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A b s tr a c t

This paper reports research on solutions to  the following reparametrization problem: approxim ate c(r( t ) )  
by a N U R BS where c is a N U R BS curve and r  may, or may not, be a N U R BS function. There are many 
practical applications of this problem including establishing and exploring correspondence in geometry, creating 
related speed profiles along motion curves for anim ation, specifying speeds along tool paths, and identifying 
geometrically equivalent, or nearly equivalent, curve mappings.

A framework for the approxim ation problem is described using two related algorithmic schemes. One con
strains the shape of the approxim ation to be identical to the original curve c. T he other relaxes th is constraint. 
New algorithms for im portant cases of curve reparametrization are developed from w ithin this framework. They  
produce results w ith bounded error and address approxim ate arc length param etrizations o f curves, approximate 
inverses of N U R BS functions, and reparametrizations that establish user specified tolerances as bounds on the  
Frechet distance between parametric curves.

1 Introduction
In designing free-form curves and surfaces, the user of a geom etric m odeling system  generally prefers to  
concentrate on shape, not on the internals of curve and surface representations. G eom etric constructions  
using param etrically defined representations, however, often lead to  unwanted or surprising effects due 
to  curve and surface param etrizations. R eparam etrizing curve or surface representations is an im portant 
approach to  m inim izing these effects.

T his paper focuses on new solutions to the following N U RB S (Non-Uniform  R ational B-Spline) 
reparam etrization problem: approxim ate c(r(t)) by a N U R B S where c is a N U R B S curve and r may, 
or m ay not, be a N U R B S function. Here c is a param etric, or vector valued, function (i.e. c =  c(u) : 
Iu C R  —> R n) and r is a scalar valued change of param eter (i.e., r(t)  : I t C R  —> Iu)- There are 
m any practical applications of th is problem  w ithin the context of N U R B S based m odeling system s. 
These include establishing and exploring correspondence in geom etry, creating related speed profiles 
along m otion  curves for anim ation, specifying speeds along too l paths, and identifying geom etrically  
equivalent, or nearly equivalent, curve mappings.

In these applications practical problem s arise regarding the integration of reparam etrization opera
tions into the m odeling system  as usable design tools. R esults m ust be predictable, take a usable form, 
and be capable of control by the user. Problem s also arise in the representation of th e results of such 
reparam etrizations. These problem s include:

C lo su re : It is im portant to  represent the results o f operations in N U R B S form in a N U RB S based  
m odeling system  so that operations in the system  m ay be com posed. However, reparam etrization is not, 
in general, closed under the N U RB S representation. T his gives rise to the need for approxim ation in 
N U RB S spaces.
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E rro r  B o u n d s :  Users should be able to  control the accuracy of approxim ations by specifying tolerances 
in m eaningful m etrics.

D a ta  C o m p le x ity :  R eparam etrization involves (the approxim ation of) function com position. M any 
N U RB S schem es to  do this raise the degree of the polynom ials used in the approxim ations. Increasing  
the accuracy of these approxim ations m ay also increase the number of p olynom ial pieces in th e result. 
It is im portant to consider ways to m anage this increased data com plexity.

We describe a framework for N U RB S curve reparam etrization which addresses th e above issues. 
New error bounded algorithm s for im portant cases of N U R B S curve reparam etrization are developed  
from w ithin  this framework and include reparam etrizations to  approxim ate arc length param etrizations, 
approxim ate inverses of N U R B S functions, and establish  user specified tolerances as bounds on the  
Frechet d istance between param etric curves.

2 Background
T his section reviews som e m athem atical prelim inaries used throughout th is paper.

2.1 D is tan ce  B etw een  P a ra m e tr ic  C urve M aps
Given two m appings, a  : I  —>• R n and / ? : / —>• R n, the equal-parameter distance between these m appings 
is defined as:

d (a ,/3 ) = T  \\a(t) -  P(t)\\

for t £ I  and || || the L 2 norm in R n.
G iven two m appings, a  : Ia -> R n and (3 : Ip —> R n, th e Frechet distance between these m appings is 

defined as:
T(a,i3) \\a(t) -  m m \

where t 6  Ia and h : Ia —► Ip is a hom eom orphism .
The Frechet d istance is essentially  the m inim um  equal-param eter distance between a  and possible 

reparam etrizations of j3. W hereas equal-param eter distance depends on the param etrizations of the  
curve m appings, Frechet d istance is param etrization in d e p e n d e n t .

Frechet curves [14] are defined as equivalence classes of curve m appings under the relation: a  (3 =  
T(a,P)  = 0.

2.2 P iecew ise R eg u la r C urves
Throughout th is paper we assum e that all curve m appings are piecewise regular and that all change 
of param eter functions are piecewise allowable. P iecew ise regular curves allow for in tentional unit tan
gent and param etric derivative discontinuities, characteristics that are som etim es necessary in m odeling  
environm ents.

A m apping, a(u) : /„ —¥ R n, is piecewise regular if: a(u)  is C 1 on Iu except at a finite number of 
points on Iu where it is constrained to  be C°, and dâ  /  0 Vu 6 Iu. (At points on Iu where a(u) is 
only C °, left and right derivatives m ust exist and be nonzero.)

A real valued function 8(t) : It —> Iu is a piecewise allowable change of param eter if: 9(t) is C 1 on It 
except at a finite num ber of points on It where it is constrained to be C °, and 8(t)  is strictly  m onotonic 
on I t .
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2 . 3  N U R B S  C u r v e s

N U RB S curve and surface form ulations have becom e fairly standard representation schem es in current 
CAD m odeling system s. The N U R B S representation has m any attractive properties including com puta
tional stability, locality, and refinement. Below  we highlight som e im portant properties of N U R B S that 
are used throughout th is paper.

2 .3 .1  S o m e  N U R B S  C lo su r e  P r o p e r t ie s

If Af  is the class of all univariate N U RB S functions defined on an interval It,  and if f ( t ) , g ( t )  €  Af  and 
A €  R  then:

f { t ) + g { t )  EJ\f, X f { t ) e A f ,  ^ f { t ) e A f ,  and f ( t )g( t )  e  Af.

If c(u) : Iu —» R n and r(t) : It —> Iu are b o th  N U RB S then c(r(t))  is a N U R B S.

N U RB S representations for addition and m ultiplication of N U RB S functions are discussed in [11] and
[28]. Techniques for representing the com position  of N U RB S functions in N U R B S form are discussed in
[30] and [25].

2 .3 .2  B o u n d in g  E q u a l-P a r a m e te r  D is t a n c e

In this section we use N U R B S properties to outline m ethods for bounding the equal-param eter distance 
between N U R B S curves. These techniques are used by the reparam etrization algorithm s of sections 4 
and 5. See [5] for a m ore detailed  discussion.

Given two N U RB S curves w ith  a com m on param etric dom ain Ci(t), C2 (t) : It —> R n we seek to  bound, 
from both  above and below , ||ci(£) — 02(f)|| over subintervals of It where || || denotes the L 2 norm.

