
Memory Safety and Untrusted
Extensions for TinyOS

John Regehr Nathan Cooprider

Will Archer Eric Eide

UUCS-06-007

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

June 30, 2006

Abstract

Sensor network applications should be reliable. However, TinyOS, the dominant sensor
net OS, lacks basic building blocks for reliable software systems: memory protection, iso-
lation, and safe termination. These features are typically found in general-purpose oper-
ating systems but are believed to be too expensive for tiny embedded systems with a few
kilobytes of RAM. We dispel this notion and show that CCured, a safe dialect of C, can
be leveraged to provide memory safety for largely unmodified TinyOS applications. We
build upon safety to implement two very different environments for TinyOS applications.
The first, Safe TinyOS, provides a minimal kernel for safely executing trusted applica-
tions. Safe execution traps and identifies bugs that would otherwise have silently corrupted
RAM. The second environment, UTOS, implements a user-kernel boundary that supports
isolation and safe termination of untrusted code. Existing TinyOS components can often
be ported to UTOS with little effort. To create our environments, we substantially aug-
mented the CCured toolchain to emit code that is safe under interrupt-driven concurrency,
to reduce storage requirements by compressing error messages, to refactor direct hardware
access into calls to trusted helper functions, and to make safe programs more efficient us-
ing whole-program optimization. A surprising result of our work is that a safe, optimized
TinyOS program can be faster than the original unsafe, unoptimized application.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Memory Safety and Untrusted Extensions for TinyOS

John Regehr Nathan Cooprider Will Archer Eric Eide

University of Utah, School of Computing

Abstract
Sensor network applications should be reliable. How-
ever, TinyOS, the dominant sensor net OS, lacks basic
building blocks for reliable software systems: memory
protection, isolation, and safe termination. These fea-
tures are typically found in general-purpose operating
systems but are believed to be too expensive for tiny em-
bedded systems with a few kilobytes of RAM. We dispel
this notion and show that CCured, a safe dialect of C, can
be leveraged to provide memory safety for largely un-
modified TinyOS applications. We build upon safety to
implement two very different environments for TinyOS
applications. The first, Safe TinyOS, provides a mini-
mal kernel for safely executing trusted applications. Safe
execution traps and identifies bugs that would otherwise
have silently corrupted RAM. The second environment,
UTOS, implements a user-kernel boundary that supports
isolation and safe termination of untrusted code. Existing
TinyOS components can often be ported to UTOS with
little effort. To create our environments, we substantially
augmented the CCured toolchain to emit code that is safe
under interrupt-driven concurrency, to reduce storage re-
quirements by compressing error messages, to refactor
direct hardware access into calls to trusted helper func-
tions, and to make safe programs more efficient using
whole-program optimization. A surprising result of our
work is that a safe, optimized TinyOS program can be
faster than the original unsafe, unoptimized application.

1 Introduction

Imagine that you have deployed hundreds or thousands
of networked sensors, and are actively using them to col-
lect data. Every so often, one of your nodes executes a
software bug. The exact error is irrelevant: it could be a
null pointer access, an out-of-bounds array access, or an
in-bounds access to a network buffer that another subsys-
tem is using. Now consider three scenarios.

In the first, the memory error in your application cor-
rupts RAM on the faulting node. Since sensor net-
work nodes are based on tiny microcontrollers that lack
hardware-based memory protection, any part of mem-
ory can be corrupted. In the general case the behavior
of a corrupt node is Byzantine: with sufficiently many

buggy nodes over a sufficient period of time, one would
expect secret keys to be revealed, sensor data to be cor-
rupted, false routes to be advertised, and so on. It can
even be difficult to distinguish between failures induced
by software bugs and those caused by hardware-related
problems such as weak batteries. While hardware faults
can often be fixed by swapping out the defective parts,
software faults persistently degrade the effectiveness of
a sensor network. Time is consequently lost pointing fin-
gers, manually rebooting nodes, and debugging code.

In the second scenario, a runtime check detects the im-
pending memory error just before it happens and control
is transferred to a fault handler. The handler could, for
example, send a failure report to its base station and then
reboot, or else it might go into a loop where it blinks out a
failure code in octal using the mote’s LEDs. Either way,
you are given a concise failure code that a tool running
on a PC translates into a usable error message such as:

Failure NULL at Buggy.nc:559: MyFunc(): Null ptr

In the third scenario, the impending fault is trapped,
and it is recognized as occurring in untrusted, user-level
code. The node is not halted or rebooted. The faulting
extension is terminated while other extensions continue
to operate normally. After the extension’s resources have
been reclaimed it can optionally be restarted.

The first scenario above is representative of the kind of
problems that sensor network application developers cur-
rently face. The goal of our research is to use operating
system and compiler techniques to enable the second and
third scenarios. The enabling technology for our work
is a “red line” [3]—a boundary between trusted and un-
trusted code—provided by CCured [22], a safe dialect of
C. We exploited this red line to create two new ways to
run TinyOS applications: Safe TinyOS and UTOS. Fig-
ure 1 contrasts the costs and benefits of these two systems
with the existing TinyOS.

Safe TinyOS makes existing TinyOS applications safe
in a largely backwards compatible way. Compatibil-
ity problems only manifest for applications that rely on
low-level behavior, such as network reprogramming, that
CCured cannot show to be safe. The small Safe TinyOS
kernel includes safety checks, dynamic error handlers,
helper functions for accessing hardware, and a modified

− fault recovery via extension
 termination and restart

− moderate porting effort
− safe execution

− isolation
− more overhead

− low porting effort
− safe execution
− fault recovery via reboot

− no isolation
− some overhead

− manual fault detection
 and recovery

− no porting effort
− no safety

− no isolation
− most efficient

U
TO

S
S

af
e

Ti
ny

O
S

Ti
ny

O
S

Figure 1: TinyOS as it currently exists is just one point on a
spectrum from completely unsafe execution to protected, kill-
able, user-mode execution

CCured runtime library. The rest of the TinyOS appli-
cation is effectively user code. Safe TinyOS is intended
to help sensor network developers by catching common
kinds of memory errors. A Safe TinyOS application can
subvert the kernel maliciously, e.g., by crafting a type-
safety violation using assembly language. However, it is
unlikely that safety will be subverted accidentally.

UTOS draws a very different red line that puts much
more software into the kernel, including all interrupt han-
dlers and device drivers. Multiple user-level extensions
are supported; they communicate with the rest of the sys-
tem using a narrow system call interface. An extension
can be terminated synchronously, if it tries to violate the
safety model, or asynchronously, if it exceeds its CPU
budget. Killing and restarting an extension is about four
times faster than rebooting a monolithic TinyOS applica-
tion. Unlike Safe TinyOS, UTOS is intended to be air-
tight: a UTOS extension can execute unsafely only if our
code or CCured contains a bug.

Our contributions include a number of innovations
that, together, make language-based safety practical on
sensor network nodes. First, code generated by the de-
fault CCured compiler is unsafe under interrupt-driven
concurrency because safety checks and subsequent uses
are not atomic. We developed a strategy for adding the
necessary atomicity that has much less overhead than
does the näıve strategy of making all checks and uses
atomic. Second, we used whole-program analysis to
eliminate useless computation such as redundant safety
checks, with the surprising result that a safe, optimized
application can end up using less CPU time than does
the original unsafe, unoptimized application. Third, we
developed FLIDs (fault location identifiers): compressed
error messages that reduce the ROM usage of safe code

without compromising the quality of error reports. Fi-
nally, we automatically refactor TinyOS code so that it
accesses device registers using trusted helper functions;
direct device access violates CCured’s safety model.

2 Background

Our research builds directly on three existing projects:
TinyOS, CCured, and cXprop.

