
C o m b i n i n g

S y m b o l i c a n d N u m e r i c

C o m p u t a t i o n o n t h e C R A Y 1

Ashok Samal and Tom Henderson

UUCS-86-115 '

Department of Computer Science
University of Utah

Salt Lake City, UT 84112 USA

November 17, 1986

A b s t r a c t

It is now widely accepted that the CRAY supercomputers are very useful for large n u m e r i c

applications, e.g., Finite Element Analysis, Fluid Dynamics, Image Processing, etc. Much
work has been done to make them run efficiently on the CRAY. There has also been
some effort to do s y m b o l i c computing (AI applications) on these machines. A dialect of
LISP, called PSL (Portable Standard Lisp) has been available on the CRAY for some
time. However, there has been no effort to effectively combine the two, which is useful
for certain kinds of applications, e.g., image understanding. This work demonstrates the
mixed computing capability of the CRAY supercomputer by implementing a rule-based
segmentation system. The numeric part consists of the FORTRAN subroutines to segment
an image into regions, merge and split regions. A forward-chained production system to
guide the segmentation process forms to symbolic component. The process of linking the
two components is also described.

1T his work w as done at Cray R esearch Inc., M endota H eights during sum m er 1986.

It is now widely accepted that the CRAY supercomputers are very useful for large numeric
applications, e.g., F inite Element Analysis, Fluid Dynam ics, etc. Much work has been done
to make them run efficiently on the CRAY. There has also been some effort to do sym bolic
com puting (AI applications) on these machines. A dialect of lisp called PSL (for Portable
Standard Lisp) has been available on the CRAY - 1 and CRAY-XM P since 1984 [3]. It was
developed jointly at Los Alamos, University of Utah, and M endota Heights. It has since
been optim ized for the XM Ps by Cray Germany. However, there has been no effort to
effectively com bine the two, which is very useful for certain kind of applications.

An application which needs both these capabilities is image understanding. The goal
here is to classify/identify different regions in a given image. This is a very com plex task
and involves the use of several algorithms which are diverse in their com putational needs.
The algorithm s have traditionally been grouped under tw o main classes: low level and high
level. Low level algorithms work on the image, and produce som e symbolic information
about the image. These algorithms treat the im age as a two dimensional array of numbers.
In contrast, high level algorithms work on the symbolic data produced by the low level
algorithms to generate a symbolic description of the image. T he com putation in the low
level algorithms is highly numeric. In contrast the high level algorithms are sym bolic in
nature. T hus it is an application where both numeric and sym bolic capabilities are a

The goal of this project was to credibly dem onstrate the combined sym bolic / num eric
capability on the CRAY. The task chosen to show this was the segm entation of satellite
imagery. T he top level is a rule-based system which guides the segm entation process. This
forms the sym bolic com ponent of the system . At the bottom there are image processing
routines which constitute the numeric com ponent. The numeric routines are in Fortran,

2 O v e r a l l S y s t e m S t r u c t u r e / C o n t r o l F l o w

In this section we briefly describe how the system is organized and how the flow of control
takes place. T he first thing done after acquiring an image is noise reduction. A 3 by 3
median filter is used to sm ooth the image. Then the image is partitioned using a coarse,
but fast segm entation algorithm. A modified blob coloring algorithm [1] is used for this
purpose. A n integral part of any region growing algorithm is the merging of small regions
[5]. Normally a lot of regions are produced by this m ethod and m any of them are extremely
small. The next step is to merge the regions of size less than a certain threshold, w ith the
neighbor w ith the least difference in average intensity. Finally, the properties (e.g., area,
aspect ratio, etc.) of the regions are com puted and stored in a property table.

N ext the working memory to be used by the rule-based system is built. This is done
by accessing the property table just mentioned. From now on the rule-based system
has total control of the system . Depending on the situation, zero or more rules will fire
and correspondingly some actions will be taken. There are only two major actions that
are performed: m erge two regions, and sp lit a region into 2 or more regions. Both these
operations are done in CFT (Cray Fortran), although the symbolic com ponent also updates
the working memory. B oth these operations involve updating the segm ented image and
the property table. The split and merge operations are implemented in CFT since they
are very well suited for vector processing. Thus the numeric and the symbolic component
work hand in hand to effect the changes in the image.

T he system halts when there is no rule that can be fired. At this point the system has
the final segm ented image in a color map form. Figure 1 gives a pictorial description of
structure of the major com ponents of the system .

3 N u m e r i c C o m p o n e n t

As mentioned before, it is made out of image processing routines which are all in CFT.
CRAY has an image processing package called CSADIE [6]. It is a tape-oriented system
and has only very primitive routines, e.g., filtering, OR’ing images, etc. It provides however
a nice starting point to develop more sophisticated routines, since it has functions to do
I/O cleanly. For our application it was necessary to develop several major routines, since
they are not available in CSADIE. They will be briefly described below.

• B lo b C o lo r in g : This is a sim ple two pass algorithm to do segm entation. It is
described in detail in [l]. It has been modified for gray scale images in an obvious
manner.

• T h r e sh o ld F in d in g : T he threshold value for segm entation is adaptively deter­
mined from the image under consideration. This is done using an algorithm described
in [2], T he first step is to differentiate the image, which also has been implemented,
as an independent routine.

• C o m p u tin g R e g io n P r o p e r t ie s : Properties of the regions are used by the rule-
based system to perform split and merge on them . These are more efficiently com­
puted in C FT. T he various properties that are com puted are: average intensity,
variance, area, aspect ratio, number of adjacent regions, and adjacency values for
each adjacent region. Some other properties like xm in, xm ax, ym in and ym ax are
also com puted since they help in locating the regions in the im age much faster. All
these properties have to be recomputed when either merging or splitting takes place.