W ithout loss o f generality assum e that ci and C2 are of the sam e polynom ial order and defined  
over the sam e knot vector (th is can always be achieved by using affine transform ations of knot vectors, 
N U RB S degree raising[8], and refinem ent[7]). The difference v(t)  =  C i ( i )  — c2(t) can then  be formed as 
a N U R B S reducing the problem  to  bounding ||u(f)|| for v a N U R B S curve.

To solve th is problem , the sc a la r  valued function ||u (f)||2 =  <  v(t) ,  v(t)  >  can be formed as a 
N U RB S and bounded from both above and below using convex hull analysis. A much m ore efficient 
m ethod applies convex hull analysis directly to  the v e c to r  valued function v(t)  (see [5]). N U R B S curve 
refinement, applied prior to  the convex hull analysis, can be used to  obtain  tighter error bounds.

3 Related Work
This section sum m arizes the previous work m ost d irectly related to  the reparam etrization algorithm s 
presented in this paper.

3.1 A rc L en g th  P a ra m e tr iz e d  C urves
Because of the im portance of the problem  there has been significant work related to  approxim ating arc 
length functions for param etric curves and sam pling param etric curves at equal spacings in arc length.

Farouki and Sakkalis show in [17] that it is im possible to  param etrize any real curve, other than a 
piecewise straight line, by rational functions of its arc length. There are a num ber of m ethods, however, 
to  extract arc length approxim ations for param etric curves at d iscrete points in the curve dom ain.

Fritsch and N ielson [18] form a piecew ise linear approxim ation, r(l) ,  to  the inverse arc length  function  
generated from a specified number of evaluations equally spaced in the dom ain of a param etric curve 
c(u).  T hey then perform discrete evaluations of c(r(t))  (i.e., a curve form for c(r(t))  is n o t  com puted) 
to  produce approxim ately equally spaced points on the curve. The authors use th is technique in the  
context o f the com putation  of a m etric for curve/curve com parison. In [9] and [4] sim ilar techniques are

3



used to  approxim ate the arc length and inverse arc length functions for curves in the context o f sweep  
surface construction.

Num erical integration techniques can be used to  estim ate arc lengths at d iscrete values in th e curve 
dom ain. In [32] N ew ton-R aphson iteration in com bination w ith  Rom berg quadrature is used to  approx
im ate discrete evaluation of the inverse arc length function for param etric curves. N o error bounds are 
given, although the authors sta te that a relative error test is done when applying Rom berg integration. 
In [21] adaptive G uassian quadrature is used to  create a lookup table of approxim ate arc length function  
values over the dom ain of a param etric curve. N ew ton-R aphson iteration  in com bination w ith  non- 
adaptive G uassian quadrature is then used to  approxim ate discrete evaluation of the inverse arc length  
function for the curve. No true error bounds are given for their technique though the user m ay control 
relative error by the specification of a tolerance value used to  control the adaptive quadrature.

Some approaches try to  m ake the param etrization of interpolants closer to  an arc length param etriza- 
tion  by enforcing unit derivative lengths at discrete points in the dom ain. In [35] a global G 2 param etric 
in terpolation schem e is used which enforces unit derivative length at data  interpolation  points. W ang 
and Yang [34] present a technique to  interpolate discrete data points using quintic splines. Their appli
cation is the conversion of param etric curves to  a more nearly arc length  form. No attem p t is m ade to  
establish  error bounds either in term s of arc length param etrization or deviation  from the shape of the 
original sam pled curve. More recently Srinivasan and Ge [33] have extended results in [34] to  rational 
curves representing both  translational and rotational m otions.

In [22] discrete data  points for rational spline m otion  are interpolated using a local cubic C 1 scheme. 
The context for this in terpolation  is real tim e control of industrial robots. A procedural reparam etrization  
is applied to  the interpolant to  achieve a desired speed profile. T his technique is concerned w ith  real
tim e m otion  control and not w ith the actual expression of the reparam etrized trajectory as a param etric 
curve.

Elber [12] presents error bounded algorithm s to approxim ate both norm alized univariate vector fields 
and arc length functions for N U RB S curves. The results o f both of these algorithm s are bounded by 
a user specified tolerance on the variation of speed from unity. A N U R B S approxim ation to inverse 
arc length is not com puted and no algorithm  for reparam etrization by arc length  is given. Instead root 
finding techniques are used for discrete point approxim ation of the inverse arc length function.

Blanc and Schlick [3] use quadratic rationals as change of param eter functions to  im prove the  
param etrization of N U R B S curves. In particular they consider the use of these functions to  im prove the  
param etrization of quadratic N U R B S representations of circular arcs. A heuristic is used to  reduce the  
m axim um  value of the chordal deviation  of circular arcs from constant speed. T he reparam etrization  
the authors use for circular arcs depends on the particulars of the behavior o f the param etrization of 
the standard representation for these arcs. The authors do not give a generalization of their technique 
to  approxim ate arc length param etrizations for more general curves.

The thrust in [16] is the reparam etrization of polynom ial curve segm ents to  create nearly constant 
speed curves. The author adopts a “m easure of closeness” to  constant speed, and then analytically  
m inim izes th is m easure subject to  the use of a linear rational (M obius) reparam etrization. The author 
states that extending the specific m inim ization technique used to  the reparam etrization o f rational curves 
is difficult.

C asciola and M origi [6] create approxim ate arc length param etrized N U R B S curves by using linear 
rational and C 1 piecew ise linear rational change of param eter functions in an adaptive piecewise scheme. 
The optim ization  m ethod they use to  create an arc length approxim ation over a given param etric interval 
assum es detailed knowledge o f error relative to the actual arc length function over that interval. The 
evaluation criteria require accurate knowledge of either the arc length function or th e speed function on 
the curve. The authors do not sta te how the arc length or speed functions are approxim ated in these 
contexts and what properties these approxim ations have. True error bounds are not given for these 
algorithm s.
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3.2 D is tan ce  B etw een  P a ra m e tr ic  C urves
Section 5.3 presents an algorithm  for bounding the Frechet d istance between curves. Here we discuss 
previous work related to  the com putation  of distance m etrics betw een curves.

3 .2 .1  F r e c h e t  D is ta n c e

The Frechet distance between curves can be com puted analytically  for polygonal curves (i.e., p iecewise 
linear). A lt and Godau [1, 20] give algorithm s for determ ining the Frechet d istance betw een polygonal 
curves assum ing the two curves have linear param etrizations and unit length param etric intervals for 
each segm ent.

Elber in [12] observes that for c i(u )  and C2 (v) N U RB S curves, the surface 6(u, v) =  \\ci(u) — c2 (v)\\2 =  
<  ci (u ) — C2 (v),  c i (w) — C2 (v) >  can be represented as a N U R B S. He further observes th a t establishing a 
value e as a bound on Frechet distance between Ci and c2 is related to  finding the zero set o f 5(u, v) — e2. 
He also discusses using the surface S(u,v)  to  find intersection, closest, and furthest points of the two 
curves.