2.1 TinyOS

TinyOS [15] is a component-based operating system
for sensor network nodes. Components are written in
nesC [12], a C dialect that is translated into C. TinyOS
is designed around a static resource allocation model,
based on the insight that dynamic allocation often intro-
duces difficult failure modes into applications. Static al-
location also helps keep time and space overhead low by
avoiding the need for bookkeeping.

Many sensor network programs are constrained in
terms of energy, SRAM, and flash memory. Sensor net-
work nodes—motes—typically support up to 10 KB of
RAM and up to 128 KB of flash memory. The Mica2
motes that we used for our experimental results are based
on the Atmel ATmega128 8-bit processor with 4 KB of
RAM and 128 KB of flash, running at 7.4 MHz. Flash
memory can be written, but only slowly and in blocks; it
is typically updated only when a new program is loaded.

To conserve energy, a TinyOS application typically
has a lowduty cycle: it sleeps most of the time. Appli-
cations are interrupt-driven and follow a restrictive two-
level concurrency model. Most code runs intasksthat
are scheduled non-preemptively. Interrupts may preempt
tasks (and each other), but not duringatomic sections.
Atomic sections are implemented by disabling interrupts.
The nesC compiler emits a warning when any global
variable that can be touched by an interrupt handler is
accessed outside of an atomic section.

2.2 CCured

CCured [22] is a source to source transformer that inputs
an optionally annotated C program and emits a modi-
fied version of the program that uses dynamic checks
to enforce safety. A type safe program cannot conflate
types, for example treating an integer as a pointer. A
memory safe program cannot access out-of-bounds stor-
age. These properties are closely related, and CCured
enforces both of them. In this paper we simply refer to
“safety” to mean memory safety and type safety.

Making a C program safe without causing spurious
failures or sacrificing performance is difficult in the pres-
ence of powerful language features such as type casts and

2

pointer arithmetic. The main insight behind CCured is
that in most programs, most pointers do not take advan-
tage of the full generality of C. At compile time, CCured
uses a constraint-based algorithm to conservatively in-
fer akind for each pointer in a program. Some kinds of
pointers, in order of increasing generality, are:

• Safe pointerscan be assigned and dereferenced, but
not cast or manipulated with pointer arithmetic. In
most cases only null checks are required for safe
pointers.

• Sequence pointers can be manipulated using
pointer arithmetic, but cannot be cast (except in a
few restrictive ways). Sequence pointers require
null checks and bounds checks.

• Wild pointers are those that cannot be statically
typed. They require dynamic type checks as well
as bounds and null checks.

In general, programs that end up with a large fraction
of wild pointers run slowly, while programs that end up
with relatively few of these incur modest runtime over-
head under CCured. CCured implements sequence and
wild pointers by changing them intofat pointersthat in-
clude the necessary metadata and then rewriting the ap-
plication to use these.

Although the focus of CCured is on detecting safety
violations, considerable infrastructure is devoted to han-
dling these errors once they occur. A variety of actions
can be taken when the program violates CCured’s safety
model; the simplest is to report the error to the console
and then terminate the program. An error report includes
the file, line number, and function name at which the er-
ror occurred, as well as a short description of the type
of error. Besides halting the program, CCured can emit
a warning and keep going, put the offending thread to
sleep, or ignore the error altogether.

2.3 cXprop

cXprop [7] is a dataflow analyzer for C code that we de-
veloped. It is interprocedural and tracks the flow of val-
ues through struct fields, pointers, global variables, and,
to a limited extent, arrays. cXprop can act as a whole-
program optimizer. It is built on top of CIL [23].

Concurrency complicates dataflow analysis by adding
many implicit control flow edges to a program. cXprop
exploits the TinyOS concurrency model by simulating a
branch to the head of every interrupt handler at the end
of every nesCatomic section. This permits sound anal-
ysis of variables that are manipulated atomically. cXprop
then simply refuses to model variables that are manipu-
lated non-atomically—this is typically a small minority
of variables that are used in tricky ways.

strip out source code
locations, add FLIDs

run whole−program
optimizer

modified CCured
runtime library

refactor accesses
to hardware registers

run CCured

run nesC compiler

helper functions

run inliner

run gcc

error message
decompression

Figure 2: Our toolchain for compiling Safe TinyOS applica-
tions. Boxed tools are the ones that we did not develop. The
tools in the thick boxes—the nesC and C compilers—are the
original TinyOS toolchain.

3 Safety for TinyOS Applications

Figure 2 shows the toolchain the produces Safe TinyOS
applications. That UTOS toolchain is largely the same
but adds a few steps. This section describes the interest-
ing parts of this toolchain.

3.1 Handling concurrency

CCured enforces type and memory safety for sequential
programs. Interrupt-driven code can invalidate CCured’s
invariants by, for example, overwriting a pointer between
the time at which it is bounds-checked and the time at
which it is dereferenced. Furthermore, C programmers
often expect that pointer updates occur atomically. For
example, lock free data structures rely on this. CCured’s
fat pointers, on the other hand, cannot generally be up-
dated atomically without explicit locking.

We modified the CCured compiler such that any time it
injects code into an application, and that code references
one or more global variables, the injected code is pro-
tected by a global lock. Furthermore, if the injected code
is a safety check, the lock cannot be released until af-
ter the checked value has been stored in a local variable.
TinyOS has inexpensive locks: on the Mica2 platform it
takes just five instructions to save the state of the inter-
rupt bit, disable interrupts, and then conditionally reen-
able interrupts. Even so, adding so many new atomic
sections caused a 40% code space increase for some ap-
plications.

We then developed a more efficient way to enforce

3

safety under concurrent execution, based on the obser-
vation that nearly all variable accesses in TinyOS ap-
plications are already atomic, and hence need no ex-
tra protection. The nesC compiler prints a list of vari-
ables that are accessed non-atomically. We changed the
CCured compiler to read in this list and then to only in-
sert locks around injected code that involves one or more
non-atomic variables. We also needed to suppress uses
of thenorace nesC keyword, which causes the compiler
to ignore potential race conditions. For the applications
that we have looked at, the code size and execution time
penalties of this approach are negligible.

3.2 Whole-program optimization

CCured’s pointer kind inference algorithm is designed to
reduce the number of dynamic checks that must be in-
serted into a program. Even so, a check must be inserted
before every potentially unsafe operation. CCured con-
tains an optimizer, but as we show in Section 5.1, it does
not remove very many checks.

To reduce code size and runtime overhead, we post-
process CCured’s output using cXprop, our whole-
program optimizer (Section 2). Unlike CCured’s opti-
mizer, which attempts only to remove its own checks,
cXprop will remove any part of the program that it can
show is dead or useless.

To support the present work we enhanced cXprop by
adding a source-to-source function inlining pass. This
was necessary because our context-insensitive dataflow
analysis proved incapable of eliminating a significant
number of CCured’s checks. Inlining permits checks
to be analyzed in their calling context, greatly increas-
ing analysis precision. Section 5 evaluates the ability of
our analyzer to remove CCured’s checks and reports the
performance and memory usage of memory-safe TinyOS
programs before and after optimization.