2

------------- N um eric ----------------- ► •*— Sym bolic — ►

Figure 1: B lock D iagram o f th e S ystem Show ing M ajor C om ponents

• S p lit t in g a R e g io n : This is one of the actions the rule-based system performs.
The region is split into several regions around a certain value obtained from the
region itself. The old region is relabelled and the property table is correspondingly
updated.

• M e r g in g tw o R e g io n s : This is the other action performed by the rule-based
system . Here two adjacent regions are merged and are labelled as the same regions.
One of the two regions is removed from the property table and the properties of their
adjacent regions are updated.

Some other subroutines, e.g., to check if the histogram of a region is bimodal, etc., have
also been implemented.

3.1 Common Blocks

CSADIE has a com m on block to m aintain the parameters of interest to the CSADIE
routines. In addition to it, we m aintain another common block called PSLC, for storing
the item s which will be needed by the symbolic com ponent. This includes the ids of the
image and the segm ented image, number of regions, the property table and the adjacency
table (which stores the adjacency information). W hen the symbolic com ponent needs the
value of any property it is looked up in the appropriate table and returned.

4 S y m b o l i c C o m p o n e n t .

The symbolic com ponent consists of a rule-based system and several lisp functions, which
work alongside the rule-based system . All the units in this com ponent are w ritten in PSL.

4.1 Rule-Based System

It is essentially a forward-chaining production system . Like any other production system ,
it has 3 parts: Rule B ase , Working M em ory , and Interpreter. The working memory here
consists of item s representing the properties of different regions, e.g., (Area Region-1
L O W), (A sp e c t-R a tio R egion-3 VHIGH), etc. The details of how the working memory
elem ents are built and maintained will be described later in this section.

4 .1 .1 R ule B ase

The rule base consists of the set of rules which guide the segm entation process. These rules
are derived from the knowledge about the segm entation itself and from the domain from
which the image is taken, e.g., LANDSAT images, outdoor scenes, etc. Every rule has two

4

parts: conditions and actions. A rule is applicable iff all the ’conditions’ are satisfied. If
the rule is fired, the ’actions’ are performed. A typical rule looks as follows:

(Area ?Region V LO W)
(A djacent ?Region ?Regionl)
(D iff A verage ?Region IR egionl V LO W) ■

(M erge TRegion ?Regionl)

The items before the = > denote the conditions, while the items after it are the actions.
A ’ ?’ before a name means it is to be treated as a variable. The rule says that if a region is
very small and its average intensity is very close to one of its adjacent regions, then merge
the small region with its adjacent region.

Most of the conditions in the rule are all pattern matched with the working memory
elements. There are only two kinds of conditions which are specially evaluated, in order
to make the testing faster. One of them is the ’DIFF’ condition, just used in the previous
example. To store the difference of every pair of regions for every property would be
tremendously expensive in terms of storage, which would in turn affect the time for pattern
matching. So, this is done on demand. The other type of condition which needs special
treatment is the ’BIMODAL’ condition. There are rules whose conditions check for the
bimodality of the histogram of the region. This is a fairly expensive procedure. For the
same reason as the ’DIFF’ condition, it is evaluated only when necessary and not for all
regions.

In our rule base there are about 60 rules which guide the segmention. The rules are
fairly simple in nature since the properties computed are simple. Also, all conditions
pertain to the properties of the regions. A more sophisticated system would also use the
lines present in the image. The action part is very simple in our case. It is one of two
actions: split a region or merge two regions.

4 .1 .2 In te r p r e te r

This is the component that drives the system. It has three phases: match, conflict resolu­
tion, and act. During the matching phase, the conditions of each rule are matched against
the working memory elements (except the two special conditions described previously). In
the conflict resolution phase, one of the matched rules is selected to be fired. In the ’act’
phase, the actions corresponding to the rule are performed. This cycle is repeated until
no rule is applicable.

In our implementation, the match and conflict resolution is combined into one phase.
The first rule whose conditions are satisfied is fired, and the rules are always selected in
the same order. The rationale for this scheme (besides the shortage of time) is that, in

our application, it really doesn’t make a lot of difference in the final result. B y choosing a
different conflict resolution strategy, the order in which regions are split and merged will
be different, but the overall result will be very similar.

4 .1 .3 W o rk in g M e m o r y

Working memory contains the properties of the different regions that are currently in the
image. Thus it gives a snapshot of the segm entation process. After the initial segm entation
and the building of the property table by the numeric com ponent, the working memory is
built. The numeric values in the property table are mapped into a sym bolic scale of five
values, very low, low, m edium , high, very high. A sim ple technique from [4] is used for this.

Since the m atching done by the interpreter is very simple-minded, the m atching takes
a very long tim e. To make this more efficient, the working memory was partitioned into
several memory banks based on the properties. For exam ple, there are separate working
memories for ’aspect-ratio’, and ’area’. Thus first step in m atching is to see which working
memory the condition is to be m atched against. As it turned out, it saved a considerable
am ount of tim e in the m atching process.

A lthough there are only two kinds of action (split and merge) that are explicitly done,
the updating of the working memories is also an integral part of an action. After an action
is performed, there are some new regions and some of the old regions which cease to exist.
This information has to be added to the working memories. This is done im plicitly after
every action.

4.2 U tility Lisp Functions

Besides the rule-based system , the symbolic com ponent has lots of lisp functions to perform
tasks which com plem ent it, e.g., making the initial working memory, to convert numeric
values of the properties of regions to symbolic values, update working memories after split
and merge, etc. There are several others which are essentially utility functions.

