Combining
Symbolic and Numeric
Computation on the CRAY!

Ashok Samal and Tom Henderson

UUCS-86-115

Department of Computer Science
University of Utah
Salt Lake City, UT 84112 USA

November 17, 1986

Abstract

It is now widely accepted that the CRAY supercomputers are very useful for large numeric
applications, e.g., Finite Element Analysis, Fluid Dynamics, Image Processing, etc. Much
work has been done to make them run efficiently on the CRAY. There has also been
some effort to do symbolic computing (Al applications) on these machines. A dialect of
LISP, called PSL (Portable Standard Lisp) has been available on the CRAY for some
time. However, there has been no effort to effectively combine the two, which is useful
for certain kinds of applications, e.g., image understanding. This work demonstrates the
mixed computing capability of the CRAY supercomputer by implementing a rule-based
segmentation system. The numeric part consists of the FORTRAN subroutines to segment
an image into regions, merge and split regions. A forward-chained production system to
guide the segmentation process forms to symbolic component. The process of linking the
two components is also described.

1This work was done at Cray Research Inc., Mendota Heights during summer 1986.

1 Introduction

It is now widely accepted that the CRAY supercomputers are very useful for large numeric
applications, e.g., Finite Element Analysis, Fluid Dynamics, etc. Much work has been done
to make them run efficiently on the CRAY. There has also been some effort to do symbolic
computing (Al applications) on these machines. A dialect of lisp called PSL (for Portable
Standard Lisp) has been available on the CRAY-1 and CRAY-XMP since 1984 [3]. It was
developed jointly at Los Alamos, University of Utah, and Mendota Heights. It has since
been optimized for the XMPs by Cray Germany. However, there has been no effort to
effectively combine the two, which is very useful for certain kind of applications.

An application which needs both these capabilities is image understanding. The goal
here is to classify/identify different regions in a given image. This is a very complex task
and involves the use of several algorithms which are diverse in their computational needs.
The algorithms have traditionally been grouped under two main classes: low level and high
level. Low level algorithms work on the image, and produce some symbolic information
about the image. These algorithms treat the image as a two dimensional array of numbers.
In contrast, high level algorithms work on the symbolic data produced by the low level
algorithms to generate a symbolic description of the image. The computation in the low
level algorithms is highly numeric. In contrast the high level algorithms are symbolic in
nature. Thus it is an application where both numeric and symbolic capabilities are a
necessity. '

The goal of this project was to credibly demonstrate the combined symbolic /| numeric
capability on the CRAY. The task chosen to show this was the segmentation of satellite
imagery. The top level is a rule-based system which guides the segmentation process. This
forms the symbolic component of the system. At the bottom there are image processing
routines which constitute the numeric component. The numeric routines are in Fortran,
while the rule-based system is written in Lisp.

2 Overall System Structure / Control Flow

In this section we briefly describe how the system is organized and how the flow of control
takes place. The first thing done after acquiring an image is noise reduction. A 3 by 3
median filter is used to smooth the image. Then the image is partitioned using a coarse,
but fast segmentation algorithm. A modified blob coloring algorithm [1] is used for this
purpose. An integral part of any region growing algorithm is the merging of small regions
[5]. Normally a lot of regions are produced by this method and many of them are extremely
small. The next step is to merge the regions of size less than a certain threshold, with the
neighbor with the least difference in average intensity. Finally, the properties (e.g., area,
aspect ratio, etc.) of the regions are computed and stored in a property table.

Next the working memory to be used by the rule-based system is built. This is done
by accessing the property table just mentioned. From now on the rule-based system
has total control of the system. Depending on the situation, zero or more rules will fire
and correspondingly some actions will be taken. There are only two major actions that
are performed: merge two regions, and split a region into 2 or more regions. Both these
operations are done in CFT (Cray Fortran), although the symbolic component also updates
the working memory. Both these operations involve updating the segmented image and
the property table. The split and merge operations are implemented in CFT since they
are very well suited for vector processing. Thus the numeric and the symbolic component
work hand in hand to effect the changes in the image.

The system halts when there is no rule that can be fired. At this point the system has
the final segmented image in a color map form. Figure 1 gives a pictorial description of

- structure of the major components of the system.

3 Numeric Component

As mentioned before, it is made out of image processing routines which are all in CFT.
CRAY has an image processing package called CSADIE [6]. It is a tape-oriented system
and has only very primitive routines, e.g., filtering, OR’ing images, etc. It provides however
a nice starting point to develop more sophisticated routines, since it has functions to do
I/O cleanly. For our application it was necessary to develop several major routines, since
they are not available in CSADIE. They will be briefly described below.

e Blob Coloring : This is a simple two pass algorithm to do segmentation. It is
described in detail in [1]. It has been modified for gray scale images in an obvious
manner.

e Threshold Finding : The threshold value for segmentation is adaptively deter-
mined from the image under consideration. This is done using an algorithm described
in [2]. The first step is to differentiate the image, which also has been implemented,
as an independent routine.

e Computing Region Properties : Properties of the regions are used by the rule-
based system to perform split and merge on them. These are more efficiently com-
puted in CFT. The various properties that are computed are: average intensity,
variance, area, aspect ratio, number of adjacent regions, and adjacency values for
each adjacent region. Some other properties like xmin, xmax, ymin and ymax are
also computed since they help in locating the regions in the image much faster. All
these properties have to be recomputed when either merging or splitting takes place.