3.3 Hardware access

The most common idiom in C for accessing a memory-
mapped I/O register is to cast an integer constant into a
volatile pointer and then dereference the pointer. For ex-
ample, all TinyOS applications contain code of this form:

*(volatile uint8_t *)50U |= 0x01 << 5;

Direct hardware access violates safety; this kind of
code must be moved below the red line. This would
be trivial if we were not providing back-compatibility
with existing TinyOS applications. To solve the problem
we wrote a CIL extension that scans a TinyOS program
looking for accesses to memory locations known to rep-
resent hardware registers, and then refactors them into
calls to trusted helper functions. For example the code
above is transformed as follows:

__cil_tmp1 = trusted_read_hw_reg_8 (50U);

trusted_write_hw_reg_8 (50U,

((uint8_t volatile)__cil_tmp1) | 32);

Since the helper functions can be inlined, they add no
overhead. For example, gcc reduces both code fragments
above to a single MSP430 bit-set instruction:

bis.b #32, &0x0032

Two kinds of code can complicate our automatic refac-
toring of hardware accesses. First, if the cast from inte-
ger to pointer and the dereference of the resulting pointer
occur in different expressions, our syntax-driven trans-
formation will fail. So far this problem is hypothetical;
it has not happened for any code that we have seen. Sec-
ond, in a few cases a non-constant integer is cast into a
pointer and then dereferenced. For example, the MSP430
uses a small block of device memory to store ADC sam-
ples; it is most conveniently accessed as an array. To
support this, we modified our refactoring pass to trans-
form accesses to non-constant pointers as well as con-
stant pointers. At runtime these non-constant pointers
are bounds-checked against the start and end of device
memory.

3.4 Adapting the CCured runtime library

The CCured runtime library includes a substantial
amount of code: a cured application must include 2400
lines of header file code, and then it must link against a
4700-line library of support functions. There are three
problems with using these header files and libraries on
sensor network nodes. First, dependencies on high-level
OS services such as files and signals are woven into the
runtime in a fine-grained way. This code had to be man-
ually excised since it could not even be compiled by a
cross-compiler for the TelosB or Mica2 motes. Second,
the runtime contains x86 dependencies. For example,
several of CCured’s checks cast a pointer into an un-
signed 32-bit integer and then verify that it is aligned on
a four-byte boundary. On the Mica2 and TelosB sensor
network platforms pointers are 16 bits and do not require
four-byte alignment.

The third problem with the CCured runtime is that it
has RAM and ROM overhead. On a PC this overhead
is negligible; on a mote it is prohibitive. When applying
CCured to TinyOS programs, we tell CCured to drop all
garbage collection support from the runtime. This ren-
ders CCured unsound when applied to programs that call
free; this is no problem since TinyOS programs typ-
ically do not use dynamic allocation. Manually hack-
ing the runtime library is effective only up to the point
that all features not plausibly used by any TinyOS ap-
plication are removed. Further reduction in size must be

4

RAM (bytes) ROM (bytes)
Mica2 TelosB Mica2 TelosB

CCured N/A N/A N/A N/A
CCured-1 1651 318 32812 26294
CCured-1 + DCE 1347 207 3852 3266
CCured-2 71 36 23730 22936
CCured-2 + DCE 11 12 994 2076
no CCured 9 6 680 1510

Table 1: RAM and ROM usage of a minimal TinyOS applica-
tion in various configurations on the Mica2 and TelosB plat-
forms. The distributed version of the CCured runtime does not
cross-compile. CCured-1 is a version of the CCured runtime
that has been hacked just enough to cross-compile and CCured-
2 is the version of the CCured runtime used in this paper. Ver-
sions of the runtime marked “+ DCE” add a whole-program
dead-code/dead-variable elimination pass.

application-specific; for this we use a dead code elimi-
nation (DCE) pass written in CIL. Table 1 presents the
storage overhead of various versions of the CCured run-
time when applied to a trivial TinyOS application. The
data show that both manual and automatic footprint re-
duction are required to achieve low overhead.

3.5 Handling dynamic errors

By default, upon encountering a safety violation, the
CCured runtime displays a verbose error message and
terminates the offending process. On the motes there are
three problems with this. First, the information needed
to produce error messages is stored within the running
program, where it uses precious memory. Second, sen-
sor network nodes lack a screen on which to display a
message. Third, motes lack a standard process model.

As an alternative to verbose failures, CCured can be
directed to print terse error messages, leaving out the
file and line information. We consider this to be unac-
ceptable: debugging TinyOS applications with terse er-
ror messages is almost impossible since the location of
the program fault remains unknown to the programmer.
To get the best of both worlds—verbose error messages
with low resource usage—we wrote a tool to extract fail-
ure message information from an application and replace
it with small integers that we call fault location identifiers
(FLIDs). Subsequently, a FLID can be turned back into a
verbose failure message by an external tool that we cre-
ated. In effect, we are using an ad hoc data compression
scheme to reduce the size of failure messages without
reducing the amount of information that they convey.

A complication is that a given safety check inserted by
CCured may not correspond to a unique error message.
For example, a pointer bounds check may fail because
the pointer lies above the upper bound of an array or be-
cause it lies below the lower bound. Internally, CCured

uses small integers to refer to particular failure messages.
When a runtime check fails, we append its failure code
to the FLID associated with the check. The aggregated
FLID provides sufficient information for our error con-
version tool to reproduce the entire error message that
the user would have seen if the sensor network node were
capable of executingprintf.

We make FLIDs available to developers in two ways.
By default, we disable interrupts, convert the FLID into
octal, and then report it over the mote’s three LEDs. Sec-
ond, we optionally also create a packet containing the
FLID and attempt to send it out over the radio and also
to an attached PC over the serial port. After reporting the
FLID we reboot the node; another sensible option might
be to put the mote into a deep sleep, saving batteries.

3.6 CCured failures

CCured cannot automatically enforce memory-safety
and type-safety for all C programs. This section de-
scribes some of the problems that we encountered while
applying CCured to TinyOS applications. Broadly
speaking, there are three categories of problems. First,
application behavior sufficiently pathological that it can
be considered broken:

• The Oscilloscope application in current TinyOS 2.x
CVS casts values between scalars and structs.

Second, correct application behavior that the compiler
simply needs to be told to trust:

• The Nucleus network management system [33] per-
mits remote retrieval of the contents of a node’s
RAM, which it accesses as a byte array.

• Network reprogramming jumps to code that arrived
over the network.

Third, correct application behavior that CCured should
be extended to recognize and handle:

• Several TinyOS applications usememcpy to copy
multiple fields from one struct to another. In some
cases, CCured generates a dynamic failure when the
memcpy routine walks off of the end of the first field
being copied.

• The TinyOS 2.x network stack contains code that
converts a pointer from one struct member into a
pointer to another member of the same struct using
pointer subtraction.

Working around these problems is generally not dif-
ficult, but it does involve making changes to application
code. As a last resort, CCured can be bypassed by adding
trusted typecasts or entire trusted functions.

4 UTOS: Untrusted Extensions for TinyOS

Type and memory safety alone are sufficient to estab-
lish a “red line” for a simple kernel: i.e., one that en-

5

forces safety at run time. The true power of safety,
however, is that it provides the needed basis formov-
ing the red line. Safety makes it possible for a system
designer to create new TinyOS components and draw the
user/kernel boundary as he or she chooses. Due to safety,
user components are unable to subvert the abstractions
provided by kernel components. Safety is necessary but
not sufficient for implementing the red line in software.
The abstractions provided by kernel components must be
carefully designed and implemented to enforce desirable
properties such as isolation, resource control, and termi-
nation of user-mode code [3].

This section describes UTOS (Untrusted TinyOS), an
environment for running untrusted and potentially mali-
cious code inside a TinyOS application. Starting with
a foundation of safe execution, UTOS creates a sand-
box that supports termination and resource isolation for
untrusted code, calledextensions. By building on the
techniques described in Section 3, UTOS ensures that
an extension cannot access hardware directly, cannot use
network resources inappropriately, and cannot “hijack”
a node by disabling interrupts. These restrictions are in
addition to the limits enforced by our implementation of
safety: safety ensures that extensions interact with a node
only through the well-defined UTOS interface.

