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Abstract 

The physical layout of organs and neural structures in biological systems is important to 
their functioning, and is the result of evolutionary selection forces. We believe this is true 
even at the individual neuron level, and should be accounted for in any bio-based approach. 
In particular, when transmission delay is taken into account, the physical layout problem 
(PLP) of neural centers and individual neurons has a great impact on any computation they 
perform. We demonstrate on a simple example that: (1) performance can depend crucially 
on the physical layout of the computational nodes in a system, and (2) evolutionary schemes 
can be used to find near-optimal solutions to PLP. 
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Abstract 

The physical layout of organs and neural structures in biological systems is 
important to their functioning, and is the result of evolutionary selection forces. 
We believe this is true even at the individual neuron level, and should be ac­
counted for in any bio-based approach. In particular, when transmission delay 
is taken into account, the physical layout problem (PLP) of neural centers and 
individual neurons has a great impact on any computation they perform. We 
demonstrate on a simple example that: (1) performance can depend crucially on 
the physical layout of the computational nodes in a system, and (2) evolutionary 
schemes can be used to find near-optimal solutions to PLP. 

1 Introduction 

A large literature exists on the study of bio-based computing systems, including neural 
networks [4, 5], artificial neurons [1, 7], and analog computing schemes[9]. The main 
issues generally concern the model of the individual neurons, and the connectivity 
structure of the neurons in a network. Rarely does anyone take into consideration the 
issue of signal transmission delay due to the physical layout and length of connections 
between nodes. 

We believe that the physical layout of biological information processing systems 
is not random, but is the product of an evolutionary bias which selects based on 
performance. For example, it is most likely no accident that the visual field (which 
falls on the left of the retinas) maps to the right side of the human brain. It makes 
sense that there is a direct physical relation between the location of processing in the 
body versus the 3D origin of the attention getting activity in the world. 
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Figure 1: Artificial Amoeba 

2 A Simple Test Model 

In order to explore this notion of optimal physical layout, we have developed the 
following simple artificial amoeba (AA) shown in Figure 1. The AA is square-shaped 
and exists in the plane; its motion is restricted to be along the x-axis. AA has sensors 
51 to 54 which sense toxins in its environment. There are two propulsion units, P1 on 
the left which can propel AA to the right, and P2 which can propel AA to the left. 

AA also has four processing nodes, N1 to N4, and Ni receives input from sensor 
5i . The node connectivity in Figure 1 aims to organize the computation of a control 
value on each propulsion unit while allowing a comparison of the toxin levels at the 
two ends of AA (top and bottom are compared independently). Moreover, two nodes 
are allocated in a top/bottom disposition in order to add redundancy to the control of 
the actuators. Each node Ni has a location in the square body of AA, and this location 
determines the distances between sensors, nodes and actuators. The time required for 
a signal to travel along an arc is proportional to the length of the arc. Each arc can 
thus be viewed as a queue of values which propagate along the arc to the destination. 

This AA model allows us to pose the following question concerning node layout: 

What physical placement of the nodes N1 to N4 yields the best performing 
AA? 

Here we assume that the locations of the sensors and propulsion units are fixed. We 
also need to give a more precise definition of performance. 

The life of the AA is its time history when placed in a planar bath which includes 
one or more toxin sources (see Figure 2). The toxin follows a 1/r2 law (i.e., the 
concentration of toxin falls off inversely proportional to r2

). 
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Figure 2: Environment (Bath) for AA 

The performance of AA at the ith time step, p(i), is just the sum of the sensor 
values (a toxin has a negative value): 

4 

p(i) = LSj 
j=l 

The overall performance of AA is the sum of the performances over all time steps: 

t 

P(AA) = L p(i) 

i=O 

Thus, the best performance is one which produces the greatest value for P; this corre­
sponds to moving quickly away from the toxin source. 

Before giving our solution to the PLP for this AA, we need to describe the internal 
computation of the AA. Each node Ni has its value initialized to zero, as does each 
arc. The simulation proceeds with the sensors relaying their values along the sensor­
node arc. If the transmission rate along the arc is v units per time unit, then each arc 
is basically a fixed-length queue with q = d/v values on it, and these move along the 
queue at one element per time unit. Each processing node Ni has two inputs, A and B, 
and outputs max( -(A + B), 0). The propulsion unit sums its inputs and if the result 
is a positive value, then it causes the AA to move that many units (if both propulsion 
units are activated, the net result is the difference of the two with resultant motion in 
the direction of the stronger push). 