5 L i n k i n g t h e t w o C o m p o n e n t s

As m entioned before, the two com ponents are w ritten in different languages, the numeric
com ponent in C FT, and symbolic com ponent in PSL. Hence, it is necessary to build an
interface between these two in order for the system to work correctly. This is not a big
problem in machines w ith dynamic loaders. B ut w ith a machine like the CRAY which has
a static loader, there is no concept of loading an exterior program at runtime.

However, there is a way to get around it, which m ade linking possible. Since the PSL
kernel is w ritten in CFT, the new C FT routines can be linked to the psl startup and a new

6

lisp can be rebuilt, from which the new C FT routines can be called. This has the same
effect as loading the routines at the runtime, but has some major problems. This will be
discussed in a later section. The rest of this section will be spent on describing this linking
process in detail.

The main steps involved in linking are as follows:

1 . Write the new C FT code and debug it thoroughly. Also, compile the code and make
a library out of the routines. A lthough they can be compiled later while building
lisp, it is convenient to compile them first and directly load them . This way it takes
less tim e to rebuild lisp.

2. Create a link file, which essentially interfaces lisp functions and their corresponding
fortran functions. This is briefly explained below.

All the fortran functions are declared as foreign fu n ction . For example, if MERGE
and SPLIT are CFT functions which need to be called from PSL, then the following
declaration has to be made.

(Sag ’(M E R G E S P L IT) ’foreignfunction)

This declares ’MERGE* and ’SPLIT’ to be foreign-functions which in this case are
written in C FT. Now the new PSL functions are defined which can call these CFT
functions. All such functions have to be defined before lisp is rebuilt. Thus the
following definitions

(dc m erg e* (x y) (M E R G E x y)) (de sp lit* (x) (S P L IT x))

allows the use of C FT functions SPLIT and M ERGE, indirectly through ’merge*’
and ’sp lit*’, which are lisp functions. It is convenient to put the declarations and
the function definitions in one file.

3. Rebuild the K e rn e l module, w ith these modifications. Four modifications have to be
m ade in the job deck that produces the kernel module. T he first two are essentially
to access the library of new fortran functions and lisp definition file.

*$NEW LIB is the library of new C FT functions
*
A C C E SS,D N =$N E W L IB ,ID =IM G .
*
* FD EFS.PSL is the link file
*
A C Q U IR E ,D N =F D E F S,T E X T = ’$DISK FD E FS.PSL ’.

7

Then the link file has to be loaded with the other kernel source files. So, the following
line should be added to the deck, just after the last kernel file has been loaded.

% AS is the last kernel source file
% .

(dskin “A S”)
% Now dskin the link file
% .
(dskin “FD E FS”)

Finally, the load line has to be updated, to include the new library, $NEW LIB.

LD R ,D N =$B L D :B L D ,SE T =Z E R O ,M M =10000:5000,M M E PS=100,A
M M LO C =A FTER ,LIB=$N EW LIB.

If there is more than one library, as is the case with our im plem entation, they should
all be added at this point. Now the job is run to build a new kernel module.

4. The final step is to build a new lisp by using the new kernel. This is done by the
’N E W SY S’ job deck, w ithout any modifications.

5.1 A N ote A bout Rebuilding Lisp

A lthough the procedure described above should produce a new lisp w ith added links to
the CFT routines, there was a major problem during the actual rebuilding process. For
some reason the new lisp never got built. The problem was traced to the lisp function
sa vesys tem , which is responsible for creating a new lisp from the current lisp image. After
several unsuccessful attem pts to rebuild it, under different environments, we decided to
save the binary created while creating the new K ern e l m odule and use it. This is done as
follows:

L D R ,D N =$BLD :BLD ,SET=Z ER O ,M M =10000:5000,M M EPS=100,"
M M L O C =A FT E R ,N X ,A B =N P SL ,L IB =$N E W L IB .
SA V E ,D N =N P SL ,ID =P SL .

After that, NPSL was used and it didn’t create any problems. However, some initial­
izations have to be made before using it. The only major one is to open the UTLIB, before
doing anything else. Also, when the new psl is fired, it prints out some COS messages,
which should be ignored.

8

6 R e s u l t s , E x t e n s i o n s a n d D i s c u s s i o n

The system was tested and debugged for smaller images (32 by 32). Due to the shortage
of time, it was not possible to test the system on larger images. The images that were
tried are subimages of a LANDSAT image. Only one band was used for testing purposes.
The appendix has a sample run, along with some intermediate images. One trial run with
a 128 by 128 image was made. The system took more than 2 minutes, but still could not
finish (exceeded time limit). Smaller images take about 30 seconds of CPU time.

Although it was proposed to be a classification system as well, there was no attempt
to do that part, due to the lack of time. However, it is a simple extension to add this
feature. Essentially, additional CFT code has to be written to measure some additional
properties of the regions and after the segmenter has finished the classifier takes over.
Correspondingly, the rule-base has to be updated to include rules for classification as well.

To make the system run for bigger images, the array sizes in the common areas have to
be enlarged. Also, some of the routines may have to be rewritten for efficiency reasons. For
example, in the current system, the small regions are merged after the initial segmentation.
Thus each small region has an entry in the property table. For bigger images, the number
of initial regions is extremely large, which necessitates the need for a very large property
table, even though most of them will be unused after the small regions are merged. A
better algorithm would be to dynamically merge the smaller regions, during the process
of segmentation.