Our guiding design principle was to provide exten-
sions with an environment that is as similar as possible
to the existing TinyOS programming environment. This
helps programmers port existing TinyOS components to
UTOS, and helped us resist the temptation to dynami-
cally allocate resources, as SOS does [14]. We feel that
this high-level design decision worked out well. More-
over, we believe that UTOS effectively demonstrates the
usefulness of our approach to implementing practical,
designer-chosen user/kernel boundaries in TinyOS.

4.1 Drawing a red line

The architecture of UTOS is shown in Figure 3. Anex-
tensionis an untrusted TinyOS component, which is lo-
cated in one of severalslots. Slot numbers are used to
identify loaded extensions. A set ofproxy components
provides services to extensions. Each proxy implements
the interface of a standard TinyOS component, like the
Timer component, but does so in a way that protects
the kernel from the possibly harmful behaviors of exten-
sions. The service implementations also isolate exten-
sions from one another. We implemented the proxies by
hand, and chose them according to the anticipated needs
of our extensions. The proxies utilize another compo-
nent, called thebackend, that maintains resource pools
for the proxies. The backend also initializes the hardware
and manages the life cycle of extensions: initialization,
events, and termination.

Extension 1
(untrusted)

Extension 3
(untrusted)

Extension 2
(untrusted)

Proxy
Timer Network

ProxyProxy
LED

resource poolsUTOS Backend

CCured Runtime

other TinyOS components

Slot 1 Slot 2 Slot 3

"system calls"

"red line"
events

safety violations

Figure 3: The architecture of UTOS

The boundary that protects the node from extensions
is based on type and memory safety. These properties are
enforced by our trusted compiler tools, through a combi-
nation of static analysis and compiler-inserted dynamic
checks as described previously. For UTOS, we modified
these tools to enforce additional restrictions:

• Extension code must not contain inline assembly
language (which could be used to subvert language-
based protection mechanisms).

• Extension code must not containatomic sections
(which disable interrupts).

• Extension code must not use CCured’s “escape
hatches,” such as trusted type casts and trusted func-
tions, which permit localized safety violations.

• Extension code must not refer to other components,
except those that are represented in our proxy com-
ponent set. References to proxied components must
be rewired to refer to the corresponding proxies.

• Extension code must not refer to ordinary func-
tions that are outside itself. This rule prevents ex-
tension code from directly accessing hardware, be-
cause the trusted hardware access functions (Sec-
tion 3.3) are unavailable to extension code. This
rule also prevents extension code from posting new
TinyOS tasks. (The TinyOS 1.x task queue is a
shared resource that a single extension could fill
up.) Finally, it prevents extension code from ac-
cessing other parts of the UTOS kernel, such as the
CCured runtime.

Two points should be made concerning these restric-
tions. First, they are completely enforced at compile
time: no dynamic checking of these properties is needed.
Second, the above rules apply only to “extension code,”
not to kernel code. Code that is inserted into an extension
at compile time by our tools is trusted and therefore part

6

of the UTOS kernel. This means, for example, that an
inserted check for memory safety can disable interrupts,
invoke the CCured runtime, and so on as needed.

The UTOS backend component, proxy service com-
ponents, and compiler-inserted safety checks enforce the
following properties at run time:
• Extensions cannot retain control of the CPU for

more than a predetermined amount of time. If this
limit is exceeded, control is forced back to the ker-
nel by a timer interrupt, and the extension is termi-
nated.

• Extension code is never invoked in interrupt mode.
• Extensions share memory only with the UTOS

backend component—never with other kernel
components—and only simple buffers (i.e., for net-
work packets) are shared. The backend ensures that
no buffer will be shared between two extensions.

• Extensions cannot create arbitrary network packets,
which could be used to subvert or trick other nodes
on the network. All packets sent by UTOS exten-
sions are subtypes of a single packet type.

• When a compiler-inserted check detects that exten-
sion code is about to violate safety, the check in-
vokes a special error handler. Unlike the node-
rebooting handlers described in Section 3.5, the
handler inserted into an extension simply terminates
the extension.

UTOS does not yet support the dynamic loading of
extensions, but will in the near future. (UTOS currently
supports separate compilation of extensions.) The dy-
namic loader will ensure that any candidate extension has
been properly signed by our trusted compiler.

4.2 Extensions and resources

When an extension is ready to begin, the UTOS back-
end invokes the extension’sinit andstart functions.
(These are part of a standard interface that is imple-
mented by many TinyOS components.) Because exten-
sions are currently preloaded, extensions are initialized
and started when the backend component itself is initial-
ized and started. This procedure associates the exten-
sion with events in the trusted hardware and requests any
needed resources, such as timer and sensor events. Once
startup is complete, an extension runs only when it re-
ceives some type of event: i.e., a timer event, or notifica-
tion that a network packet has been received or sent.

During startup or subsequent invocations, an extension
may invoke the proxy components shown in Figure 3.
These correspond to the main I/O interfaces of a mote:
LEDs, a timer service, and a radio.

The LED proxy is straightforward: an extension can
freely get or set the state of the LEDs on the device. We
chose not to model the LEDs as acquirable resources,

so if two agents (extensions or kernel components) both
use the LEDs, the output will be jumbled. One could
easily redesign the LED interface to avoid this problem,
if needed. Note that our design does not interfere with
reporting FLIDs over a mote’s LEDs: this only happens
if a safety violation in occurs in the trusted kernel, at
which point all extensions are implicitly terminated.

The time proxy allows an extension to acquire timer
resources, which generate one-shot or repeating timeout
events. Operations on timers are directed to the UTOS
backend, which mediates access to the actual timing ser-
vices on the mote. The backend maintains a fixed-size
pool of timers and makes them available to extensions
on a first-come first-served basis. We chose this policy to
support flexible allocation of timers to extensions, even
though it permits resource shortages among extensions.
When an extension is terminated, UTOS reclaims all of
the extension’s timer resources.

Finally, the radio proxy allows an extension to send
and receive radio network packets. The UTOS backend
tracks the functions that must be called to notify exten-
sions of packet transmission events. When an extension
sends a packet, the radio proxy invokes the backend, and
the backend copies the outgoing packet. This is required
because the standard TinyOS interface for radio trans-
mission is asynchronous: thesend function returns be-
fore the packet is actually sent. Similarly, the backend
component keeps a separate incoming packet buffer for
each extension. When a radio packet is received for an
extension, the underlying TinyOS radio components in-
voke the backend; the backend copies the data into the
extension’s incoming buffer and triggers the untrusted
packet handler. This copy is needed to prevent mem-
ory sharing between an extension and the kernel radio
components (which would violate the sharing property
described in Section 4.1).

UTOS terminates an extension when either (1) an im-
minent safety violation is detected, or (2) an invocation
of the extension overruns a predetermined time limit. In
either case, UTOS reclaims the timer, buffer, and event
table resources that are allocated to the terminated exten-
sion. Safe termination is assured by our restrictive shar-
ing model. An interesting detail is that termination is im-
plemented in a straightforward manner viasetjmp and
longjmp. UTOS is designed so that no kernel data will
be lost when the stack is cleared. Thelongjmp returns
control all the way back to the kernel’smain function:
main is the only function that is guaranteed to be on the
stack whenever an extension is executing.

In our current implementation, UTOS always tries to
restart extensions that have failed. We expect to imple-
ment more sophisticated strategies in the future, as part
of our implementation of dynamic loading.

7

5 Evaluation

This section quantifies the costs and benefits of Safe
TinyOS and UTOS. Although our duty cycle results
are from Avrora [31, 32], a cycle-accurate simulator
for networks of Mica2 motes, we also validated our
Safe TinyOS and UTOS applications on real Mica2 and
TelosB motes. We used a pre-release version of CCured
1.3.4, Avrora from current CVS as of February 2006, our
current internal version of cXprop, and TinyOS 1.x from
current CVS. All of our example TinyOS applications
are from the CVS tree.