Working

I
nput Image Memory

Interface ‘—@preter)

Property
Table
Se%mented Rule Base
mage
Numeric - <— Symbolic —

Figure 1: Block Diagram of the System Showing Major Components

o Splitting a Region : This is one of the actions the rule-based system performs.
The region is split into several regions around a certain value obtained from the
region itself. The old region is relabelled and the property table is correspondingly
updated.

e Merging two Regions : This is the other action performed by the rule-based
system. Here two adjacent regions are merged and are labelled as the same regions.
One of the two regions is removed from the property table and the properties of their
adjacent regions are updated.

Some other subroutines, e.g., to check if the histogram of a region is bimodal, etc., have
also been implemented.

3.1 Common Blocks

CSADIE has a common block to maintain the parameters of interest to the CSADIE
routines. In addition to it, we maintain another common block called PSLC, for storing
the items which will be needed by the symbolic component. This includes the ids of the
image and the segmented image, number of regions, the property table and the adjacency
table (which stores the adjacency information). When the symbolic component needs the
value of any property it is looked up in the appropriate table and returned.

4 Symbolic Component

The symbolic component consists of a rule-based system and several lisp functions, which
work alongside the rule-based system. All the units in this component are written in PSL.

4.1 Rule-Based System

It is essentially a forward-chasning production system. Like any other production system,
it has 3 parts: Rule Base, Working Memory, and Interpreter. The working memory here
consists of items representing the properties of different regions, e.g., (Area Region-1
LOW), (Aspect-Ratio Region-3 VHIGH), etc. The details of how the working memory
elements are built and maintained will be described later in this section.

4.1.1 Rule Base

The rule base consists of the set of rules which guide the segmentation process. These rules
are derived from the knowledge about the segmentation itself and from the domain from
which the image is taken, e.g., LANDSAT images, outdoor scenes, etc. Every rule has two

4

parts: conditions and actions. A rule is applicable iff all the ’conditions’ are satisfied. If
the rule is fired, the ’actions’ are performed. A typical rule looks as follows:

(Area ?Region VLOW)

(Adjacent ?Region ?Regionl)

(Diff Average ?Region ?Regionl VLOW)
—

(Merge ?’Region ?Regionl)

The items before the => denote the conditions, while the items after it are the actions.
A ’7?7 before a name means it is to be treated as a variable. The rule says that if a region is
very small and its average intensity is very close to one of its adjacent regions, then merge
the small region with its adjacent region.

Most of the conditions in the rule are all pattern matched with the working memory
elements. There are only two kinds of conditions which are specially evaluated, in order
to make the testing faster. One of them is the 'DIFF’ condition, just used in the previous
example. To store the difference of every pair of regions for every property would be
tremendously expensive in terms of storage, which would in turn affect the time for pattern
matching. So, this is done on demand. The other type of condition which needs special
treatment is the 'TBIMODAL’ condition. There are rules whose conditions check for the
bimodality of the histogram of the region. This is a fairly expensive procedure. For the
same reason as the 'DIFF’ condition, it is evaluated only when necessary and not for all
regions.

In our rule base there are about 60 rules which guide the segmention. The rules are
fairly simple in nature since the properties computed are simple. Also, all conditions
pertain to the properties of the regions. A more sophisticated system would also use the
lines present in the image. The action part is very simple in our case. It is one of two
actions: split a region or merge two regions.

4.1.2 Interpreter

This is the component that drives the system. It has three phases: match, conflict resolu-
tion, and act. During the matching phase, the conditions of each rule are matched against
the working memory elements (except the two special conditions described previously). In
the conflict resolution phase, one of the matched rules is selected to be fired. In the ’act’
phase, the actions corresponding to the rule are performed. This cycle is repeated until
no rule is applicable.

In our implementation, the match and conflict resolution is combined into one phase.
The first rule whose conditions are satisfied is fired, and the rules are always selected in
the same order. The rationale for this scheme (besides the shortage of time) is that, in

our application, it really doesn’t make a lot of difference in the final result. By choosing a
different conflict resolution strategy, the order in which regions are split and merged will
be different, but the overall result will be very similar.

4.1.3 Working Memory

Working memory contains the properties of the different regions that are currently in the
image. Thus it gives a snapshot of the segmentation process. After the initial segmentation
and the building of the property table by the numeric component, the working memory is
built. The numeric values in the property table are mapped into a symbolic scale of five
values, very low, low, medium, high, very high. A simple technique from (4] is used for this.