Despite these drawbacks, we feel the system is complete in terms of what the original
goal was: to demonstrate the combined numeric and symbolic capability on the CRAY.
This is a credible application to show that mixed computing can be done on the CRAY
and it provides a framework for such computation.

Besides the ones mentioned above, there can be several other extensions to the system.
The system can be modified to handle multi-channel images, which should be straight­
forward. The segmentation process can made be more sophisticated by including the
edges and lines in the analysis. This would increase the size of the rule base. A line finder
has to be written in CFT to do this.

The forward-chaining system can be drastically improved. What has been implemented
here is very simple-minded and slow. As the complexity of the rule base and the working
memory increases, the current system’s performance will go down very fast. A more
sophisticated system has to be written to handle bigger applications efficiently.

Although the CFT routines have not been completely optimized, there was some effort
to vectorize the code wherever it was straight-forward. However, the routines can be
improved by optimizing them further to take advantage of vector processing.

9

7 C o m m e n t s a n d R e c o m m e n d a t i o n s

In this section we com m ent briefly on the various tools that were used to build I lie system
and on the building process itself. The comments pertain to the environment, when the
system was developed, which has since changed.

7.1 Developing PSL code

There was no support for PSL (or any kind of lisp for that matter) anywhere excopt on the
CRAY. This made the development of PSL code very very difficult and tim e consuming.
Norm ally one develops lisp code interactively and incrementally using some kind of a lisp
editor. There are two ways to run PSL on the cray. In the batch mode, a job is subm itted,
which runs PSL and the log file returns the results of the run. This has the usual overhead
of being queued, etc., which is rather frustrating for testing small functions. Alternatively,
one could get into the interactive m ode and fire up PSL and then test the Functions.
A lthough it might seem to be the faster m ethod to test small functions, it is not always
true. W hen the system is even m oderately loaded, this is very slow, and the batch mode
is actually faster! It was really frustrating to go through this process to develop PSL code.
Obviously, this trem endously reduces the productivity of the programmer.

There is a very sim ple solution to this problem. Normally, one doesn’t need to run lisp
on the CRAY to test the code. So, the development can all be done on another machine.
After the code is developed and tested to some extent, it can be tested on the CRAY.
Thus it is necessary to have a lisp im plem entation on the host machine for development
purposes. It would be of great help for the two lisps to be the same or com patible. Even
a different dialect of lisp is better than none. Also, a lisp editor, like NM ODE greatly
enhances the productivity.

7.2 Rebuilding LISP

T he process of linking the CFT code to PSL has been described in detail earlier in this
report. T he process is actually very straight-forward. However there is another side to it.
The process is not flexible. T hat is, if a change is made in the fortran code, or new code is
to be added, the lisp system has to be rebuilt. This process doesn’t take much tim e since
it is now done on the CRAY (it took about 25-30 seconds to rebuild our lisp). However,
during the developm ent tim e this is done quite often (we had to rebuild lisp 20-30 times
on some d ays). This further slows down the software development tim e.

T he main reason for this is that the CRAY has a static loader. So, new code can’t be
linked in at runtime. T he scheme used here works, but is not very clean. We can’t think
of any simple way to get around it. But it would be a great help if one didn’t have to
rebuild lisp just because the fortran code has been modified.

10

Another factor in this scheme is the parameter passing. It is very simple1 to pass
parameters from PSL to CFT if the data types are simple, e.g., integers and I [oats. In
our application, only integers were used; hence this was not a factor. However in other
applications, it might be necessary to pass com plex data types, e.g. lists, or vectors. It
is not simple do the parameter passing in these situations. U tility functions .have to be
added to do these kinds of parameter passing. The knowledge of how the various data
types are stored in the two languages is necessary to write the utility functions.

7.3 CSADIE and image processing

It was hoped that CSADIE would have enough subroutines to do all the image processing
needs of our system . As it turned out, it has very little which is ‘high level’ image processing
code. M ost of the routines are for I/O or for very primitive image processing, e.g., filtering,
OR’ing im ages, etc. Thus a lot of tim e was spent on developing code for slightly higher
level routines.

To do any kind of serious image processing, CSADIE has to be substantially augmented.
Another alternative would be to port some already existing image processing package to
the CRAY.

Another problem w ith CSADIE, is that it is tape oriented. One consequence is that an
image file can’t be opened for reading and writing simultaneously. This prevents in-place
com putation, which is not uncommon in image processing applications. The only way to
do it in the current system is to write into a tem p file, close both files, open the original
file for writing and the tem p file for reading and copy the temp file into the original line
by line. Even though it is optim ized, it is still very slow.

W ith bigger memory m achines,(CRAY-XM P and CRAY-2), it may be possible to load
the whole image into the memory. This will not only overcome the above problem, but
also make the system much faster by eliminating the tim e spent on I/O . However, the size
of the image that can be handled will now be dependent on the machine, which is not a
positive feature.

A minor com m ent about the CSADIE manual. It is lots of typos and and some technical
inaccuracies.

A c k n o w l e d g e m e n t s

We would like to thank John Aldag and Cal Kirchhof at Cray Research Inc, M endota
Heights, for making this project possible. The help of Dana Dawson and Bill Samayoa
at M endota Heights is also deeply appreciated. Discussions w ith Dr. Robert Kessler, De­
partm ent of Computer Science, University of U tah at Salt Lake City helped us enormously
during the linking process.

11

R e f e r e n c e s

[1] Dana H. Ballard and Christopher M. Brown. C om puter Vision. Prentice-IIall Inc.,
New Jersey.

[2] Makoto Nagao and Takashi M atsuyama. A S tructura l A n a lysis o f C om plex A eria l
P hotographs. P lenum Press, New York.