5.1 Eliminating safety checks

The CCured compiler attempts to add as few dynamic
safety checks as possible, and it also optimizes the result-
ing code to remove redundant and unnecessary checks.
In addition, our cXprop tool eliminates some checks.
To measure the effectiveness of different optimizers, we
transformed application source code such that for each
check inserted by the CCured compiler, the address of a
unique string, e.g., UNIQ 355, is passed as an argument
to the high-level failure handler. If an optimizer is able
to prove that the failure handler is not reachable from
a given check, then the string that we added becomes
unreferenced and a compiler pass eliminates it from the
final executable. Therefore, the number of checks re-
maining in a safe executable can be counted straightfor-
wardly:

strings app.elf | grep __UNIQ_ | \

sort | uniq | wc -l

Many CCured checks contain a number of sub-checks;
in some cases cXprop eliminates only some of these. Our
counting method only considers a check to be eliminated
if all sub-checks are eliminated. Furthermore, function
inlining causes some checks to be duplicated. Our count-
ing method only considers a check to have been elimi-
nated if all copies have been eliminated.

Figure 4 compares the power of four ways to optimize
Safe TinyOS applications:

1. gcc, by itself;
2. the CCured optimizer, then gcc;
3. the CCured optimizer, then cXprop, then gcc; and
4. the CCured optimizer, then a function inlining pass,

then cXprop, then gcc
We were surprised that gcc, on its own, eliminates

so many checks. These are primarily the “easy” checks
such as redundant null pointer checks. The CCured op-
timizer also removes easy checks and consequently it is
not much more effective than gcc alone in reducing the
total number of checks in executable applications. cX-
prop, by itself, is not amazingly effective at removing

checks either. Although cXprop optimizes aggressively,
it is hindered by context insensitivity: inside the analy-
sis it merges information from all calls to a given check,
such as CCured’s null-pointer check, making it far less
likely that the check can be found to be useless. On
the other hand, inlining the checks enables context sen-
sitivity, permitting significantly more checks to be elim-
inated. Our inliner attempts to avoid code bloat by re-
specting inlining decisions made by the nesC compiler.

5.2 Code size

Figure 5(a) shows the effect of various permutations of
our toolchain on the code size of TinyOS applications,
relative to the baseline: the original unsafe, unoptimized
application. The first (leftmost) bar for each application
shows that simply applying CCured to a TinyOS applica-
tion increases its code size significantly: by around 20%–
90%. The second bar is even higher, and shows the ef-
fect of moving the strings that CCured uses to construct
error messages (file names, function names, etc.) from
SRAM into flash memory. Unfortunately, the AVR port
of gcc, which compiles applications for the Mica2 plat-
form, places constant data such as strings into SRAM.
Moving constants into flash memory by hand is error
prone (the C type system does not distinguish code-space
and data-space pointers) and painful (accessing code-
space data requires special macros). We perform this
transformation automatically with a custom CIL exten-
sion.

The third bar for each application shows the effect
of using CCured’s “terse” option, which suppresses all
source code location information in error messages. This
reduces code size but the resulting error messages are
much less useful; we consider this to be an unacceptable
tradeoff. The fourth bar shows the effect of compress-
ing error messages using FLIDs. The fifth and sixth bars
show that optimizing an application using cXprop, with-
out and with an inlining pass, results in significant code
size reductions. Finally, the seventh bar shows that inlin-
ing and optimizing a default, unsafe application typically
reduces its code size by 10%–25%.

5.3 Data size

TinyOS applications use RAM in two ways: to store
global variables and for the stack.

Static RAM consumption. CCured increases the size
of a program’s data and BSS segments in three ways.
First, CCured makes some pointers larger by turning
them into fat pointers. Second, the CCured runtime uses
some memory for bookkeeping. Third, strings associated
with CCured are placed into SRAM by default.

The first three bars of each group in Figure 5(b) show

8

gcc
CCured optimizer + gcc
CCured optimizer + cXprop + gcc
CCured optimizer + inlining + cXprop + gcc

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

C
he

ck
s

re
m

ov
ed

BlinkTask_Mica2

Oscilloscope_Mica2

GenericBase_Mica2

RfmToLeds_Mica2

CntToLedsAndRfm_Mica2

MicaHWVerify
_Mica2

SenseToRfm_Mica2

TestTimeStamping_Mica2

Surge_Mica2

Ident_Mica2

HighFrequencySampling_Mica2

RadioCountToLeds_TelosB

22 85 78 112 119 131 119 154 330 180 238 136

Figure 4: Percentage of checks inserted by the CCured compiler that can be eliminated using four different combinations of tools.
The numbers at the top indicate the number of checks originally introduced by CCured.

that simply applying CCured to a TinyOS application
results in unacceptable RAM overhead. Although we
have clipped the bars at 100%, some of them are outra-
geously high, in the thousands of percent. The fourth bar
shows that compressing error messages as FLIDs reduces
RAM overhead substantially because many strings from
the CCured runtime are no longer needed. These strings
are actually needed by CCured’s terse option, which has
a few residual verbose errors in the runtime. The fifth
and sixth bars show that cXprop reduces RAM over-
head still more, primarily through dead-variable elimi-
nation. Finally, the rightmost bar for each application
shows that cXprop reduces the amount of static data for
unsafe applications slightly, by propagating constant data
into code and cleaning up unused variables.

Stack RAM consumption. We were surprised to find
that safe applications sometimes use a lot more stack
memory than do unsafe applications, as shown in Fig-
ure 5(c). We looked into this and found that for almost all
functions, the extra code introduced by CCured has little
or no effect on stack memory usage. However, a few
functions—typically those that perform lots of pointer
manipulation in the TinyOS network stack—have many
checks added to them. These checks, when inlined, add
many temporary variables to the function. These added
variables overload gcc’s register allocator, which, instead
of failing gracefully, allocates an enormous chunk of
stack memory to spill everything into. Consequently, a
few functions consume far more stack memory than they
did previously.

The problem here is that we are performing function
inlining according to decisions made by the nesC com-
piler. The checks added by CCured potentially invalidate
these decisions by increasing function size. Although we
have not done so, we believe that we could solve this

problem by reevaluating all inlining decisions just before
our inliner runs.

5.4 Processor use

The efficiency of a sensor network application is com-
monly evaluated by measuring itsduty cycle: the per-
centage of time that the processor is awake. For each
application, we created a reasonable sensor network con-
text for it to run in. For example, for Surge, a multihop
routing application, we simulated four Surge instances
located linearly and in range of their nearest neighbors,
and averaged the duty cycles. We ran each configuration
in Avrora for three simulated minutes. Empirically, this
is long enough for duty cycles to stabilize.

The graph in Figure 5(d) shows the change in duty cy-
cle across different versions of our test applications. In
general, CCured by itself slows down an application by
a few percent, while cXprop by itself speeds an appli-
cation up by 3%–10%. We were surprised to learn that
using cXprop to optimize safe applications generally re-
sults in code that is about as fast as the optimized, unsafe
application.

5.5 UTOS

The code size, data size, and execution time overheads
of user-mode UTOS code are, by and large, not different
than they are for the Safe TinyOS applications that we
have evaluated up to this point. A few performance op-
timizations are not available to user mode code, such as
using assembly language and running code in interrupt
mode. Also, function inlining and cXprop optimizations
are not permitted to cross the user-kernel boundary.