The algorithm  of section 5.3 uses closest point m atches on two curves as a heuristic for finding a 
change of param eter function that dem onstrates a bound on Frechet distance. C losest point m atches 
have also been used in com puter vision research. Zhang [36] gives an algorithm  to  m atch polygonal 
curves by using closest point m atches on the curves. In [37] these techniques are extended to  m atching  
surfaces. Sim ilar work has also been done in [2]. The prim ary application of these algorithm s is an 
understanding o f rigid body m otion  in com puter vision. The authors do not apply these techniques to  
the reparam etrization of curves or surfaces.

3 .2 .2  O th e r  M e tr ic s

T he Frechet d istance between curves is stated  in term s of a m in /m a x  constraint. Its advantage is that 
it  gives a m easure of sim ilarity between two curves over the entire path of b oth  curves. Other m etrics 
between param etrically defined curves are possible of course. Em ery in [13] details an algorithm  for the 
com putation of the Hausdorff distance [29] between planar polygonal curves. T his algorithm  is applied  
to  the creation of p iecew ise linear approxim ations to  more general curves w ith  bounded curvature.

Regular param etric curves are guaranteed to  have arc length param etrizations. T his notion can be 
used to  form a m etric between curves. In [18] the authors define a d istance m etric based on arc length: 

d(a(u),b(v)) =  tP ||a ( i)  — (3(t)|| for a  and (3 approxim ate norm alized arc length param etrizations of a 
and b respectively. The arc length param etrization is approxim ated as referenced in section  3.1 above.

4 Framework
In this section  we present a general framework for reparam etrization algorithm s using two algorithm ic 
schem es, M ethods 1 and 2. Sections 5.1 through 5.3 specialize th is framework to  specific reparam etriza
tion  algorithm s.

The general problem  is to  approxim ate c(r(t))  by a N U R B S where c is a N U R B S and r is assumed  
n o t  to  be a N U R B S. (These m ethods also can be used when r  is  a N U R B S and we want to represent 
r or c(r) by N U R B S functions of lower polynom ial order.) The two schem es differ in the constraints 
applied to  the approxim ation problem . M ethod 1 constrains the approxim ating N U R B S function to  have 
e x a c t ly  the sam e shape as c(u).  Thus the approxim ation for c(r(t))  m ust b e accom plished directly by 
N U R B S function com position  having the form c(q(t))  for som e N U R B S function q.

M ethod 2 relaxes th is shape constraint, constraining the approxim ating function to  be w ithin  som e 
non-zero Frechet distance of c(u).  W ith  the loosening of the shape constraint m ore general approxim ation  
techniques can be applied to  the problem . T he result is no longer exactly  a function com position form  
but rather an approximate function composition.
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i = i + 1 
J |

c(u) r*(f) — >■ c(r*(<)) — > PI

Figure 1: Schematic for Method 1. The iteration counter for the algorithm is denoted by i. M. is a monotone 
approximation operator to scalar valued data. P I  checks for convergence to the correct parametrization.

4.1 M ethod 1
Figure 1 gives a schematic for Method 1. This method iteratively approximates r(t) by a converging 
series of NURBS functions {r*(£)}. At each iteration, the function composition c[rl {t)) is formed as a 
NURBS. A test is performed to check convergence to the correct parametrization (signified by PI  in the 
diagram). When the convergence criterion is met the scheme terminates. Otherwise a more accurate 
NURBS approximation to r is generated and the scheme iterates.

For this scheme to succeed it is necessary to form a converging sequence of NURBS approxima
tions {r*} and to test, with an appropriate metric, that the sequence (c(r*)} converges to the correct 
parametrization. These issues will be discussed in sections 5.1 through 5.3. Here we give a more detailed 
statement of the general method.

Denote by S l =  <Sm>r. the *th approximating polynomial, or rational, spline space given by the ith 
knot vector r! and fixed order m. The ingredients for the general scheme are:

• A monotone approximation operator M [ r , S l], which approximates r by a NURBS in space S l . 
Choices for this approximation operator are discussed in section 4.4.

• A metric, or pseudo metric, d(al , f ) ,  which measures the distance between the ?th approximation 
ai (t) =  c(r*(t)) and f ( t )  =  c(r(t)). It is important that this distance can be bounded. Bounds 
for d{al {t), c(r(t))) are represented below by functions bz(t) whose range of values are assumed to 
be easily interrogated over intervals of the domain. Some general choices for d are discussed in 
section 4.6. Techniques for bounding d will be discussed in sections 5.1.1, 5.2.1, and 5.3.2.

• A refinement scheme refme(r*, bl (t)). Given error bound bl(t) and fixed order m  this scheme 
will produce the knot vector t1+1 which determines the approximating spline space for the next 
iteration of the algorithm. Some general characteristics of these refinement schemes are discussed 
in section 4.5.

The general scheme is as follows:

Input:
c{u) : Iu —> R n a piecewise regular NURBS curve map,
r(t) : It Iu a piecewise allowable change of parameter with r(/t) = Iu,
m  the order of approximating functions for r,

t °  the knot vector for the initial approximation of r, and
ei > 0 an error tolerance measure.

Output:
NURBS approximations for f ( t )  =  c(r(t)) or r(t).

Algorithm:

1. i =  0

2. r l (t) = M [ r ,5 4]
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3. form al (t) =  c(rl (t)) as a NURBS curve.
4. find error bound bl (t) such that d(al (t), c(r(t))) <  bl (t).

5. if mfX bl (t) > then r l+1 = refine(r‘, bl (t)), i — i +  1, go to 2.
6. return r‘(t) or al (t).

4.2 M ethod 2
This section develops an algorithmic approach which relaxes the constraint that the resulting curve have 
exactly the same shape as c(u). The new scheme approximates c(r(t)) in spline spaces of arbitrary 
polynomial order. One of the primary advantages of this scheme, as compared with Method 1, is that it 
decouples the data complexity (order and number of control points) and smoothness of its result from 
the complexity and smoothness of the NURBS function composition form used. (See [5] for a more 
detailed comparison of the two methods.)

Figure 2 gives a schematic for Method 2. At each iteration, the NURBS function al (t) «  c(r(t)) is

i = i + 1

(a) c(u) a*(t) — > P I  r l {t) — > c(rl (f)) — )• D ?

i  =  i  +  l

(b) c(u) a l ( t) — y P? r l (u) — > a l (r l (u)) — > D ?

Figure 2: Schematic for Method 2. A  is an approximation operator to vector valued data whereas M  is a mono
tone approximation operator to scalar valued data. P? checks for convergence to the correct parametrization. 
D? checks equal-parameter distance between c((r'(t)) and a'(t) in (a) and between a‘(r~‘(u)) and c(u) in (b).

formed using an approximation operator A ■ Test PI  is performed to measure convergence to the correct 
parametrization as in Method 1. Since operator A  may change the shape of the approximation and since 
test PI  may not take shape into account, a further test, Dl ,  is performed to make sure that a*(t) is 
within a user specified Frechet distance of c(u). Figures 2(a) and (b) give two ways to accomplish this 
test; by using a convergent series of approximations to either r or to r-1 . (A slight abuse of notation 
appears here: r ~ l denotes the ith approximation to the inverse function denoted as r-1 .)