In terms of this model, we are looking for the best locations of nodes Nl to N4 so 
as to maximize the value of P(AA). In order to determine the solution, we have used a 
genetic algorithm. First, a population of 200 random AA's are generated (i.e., 200 AA's 
with the nodes located in randomly generated positions). These are run independently 
for 200 time steps in a particular bath, and a standard genetic algorithm is used to 
produce the next generation (we use the GENESIS System [3, 8, 2]- in particular, see 
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Figure 3: Node Layout for Environment 1 - Toxin at (-100,0) 

Grefenstette's manual for lots more references). The genetic string is comprised of the 
4 node locations encoded as 6 bits for each coordinate: 

where bi,l to bi ,6 is the 6-bit x location and bi ,7 to bi ,l2 is the 6-bit y location for N i . 

The genetic algorithms were run with parameters to achieve 20,000 total trials, a 
population size of 200, structure length of 48 bits, a crossover rate of 0.6 and a mutation 
rate of 0.001. 

Environment 1: Negative Source at (-100,0) 

First we consider the case when AA is placed in a bath with a toxin source located 
at (-100,0) and with an intensity of -100,000. Figure 3 shows a typical resulting physical 
layout for the nodes (node Nl lies on the y-axis). A histogram of the x location values 
of the 4 nodes in the top performing AA's is given in Figure 4, while a histogram of 
the y location values is given in Figure 5. 

As can be seen from these graphs, when the toxin source is located to the left of the 
AA, then the nodes connected to the sensors on the left end up being placed as far left 
as possible (toward the y-axis) and between the sensor and the propulsion unit, while 
the nodes on the right move as far away as possible from the sensor to which they are 
connected. A ready explanation of this is that the resultant location of the left sensor 
handling nodes minimizes the time to starting a motion to the right (by firing the left 
propulsion units), while at the same time maximizing the time to the start of the right 
propulsion units (they can't start until the signal travels the distance from the sensor 
to the processing node, and then back to the propulsion unit. 

Environment 2: Negative Source at (100,0) 
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Figure 4: Histogram of x-locations in top layouts 
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Figure 5: Histogram of y-locations in top layouts 
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Node Layout for Toxin at (100,0) 
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Figure 6: Environment 2: -100,000 intensity toxin at (100,0) 

When the toxin source is located at (100,0) and with an intensity of -100,000, a 
symmetric result is obtained. A histogram of the x location values of the 4 nodes in 
the top performing AA's is given in Figure 7, while a histogram of the y location values 
is given in Figure 8. Figure 6 shows a typical resulting physical layout for the nodes 
in this case. 

As can be seen, the resulting locations of the processing nodes mirror those of 
Environment 1. 

Environment 3: Negative Sources at both (-100,0) and (100,0) 

The layout in this case has toxin sources of equal intensity on both sides of the AA. 
The performance scoring is done by running the AA with a left toxin source and a right 
toxin source each trial, and summing the two performances. The result in this case 
indicates that each side optimizes to respond to its sensors. Figure 9 shows a typical 
resulting physical layout for the nodes in this case. Figure 10 shows the x location 
histogram, while Figure 11 shows the y location histogram for the top performing 
layouts. 

3 Discussion and Conclusions 

This preliminary work supports the claim that physical layout plays a role in bio-based 
computing systems. We are currently looking into several more complicated scenarios, 
including: 

• Positive and negative sensors: it is important to include positive reinforcement 
sensors, as well as avoidance like sensors. The interaction of sensors responding 
positively, for example, to nutrients, also plays an important role in biological 
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Figure 7: Histogram of x-locations in top layouts 
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Figure 8: Histogram of y-locations in top layouts 
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Node Layout for Toxin at (-100,0) and (100.0) 
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Figure 9: Environment 3: -100 ,000 intensity toxin at (-100 ,0) and (100,0) 
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Figure 10: Histogram of x-locations in top layouts 
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Figure 11: Histogram of y-locations in top layouts 

systems, and the final layout of processing nodes of both positive and negative 
feedback types requires study. 

• Activity sensors: another aspect that we would like to explore is the use of cells 
within the organism which monitor the activity of other nodes and arcs, that is, 
activity sensors. These nodes monitor various sets of nodes and arcs and respond 
to activity in that set. This permits the organism to respond directly to process­
ing activity related directly to the 3D world origin of the stimulation, and this 
can occur before that stimulation has been completely analyzed. For example, 
neurons responding to activity in the right visual field might be monitored by 
such activity sensors and cause the head or body to turn in that direction before 
the visual information has been completely deciphered. 

• More realistic environments : real environments do not present one simple neg­
ative or positive source to which all generations of the organism respond. It is 
essential to incorporate environments which have multiple sources, both positive 
and negative, as well as time-dependent variables, etc. 

• Physical prototypes: While simulation studies are of interest and provide insight 
into the nature of evolutionary teleomorphology, we intend to build analog mech­
anisms which have the capability of altering their physical layout in response 
to environmental forces. Thus, some form of physical layout learning should be 
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supported by these artificial organisms. We believe that our work on artificial 
neurons provides one approach to this[6]. 
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