We implemented UTOS extensions that match the
functionality provided by the TinyOS Blink, CntToLed-

9

(a)

Safe, verbose error messages
Safe, verbose error messages in ROM
Safe, terse error messages
Safe, error messages compressed as FLIDs
Safe, error messages compressed as FLIDs, optimized by cXprop
Safe, error messages compressed as FLIDs, inlined and then optimized by cXprop
Unsafe, inlined and then optimized by cXprop

 −20%

 0%

 20%

 40%

 60%

 80%

 100%

C
ha

ng
e

in
 c

od
e

si
ze

BlinkTask_Mica2

Oscilloscope_Mica2

GenericBase_Mica2

RfmToLeds_Mica2

CntToLedsAndRfm_Mica2

MicaHWVerify
_Mica2

SenseToRfm_Mica2

TestTimeStamping_Mica2

Surge_Mica2

Ident_Mica2

HighFrequencySampling_Mica2

RadioCountToLeds_TelosB

1,544 6,986 9,130 10,332 10,880 11,626 11,430 12,320 16,614 14,672 17,986 9,458

(b)

 0%

 20%

 40%

 60%

 80%

 100%

C
ha

ng
e

in
 s

ta
tic

 d
at

a
si

ze

BlinkTask_Mica2

Oscilloscope_Mica2

GenericBase_Mica2

RfmToLeds_Mica2

CntToLedsAndRfm_Mica2

MicaHWVerify
_Mica2

SenseToRfm_Mica2

TestTimeStamping_Mica2

Surge_Mica2

Ident_Mica2

HighFrequencySampling_Mica2

RadioCountToLeds_TelosB

50 338 395 390 452 450 466 620 1,929 518 849 240

(c)

 0%

 50%

 100%

 150%

 200%

 250%

C
ha

ng
e

in
 w

or
st

 o
bs

er
ve

d
st

ac
k

de
pt

h

BlinkTask_Mica2

Oscilloscope_Mica2

GenericBase_Mica2

RfmToLeds_Mica2

CntToLedsAndRfm_Mica2

MicaHWVerify
_Mica2

SenseToRfm_Mica2

TestTimeStamping_Mica2

Surge_Mica2

Ident_Mica2

HighFrequencySampling_Mica2

21 28 66 47 63 49 63 63 95 35 35

(d)

 −10%

 −5%

 0%

 5%

 10%

 15%

 20%

 25%

C
ha

ng
e

in
 d

ut
y

cy
cl

e

BlinkTask_Mica2

Oscilloscope_Mica2

GenericBase_Mica2

RfmToLeds_Mica2

CntToLedsAndRfm_Mica2

MicaHWVerify
_Mica2

SenseToRfm_Mica2

TestTimeStamping_Mica2

Surge_Mica2

Ident_Mica2

HighFrequencySampling_Mica2

0.03 0.30 5.80 5.46 6.17 5.55 6.22 6.06 5.65 5.39 5.37

Figure 5: Resource usage relative to a baseline of the default unsafe, unoptimized TinyOS application. The numbers at the top of
each graph indicate the absolute resource usage of the baseline application in bytes for memory graphs and in percent for the duty
cycle graph.

10

Application OS static RAM stack RAM code size duty cycle
Blink TinyOS / UTOS 49 / 1732 21 / 107 1502 / 25174 0.0274 % / 5.95 %
CntToLedsAndRfm TinyOS / UTOS 448 / 1793 63 / 201 10888 / 28012 6.16 % / 7.09 %
RfmToLeds TinyOS / UTOS 390 / 1730 67 / 124 10340 / 27844 5.53 % / 6.32 %

Table 2: Resource usage for unsafe TinyOS applications and equivalent UTOS applications. All memory usage is in bytes.

sAndRfm, and RfmToLeds applications. Blink simply
blinks an LED, while the other two applications exercise
the send and receive sides of the network stack, respec-
tively. Table 2 compares the RAM, ROM, and processor
usage of the existing and new versions of these applica-
tions. The overheads are high because UTOS statically
allocates all kernel resources that any extension might
need. A larger application that fully utilizes the reserved
resources would not be much larger than the simple ap-
plications that we show results for. The UTOS version of
Blink has a high duty cycle because UTOS initializes the
network stack without waiting for an application to do
so. Here, UTOS is configured to accept up to two exten-
sions. We have not attempted to tune the UTOS kernel
for resource usage.

We did some microbenchmarking on UTOS’s termi-
nation and restart capabilities. To measure the time to
reboot an extension we started a timer just before the ex-
tension attempted to violate safety, and then stopped the
timer after the extension had been terminated and reini-
tialized. The worst observed time for extension reboot
is 2947 cycles, or 400µs. The worst observed time to
terminate a faulting extension without restarting it is 693
cycles, or 94µs. In contrast, rebooting and reinitializ-
ing a Mica2 mote running the default TinyOS CntToLed-
sAndRfm application requires 12715 cycles, or 1725µs.
Furthermore, rebooting an entire mote wipes all volatile
state, including routing tables, signal strength estimates,
etc. It takes time and energy to recover this state. Re-
booting a single extension leaves the state of the kernel
and other modules untouched.

5.6 Finding application bugs

We did not perform any kind of systematic or thorough
search for bugs in TinyOS applications. However, we did
run various applications on motes and in Avrora, look-
ing for differences in behavior between the safe and un-
safe versions. While doing this we found a few bugs; we
briefly describe two of them here.

The Surge Reliable application in the TinyOS-1.x
CVS tree contains this code:

ack_code[RxByteCnt +

sizeof(ack_code) + 2 - ACK_LENGTH]

which, after folding constants, is equivalent to:

ack_code[RxByteCnt - 11]

Theack code array has size three and upon executing
this codeRxByteCnt is in the interval[11..15]. Conse-
quently, two elements past the array end are accessed.

The TestEEPROM/Byte application in the TinyOS-
1.x CVS tree uses the PageEEPROM component, which
has a functionsendFlashCommand that executes a spec-
ified number of commands from a buffer in memory.
The block of commands is an array of size four, but
sendFlashCommand function is told to execute up to six
commands, in which case it reads two bytes past the end
of the array.

Additionally, while developing UTOS we had a bug
that resulted in amemcpy to a null pointer. This prob-
lem interacted very poorly with the fact that the AVR
architecture maps the registers into memory starting at
address zero. The resulting register corruption resulted
in program behaviors that were bizarre and confusing,
to say the least. Turning on safety for the UTOS kernel
revealed this bug right away.

6 Related Work

As far as we know, until now no safe version of C has
been run on sensor network nodes, or any other embed-
ded platform with similar resource constraints. However,
other small, safe languages have been around for a long
time: Java Card [29] targets smart cards based on 8-bit
microcontrollers, Esterel [4] is suited to implementing
state machines on small processors or directly in hard-
ware, and Ada was developed for embedded software
programming during the 1970s. Despite the existence
of these languages, most embedded software is imple-
mented in unsafe languages.

Several recent projects have focused on providing
language-based protection for embedded C programs.
Control-C [19] provides safety without runtime checks
by relying on static analysis and language restrictions.
Dhurjati et al. [9] exploit automatic pool allocation to
safety execute embedded software without requiring a
garbage collection. Simpson et al. [28] providesegment
protectionfor embedded software, which, like SFI [34],
emulates course-grained hardware protection rather than
providing fine-grained type safety and memory safety.
Our work differs from these efforts by targeting the
smaller mote platform, by providing compressed error

11

messages, and by handling concurrency and direct hard-
ware access.

Although most operating systems rely on hardware-
based protection, a significant amount of research has
sought to implement process models through language-
based protection. For example, the SPIN OS [5] is based
on Modula-3, Singularity [16] is based on C#, and Kaf-
feOS [2] is based on Java. Language-based protection
has also been used inside traditional operating systems.
For example, the BSD packet filter [21] is based on an
interpreter for a small, safe language that runs in the ker-
nel. STP [24] runs compiled Cyclone [17] code inside
the kernel, where it enforces memory safety, time safety,
and network safety. UTOS is distinguished from this pre-
vious work by targeting a platform that is orders of mag-
nitude smaller. In TinyOS, the Maté [20] and Agilla [11]
virtual machines are used to run extensions safely. UTOS
differs from these by being able to run slightly modified
TinyOS code in untrusted mode, as opposed to requiring
applications to be rewritten in a low-level VM language.
Also, UTOS extensions are fast because they are com-
piled to native code.