For this scheme to work we must be able to construct two convergent sequences of NURBS functions, 
{a1} and either {r- ! } or {r1}, using distinct operators A  and M .  This requirement appears to complicate 
Method 2 relative to Method 1. However, we will see that the two approximation problems of Method 2 
are related very closely.

We now give a more detailed statement of Method 2 as it is depicted in Figure 2(b). Denote by 
T* = Tm T̂i the ith approximating polynomial, or rational, spline space given by ith knot vector r1 
and fixed order m. These spaces are used to formulate the spline approximations a*(£) «  f ( t )  =  c(r(t)). 
Denote by S 1 =  Si „. the ith approximating polynomial, or rational, spline space given by ith knot vector 
a* and fixed order I. These spaces are used to formulate the spline approximations r~l (u) «  r-1 (u). 
The ingredients for this new scheme are:

• An approximation operator A[f,  T l], which approximates parametric function /  by a NURBS in 
space T®. Choices for this operator are discussed in section 4.4.2.

• A means of deriving S l from space T*. Section 4.4.3 discusses the relationship between these 
spaces.

• A monotone approximation operator .M[r-1 ,<S*], which approximates its first argument by a 
NURBS in the space of its second argument as in Method 1.
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• A metric, or pseudo metric, d(al , f ) ,  that measures the distance between the ith approximation 
al (t) and f( t )  =  c(r(t)) as in Method 1.

• Refinement schemes refinel(r4, bl(t)) and refine2(r%/3J(u)). These schemes are discussed in sec
tion 4.5.

The new scheme is as follows:

Input:
c(u) : Iu -» R n a piecewise regular NURBS curve map,
r(t) : It —» Iu a piecewise allowable change of parameter with r(It ) =  Iu,
m  the order of approximating functions for c(r(t)),
I the order of approximating functions for r-1 (u),
t °  the knot vector for the initial approximation of c(r(t)),  and
ei,£2 > 0 error tolerance measures.

Output:
NURBS approximation for f( t )  =  c(r(f)).

Algorithm:

1. i = 0

2. ai (t) =  A [ f ( t ) ,T i]
3. find error bound &*(£) such that d(al (t) , / (t)) < b^t).

4. if mt’x bz(t) >  ei then r z+1 =  refinel(r% bl (t)), i =  i +  1, go to 2.
5. derive S l from Tl .
6. r~l (u) =

7. form ql (u) =  a1(r~i (u)) as a NURBS curve.
8. find error bound Pl (u) such that ||g*(u) — c(it)|| < /3l (u).

9. if mu* (3l (u) >  €2 then rt+1 = refine2(ri,/3*(u)), i =  i +  1, go to 2.
10. return al (t).

4.3 Implementation Strategy
Method 1 must acquire data to approximate r(t) iteratively. The data may include both function and 
derivative values. One way to drive this process is through acquisition of data at discrete locations 
in the domain of the original curve c(u). This can be done when point-wise evaluation, or point-wise 
approximation, of r--1 (it) is easier than evaluation, or approximation, of r(t) itself. Examples are the 
arc length and inverse function algorithms of sections 5.1 and 5.2. This approach also can be used to 
avoid the use of numerical techniques for the inverse mapping of knot vector values when forming the 
NURBS composition form c(rl (t)) (see [5]).

Tables can be created indexed by values in the domain of c(u):

u domain t domain

u j *}, ^ ( t j )

Here j  is the index into the table for iteration i, t) =  r *(«*•) and =  1 / -£ r  ’ ( u j ) .  Since we
assume piecewise allowable change of parameter functions r (without loss of generality, assume these



functions to be strictly increasing), tables sorted by increasing values of u will also be sorted by increasing 
values of t.

These tables then can be used by interpolation or approximation schemes to form NURBS approxi
mation r l (t) «  r(t) and subsequently NURBS curve c(r*(i)) «  c(r(t)).

Extended versions of these tables can be created as shown in Figure 3. Here c(rl (t j))  = c(u]) and 
■jfac(rl ( t lj )) =  ^ c(uj ) / ^ r_*(u})- Method 2 can use the “t domain” and “composed function” columns

composed function u domain t domain

c(r4(*})), ^ ( t j ) )  tj, ^ ( t ) )

Figure 3: Extended data table for use with Method 2. 

to approximate c(r(t)) directly, and use the “i domain” and “u domain” columns to approximate r or

4.4 Approximation Operators
This section discusses approximation operators A4 and A  which are key ingredients of Methods 1 and 2. 
Operator M. is used by both methods to approximate monotonic, scalar valued, change of parameter 
functions. Operator A  is used by Method 2 to approximate parametric (vector valued) functions.

4.4.1 Operator M.

The monotone operator M. creates an approximation to r (or its inverse) by a NURBS in a space S 1. 
Generally this operator determines the approximation by fitting discrete data resulting from point-wise 
evaluation, or point-wise approximation, of r or r-1 . The data may include both function and derivative 
values. It is assumed the data reflect strictly monotonic functions.

Since we assume that all curves are piecewise regular and all change of parameter functions are 
piecewise allowable (see section 2.2), the data must be fit by a function in S l that preserves monotonicity. 
Interpolation and approximation schemes that preserve convexity present in the data as well, may help to 
increase the rate of convergence of Methods 1 and 2. Simple choices for M.  include Schoenberg variation 
diminishing spline (SVDS) approximation and shape preserving interpolation.

SVDS approximation [27] requires only function values and generates a monotonic function given 
monotonic data. This choice for M  allows an approximation to r (or r 1) in any spline space S'\ 
defined on a suitable parametric interval. The continuity of this scheme depends on the knot vector 
chosen for the space. For polynomial order n and singleton knots in the interior of the knot vector, this 
scheme is C n~2. The major drawback of SVDS approximation is its slow convergence.

The simplest shape preserving interpolant is a piecewise linear function. This scheme trivially 
preserves both monotonicity and convexity in the data. Linear schemes also have the virtue of preserving 
the order of polynomial functions under composition.

Shape preserving quadratic and linear rational spline interpolation schemes are presented in [31] 
and [19] respectively. These schemes produce C 1 interpolants and require both function and derivative 
values. The Gl nature of these schemes is not always appropriate if it is known a priori that the 
reparametrization function is not C 1 everywhere. The interpolation schemes can be augmented readily, 
however, to lower continuity at specified points in the interpolant’s domain (see [5] and sections 5.1 
through 5.3).

4.4.2 Operator A

Operator A[f,  T l\ of Method 2 approximates functions /  = c(r(t)) by NURBS curves in space T*. As 
with the monotone approximation operators discussed in section 4.4.1, this operator uses discrete data
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resulting from point-wise evaluation, or point-wise approximation. Unlike the monotone operators of 
section 4.4.1 this operator is used to approximate parametric functions.

SVDS approximation, discussed in section 4.4.1 for use as a monotone approximation operator, can 
be used for approximation operator A  as well.

