG(A,?) to PG(A,B) 

and compose them  freely. Furthermore, since direct limits exist in the categories PG(A,?) 

and PG(A,B) we can take limits, and by the definition of Rp the lim its we get are a 

superset of the limits that we would obtain by taking limits in PG(D,E) and then projecting  

to PG(A,B) using y2.

Suppose we have a language L, with certain prim itive functions P| and a standard 

semantics expressing the P^ as continuous functions from  D to E. W e can then obtain the
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collecting semantics as we have described in this section by going to  the categories  

PG(D,?) and PG(D,E) and expressing functions as functors. The abstract interpretation is 

obtained by finding appropriate simplified domains A and B and then constructing PG(A,?) 

and PG(A,B) and finding maps y v  7 2» and 02 which satisfy the conditions described in

this section. The interpretation of the prim itive functions is obtained by form ing the Rp s
i

as described above, and then using composition of quasi-functors to obtain more 

complex functions. The semantic soundness of the abstract interpretation is thus tightly  

coupled to  the standard interpretation given by the collecting semantics.

6. Applications

7. Applications

W e briefly describe tw o static inference schemes that have appeared in the literature in 

our framework. In [M ycroft 81] M ycroft developed conditions under which function  

evaluation could be safely performed using ca ll-b y -va lu e  in place of ca ll-b y -n eed ; w e will 

call this analysis strictness inference. In [Mishra 84] Mishra developed a fram ew ork for 

fine grain  type checking of functions defined on stream domains, called minor signature 

inference.

7.1. S tric tness in ference

Consider an applicative language defined on integers and booieans (both flat domains). 

Given function f, a sufficient condition for replacing ca ll-b y -n eed  by ca ll-b y -va lu e  in 

evaluating an application of f  is:

f:? = ? -

As explained above we abstract the collecting semantics F:PG(N,?) - >  PG(N,N) to a 

simplified domain. As w e are interested in the action of functions purely in term s of 

defined and undefined values, we consider the tw o point domain TWO = {UNDEF,DEF}
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with UNDEF < =  DEF. The abstraction maps are:

a i :S -  {  <UNDEF,UNDEF> | S = { <? ,?>  } } 
ayS  -  {  <DEF,UNDEF> | < d ,? > fS  and d * ?  }  
ar .̂S = { <DEF,UNDEF> , <UNDEF, UNDEF> |

<?,?>«S and <d,?>«S d j4 ? }

<*1 {a  ̂ similarly) maps all defined integers to  DEF; the undefined elem ent is mapped to

UNDEF. Both the abstraction and concretization maps are well behaved and therefore

induce a mapping from PG(N,?) - >  PG(N,N) to  PG(TWO,?) - >  PG(TWO,TWO).

For any function definition f = E[f] defined on the integers, w e w rite f = RE[f] as the  

corresponding function definition over the abstracted domains. In going from  E to  Rg w e  

are simply reinterpreting all primitive functions over the new domain (i.e. prim itive  

function c is interpreted as Rc). The test for strictness (for description of the  

implementation and other details see [Mycroft 81]) is then simply:

? « limj Rp1!?]^ < UNDEF,UNDEF> }

7.2. M inor s ig n atu re  in ference

Consider an applicative language defined on streams; in particular w e assum e a lazy 

interpretation of the integer type defined below as our example.

type integer = zero + succ[integer]

Note that under the lazy interpretation expressions of the form  x = succ[x] have a 

solution: the infinite list of successors.

Our interest lies in determining w hether functions defined on the integer type are 

defined for every term  described by the above type-equation . If they are not defined (e.g. 

the subtract 1 function) we require a characterization of the term s for which the function  

yields an error (e.g. zero for subtract 1). The particular abstract domain we use is drawn



from [Mishra 84] consists of the constructors (w ritten Con) used in a particular expression. 

Figure I below displays the structure of the domain:

succ, 9 i.t< C

5 U C C

:z e/O

?

Figure I

The abstraction map from  PG(integer(?) to  PG(Con, ?) is defined by:

S = E 
where  
?*E if ?*S.
succ 8i zero«E if a term  composed of succ and zero*S. 
succtE if a term  composed of suc&S. 
zero«E if zero«S. 
badcE if bad*S
succ 8t bad«E if a term  composed of succ and bad*S.

«1 (a2 sim ilarly) maps an integer into the set of constructors used to construct it. Bothe 

abstraction and concretization maps are well behaved and induce a mapping from  

PG(integer,?) - >  PG(integer,integer) to PG(Con,?) - >  PG(Con, Con).

Computation of the m inor signature follows in the same manner as strictness inference. 