We know of three ongoing efforts to bring the benefits
of safe execution to sensor network applications. First,
t-kernel [13] is a sensor net OS that supports untrusted
native code without trusting the cross-compiler. This
is accomplished by performing binary rewriting on the
mote itself. t-kernel provides safety guarantees similar
to those provided UTOS, through very different mecha-
nisms. Unlike UTOS, it sacrifices backwards compati-
bility with TinyOS and was reported to make code run
about 100% slower. Second, Rengaswamy et al. [26]
provide memory protection in the SOS sensor network
OS. This is efficient, but the SOS protection model is
weaker than ours: it emulates course-grained hardware
protection, rather than providing fine-grained memory
safety. Third, Virgil [30] is a new safe language for tiny
embedded systems such as sensor network nodes. Like
nesC/TinyOS, Virgil is designed around static resource
allocation, and like Java Card [29] it supports objects.

A number of alternative sensor net operating systems
exist, such as Contiki [10], MantisOS [6], and SOS [14].
With the exception of the memory safety work for SOS
mentioned above, this work is largely complementary to
ours. The developers of these systems are primarily inter-
ested in figuring out what abstractions can conveniently
and efficiently support sensor network applications. Our
work is based on the assumption that the existing TinyOS
abstractions are good ones, and we are primarily inter-
ested in adding a user-kernel boundary that is as trans-
parent as possible.

Besides CCured, a number of other safe dialects of
C have been developed. These include Cyclone [17],
Safe-C [1], Jones and Kelly’s work [18], an improve-

ment on Jones and Kelly by Dhurjati and Adve [8], and
CRED [27]. This research is largely complementary to
our work, which focuses on pushing safety down to very
constrained embedded systems, and on exploiting lan-
guage safety to run untrusted code.

7 Discussion

Why TinyOS and CCured work well together. We be-
lieve that, with our modifications and additions, CCured
and TinyOS are ideally suited to one another. First,
although CCured’s pointer kind inference can be slow
when applied to large programs, it is more than fast
enough for relatively small TinyOS programs. Second,
CCured’s fat pointers create problems at library inter-
faces, but TinyOS programs do not use library functions
beyond a few trivial ones likememcpy. Finally, CCured’s
reliance on a conservative garbage collector can be a
problem: GC may introduce long pauses into applica-
tion execution, and conservative collectors are known to
leak. Because our TinyOS applications do not use dy-
namic memory allocation, we can drop all GC support.

Making analysis sound. We previously developed
two static analysis tools for TinyOS applications: Stack-
tool [25], which analyzes AVR binaries, and cXprop [7],
which analyzes source code. Both of these analyzers, as
well as every other analyzer for C or object code that we
are aware of, are unsound—that is, wrong—unless the
program being analyzed conforms to a set of assump-
tions. For example, consider the extreme case of using
static analysis to construct a callgraph for a program that
contains a remotely exploitable buffer overflow vulnera-
bility. This cannot be done. Nearly all unsoundness in
our tools goes away when they are used to analyze safe
code output by CCured, which cannot perform the kinds
of operations that violate our analyzers’ assumptions.

Using safety to help find a compiler bug. An
early version of UTOS, after being run through CCured,
caused the Avrora [31] simulator to throw a bounds-
check exception. This happens when a program refer-
ences a storage location that does not correspond to phys-
ical memory. Normally, the cause of such an error is
expected to lie within the application. However, since
CCured is supposed to catch all out-of-bounds mem-
ory references, we knew the application was not the
problem—only an error in the CCured compiler or gcc
can cause a safe application to actually crash. Inspec-
tion of the safe C code emitted by CCured showed that
the translation was perfectly correct. The bug turned out
to be a deeply ugly—and previously unknown—error in
the AVR port of gcc that caused a call through func-
tion pointer to jump to twice the address of the intended
target. Safe code limited the scope of this error to the
toolchain, making it far easier to track down.

12

Safe TinyOS future work. Our work adds safety as
a post-processing step. It might be preferable to provide
safety within the nesC compiler instead, making it easier
to implement new high-level safety features. For exam-
ple, compiler-assisted tracking of network buffer owner-
ship would be useful; TinyOS’s buffer-swap protocol is
a notorious source of bugs.

UTOS future work. Currently, UTOS supports sep-
arate compilation of extensions, but it does not support
loading extensions over a network. This is one of the next
features that we plan to implement. Another improve-
ment that should be useful is to relax TinyOS’s design
rule that resources are allocated statically. We believe in
static allocation within extensions, but probably, UTOS
should dynamically allocate the resources needed by an
extension when it is loaded. If extensions were compiled
as position-independent code and data, then it would be
possible to dynamically relocate extensions, and external
fragmentation could be avoided. Finally, because battery
life is a first-order concern on sensor network nodes, we
would like to explore the idea of giving each extension a
power or energy budget. When this budget is exceeded,
the extension’s activities could be throttled or it could be
shut down.

8 Conclusion

We want sensor network applications to be reliable.
However, existing TinyOS applications do not have ac-
cess to memory protection, isolation, and safe termi-
nation: abstractions that are known to be useful build-
ing blocks for reliable software. In this paper, we
have shown that these features can be supported in
TinyOS, using type safety and memory safety provided
by CCured as a foundation. Several innovations were re-
quired to push safe execution into tiny microcontrollers.
We created a novel way to enforce safety under interrupt-
driven concurrency, we compress error messages to re-
duce storage requirements, and we use whole-program
optimization to further reduce space and time overhead.

We used our safe language infrastructure to create Safe
TinyOS and UTOS, two points on a spectrum of practi-
cal TinyOS kernels. Safe TinyOS can protect a sensor
network from memory errors such as array bounds vi-
olations, with the added benefits of improved error de-
tection and diagnosis. UTOS satisfies a different pur-
pose: it provides protection that is needed by applica-
tions that must guard some of their components (the ker-
nel) against possible misbehavior by other components
(the extensions). Terminating and restarting an extension
is about four times faster than rebooting a monolithic
TinyOS application. We do not claim that Safe TinyOS
or UTOS represents an ideal balance between function
and cost. Rather, our goal is to show that our general

techniques and toolset—based on safety and powerful
static analyses—are useful for implementing avarietyof
“red lines” in a cost-effective manner.

Our results show that language-based safety can be
practical even for systems as small as sensor network
nodes. In fact, safe, optimized TinyOS applications often
use less CPU time than the original unsafe, unoptimized
applications do.

Acknowledgments

Jeremy Condit, Matt Harren, and George Necula pro-
vided valuable assistance and patches for CIL and
CCured. Without their help this work would have been
much more difficult. We thank Lin Gu, Jay Lepreau, and
Ben Titzer for providing useful early feedback on our
ideas and writing. This work is supported by National
Science Foundation CAREER Award CNS–0448047.
This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0410285.

References

[1] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient de-
tection of all pointer and array access errors. InProc.
of the ACM SIGPLAN 1994 Conf. on Programming Lan-
guage Design and Implementation (PLDI), Orlando, FL,
June 1994.

[2] G. Back, W. C. Hsieh, and J. Lepreau. Processes in
KaffeOS: Isolation, resource management, and sharing
in Java. InProc. of the Fourth Symposium on Operat-
ing Systems Design and Implementation, pages 333–346,
San Diego, CA, Oct. 2000. USENIX Association.