[3] J. Wayne Anderson, Robert R. Kessler and W illiam F. Galway. The Im p lem en ta tion
and O p tim iza tio n o f P ortab le S tan dard L IS T fo r the C R A Y. '

[4] Ahinad M. Nazif. A rule-based expert sy s te m fo r im age segm en ta tion . Ph.D . disserta­
tion, Dep. Elec. Engg., McGill University, Montreal, Canada, March 1983.

[5] Steven L. Horowitz and Theodosios Pavlidis. P ic tu re S egm en ta ion by a Tree Traversal
A lgorithm . JACM , Vol. 23, No. 2 , April 1976, pp. 368-388.

[6] W illiam Samayoa. S ystem D ocu m n ta tion , C S A D IE S.O fo r C ray C om puters.

12

APPENDIX

1 7 1 1 4 9 1 2 0 Qfl 1 3 4 1 1 2 f) § 1 0 5 i 0 5 1 1 2 1 2 0 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 1 2 1 2 0 1 2 0 b :i 8 3 8 3 1 0 5 9 6 9 0 76122 1 17 1 2 2 1 8 1 191 18 6 19 6 17 2 i 5 2 1 J 2 1 0 2 9 7 10 2 9 2 8 2 7 7 8 2 1 0 2 1 3 7 1 3 7 1 0 7 7/ 6 8 7 3 5 8 6 3 5 8 / / 9 2 8 2 7 / ’
1 1 7 1 2 7 1 3 2 1 7 2 1 8 6 1 6 7 1 4 / 1 3 / 1 2 / 1 0 / 9 7 9 7 9 2 8 7 9 2 7 7 6 3 8 2 1 2 2 1 1 7 8 2 7 3 5 8 5 3 5 8 6 3 5 3 3 8 2 68 6 8 9
1 1 7 1 3 2 14 7 1 5 2 1 4 7 1 4 7 1 3 2 1 2 / 1 1 / 1 0 2 9 2 9 / 9 2 7 7 8 2 8 7 7 3 7 7 11 2 1 1 2 7 3 6 8 6 3 5 8 6 3 68 5 8 B 2 102 l 1 2 1 4 2 8 i
1 3 2 1 4 2 1 5 2 1 5 2 1 4 2 1 3 2 i 1 / 1 l 10 7 1 0 ? 9 7 9 2 8 7 7 / 7 7 8 7 8 7 8 7 1 12 1 0 2 68 6 8 7 3 7 7 3 / / 3 B 7 8 / 1 1 / 1 8 1 ^ i ,

1 2 7 1 3 7 1 2 7 1 2 2 1 2 71 12 1 (J / i (l y 1 0 / 1 0 2 1 0 2 9 7 7 7 / 7 7 7 7 3 7 3 8 7 1 0 2 1 1 7 1 0 2 1 0 7 1 0 7 1 0 7 l 1 2 1 0 2 B 2 7 3 5 8 9 2 1 3 2 i 2
1 1 7 1 W 1 0 7 1 0 2 9 2 9 7 1 0 2 1 2 10 7 10 2 9 7 B 7 77 7 7 7 7 8 2 8 7 1 0 2 1 2 7 1 4 2 1 3 2 1 2 2 1 2 2 1 2 2 1 2 2 1 I 2 H 2 5 B 5 8 / 7 9 2 0 /
1 0 7 1 0 7 9 7 1 0 7 9 2 9 7 9 2 8 7 9 2 9 7 9 2 B 2 7 7 77 8 7 1 1 2 1 4 2 1 4 7 1 5 2 1 5 2 1 2 2 1 12 9 7 1 0 7 I 1 7 10 2 8 / 68 6 3 68 8 / 1 l /
1 0 7 1 1 2 1 0 2 10 7 1 0 7 10 2 9 7 9 / 9 7 l 0 2 1 0 2 9 2 8 2 7 7 8 7 1 0 7 1 4 2 1 5 7 1 4 2 1 5 7 1 3 2 1 3 7 1 0 7 1 0 7 16 2 12 7 9 / 9 2 68 6 3 8 / 0 /12 2 1 17 1 0 7 1 0 2 1 0 2 1 0 7 9 2 9 2 1 0 2 9 7 9 2 9 2 8 7 8 2 8 7 9 7 1 1 2 1 4 2 1 3 7 1 5 2 1 4 2 1 6 2 1 3 / 1 0 2 1 6 7 l 4 / 10 2 9 2 7 3 5 8 7 / 9 /