The quasi-interpolant of deBoor and Fix [10] provides another choice for A.  It has optimal con
vergence properties but, for polynomial order n, requires function and derivative evaluation through 
order n — 1. This scheme is useful, however, in cases where these derivatives are available. Other 
quasi-interpolant spline schemes trade more function evaluations for fewer, and lower order, derivative 
evaluations [26].

Approximation operator A  could also employ techniques that interpolate discrete parametric data. 
C1 piecewise cubic Hermite spline interpolation, requiring both function value and first derivative data, 
is an example of such a scheme. Many other interpolation schemes are possible. For introductions to 
techniques see [30] and [15].

Another choice for A  is to use the NURBS function composition form for c(r*(f)). Under this choice 
we see that Method 2 reduces to Method 1 (refer to Figure 2). Thus Method 2 is a true generalization 
of Method 1.

As in the case of the monotone operators of section 4.4.1, it is important to lower the continuity of 
C n approximation operators A  when it is known a priori that function c(r(£)) is not C n everywhere.

4.4 .3  Relationship Between <S' and T 1

In Method 2 spline space T l is used by operator A  to approximate parametric functions /  = c(r(f)), 
whereas spline space S l is used by operator M  to approximate scalar valued monotonic functions r or 
r-1 .

In theory there is little relationship between these spline spaces. In practice, however, these spaces 
are related by the data used for approximation and the particulars of the approximation schemes used for 
M. and A.  Data from the same table can be used to approximate both r_1 (or r) and c(r(t)) as discussed 
in section 4.3. For operators A  using interpolation at knot values, spline space T* can be generated from 
the set along with particulars of operator A , and consideration of known (function and derivative)
discontinuities of c(r(t)). Similarly, for operators M  using interpolation at knot values, spline space S l 
can be generated from the set (or { t j } j ) ,  particulars of operator M ,  and consideration of known
discontinuities of r(t).

4.5 Refinement Schemes
Refinement schemes for Methods 1 and 2 should be viewed in a general sense since t 1+1 may not be a 
simple refined partition of r “.

For algorithms that use interpolation or approximation to sample points for operators M. and 4̂, it 
may be more natural to view the refinement schemes as generating a more refined or dense sampling 
of the function to be approximated. (See sections 5.1 through 5.3.) In cases where the change of 
parameter function is determined wholly, or in part, by c, the curve being reparametrized, this more 
refined sampling actually may be generated by embedding NURBS curve c in increasingly refined spline 
spaces. The new knot vector r*+1 may then be determined by assignment of parameter values to these 
sample points, by consideration of known discontinuities that occur in c(u) and r(t), and by the exact 
nature of operators M. and A.

For Method 2 a very simple relationship exists between the two refinement schemes refine 1 and 
refine2. The first takes an error function, bl(t), in the domain of c(r(£)) whereas refine2 takes an error 
function, in the domain of c(u). For refinel if b(t) exceeds the specified tolerance on a data
interval [£'•, ij+1] in the table of Figure 3, then the sampling in the next iteration should be increased in 
the interval [uj,u*-+1] (a new data point can be inserted at the midpoint of this interval for example).
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For refine2 if (3(u) exceeds the specified tolerance on a data interval [uj, u*+1], then the sampling in the 
next iteration should be increased in this interval.

4.6 Metrics
The choice of metric, or pseudo metric, d( f ,  g) for Methods 1 and 2 depends on the application domain. 
Some choices for d  are given below. Their use in reparametrization algorithms is discussed in sections 5.1 
through 5.3.

1- Sl*P 11/(0 — fl'(OII) equal-parameter distance between mappings.

2- F{ f ,  g),  Frechet distance.

3. StP | |/'(£)|| — ||<?'(i)|| |, maximum difference of first derivative length functions.

5 Algorithm s
In this section we specialize Methods 1 and 2 to perform specific reparametrizations. Section 5.1 discusses 
an algorithm to approximate arc length parametrizations of NURBS curves. Section 5.2 develops an 
algorithm to approximate inverses of scalar valued NURBS functions. Finally section 5.3 develops an 
algorithm for establishing user specified tolerances as bounds on the Frechet distance between NURBS 
curves.

5.1 Approximating Arc Length Parametrizations
Here Methods 1 and 2 are specialized to reparametrize a NURBS curve c(u)  by approximate arc length. 
The resulting approximate arc length parametrization will be C 1 if c( u) is G 1 and have a variation in 
speed bounded by a user specified tolerance.

The arc length parametrization, 7 (f), is characterized by || || =  1; that is, an arc length parametriz
ation has unit speed. This invariant will be exploited to measure convergence of the sequence of approx
imations produced by the algorithm.

Arc length parametrizations of NURBS curves can themselves be expressed as NURBS curves only 
for very restricted cases [17]. Hence, in general, a NURBS function can only approxim ate the arc 
length parametrization of a NURBS curve.

5.1.1 B oun d ing a M etric

Using pseudo metric 3 of section 4.6,

d(a‘(S),7 (f)) =  't"
d  . sup 

= t
dt

a l (t) -  1

for a l (t) the ith approximation to -f(t) =  c(r( t ) )  the arc length parametrization for c(u).
Since a ‘ (t) is a NURBS curve, can be represented as a NURBS curve. The techniques

of section 2.3.2 can then be used to bound ||^ a l (£)|| from both above and below on intervals of the 
parametric domain. Hence | || ^ a ‘(^)|| — 1 | can be bounded over intervals of the domain to ensure that 
the speed of the approximations a %(t) converge uniformly to within a user specified tolerance of unit 
speed.
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We discuss methods for approximating the inverse arc length function used as r  in Methods 1 and 2. 
These techniques also can be used for approximating r _1 (the arc length function).

Function r l (t) of Methods 1 and 2 is computed from points Q l =  {(u},£})}j, approximations of the 
arc length function for c(u)  at discrete points in the curve’s domain. The points P l — {(£}, u})}j are then 
on an approximation to the inverse arc length function. There are many techniques for approximating 
the arc length function for NURBS (see [5]) including the use of inscribed polygons, partial sums of 
lengths on control polygons, and other quadrature methods.

To avoid oversampling, data should be acquired for the arc length approximation only where needed. 
If the error bound for al (£) on an interval I  — [£*■, t lj +1] C I t exceeds the specified tolerance then sampling 
for the arc length function in the next iteration is increased in an interval I  =  [u*-,u*-+1] C Iu.

5 . 1 . 2  A p p r o x i m a t i n g  I n v e r s e  A r c  L e n g t h

5.1.3 T he A pproxim ations r'(t) and C ontinuity  o f a ‘(t) in  M eth od  1

There are a number of possible ways to approximate the inverse arc length function given sample points 
P l. This section describes the use of the C 1 interpolants of [31] and [19]. Use of such interpolants allows 
Method 1 to construct C 1 approximations a*(£) =  c( r l (t))  from G 1 curves c(u).