Since the matching done by the interpreter is very simple-minded, the matching takes
a very long time. To make this more efficient, the working memory was partitioned into
several memory banks based on the properties. For example, there are separate working
memories for ’aspect-ratio’, and ’area’. Thus first step in matching is to see which working
memory the condition is to be matched against. As it turned out, it saved a considerable
amount of time in the matching process. ‘

Although there are only two kinds of action (split and merge) that are explicitly done,
the updating of the working memories is also an integral part of an action. After an action
is performed, there are some new regions and some of the old regions which cease to exist.
This information has to be added to the working memories. This is done implicitly after
every action.

4.2 Utility Lisp Functions

Besides the rule-based system, the symbolic component has lots of lisp functions to perform
tasks which complement it, e.g., making the initial working memory, to convert numeric
values of the properties of regions to symbolic values, update working memories after split
and merge, etc. There are several others which are essentially utility functions.

5 Linking the two Components

As mentioned before, the two components are written in different languages, the numeric
component in CFT, and symbolic component in PSL. Hence, it is necessary to build an
interface between these two in order for the system to work correctly. This is not a big
problem in machines with dynamic loaders. But with a machine like the CRAY which has
a static loader, there is no concept of loading an exterior program at runtime.

However, there is a way to get around it, which made linking possible. Since the PSL
kernel is written in CFT, the new CFT routines can be linked to the psl startup and a new

6

lisp can be rebuilt, from which the new CFT routines can be called. This has the same
effect as loading the routines at the runtime, but has some major problems. This will be
discussed in a later section. The rest of this section will be spent on describing this linking
process in detail.

The main steps involved in linking are as follows:

1. Write the new CFT code and debug it thoroughly. Also, compile the code and make
a library out of the routines. Although they can be compiled later while building
lisp, it is convenient to compile them first and directly load them. This way it takes
less time to rebuild lisp.

2. Create a link file, which essentially interfaces lisp functions and their corresponding
fortran functions. This is briefly explained below.

All the fortran functions are declared as foreign function. For example, if MERGE
and SPLIT are CFT functions which need to be called from PSL, then the following
declaralion has to be made.

(flag '(MERGE SPLIT) ’foreignfunction)

This declares "MERGE’ and SPLIT’ to be foreign—functions which in this case are
written in CFT. Now the new PSL functions are defined which can call these CFT
functions. All such functions have to be defined before lisp is rebuilt. Thus the
following definitions

‘(dc merge*(x y) (MERGE x y)) (de split*(x) (SPLIT x))

allows the use of CFT functions SPLIT and MERGE, indirectly through ’merge*’
and ’split*’, which are lisp functions. It is convenient to put the declarations and
the function definitions in one file.

3. Rebuild the Kernel module, with these modifications. Four modifications have to be
made in the job deck that produces the kernel module. The first two are essentially
to access the library of new fortran functions and lisp definition file.

*$NEWLIB is the library of new CFT functions
:&CCESS,DN=$NEWLIB,ID=IMG.

: FDEFS.PSL is the link file
:&CQUIRE,DN=FDEFS,TEXT=’$DISK FDEFS.PSL’.

Then the link file has to be loaded with the other kernel source files. So, the following
line should be added to the deck, just after the last kernel file has been loaded.

% AS is the last kernel source file
%

(dskin “AS")

% Now dskin the link file

%

(dskin “FDEFS”)

Finally, the load line has to be updated, to include the new library, SNEWLIB.

LDR,DN=$BLD:BLD,SET=ZERO,MM=10000:5000,MMEPS=100,"
MMLOC=AFTER,LIB=$NEWLIB.

If there is more than one library, as is the case with our implementation, they should
all be added at this point. Now the job is run to build a new kernel module.

4. The final step is to build a new lisp by using the new kernel. This is done by the
'NEWSYS’ job deck, without any modifications.

5.1 A Note About Rebuilding Lisp

Although the procedure described above should produce a new lisp with added links to
the CFT routines, there was a major problem during the actual rebuilding process. For
some reason the new lisp never got built. The problem was traced to the lisp function
savesystem, which is responsible for creating a new lisp from the current lisp image. After
several unsuccessful attempts to rebuild it, under different environments, we decided to
save the binary created while creating the new Kernel module and use it. This is done as
follows:

LDR,DN=$BLD:BLD,SET=ZERO,MM=10000:5000, MMEPS=100,"
MMLOC=AFTER,NX,AB=NPSL,LIB=§NEWLIB.
SAVE,DN=NPSL,ID=PSL.

After that, NPSL was used and it didn’t create any problems. However, some initial-
izations have to be made before using it. The only major one is to open the UTLIB, before
doing anything else. Also, when the new psl is fired, it prints out some COS messages,
which should be ignored.

6 Results, Extensions and Discussion

The system was tested and debugged for smaller images (32 by 32). Due to the shortage
of time, it was not possible to test the system on larger images. The images that were
tried are subimages of a LANDSAT image. Only one band was used for testing purposes.
The appendix has a sample run, along with some intermediate images. One trial run with
a 128 by 128 image was made. The system took more than 2 minutes, but still could not
finish (exceeded time limit). Smaller images take about 30 seconds of CPU time.