Algorithmic details can be found in [Mishra 84], Below we display the function subtract 1 

and its minor signature on the domain Con:
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subtract1:succ[z] = x

subtract1:{<zero,?>} -> { <bad,zero> },
{<succ,?>} -> { <succ,succ>},
{<succ & zero,?>} -> {<succ & zero,succ & zero,

<zero,succ & zero>}
{<succ & bad,?>} -> {<succ & bad, succ & bad>,
<succ & bad,bad>},

{<bad,?>} -> {<bad,bad>}

The minor signature for subtract 1 clearly indicates that the function is not defined fo r all 

term s belonging to  integer, in particular it yields an error when applied to  the term  zero.

Finally, we note that as our approach does not require the identification of sets with  

their convex closures, the precision of the inference in the current fram ew ork is an 

improvem ent over that described in [Mishra 84].

8. C o n c l u s i o n s

The formalism of the present paper represents a departure from  the standard approach  

of modelling computational progress via a com plete partial order. [Abramsky 83] has also 

introduced a categorical approach, but he is forced to introduce m ulti-sets; these are 

unsuitable for abstract interpretation because even if the abstracted domain is finite the 

m ulti-set category will be infinite and thus useless for compile tim e analyses. W e have 

also expressed com putability concepts for indeterm inate operators via the quasi-functor 

concept. In [Panangaden 84] we have applied the form alism  of the present paper to 

discuss a semantic theory of indeterm inate operators.

We believe that the formalism of the present paper will be useful in a num ber of 

contexts. In particular we are exploring the semantics of set abstraction, the sem antics of 

dataflow nets that have indeterm inate operators and static analyses of logic programs
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One formal issue that is in need of m ore research is the theory of recursive categorical 

equations analogous to  the theory of recursive domain equations; the latter has been 

settled definitively by [Smythe 83].

9. A c k n o w l e d g e m e n t s

We would like to thank Uday Reddy and Esther Shilcrat fo r helpful discussions, Robert 

Keller for encouragem ent and support, and Glynn Winskel for sending us Gordon Plotkin's 

invaluable unpublished notes on powerdomains. This research has been supported by a 

University of Utah Graduate Fellowship to Prateek Mishra and by funds provided by IBM 

Corporation. We acknowledge the support provided to the Dept. Of Com puter Science at 

the University of Utah by the NSF through CER grant #  M C S-8121750, which made 

possible the production of this manuscript.



23

[Apt 81]

[Cohn 65] 

[Cousot 77]

[Lehmann 76]

[Mishra 84] 

[M ycroft 80]

[M ycroft 81]

[M ycroft 83] 

[Panangaden 84] 

[Plotkin 76]

[Abramsky 83] Abramsky, S.
Semantic Foundations of Applicative M ultiprogram m ing.
In Diaz, J. (editor), Automata, Languages and Programming, pages 1-14. 

Springer-Verlag, July, 1983.

Apt, 1C, and Plotkin, G.
A Cook's Tour of Countable Nondeterminism.
In Eighth ICALP. Springer-Verlag, 1981.

Cohn, P.M.
Universal Algebra.
Harper and Row, 1965.

P. Cousot and R. Cousot.
Abstract Interpretation: A Unified Lattice Model fo r Static Analysis of 

Programs by Construction or Approxim ation of Fixpoints.
POPL IV  :238-252, Jan, 1977.

Lehmann, D.
Categories for Fixed Point Semantics.
W arwick University Theory of Com putation Report, Univ. of W arwick, 

1976.

P. Mishra, R. M. Keller.
Static inference of properties of applicative programs.
In POPL X I, Salt Lake City. January, 1984.

A. Mycroft.
The theory and practice of transforming call-by-need into ca ll-b y - 

value.
LNCS 83, Springer-Verlag, 1980, pages 269-281 .

A. Mycroft.
Abstract Interpretation and Optimising Transformations for Applicative  

Programs.
PhD thesis, University of Edinburgh, December, 1981.

A. Mycroft, R. A. O'Keefe.
A polymorphic type system for Prolog.
In Logic Programming workshop, pages ???. 1983.

Panangaden, P., and Mishra, P.
Abstraction and / ndeterminacy.
Technical Report U U C S -84 -006 , University of Utah, May, 1984.

G. D. Plotkin.
A Powerdomain Construction.
S IA M  J. Comput. 5 (3):452-480, Sept., 1976.

Re f erences



24

[Smythe 78]

[Smythe 83]

M. B. Smythe.
Power Domains.
Journal Of Computation And Systems Sciences 16:23-36, 1978. 

Smythe, M.B.
The Largest Cartesian Closed Category of Domains.
Technical Report, Edinburgh, 1983.



1. Introduction
2. Previous Constructions
3. The Powergraph Construction for Determ inate Functions
4. The Categorical Construction
5. Abstract Interpretation
6. Applications
7. Applications

7.1. Strictness inference
7.2. M inor signature inference

8. Conclusions
9. Acknowledgements

Table of Contents