[3] G. V. Back and W. C. Hsieh. Drawing the red line in
Java. InProc. of the Seventh Workshop on Hot Topics in
Operating Systems, pages 116–121, Rio Rico, AZ, Mar.
1999. IEEE Computer Society.

[4] G. Berry. The foundations of Esterel. InProof, language,
and interaction: essays in honour of Robin Milner, Foun-
dations of Computing, pages 425–454. MIT Press, 2001.

[5] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker,
M. Fiuczynski, C. Chambers, and S. Eggers. Extensibil-
ity, safety and performance in the SPIN operating sys-
tem. InProc. of the 15th ACM Symp. on Operating Sys-
tems Principles (SOSP), pages 267–284, Copper Moun-
tain, CO, Dec. 1995.

[6] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth,
B. Shucker, C. Gruenwald, A. Torgerson, and R. Han.
MANTIS OS: An embedded multithreaded operating sys-
tem for wireless micro sensor platforms.Mobile Net-
works and Applications, 10(4):563–579, Aug. 2005.

[7] N. Cooprider and J. Regehr. Pluggable abstract domains
for analyzing embedded software. InProc. of the 2006
Conf. on Languages, Compilers, and Tools for Embedded
Systems (LCTES), Ottawa, Canada, June 2006.

[8] D. Dhurjati and V. Adve. Backwards-compatible array
bounds checking for C with very low overhead. InProc.

13

of the 28th Intl. Conf. on Software Engineering (ICSE),
Shanghai, China, May 2006.

[9] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Mem-
ory safety without garbage collection for embedded ap-
plications. ACM Transactions on Embedded Computing
Systems (TECS), 4(1):73–111, Feb. 2005.

[10] A. Dunkels, B. Gr̈onvall, and T. Voigt. Contiki—a
lightweight and flexible operating system for tiny net-
worked sensors. InProc. of the 1st IEEE Workshop on
Embedded Networked Sensors (EmNetS), Tampa, Florida,
Nov. 2004.

[11] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid development
and flexible deployment of adaptive wireless sensor net-
work applications. InProc. of the 24th Intl. Conf. on
Distributed Computing Systems (ICDCS’05), pages 653–
662, Columbus, OH, June 2005.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC language: A holistic approach
to networked embedded systems. InProc. of the Conf.
on Programming Language Design and Implementation
(PLDI), pages 1–11, San Diego, CA, June 2003.

[13] L. Gu and J. A. Stankovic. t-kernel: a translative OS ker-
nel for sensor networks. Technical Report CS-2005-09,
Department of Computer Science, University of Virginia,
2005.

[14] C.-C. Han, R. K. Rengaswamy, R. Shea, E. Kohler, and
M. Srivastava. SOS: A dynamic operating system for sen-
sor networks. InProc. of the 3rd Intl. Conf. on Mobile
Systems, Applications, And Services (Mobisys), Seattle,
WA, June 2005.

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. InProc. of the 9th Intl. Conf. on Architectural
Support for Programming Languages and Operating Sys-
tems (ASPLOS), pages 93–104, Cambridge, MA, Nov.
2000.

[16] G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham,
M. Fähndrich, C. Hawblitzel, O. Hodson, S. Levi,
N. Murphy, B. Steensgaard, D. Tarditi, T. Wobber, and
B. Zill. An overview of the Singularity project. Techni-
cal Report MSR-TR-2005-135, Microsoft Research, Oct.
2005.

[17] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney,
and Y. Wang. Cyclone: A safe dialect of C. InProc.
of the USENIX Annual Technical Conf., pages 275–288,
Monterey, CA, June 2002.

[18] R. Jones and P. Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. In
Proc. of the 3rd Intl. Workshop on Automated Debugging,
Linköping, Sweden, May 1997.

[19] S. Kowshik, D. Dhurjati, and V. Adve. Ensuring code
safety without runtime checks for real-time control sys-
tems. InProc. of the Intl. Conf. on Compilers Architecture
and Synthesis for Embedded Systems (CASES), Grenoble,
France, Oct. 2002.

[20] P. Levis and D. Culler. Maté: A tiny virtual machine for
sensor networks. InProc. of the 10th Intl. Conf. on Archi-
tectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), San Jose, CA, Oct. 2002.

[21] S. McCanne and V. Jacobson. The BSD packet filter: A
new architecture for user-level packet capture. InProc.
of the Winter 1993 USENIX Conf., pages 259–269, San
Diego, CA, Jan. 1993.

[22] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: Type-safe retrofitting of legacy soft-
ware. ACM Transactions on Programming Languages
and Systems, 27(3), May 2005.

[23] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer.
CIL: Intermediate language and tools for analysis and
transformation of C programs. InProc. of the Intl. Conf.
on Compiler Construction (CC), pages 213–228, Greno-
ble, France, Apr. 2002.

[24] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and
T. Stack. Upgrading transport protocols using untrusted
mobile code. InProc. of the 19th ACM Symp. on Operat-
ing Systems Principles (SOSP), Bolton Landing, NY, Oct.
2003.

[25] J. Regehr, A. Reid, and K. Webb. Eliminating stack over-
flow by abstract interpretation.ACM Transactions on Em-
bedded Computing Systems (TECS), 4(4):751–778, Nov.
2005.

[26] R. Rengaswamy, E. Kohler, and M. B. Srivastava. Soft-
ware based memory protection in sensor nodes. Techni-
cal Report TR-UCLA-NESL-200603-01, Networked and
Embedded Systems Laboratory, University of California,
Los Angeles, Mar. 2006.

[27] O. Ruwase and M. S. Lam. A practical dynamic buffer
overflow detector. InProc. of the 11th Annual Network
and Distributed System Security Symp., pages 159–169,
Feb. 2004.

[28] M. Simpson, B. Middha, and R. Barua. Segment pro-
tection for embedded systems using run-time checks. In
Proc. of the Intl. Conf. on Compilers Architecture and
Synthesis for Embedded Systems (CASES), San Francisco,
CA, Sept. 2005.

[29] Sun Microsystems. Java Card Specification 2.2.2, Mar.
2006.

[30] B. L. Titzer. Virgil: Objects on the head of a pin, Mar.
2006. In submission.

[31] B. L. Titzer, D. Lee, and J. Palsberg. Avrora: Scalable
sensor network simulation with precise timing. InProc.
of the 4th Intl. Conf. on Information Processing in Sensor
Networks (IPSN), Los Angeles, CA, Apr. 2005.

[32] B. L. Titzer and J. Palsberg. Nonintrusive precision in-
strumentation of microcontroller software. InProc. of the
2005 Conf. on Languages, Compilers, and Tools for Em-
bedded Systems (LCTES), Chicago, IL, June 2005.

[33] G. Tolle and D. Culler. Design of an application-
cooperative management system for wireless sensor net-
works. In Proc. of the 2nd European Workshop on
Wireless Sensor Networks (EWSN), Istanbul, Turkey, Jan.
2005.

[34] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Gra-
ham. Efficient software-based fault isolation. InProc.
of the 14th ACM Symp. on Operating Systems Principles
(SOSP), pages 203–216, Asheville, NC, Dec. 1993.

14

	cover-template.pdf
	doc-pdf.pdf
	Introduction
	Background
	TinyOS
	CCured
	cXprop

	Safety for TinyOS Applications
	Handling concurrency
	Whole-program optimization
	Hardware access
	Adapting the CCured runtime library
	Handling dynamic errors
	CCured failures

	UTOS: Untrusted Extensions for TinyOS
	Drawing a red line
	Extensions and resources

	Evaluation
	Eliminating safety checks
	Code size
	Data size
	Processor use
	UTOS
	Finding application bugs

	Related Work
	Discussion
	Conclusion
	Acknowledgments
	References