Although it was proposed to be a classification system as well, there was no attempt
to do that part, due to the lack of time. However, it is a simple extension to add this
feature. Essentially, additional CFT code has to be written to measure some additional
properties of the regions and after the segmenter has finished the classifier takes over.
Correspondingly, the rule-base has to be updated to include rules for classification as well.

T'o make the system run for bigger images, the array sizes in the common areas have to
be enlarged. Also, some of the routines may have to be rewritten for efficiency reasons. For
example, in the current system, the small regions are merged after the initial segrnentation.
Thus each small region has an entry in the property table. For bigger images, the number
of initial regions is extremely large, which necessitates the need for a very large property
table, even though most of them will be unused after the small regions are merged. A
better algorithm would be to dynamically merge the smaller regions, during the process
- of segmentation.

Despite these drawbacks, we feel the system is complete in terms of what the original
goal was: to demonstrate the combined numeric and symbolic capability on the CRAY.
This is a credible application to show that mixed computing can be done on the CRAY
and it provides a framework for such computation.

Besides the ones mentioned above, there can be several other extensions to the system.
The system can be modified to handle multi-channel images, which should be straight-
forward. The segmentation process can made be more sophisticated by including the
edges and lines in the analysis. This would increase the size of the rule base. A line finder
has to be written in CFT to do this.

The forward-chaining system can be drastically improved. What has been implemented
here is very simple-minded and slow. As the complexity of the rule base and the working
memory increases, the current system’s performance will go down very fast. A more
sophisticated system has to be written to handle bigger applications efficiently.

Although the CFT routines have not been completely optimized, there was some effort
to vectorize the code wherever it was straight-forward. However, the routines can be
improved by optimizing them further to take advantage of vector processing.

7 Comments and Recommendat_ions

In this section we comment briefly on the various tools that were used to build the system
and on the building process itself. The comments pertain to the environment when the
system was developed, which has since changed.

7.1 Developing PSL code

There was no support for PSL (or any kind of lisp for that matter) anywhere exccpt on the
CRAY. This made the development of PSL code very very difficult and time consuming.
Normally one develops lisp code interactively and incrementally using some kind of a lisp
editor. There are two ways to run PSL on the cray. In the batch mode, a job is submitted,
which runs PSL and the log file returns the results of the run. This has the usual overhead
of being queued, etc., which is rather frustrating for testing small functions. Altcrnatively,
one could get into the interactive mode and fire up PSL and then test the [unctions.
Although it might seem to be the faster method to test small functions, it is not always
true. When the system is even moderately loaded, this is very slow, and the batch mode
is actually faster! It was really frustrating to go through this process to develop ’SL code.
Obviously, this tremendously reduces the productivity of the programmer.

There is a very simple solution to this problem. Normally, one doesn’t need to run lisp
on the CRAY to test the code. So, the development can all be done on another machine.
After the code is developed and tested to some extent, it can be tested on the CRAY.
Thus it is necessary to have a lisp implementation on the host machine for development
purposes. It would be of great help for the two lisps to be the same or compatible. Even
a different dialect of lisp is better than none. Also, a lisp editor, like NMODE greatly
enhances the productivity.

7.2 Rebuilding LISP

The process of linking the CFT code to PSL has been described in detail earlier in this
report. The process is actually very straight-forward. However there is another side to it.
The process is not flexible. That is, if a change is made in the fortran code, or new code is
to be added, the lisp system has to be rebuilt. This process doesn’t take much time since
it is now done on the CRAY (it took about 25-30 seconds to rebuild our lisp). However,
during the development time this is done quite often (we had to rebuild lisp 20-30 times
on some days). This further slows down the software development time.

The main reason for this is that the CRAY has a static loader. So, new code can’t be
linked in at runtime. The scheme used here works, but is not very clean. We can’t think
of any simple way to get around it. But it would be a great help if one didn’t have to
rebuild lisp just because the fortran code has been modified.

10

Another factor in this scheme is the paramcter passing. It is very simplc to pass
parameters from PSL to CFT if the data types are simple, e.g., integers and lloats. In
our application, only integers were used; hence this was not a factor. However in other
applications, it might be necessary to pass complex data types, e.g. lists, or vectors. It
is not simple do the parameter passing in these situations. Utility functions liave to be
added to do these kinds of parameter passing. The knowledge of how the various data
types are stored in the two languages is necessary to write the utility functions. '

7.3 CSADIE and image processing

It was hoped that CSADIE would have enough subroutines to do all the image processing
needs of our system. As it turned out, it has very little which is ‘high level’ image processing
code. Most of the routines are for I/O or for very primitive image processing, e.g., filtering,
OR’ing images, etc. Thus a lot of time was spent on developing code for slightly higher
level routines.

To do any kind of serious image processing, CSADIE has to be substantially augmented.

Another alternative would be to port some already existing image processing package to
the CRAY.

Another problem with CSADIE, is that it is tape oriented. One consequence is that an
image file can’t be opened for reading and writing simultaneously. This prevents in-place
computation, which is not uncommon in image processing applications. The only way to
do it in the current system is to write into a temp file, close both files, open the original
file for writing and the temp file for reading and copy the temp file into the original line
by line. Even though it is optimized, it is still very slow.