0 7 8 7 8 2 102 1 1 2 1 0 2 9 7 9 2 9 2 8 / 8 / 9 2 9 2 9 2 8 2 8 7 1 1 7 1 3 7 1 3 2 1 3 7 1 4 2 1 5 2 1 4 7 1 17 1 2 / 1 3 2 1 0 / 1 0 7 9 2 6 3 6 8 7 /
7 7 8 2 8 7 9 7 9 7 8 7 8 2 8 2 V 7 7 7 3 7 3 8 7 8 7 7 7 7 7 1 0 2 1 4 2 1 3 7 1 3 7 1 4 2 1 2 2 1 3 2 1 3 7 10 7 1 12 9 7 1 0 7 1 1 7 8 2 6 3 / 3
B 2 8 2 8 7 8 2 8 7 9 2 9 2 B 2 7 / 3 7 3 7 7 7 7 7 7 7 7 7 7 1 0 2 1 5 7 1 6 2 1 4 2 1 4 2 1 2 7 1 1 2 1 4 2 1 2 2 9 7 9 2 1 0 2 1 3 7 1 2 2 6 i C.H
B 7 9 7 9 7 8 7 8 2 8 2 7 7 7 7 1 1 7 3 / 3 8 2 8 2 8 2 77 8 7 9 7 1 4 7 1 7 7 1 4 7 1 4 2 1 3 7 1 1 2 1 1 7 1 3 7 1 1 7 8 / 8 7 1 1 2 1 1 2 73 5 8
9 7 8 2 8 7 8 2 8 7 9 2 9 2 B ' 7 / / / / 7 7 7 7 7 7 8 2 8 7 8 7 1 5 2 1 9 6 1 7 2 1 4 7 1 4 7 1 1 2 1 1 2 1 1 1 0 7 9 / 9 2 1 0 2 l 1 / 1 0 1 68
9 7 8 2 7 7 9 2 1 0 2 9 7 102 9 2 7 / 7 7 7 7 7.3 68 8 2 8 7 7 7 8 7 1 3 7 2 0 1 1 7 7 1 4 2 1 3 7 1 0 7 1 1 7 1 0 7 1 0 2 1 1 7 1 0 2 B 2 9 2 1 0 7 9 2
9 2 8 7 8 2 8 7 1 0 2 1 0 2 102 9 / B ; 8 2 7 3 7 3 7 7 7 7 8 2 7 7 8 2 1 2 7 2 0 1 1 8 6 1 5 2 1 4 2 1 3 2 1 3 2 1 2 2) 2 2 12 7 1 0 7 8 7 8 7 9 2 n i8 2 8 2 8 7 9 2 1 0 2 1 0 7 1 1 2 1 0 2 9 2 8 2 / 3 7 3 8 2 8 2 8 7 9 2 9 2 9 7 1 7 2 2 0 6 1 7 7 1 6 2 1 5 2 1 2 7 1 2 7 1 2 7 12 7 1 12 B 7 7 / 7 3 68
8 7 7 7 8 2 9 2 9 7 1 12 1 1 7 1 1 2 1 0 2 B / / / 7 3 7 3 8 2 9 2 9 2 8 7 8 7 1 5 2 2 2 1 1 9 6 1 9 M 4 2 M 2 1 0 7 1 0 7 1 2 2 1 0 7 / 3 6 3 68 68
8 2 8 2 8 7 8 2 8 7 1 0 7 1 1 2 1 1 2 9 ; H 2 1 3 7 3 7 7 3 8 7 9 7 8 2 7 7 1 1 7 1 4 7 1 2 2 1 1 7 9 7 9 2 8 2 8 7 1 0 7 9 7 73 5 8 6 3 6 3
B 2 B 2 B 2 B 2 9 2 10 2 10 7 1 u / 9 / 7 7 7 3 7 7 77 7 3 7 7 7 3 7 3 6 0 7 7 7 3 6 3 6 3 7 3 8 2 8 7 9 7 112 1 1 2 8 2 6 3 6 3 68
B 7 8 2 8 2 8 2 9 2 9 / 9 / 9 / 8 / / 7 3 68 6 3 7 3 68 6 3 68 6 3 6 3 5 8 6 3 6f l 6 3 7 3 9 2 1 0 2 1 2 1 2 9 2 68 68 6 1
8 2 02 8 2 8 2 9 2 U 2 1 0 / 8 2 / 3 / 3 68 5 8 6 3 7 3 68 68 68 6 3 6 3 68 7 3 6 8 6 8 6 8 9 2 1 1 7 1 1 7 I 1 2 102 8 / / 3 6 \
8 2 8 2 77 8 2 9 7 I 2 2 9 / lit! u .S ui i 68 6 3 6 3 6 3 7 3 6 3 6 3 68 6 3 68 7 3 7 3 7 3 6 8 9 2 12 2 12 2 1 12 1 0 7 9 7 7 7 6 1
7 7 7 7 7 7 7 7 9 7 9 7 6B 5 B 6 J 6 3 68 6 3 5 B 5 8 7 3 68 5 8 6 3 5 8 5 0 6 3 6 8 6 8 6 3 7 3 9 2 1 0 2 1 0 7 9 7 8 7 7 7 5 8

B 2 7 7 B 2 7 7 8 7 8 2 6 3 6 3 6 8 3 6 3 68 68 7 3 7 7 8 2 68 6 3 6 3 6 3 68 6 8 6 0 7 3 7 3 7 3 8 7 9 7 9 7 9 7 7 7 6 3
7 7 8 2 7 7 7 7 8 2 6B 68 u 3 6 8 I 3 B 2 8 2 9 7 9 7 8 2 68 68 7 3 68 6B 7 7 7 7 8 2 1 0 2 9 7 8 2 8 7 8 7 0 7 7 / / 1
8 7 8 2 7 7 7 7 8 7 7 7 6 3 68 8 2 9 2 B 7 9 2 1 0 2 10 7 1 0 7 8 2 6 3 68 6 3 68 8 2 1 0 2 1 0 7 1 0 7 1 2 2 1 2 7 1 l 2 1 0 2 9 2 8 7 9 / 9 2
7 7 8 2 7 7 7 7 8 2 7 7 / B 2 B 7 9 2 B / H 2 B 7 1 0 2 1 0 7 8 2 7 7 9 2 1 0 2 8 2 9 7 1 2 2 1 2 2 1 1 7 1 0 7 1 2 2 1 6 2 1 5 2 1 12 1 1 7 1 3 2 lJ /