Data supplied to these schemes must be in the form { ( t j , Uj ,  D j ) }  where the uj  represent function 
values, the D j  represent first derivative values, and the t j  are the locations in the parametric domain at 
which the given values are to be achieved. The {(£?,%)} correspond to the P l above. The derivative
values D j  can be computed from the speed function on the original curve c(u)  with D j  =  1 /  
in accordance with the inverse function theorem for derivatives. Note that because of the : 
constraints,

dc(u) I 
du I

dc(u) | dc(u) I
dt du \u=u\ dt 1t=t j du 1 u=u\ |

interpolation point f! the speed of c( r z(t)

dc(u) j 
du I 1. Thus at each

in Method 1 is unity.
The interpolation schemes of [31] and [19] produce C 1 spline interpolants to the inverse arc length 

data. The arc length function, however, will be only C°  at points where the speed function for c( u) 
is discontinuous. Hence the inverse arc length function will be only C°  at the associated points. The 
interpolation schemes can be augmented readily to constrain the resulting interpolants to be only C° at 
corresponding points in the interpolant’s domain (see [5]). The augmented algorithm requires both left 
and right hand derivative information at such points. These data can be supplied from left and right 
speed values on c(u).  Again, because of the interpolation conditions, the left and right speed values 
for the composed function will be 1.0 at these points. Thus if c(u) is a G 1 curve, c( r l (t)) of
Method 1 will be C 1 for all i provided that each set Q l includes all points in the domain of c(u)  where 
the curve is only C°.

5.1 .4  E xam ple

Figure 4 shows a curve reparametrized using the approximate arc length algorithm. The change of 
parameter function used is only C°  at a point corresponding to a speed discontinuity on the original G1 
curve. Figure 5 plots speed functions for this example. Figure 6 gives detailed results for executions of 
the algorithm for this example.

5.2 Approximating Inverse NURBS Functions
This section specializes Method 1 to an algorithm for approximating inverses of scalar valued NURBS 
functions. This is an approximation problem since for c(u) : Iu R  a NURBS function, c_ 1 (t) is 
usually not a NURBS.

The series of functions r* of Method 1 become approximations to c-1 , and the invariant used to 
determine the convergence of the algorithm is that a*(f) =  c( r l (t))  should converge to the identity
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Figure 4: Reparametrization by arc length of a NURBS curve with a speed discontinuity: (a) original curve, 
(b) reparametrized curve. Dots represent equal spacing in the parametric domains, (c) Quadratic spline change 
of parameter function computed by Method 1.

(a) (b) (c)

quadratic 
linear rational 
linear

Figure 5: Graphs of speed functions for the example of Figure 4. Plots show errors for applications of Method 1 
using piecewise linear, C1 piecewise linear rational, and C 1 piecewise quadratic interpolation schemes. A tolerance 
of 0.1 was specified to the algorithm.

method ei C2 M  or A order size (# control pts) time (secs)
1 .1 - Cu linear 4 91 0.0183
1 .1 - C1 linear rational 4 31 0.0842
1 .1 - c 1 quadratic 7 63 0.0254
2 .1 .1 C2 SVDS 4 28 0.1051
2 .1 .1 C 1 cubic Hermite 4 19 0.0270
2 .05 .05 C2 SVDS 4 35 0.1349
2 .05 .05 C1 cubic Hermite 4 23 0.0339

Figure 6 : Results for arc length example of Figure 4. Order and size for reparametrized curve. Original curve 
order: 4, original curve size: 11. Method 1 lists scheme used for M ,  Method 2 lists scheme used for A.

function. The user specified tolerance can be given as an allowable distance of a l (t) from the identity, 
or, alternatively, an allowable distance of r l (t) from c- 1 (i).

Although we specialize Method 1 here, an extension of this algorithm can use the techniques of 
Method 2 (see section 6.1).

c(c 1 (t)) =  t the two

(1)

5.2.1 B ounding a M etric

Two metrics are proposed for measuring error for this algorithm. For f ( t ) =  
metrics under consideration are:

d ^ O . / W )  = T  |c(r*(0) -  f| = T  \E(t ) \ ,

l.l
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and
d ( r l ( t ) , c  1 (t)) =  7  \rl (t) -  c ^t)] = T  |e(<)|. (2)

Since c and r* are NURBS, error function E(t) can be represented as a NURBS and therefore can 
be bounded over intervals of its parametric domain.

Bounds on error function e(t)  can be related to bounds on E( t )  using the mean value theorem for 
derivatives. Assume c(u)  is a strictly monotonic increasing function. For a given interval [ua,«b] C Iu 
let t a =  c(ua ), tb =  c(ub),  and I  =  [ua, u;,] U [rl (ta ), rl (£*,)]. Let c(u)  be continuous on I  and differentiable 
in the interior of I.  Then

\E(t)\/M  < |e(i)| < \E(t)\/m  (3)
m i n  m a x

for Vt e [to> &̂] with m  =  u€/ j^c(u)  and M  =  uei j ^ c(u)- Since c is a NURBS function, j^c(u)  can be 
formed as a NURBS and its value bounded over intervals of the parametric domain.

5.2.2 The Approxim ations r1

The algorithm computes function r l from sample points Q l =  {(u*-, fj  =  c(u*))}j. The points P l =  
are then on the function c-1 (<). Bounds on the error function E( t )  (or e(t ))  over intervals of 

the domain, can be used to control where new sample points are evaluated in each iteration in a manner 
similar to that given in section 5.1.2.

To use the C 1 shape preserving quadratic or linear rational approximation schemes of [31] and [19], 
derivative information is required at each sample point. This information can be acquired easily by 
application of the inverse function theorem for derivatives. For sample point (£*•, uj) the derivative value 
for r‘ is set to l / - ^ c ( u j ) .  Again, as in section 5.1.3, the differentiability of the approximations rl should 
be lowered to C°  at those points corresponding to locations where c(u)  is only C° .

5.3 Bounding Frechet Distance
This section specializes Method 1 to compute bounds on the distance between parametric mappings. This 
algorithm attempts to establish a user specified tolerance e as an upper bound on the Frechet distance 
between two NURBS curves. The two curves, Ci(t) : It =  [£S)te] R n and C2 {u) : Iu =  [us , u e\ —¥ R n , 
are assumed to match at their end points; i.e., ||ci(ts) — C2(us)|| < e and ||ci(te) — C2 (ue)\\ <  e.

The algorithm reparametrizes C2, using a sequence of piecewise allowable changes of parameter 
r‘, in an attempt to match c\ .  To accomplish this, the algorithm uses the following heuristic: C2 is 
reparametrized so that pairs of closest points on the two curves have the same parameter value. The 
rationale for this heuristic is that it holds for different parametrizations of the same Frechet curve and 
generalizes to many cases involving pairs of distinct Frechet curves.

Although we specialize Method 1 here, an extension of this algorithm can use the techniques of 
Method 2 (see section 6.2).

5.3.1 Closest Point Pairings

Our heuristic involves using pairs of closest points between two curves. Figure 7 demonstrates that 
such pairings are not necessarily unique and can give rise to invalid, nonmonotonic change of parameter 
functions.