With bigger memory machines,(CRAY-XMP and CRAY-2), it may be possible to load
the whole image into the memory. This will not only overcome the above problem, but
also make the system much faster by eliminating the time spent on I/O. However, the size
of the image that can be handled will now be dependent on the machine, which is not a
positive feature.

A minor comment about the CSADIE manual. It is lots of typos and and some technical
inaccuracies.

Acknowledgements

We would like to thank John Aldag and Cal Kirchhof at Cray Research Inc, Mendota
Heights, for making this project possible. The help of Dana Dawson and Bill Samayoa
at Mendota Heights is also deeply appreciated. Discussions with Dr. Robert Kessler, De-
partment of Computer Science, University of Utah at Salt Lake City helped us enormously
during the linking process.

11

References

[

2]

3]

4]

5]

[6]

Dana H. Ballard and Christopher M. Brown. Computer Vision. Prentice-IHall Inc.,
New Jersey.

Makoto Nagao and Takashi Matsuyama. A Structural Analysis of Compler Aerial
Photographs. Plenum Press, New York.

J. Wayne Anderson, Robert R. Kessler and William F. Galway. The Implementation
and Optimization of Portable Standard LISP for the CRAY. '

Ahmad M. Nazif. A rule-based expert system for smage segmentation. Ph.D. disserta-
tion, Dep. Elec. Engg., McGill University, Montreal, Canada, March 1983.

Steven L. Horowitz and Theodosios Pavlidis. Picture Segmentason by a Tree Traversal
Algorithm. JACM, Vol. 23, No. 2, April 1976, pp. 368-388.

William Samayoa. System Documntation, CSADIE 3.0 for Cray Computers.

12

APPENDIX

171149120 90 6B 90 OH 301271411 2105105105112120105105105105105105112120120 BJ B3 B3105 98 a0 76
1221171221811911861961 723152142102 97102 92 82 77 82102137137107 7/ 68 73 S8 63 S8 /7 92 82 71/ /'
1171271321721861671V4713/12/7107 97 97 92 B7 92 77 63 B2122117 82 73 58 3 58 64 53 /3 82 68 by 9.
V17132147152147214713212/7101 7002 92 97 92 77 B2 87 73 77112112 73 68 63 58 63 68 58 H210211214218)
1321421521582142132317210121007102 97 92 87 77 77 87 B7 87112102 68 68 73 77 74 77 74 87 47117181 14t
1273V37127122127102007100073v02102 97 77 77 77 73 73 H71021372102107107107v12102 62 73 S8 92103200 40
117117107102 92 97102 Q2107102 97 B7 77 77 77 82 871021271V42132122122122122110. H2 S8 68 77 970/
107107 97107 92 97 82 4“7 92 97 92 H2 77 77 87112142147152152122112 97107117102 B7 64 63 68 B iu/
107112102107107102 97 97 97102102 92 B2 77 B7107142157142157132137107107162127 97 Y92 68 63 8710/
1221171072102102107 92 92102 97 92 92 87 82 B7 97112142137152142162137102167147102 92 73 58 77 97
87 B7 82102112102 97 92 92 H72 B8/ 92 92 92 82 B7117137132137142152147117v2/7132107107 92 63 w6y 77/
77 82 B7 97 97 87 B2 B2 77 77 73 73 87 B7 77 77102142137137142122132137107112 97107117 B2 b3 /4
B2 82 87 82 B7 92 92 B2 71/ 13 73 77 77 77 17 77102157162142142127112142122 97 92102137122 63 g
H?7 97 97 87 82 82 77 17 17 713 74 B2 82 82 77 87 97147177147142Y37112017137117 B7 87112112 73 94
97 82 87 82 87 92 92 B/ 77 17 17 17 77 77 82 B7 8715721961721471471123012117107 97 921021107107 o4
97 B2 77 92102 97102 92 77 77 77 73 68 82 87 77 87137201177142137107117107102117102 82 9,107 92
92 87 82 87102102102 97 87 92 73 13 77 17 82 77 82127201186152142132132122122127107 87 B 92 o/
B2 82 87 92102107112102 92 82 73 73 82 82 B7 92 92 97172206177162192127127127v27112 87 77 73 b
87 77 82 92 9712117002002 847 77 73 73 82 92 92 87 87152221186191142012107107122107 73 63 OH 6B
82 82 87 82 87107412112 97 H» 73 73 77 73 87 97 82 77117147122117 97 92 B2 87107 97 73 SH 64 64
82 82 82 82 92102107 407 97 77 173 77 77 73 77 73 13 68 77 73 63 63 73 82 8B7 97112112 B2 63 63 68
B7 82 82 82 92 97 97 9/ 4/ 77 74 L8 63 73 68 63 68 63 63 58 63 68 63 73 92102112112 92 68 68 (1
82 82 82 82 921t 107 B2 73 74 bd S8 63 73 68 68 68 63 63 68 73 68 68 68 92117117112102 87 73 6
82 82 77 82 97122 97 6H us v 6H 63 63 63 73 63 63 68 63 68 73 73 73 68 9Y21223V22V12107 97 77 o4
77 77 77 77 97 97 68 H8 63 63 64 663 5B 58 73 68 58 63 58 58 63 68 68 63 73 92102107 97 87 77 S8
B2 77 B2 77 87 82 &3 63 684 /3 63 68 68 73 77 82 68 63 63 63 68 68 68 73 73 73 B7 97 97 97 77 64
77 82 77 77 82 17 68 o8B uvd oy /4 U2 82 97 97 B2 68 68 73 68 6B 77 77 B2102° 97 H2 87 87 87 17 13
87 82 77 77 87 77 63 o8 B2 92 B7 92102107107 82 63 68 63 68 82102107107122127112102 92 87 9/ .
77 82 77 77 82 77 17 872 87 4l B/ B2 B7102107 82 77 92102 82 97122122V 1710712216215921121173V32 a7
77 77 82 77 77 771 7 77 8¢ 92 97 92 87107102 97112112112 92 971121171221171271912532532361671 1
77 73 17 B7 82 H2 HZ? 8BZ B2 9102 97 B7 87 B2 7710711712210210713214714713214720125125325318061.7
82 77 73 H2 B7 82 H2 9 92 H7 B7 9 B/ 73 77 77 9713214211212722125322115213218123625321616.214"