7 7 7 7 8 2 7 7 7 7 7 7 7 7 / 8 2 9 2 9 / 9 2 8 7 1 0 7 1 0 2 9 7 112 1 1 2 1 1 2 9 2 9 7 1 12 1 1 7 1 2 2 1 1 7 l 2 7 1 9 1 2 5 3 2 5 3 2 3 6 1 6 / 1 /

7 7 7 3 77 8 7 8 2 H 2 B 2 B 2 B 2 9 2 1 0 2 9 7 8 7 8 7 8 2 7 7 1 0 7 1 1 7 1 2 2 1 0 2 1 0 7 1 3 2 1 4 7 1 4 7 1 3 2 1 4 7 2 0 1 2 5 1 2 5 3 2 5 3 I Bt , 2 !
8 2 77 7 3 8 2 B 7 B 2 H 2 9 2 9 2 8 7 B 7 9 2 B / 73 7 7 7 7 9 7 1 3 2 1 4 2 1 1 2 1 2 7 2 2 1 2 5 3 2 2 1 1 5 2 1 3 2 1 8 1 2 3 6 2 5 3 2 1 6 1 6 2 A '

O r i g i n a l I m a g e

1 2 2 1 2 2) 2 0 1 2 0 90 98 98127132127105102102102 9 2 82 1 02 1 05 1 O') 1 05105 1 Oc) 7 7 / 3 7 3 6 3 / 7 8 3 8 3 90 7 7 7 7
122122127132172167147137)3 21 27 105102 97 9 2 9 2 8 2 8 2 11)5 1 05 10 7 10 5 0 2 73 6 8 63 6 3 7 3 8 2 82 82 / / 7 /
11/12 2132152172167)47137127107 9 7 9 7 92 9 2 8 2 8 2 7 7 8 2 1 1 2 1 1 2 82 7 3 6 8 58 63 58 6 3 77 0 2 82 82 7 /
l 2 7 132147152152147132127 I 12102 97 92 92 87 82 8 2 8 2 8 7 l i 2 112 / 3 6 8 6 8 6 l 6 3 6 3 / .1 82 8/102117 1 4 2
132132142147142132117112107102 97 92 87 7 7 7 7 7 7 87 8 7 10 21 0 2 1 IJ 2 / 3 7 3 7 3 7 7 7 3 7 / 82 87 1 1 2 132 1 4 2
1271271271271221 1210710710 2102 97 92 77 7 7 7 7 7 7 8 7 8 7 1 0 21 1 2 Ul 710 7 10 7 10 7', 0 7 8 2 82 73 7 7 92117 3 2
1 7I 17 107107102 97 97 1 0 2 1 0 2 1 0 2 97 87 7 7 7 7 7 7 8 2 8 7 1021 27 12 7 122 112 10 7 112 112 1 0 2 8 2 60 6 8 77 92 107
107107107102102 97 97 9 7 97 9 7 97 8 7 77 7 7 82 8 71 12 14 2 14/ 142 132 12 2 1 1 2 117 1 1 7I 1 2 9 2 6 8 6 8 6 8 87 9 2
10 7107107102102 97 97 92 97 97 9 2 92 82 82 87 \ 0 714 2 14 2 152 142 142 1321071071 1 71 1 7 9 / 87 6 8 6 8 87 8 7
1 0 7107 102102102102 97 97 97 97 9 2 9 2 92 8 7 8 7 9 7 117 13 7 14 2142 142 14 2 13 7 12 7 12 7 1 2 71 0 7 9 2 73 6 8 / 7 / 7
8 / 87 97 102 102 97 92 92 92 87 87 87 8 7 87 8 7 8 7 11 2 13 7 13 713 714 2 14213/13212 7 1 1 2 10 7 10 2 9 2 73 73 7 3
8 2 8 2 07 07 97 92 92 82 82 77 7 7 7 7 87 82 7 7 8 2 1 0 2 137 13 7142 142 142 13 2 12 712 2 IO7 10 7107107 82 6 8 6 3
82 8 7 07 87 87 07 82 7 7 7 7 73 73 7 7 82 7 7 7 7 7 7 10 214 2 14/ 142 142 13 2 12 71 2 2 1 I 71 0 / 9 7 102112112 7 3 6 3
8 2 87 87 87 07 07 07 7 7 7 7 7 7 77 7 7 7 7 77 7 7 8 7 9 / 152 15 / 1 *1 / 1 4 21 3 / 1 7117 1 1 71 0 7 9 7 97112112 73 6 i
8 / 8 7 8 7 8 7 8 7 9 2 9 2 7 7 7 7 7 7 7 7 7 7 7 7 8 2 8 2 8 7 8 7 14 7 1 7 2 17 2 14 7 1 J 71 1 7 112 1 1 7 1 (J 7 1 0 2 9 7 10 2 1 0 7 9 2 7 3
U 7 8 7 02 8 7 9 2 1 0 2 9 7 9 2 8 2 7 7 7 7 7 7 7 7 7 7 8 2 8 2 8 7 13 7 1 / 7 1 7 / 1 4 7 1 4 2 1 3 2 1 1 7 1 1 7 l 1 / 10 7 10 2 9 2 9 2 9 2 9 2
H ? 8 2 8 7 9 2 1 0 2 1 0 2 1 0 2 9 7 8 7 7 7 7 3 7 3 7 7 8 2 8 2 8 7 9 2 12 7 17 7 1 7 / 1 6 2 1 4 2 1 3 2 1 2 7 12 '} 1 2 2 1 1 / 1 0 7 8 7 8 7 8 7 8 7