One approach which solves these difficulties in many cases is to: a) perform the minimization opera
tion exclusively over intervals on C\ (i.e., curve Ci is always searched for a closest point to an individual 
point on C2) and b) use local solutions to the minimization problem (i.e., searches on C\ are performed 
over restricted intervals of its domain). If c i ( t j )  is already paired with C2 (uj )  and c i(ij+ i) is already 
paired with C2(uj+i), then in finding a match for a point 0 2 (11) with u G (uj ,  u^+i), the search on c 1 is 
restricted to the interval ( t j , t j + 1 ). See section 5.3.3 below for more details.
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(b) (c)

F ig u re  7: Closest point pairings, (a) Closest point relation is not always symm etric, (b) More than  one solution 
to the minimum distance problem, (c) Point m atches causing nonmonotonic param etric correspondence.

The algorithm makes use of the operation “find closest point on curve to point.” See [24, 23] for 
recent work in this area.

5.3.2 Bounding a M etric

Using metric 1 of section 4.6

d(ci( t) ,c2(rl {t)) =  utp ||ci(t) -  c2(rl (<))|| > F (c i( t) ,c2(r%(t)).

Establishing a bound for this choice of distance metric d  is accomplished using the techniques of sec
tion 2.3.2.

5.3.3 Sample Points for r1

The algorithm computes function r l using sample points resulting from pairs of closest points on the 
two curves. For each iteration i of the algorithm, a list of sample points Q 1 =  {(£}, u ) ) } j  is maintained, 
sorted by increasing values of where E It Vj and u* £ Iu \/ j .  These tuples have the property that 
for each j ,  ci(tj) is that point on ci which is found to be closest to c2(uj) using a restricted closest point 
search on C\ (as described below). We now discuss how to create the sets Q l from which r l : It  —> Iu is 
computed.

For I t =  [ts , t e] and Iu =  [us , u e], set Q° to { ( t s , u s), ( t e , ue)}. For i >  0, data should be acquired 
for r l only where most needed. For example suppose (t j ,  it') and (ij-+ 1 ,u j+1) are tuples in Q'  such that 
the error bound for c2(r*(i)) on [ t j , t j +1] exceeds the specified tolerance. Let u =  (uj +u J+1 )/2.
In forming Q l + 1  the tuple (t, u) is added to the set Q l where Ci ( t )  is the closest point on c\ to C2(u), 
with the closest point search on c\  restricted to (tj,fj+1). If the resulting t  is within some predefined 
(small) distance of either end of interval [tj, £]+1], move t slightly towards the interior of the interval to 
maintain monotonicity.

This algorithm has two stopping criteria. If ||ci(£) — c2(u)|| > e, the algorithm terminates and 
reports a failure to establish e as a bound on the Frechet distance in one of two subconditions. Curve 
ci is searched over its entire domain for the point closest to c2(u) and c2 is searched over its entire 
domain for the point closest to c\  ( t ). If either of these closest point distances are greater than e then we 
know that .^(ci, c2) > e. Otherwise we can say only that the algorithm failed to establish e as a bound. 
The algorithm terminates successfully if d(ci ,  c2(r1)) is bounded by a value less than the user specified 
tolerance.

5.3.4 The Approxim ations r1

To use the C 1 schemes described in [31] and [19], derivative information is required at each sample point 
in Q \  Two approaches for deriving this information are given below.
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Projection Approach: Assume c i,c 2 piecewise regular, and r  : I t Iu a piecewise allowable change 
of parameter with ^ r (i) > 0, Vi, i.e., a sense preserving change of parameter. If a ( t )  =  c2(r(f)), Vi 6 It 
then j^r( t )  =  ||^ c i(£ ) ||/ | |^ c 2(u )|r^  ||. This consideration leads to the following. Given the sample 

point ( t j , u lj )  for some j ,  evaluate V\ =  ^ c i( i ')  and V2 = ^ 02(11* )■ If the unit tangent directions for ci 

and c2 are similar, approximate by <Vl ,1̂ /IIVill =  <%;!%>•

It is possible, however, for two curves to have a small Frechet distance between them and yet have 
very dissimilar unit tangent directions. If the unit tangents V i/||F i|| and V2/ 11V211 are dissimilar then a 
different method should be used for determining the derivative approximations.

Fitting Approach: One approach approximates derivative information based on the sample points Q x 
alone. These data points can be fit locally with a polynomial or rational function whose derivative is 
then evaluated at discrete locations to serve as estimates for the (£*•). The use of a linear rational 
interpolation function for this purpose guarantees that derivative value estimates will be consistent with 
monotonic functions given monotonic data (see [19] and [5]).

5.3.5 Example

Figure 8 shows two NURBS curves with similar shape but very different parametrizations. The algorithm

F ig u re  8: Exam ple using the Frechet distance algorithm, (a) Two approxim ations to  the same curve but with 
different param etrizations. Rectangle indicates area enlarged in (b) and (c). (b) Correspondence in the original 
param etrizations. (c) Correspondence after reparam etrization to  establish a user defined tolerance on Frechet 
distance.

of this section was used to bound the Frechet distance between these two curves. Figure 9 gives detailed 
results for running the algorithm on this example.

method ei M deriv estimation order size (# control pts) time (secs)
1 .023 Cu linear - 2 21 0.0593
1 .023 C1 linear rational projection 2 41 0.2822
1 .023 C1 quadratic projection 3 42 0.0935
1 .023 C1 linear rational fitting 2 41 0.2832
1 .023 C 1 quadratic fitting 3 42 0.0911

F ig u re  9: Results for Frechet distance example of Figure 8. Order and size for the change of param eter function 
used. The original curves of Figure 8 are order 4 and size 20.
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6  E x t e n s i o n s

This section develops extensions to algorithms given in section 5. The extended algorithms illustrate 
further applications appropriate for Method 2. Section 6.1 extends the inverse function algorithm of 
section 5.2 to an algorithm which parametrizes curves along linear axes in space. Section 6.2 extends 
the Frechet distance algorithm of section 5.3 through consideration of a metric different from Euclidean 
distance. The resulting algorithm forms relative radial parametrizations of two curves.

6.1 Reparametrization by Axis
This section extends the algorithm of section 5.2 to parametrizations of NURBS curves along arbitrary 
linear axes in space. Using the affine invariance property of NURBS curves, it can be assumed, without 
loss of generality, that curve c(u) — (x ( u ), y ( u ) , z ( u ) )  : Iu -¥ R?  is to be parametrized along the X  axis. 
It is further assumed that x ( u ) is a strictly monotonic increasing function, although this algorithm can 
be generalized to piecewise monotonic coordinate functions.

The goal is to approximate the function

f ( t )  =  { x i x - ^ t ) ) ,  y i x ^ i t ) ) ,  z i x - ' i t ) ) )  =  (t, y ( x ~ 1 ( t)),  z (a r x(i)))

by a NURBS curve given c( u) a NURBS. This approximation can be formed as

a'{t )  =  (x{r ' ( t ) ) ,  y ( r l (t)),  z ( r l {t))).

The functions r l (t), approximations to x ~ 1 {t),  are computed by the algorithm of section 5.2 using 
the metric of equation (1). This extension can use the techniques of Method 2 to compute NURBS 
approximations a*(i) «  f ( t )  in spaces of arbitrary polynomial order.