Original Image

122122120020 90 98 9B127132127105%102102102 92 8210210510510%10510% 77 73 73 63 77 83 83 90 77 77
122122127132172167147137132127105102 97 92 < 82 8210510510710 02 73 68 64 63 73 82 82 82 17 17
1171V22132152172167147137127107 97 97 92 92 82 82 77 82112112 82 73 68 58 63 8 63 77 82 82 82 17
127132147152152147132127112102 97 92 92 87 B2 B2 BZ2 87112112 74 68 68 64 63 64 73 82 87102v17142
132132142147142132117Vv12107102 97 92 87 77 77 77 87 87102V02102 73 73 7?3 7 73 77 82 B7112132142
1271271271271220v12107107102102 97 92 77 77 77 77 87 B87102V121071071072107507 82 82 73 77 92117142
V171107107107102 97 97102102102 97 87 77 77 77 82 B7102127127122112107112112102 B2 68 68 77 92107
107107107102102 97 97 97 97 97 97 87 77 77 82 87112V421471421321221421171172112 92 68 68 68 87 92
1307107107102102 97 97 92 97 97 92 92 82 82 87107142142152142142132107107117117 97 87 68 68 87 87
107107102102102102 97 97 97 497 92 92 92 87 87 3971171371421421421421371272127027107 92 73 68 77 17
87 B7 9710202 97 92 92 92 87 87 87 87 87 87 B87112137137137142142137132v270121007102 92 73 713 73
82 82 87 B7 97 92 92 82 82 77 17 17 87 82 77 #42V02V371371421421428¥321271422107107107107 82 68 63
82 87 87 87 87 B7 82 77 17 73 13 17 82 17 77 1710214214714214213212712201 7107 97102112112 73 64
82 87 B7 B7 87 87 87 77 77 717 17 77 77 77 U7 87 97152197147142413700 70070407107 97 97012112 74 63
87 87 87 87 87 92 92 77 17 77 17 77 77 82 B2 B7 8714717217 214713710171012017107102 97102107 92 73
87 87 82 87 92102 97 92 82 77 77 17 77 77 B2 82 871371771773471421321170v17117107102 92 92 92
H2 82 B7 92102102102 97 B7 77 71373 77 82 B2 H7 9212717717271621421321273v22122140v73y07 B7 87 B7 87
342 82 87 92102102107102 92 82 73 73 77 B2 82 #H7 92 97172186186152142127122122122107 87 77 73 68
82 82 82 87 97107112112 97 82 73 73 73 82 87 92 92 92147172177152127112107107y07107 77 73 68 68
B2 82 82 87 921071v12107 97 82 77 73 713 17 2 87 B2 82 87122122117 97 92 92107107107 73 63 63 63
B2 82 82 82 92 97107 97 97 77 13 734 73 73 73 713 73 73 73 73 68 68 73 82 87 97107107 82 68 64 63
82 82 B2 82 92 97102 97 82 73 73 68 73 73 73 68 6B 68 63 63 6B 68 68 73 92102112112 92 73 68 63
B2 82 B2 82 92 97 97 87 73 73 68 63 63 bH b8 68 64 63 63 63 b8 68 68 73 9112112112102 B7 68 ©
B2 82 82 82 97 97 97 68 68 68 68 63 63 63 68 68 63 63 63 63 68 68 68 68 92102112107102 87 77 6.
77 77 77 82 B7 97 68 63 63 68 68 63 63 68 73 68 63 63 63 63 68 68 68 73 73 92102102 97 97 77 &
77 77 77 77 B2 B2 6B 63 63 6B 68 68 68 73 77 73 68 63 63 3 68 68 68 73 73 87 9, 97 97 87 77 7
B2 B2 77 77 77 77 6B 68 68 73 73 BY 82 97 H. 82 68 68 68 68 68 77 77 82 97 97 97 92 92 87 87 7
H72 77 77 77 77 77 77 68 B2 87 87 H? 92102 97 82 77 u8 bH 73 82 971071071071 12112102 92 92 v 9.
7077 17 077 77 77 77 77 82 87 92 87 92100102 97 B2 92 92 92 9710717V 2022122127182 0070070y
77 717 77 77 77 77 17 82 82 92 92 87 87 87 97 97 9711210210210201712212212217321v622012501 18614212
77 17 17 82 82 82 82 B2 JoYZ 92 92 87 B7 B2 97i071121121121102127147147132147131251283236167147
J7 77 717 77 77 77 77 B2 Bz 92 Y2 92 87 B7 87 210700200 210021021012122122127V342191251253236167 10/