8 2 8 2 0 7 9 2 1 0 2 1 0 2 1 0 7 1 0 2 9 2 8 2 7 3 7 3 7 7 8 2 8 2 8 7 9 2 9 7 1 7 2 1 8 6 1 8 6 1 5 2 1 4 2 1 2 7 12 2 1 2 2 1 2 2 1 0 7 8 7 77 7 3 6 8
8 2 8 2 02 0 7 9 7 1 0 7 1 1 2 1 1 2 9 7 8 2 7 3 7 3 73 8 2 8 7 9 2 9 2 9 2 14 7 17 2 17 7 1 5 2 1 2 7 1 1 2 1 0 7 10 7 10 7 10 7 7 7 7 3 68 68
8? 02 8 2 8 7 9 2 1 0 7 1 1 2 1 0 7 9 7 8 2 7 7 7 3 7 3 77 8 2 8 7 8 2 8 2 8 7 12 2 1 2 2 1 7 9 7 9 2 9 2 1 0 / 1 0 7 1 0 7 73 6 3 6 3 6 3

8 2 8 2 8 2 8 2 9 2 9 7 1 0 7 9 7 9 7 77 73 7 3 7 3 7 3 7 3 7 3 7 3 7 3 73 7 3 6 8 68 73 8 2 8 / 9 7 1 0 / 1 0 7 8 2 68 6 3 6 3

8 2 8 2 8 2 82 9 2 9 7 1 0 2 9 7 8 2 73 7 3 68 7 3 7 3 73 68 6 8 68 6 3 6 3 6 8 68 68 7 3 9 2 10 2 1 » 2 1 2 9 2 7 3 68 6 3

8 2 8 2 8 2 8 2 9 2 9 7 9 7 8 7 7 3 7 3 68 6 3 6 3 68 68 68 6 3 6 3 6 3 6 3 6 8 68 68 7 3 9 2 1 1 2 1 2 1 12 10 2 8 7 68 6 i

82 8 2 8 2 8 2 9 7 9 7 9 7 68 68 68 68 6 3 6 3 6 3 68 68 6 3 6 3 6 3 6 3 6 8 68 68 68 9 2 10 2 112 1 0 7 1 0 2 8 7 7 7 6 3
/ 7 7 7 7 7 8 2 0 7 9 7 60 6 3 6 3 68 68 6 3 6 3 6 0 73 68 6 3 6 3 6 3 6 3 6 8 68 68 7 3 7 3 9 2 1 0 2 102 9 7 9 7 7 6 3

7 7 7 7 7 7 7 7 02 02 68 6 3 6 3 68 68 68 68 7 3 7 7 7 3 68 6 3 6 3 6 3 6 8 68 68 7 3 7 3 8 / 9 z 9 7 9 7 8 7 7 7 7 3
8 2 8 2 7 7 7 7 7 7 7 68 68 68 73 7 3 8 2 8 2 9 7 8 2 8 2 68 68 68 68 6 8 7 7 7 7 8 2 9 / 9 7 9 7 9 2 9 2 8 / 8 7 7
8 ? 7 7 7 7 7 7 7 7 7 7 7 7 68 8 2 8 7 8 7 8 7 9 2 10 2 9 7 8 2 7 7 t>8 6 8 7 3 8 2 9 7 107 1 0 7 1 0 7 1 2 1 12 10 2 9 2 9 2 9 / VJ
7 7 7 7 7 7 7 7 7 7 7 7 7 8 2 8 7 9 2 8 7 9 2 \ 0 2 I (1 2 9 / 8 2 9 2 9 2 9 2 9 7 107 1 7 11/12 2 I 2 2 1 2 7 I 5 2 I 1 7 1 I 7 1 1 4* 9

7 7 7 1 7 7 7 7 7 7 7 7 8 2 8 2 9 2 9 2 8 7 8 7 8 7 9 7 9 7 9 7 112 1 0 2 102 1 0 2 1 7 1 2 2 122 1 2 2 1 3 2 1 6 2 2 0 1 2 5 1 1 8 6 1 1 / 1 2 <T

/ 7 7 7 8 2 8 2 8 2 8 2 8 2 8 7 9 2 9 2 9 2 8 7 8 7 8 2 9 71 0 7 112 1 I 2 112 1 1 2 I 2 7 1 4 7 14 7 13 2 1 4 / 1 9 1 2 5 1 2 5 3 2 3 6 1 6 7 14 /

7 7 7 7 7 7 7 7 7 7 7 77 8 2 8 2 9 2 9 2 9 2 8 7 8 7 H 7 ■i / l 0 7 M/l 1 2 10 2 10 2 1 2 1 2 2 1 2 2 I 2 7 1 3 2 1 9 1 2 5 1 2 5 3 2 3 6 1 6 7 1 2 /

I m a g e a f t e r M e d i a n F i l t e r i n g

1
1
1

I 0
l 0
10
22
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4.

I n i t i a l S e g m e n t a t io n

N u m b e r o f R e g io n s = 85

A f t e r M e r g in g S m a l l R e g io n s

M i n i m u m R e g io n S iz e = 4

N u m b e r o f R e g io n s = 31

A f t e r M e r g in g R e g io n s 1 a n d 2

A f t e r S p l i t t i n g R e g io n 3

40
40 4
40 40
40 40
40 40 40
40 40 40

40 4040
40 4040

40 40 40 40
40 40 40 4
4 0 40 40 40
40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 4U
40 40 40 40 40 40 4 0 4 0 4 0 40 4U
4IL.411—40- 4Q -ML.Ai)

5 11 0 10 id
5 v0 in io

F i n a l Im a g e

N u m b e r o f R e g io n s = 37

T o t a l N u m b e r o f R u le s F i r e d = 6

T im e T a k e n = 3 7 .3 2 8 sec