Figure 10(a) shows the result of a ruled surface construction. The curves’ parametrizations lead to

(b)

Figure 10: Example using the reparametrization by X  axis algorithm, (a) Ruled surface construction using 
curves with poor parametric correspondence, (b) Surface generated after reparametrization of the curves along 
the X  axis.

poor correspondences which result in surface degeneracies. Figure 10(b) shows the ruled surface that 
results after the curves are reparametrized along the X  axis. Figure 11 gives data from several runs of 
the algorithm for this example.

6.2 Radial Reparametrization
The Frechet distance algorithm of section 5.3 uses a metric and convergence criterion based on the 
Euclidean distance between points. Other metrics and convergence criteria could be employed instead.
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method Cl £2 M  or A order size (# control pts) time (secs)
1 .01 - Cu linear 4 40 0.0059
1 .01 - C 1 linear rational 4 37 0.0327
1 .01 - C1 quadratic 7 62 0.0092
2 .01 .01 C2 SVDS 4 38 0.1280
2 .01 .01 C 1 cubic Hermite 4 22 0.0434
2 .005 .005 C 2 SVDS 4 55 0.2119
2 .005 .005 C 1 cubic Hermite 4 26 0.0460

Figure 11: Results for reparametrization by X  axis for the bottom curve of Figure 10. Error metric for ei given 
by equation (1). Extension of curves along the X  axis is 2.15 units. Order and size for reparametrized curve. 
Original curve order: 4, original curve size: 13. Method 1 lists scheme used for M ,  Method 2 lists scheme used 
for A.

To demonstrate we modify the Frechet, distance algorithm by using a distance metric and convergence 
criterion based on the radial  distance between points. This results in an algorithm that forms relative 
radial reparametrizations of curves.

Figure 12 illustrates the situation under consideration. Assume that planar, piecewise regular curves

Figure 12: Radial distance and radial closest point operators between two curves.

ci ( t )  : I t -» R 2 and C2 (u) : Iu R 2 are “star-shaped” with respect to a common central point. Without 
loss of generality assume this point to be the origin O. Curve c2 will be reparametrized to establish a 
radial  correspondence with c\ .  This correspondence is characterized by a change of parameter function, 
r( t )  : I t —► Iu , such that the line through Ci(t) and c2(r(<)) also goes through O for all t, and such that 
both curves move from the points cx(t)  and c2(r(i)) into the same half space as defined by this line. 

Given point A  on <?i and point B  on c2, the “radial distance” between these points is given by the
angle between vectors OA and OB, which we denote by Zo(A, B). Given point A  on ci, the radially 
closest point on c2 is the point P  at the intersection of c2 with the half line starting at O and going 
through A. Thus the “find closest point on curve to point” operator of section 5.3.1 is a ray/curve 
intersection operation in this metric.

The algorithm of section 5.3 used the metric sltP ||ci(i) — c2(r*(i))||, for || || the L 2 norm, to establish 
convergence and determine where more sample points for r l , the approximation to r,  should be generated. 
Here we use the pseudo metric

d( c 1 ( t ) , c 2 ( r i (t))) = T  Z0 (c1 ( t ) , c 2 ( r i ( t )))  (4)

The user specifies a tolerance, 9, as the maximum allowable radial distance between Ci (t ) and c2(r4(t)). 
The pseudo metric of equation (4) can be bounded by:

sup < c i ( t ) , c 2 ( r l {t)) > 2

< c i ( t ) , c i ( t )  > <  c2 ( r i ( t ) ) , c 2 {r i (t)) >
sup . '=  t sin (Zo (c i(0 ,c 2(r’(i)))) < s i n 2((9). (5)

For NURBS curves ci, c2, and r l , the expression whose norm is taken in equation (5) is a NURBS 
function and hence its length can be bounded over intervals of its parametric domain (see section 2.3).
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Substituting radial distance, the radial “find closest point on curve to point” operation, and the 
convergence criterion of equation (5) into the algorithm of section 5.3 yields an algorithm that produces 
a relative radial reparametrization of one curve to match another. This extension can use the techniques 
of Method 2 to compute reparametrizations in spaces of any desired polynomial order.

Figure 13 shows an example of the use of the radial reparametrization algorithm. Detailed results

F igu re  13: An example of the use of the radial reparam etrization algorithm. Figure (a) shows the param etric 
correspondence between the original curves. Dots indicate the s ta r t/e n d  points on the curves. Plus signs ( “+ ” ) 
indicate the origin used for radial correspondence. Figure (b) shows the param etric correspondence between the 
curves once s ta r t /e n d  points of the curves have been aligned radially. Figure (c) shows the results of running 
the radial reparam etrization algorithm  on the curves in (b).

for th is  exam ple  are  given in  F ig u re  14.

method Cl M deriv estimation order size (# control pts) time (secs)
1 1.0 Cu linear - 3 49 0.197
1 1.0 C 1 linear rational projection 3 121 1.228
1 1.0 C 1 quadratic projection 5 174 1.979
1 1.0 C 1 linear rational fitting 3 69 0.556
1 1.0 C1 quadratic fitting 5 114 1.032

F ig u re  14: Results for radial reparam etrization example of Figure 13(c). Error tolerance for ei given in degrees. 
Order and size for the reparam etrized curve. Original curve order: 3, original curve size: 14.

7 Conclusions
This paper has presented a framework for NURBS curve reparametrization. This framework takes the 
form of two algorithmic schemes with different constraints on resulting approximations. New algorithms 
for important cases of NURBS curve reparametrization have been developed as specializations of these 
schemes. Included are reparametrizations to approximate arc length parametrizations, approximate 
inverses of NURBS functions, and to establish bounds on the Frechet distance between curve mappings. 
These algorithms exhibit true error bounds in terms of meaningful metrics. Though important in 
their own right, the algorithms presented here are representative of a wider class of reparametrization 
algorithms in the methods they employ.

The core strategy afforded by the framework is to create adaptive algorithms that attempt to do work 
only where needed. This serves to restrain the growth in data complexity of the resulting approximations. 
This framework also provides the user with trade-offs in computing results. The user can trade accuracy 
for complexity of result and can place the resulting reparametrized curve into spaces of any desired 
polynomial order. The alternative general strategies provided by Methods 1 and 2 give the user further 
choices over properties of the result.
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We believe that the framework given by Methods 1 and 2 is quite extensible. Its basic requirements 
are straightforward: a metric for measuring distance from a desired parametrization, a method for 
refining the space of approximation for the reparametrized curve (or change of parameter function), and 
a method for generating more data for the approximation. The substitution of different elements into 
this framework can lead to quite different algorithms (c.f. section 6.2).

Although the algorithms given here have been developed in the context of NURBS curves, it may be 
possible to use different curve representations. In this regard it is instructive to consider what properties 
of the NURBS representation the general framework uses. These properties include: closure under 
function composition, closure under algebraic operations, the ability to bound function and derivative 
values, and the existence of a refinement operation causing the coefficients of the representation to 
converge to the underlying function. Although these properties characterize the NURBS representation, 
they also guide the search for other representations useful for design and modeling.
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