Image after Mcdian Filtering

=,

© O\ = =

;

DO DLDDDDIDLLIDDLDODDODDLIDLDLLLOLID D MOJOO
DL DAL W

&
Tjef L O Db DL LS

5D DDDOIEDDHDLEDDELDD

L bbb

S

=

P =S SN S N

DL DXL DDODDLDLLD
DD DHD

o

DD LLLDOSLEDLLLLEDOMDLEDLDDL
o

P~y

LD b b

DL DD LDLLEDLLOLDLOIDDDDODDLOLEDLOOELDLDLDLEDLDS

DD L LAO2DLEDIMDDIDDDLODLDLLOIDLDLDLEDLELEDLDL DL LU
HDLDO>LLODLDLDLLDODEDLDLLDL L

Db Db D

DD DOLDDOELLILOIDLDDDLODLDOLDLDLDOELNDDLDOLOELDLLDLDLDLD

L &b OSD

o

LD DODDDLDLLDLEDDDODDIDIDAELELIEDLAEDLLDLDLL

L DD LADDIDLDDLDLDDLIDDLODDDDDDLDDLIDLLDLD

D LEDDLDIDOLDDDOLDDLLDLDDLDLDLLDLDLLLLLDLDNO

D DL DLDLLDIDLLOLLDLODLLLLLDLDLLLDLDHNONIORAR- -~
5D DL DDLDLDLDOLEDLLDMDODDLDDLDLDDDDLDLLLLLDLDLDOL

DH L DDDLDLDLLDDODDODDLDLDLDOIDDDLODLDDDDDLDDLDLD
bbbbbbbbb@bbbbbbbbbbbbbabbbz

SIS S S S S S R %

L

a0

DO DODDLDDLDOLLDLDLDDODS

29
29

[S2S TS

29

)

2 [eale2 Moz ez I iR x N 2]

(%)

38
44
1

[Sg S} (o2l el e2 M o2l o2 o2 B o2 M 02}

&N
oIS

65 6
65 /60 J7

17

4 /4
81[(82
11BS

14
43
43
SO
50
50
S0
S
50
50
S0
S0
50
38
38

Initial Segmenhtion

Number of Regions = 85

T
1

s 8

SN T N TN NS S ~ o~
SIN CEN NN N = e S
Ny safs o~ s s s o~ o~
NNNN N - =N N
NN N N~~~ ~inNco o
NN N - - Ao~
I O S o N S g~ 4 o) Yo e |
lllllllllllllllll N B ~
[e N o £ 4 Rl Yoy o len |
lllllllllllllllllll 3 L VERES
[N N N S L3 [{eItolte) B
llllllllllllllllll i~ Sy
e ll-o e B<o e B =2 T O O-
7 YN Selee
OO OO OW[0 Ofo
o~ Nf oy
MOOOOMO OO RK O]
(el {ee |
A B BHHO A0 o
NEoy o8
3o lse Mo RarNarR oo Moo Mool / o
o~
MM OO OM QX ax
ZM
ol elico Bk ol volio] ol
N O
DOOOHIOODIOoOOm fesibolice
N
OO OOMNNME
~N [
o R Buol oo Bioo losRas B lieo ¥ oo loo Hoollco
NN N2
MoMmsand o ofm

NN
F D O 7D 00 D OO 0% et 19 oy

NN
Y O 0 Y 05 €% D A O 00 B T VE MR IR Y T B % o N ey
el B Moo oo o it e B R B B il o ol e et Bl s et o B0
HASMRBER THAMsSsa AN S8 a9 Y
A NG aAA S e 9 E Sy R w A
DTN TF R TR A M e A B g o my oy e
MMM MMM MM TR M R e
73 1 0 &) DO O T30 T 401 Y DL0Y 1% a0 £ 1D 0 A 0N M VR Y
[so el ool oo e o oo lar B oa ll <o Bico Blvo B oo RGolie B ool coli e Bheg s B o oo B B
(3020 Moo lool2o R erMlao M 1o M s T oo Moo Moo Moo Moo M o0 Beo Ml oo Bee M oo Ml oo Bino B co iao Moo |
OO0 OOO0M
OO0 OMMm ey
OO0 OOOO0OOMOOMN0mo
OMNOOONONOANOOMOeOODOamaT

After Merging Small Regions

=4

Minimum Region Size

= 31

cglons

Number of R

20

j0

7320 20 ‘U

7

/

7

/

7

7

7

3

L8]
I o
S0 3y

78 28 28 28) 31

28
3423028 28 28 28 28 28

23

3
3

After Merging Regions 1 and 2

1 1 1 1 3 3 3 3 31218 4 a4 4 a4 aJs 5 5 5 5 5 5 5 6§ 4
I) 1 1 3 3 3 3 3/ 2 4 4 4 a4 /5 v 5 4 ¢ 5 5 B 5 4 4
1 8 1 1 3 3 3 3 z 2 2 4 4 £ 1] 5 5 O 2 5 H 5 5 Ey !
8 8 B 8 3 3 3 3 3 2 2 2/3 4 4 %) 5 5 ty 5] 5 5

8 8 8 8/ 3 3 3 3 3 2 2 5 5 % % 5 5 5§

9 9 8 3 3 3 3 3 2 2 2 2 > 5 5

3 3 3 3 3 3 3 3f 2 2 2 5 &5 b

3 3 3 3 3 3 3 3Y 2 2 7 5 5 5

4 3 3 3 3 3 3 3\2 2/3 5% 5

3 3 3 3 3 3 3 3 3 3 5 5 5 5
3 3 3 3 3 3 3 3 3_3 3 V7 5 8§ 9
3 3 3 3 3 a 4 3 17 5 5 5
3 3 3 34 34 34 34 34 34 g V7217 27 5 5
3 3 3 3 3) 34 34 34 34 34 34 V7 17 47 5 G
3 3 3 3 31 34 34 34 34 34 34 17 107 2R 5
3 3 3 3 3 34 34 34 34 34 V7 0 20 20 20
4 3 3 3 3 3 3334 34 34 34 17120 20 20 20
3 3 3 3 3 3 3if34 3a 34 34 17\20 22 22
34 3 3 3 3 3 it 44 34 34 34 17 (22 22 22 22
34 3 3 3 3 3 s] 14 34 34 34 17122 22 22 2%
34 34 3 3 3 3 i s34 34 34 34 17822 2 22 23
34 34 3 3 3 3 4 34 34 34 34 17 \&2 22 22 &
34 34 3 3 3 3744 34 44 44 34 17 17\22 27 27
34 3a 13 3 374 sa 44 34 34 34 17 AFN22 P ES
34 34 \3 Y 3a 34 34 44 34 34 34 17 17 17 Y22 2
34 34 34 34 34 34 33 44 34 34 34 12 17 17 2
34 34 34 34 44 34 34 44 34 34 34 2
34 34 34 34 44 3 4. 24 24 24 1
34 34 34 34 44 314 44 3 6 Y)
34 34 34 34 34 34 26 26 26 26 2r 28 2
34 34 34 34 34 34 8 28 28 28 28 28y 31 27 27 2
34 34 34 44 34 34 28 28 28 28431 31 31 27 27 2

After

Splitting Region 3

3 3 3 3 3J:¢\W 4 4 a 4 gJ575 § 5 &5 5 5 § 5 LG
3 3 3 3 3 2 2 4 4 B 4 5 5 5 5 B S S 5 S 5 O
3 03 4 3 2 2 2Y4 a 5 5 5 5 5 6§ § 5 5 5 4y
3 3 3 3 i Z 2 2 A 5 5 5 5 S S S 51
3 3 3 3 Z 2 = 5 5 S S 5 S S
3 3 1 3 % L2 2z 2 2 5 § 5 §
3 3 3 3 3 2 pis Vs 2 2 13 13 13) 5 5 S
3 3 3 3 3 [2 2 V2 12 12 13 13 155 5 5
3 3 3 3 3 2 /s 12 12 12 12 13 15 15 Y5 5§
3 3 3 3 3 3 3 L Ve V2 12 12 12 12 a2 12 17 15 5 5 5 5
3 3 3 3 3 3 3 3 : V2 012 v 02 2 02 012 vz v v a7 5 5 5 5
3/35 g 9 9 12 12 02 12 092 12 12 1217 17 37 07 Y5 S %
g 12 V2 02 02 1212 12 12 07 37 17 17 17T Y5 5
3 BY 2 12 12 1212 32 07 17 37 17 277 65
3 ¢ S IO\ 12 2 12 vz 0/ 2 v 07 17 200N\
3 V2 02 12 12 e vl ol a7 20 20 20 20
3 , Te 12 12 12 12 v v 14 20 20 20 20
3 S 3 12 120 1.F 02 17 20 22 7R v
3 VL VR 22 22 22 AP
3 V72 17 vy 22 22 22 2%
3 (A 5 - v v v B P S
3 v 17 17 22 22 2% 2
q VEOET 1) N7 22 R4 &Y
3 V2Ol V7T N7 22 22 27
: YOV E 12 17t 2y 24
17 17 2¥ Y
V70 17
4 24 17
5 26 27
G 27
27 27
2r 27

I'inal Image
Number of Regions = 37
Total Number of Rules IFired = 6
Time Taken = 37.328 scc

