
Deriving Efficient Cache Coherence
Protocols through Refinement

R a t a n N a lu m a s u

G a n e s h G o p a la k r i s h n a n

UUCS-97-009

Department of Computer Science
University of Utah

Salt Lake City, UT 84112 USA

Jul 29, 1997

A b s t r a c t

We address the problem of developing efficient cache coherence protocols for use in dis
tributed systems implementing distributed shared memory (DSM) using message passing.
A serious drawback of traditional approaches to this problem is that the users are required
to state the desired coherence protocol at the level of asynchronous message interactions in
volving request, acknowledge, and negative acknowledge messages, and handle unexpected
messages by introducing intermediate states. Proofs of correctness o f protocols described
in terms o f low level asynchronous messages are very involved. Often the proofs hold only
for specific configurations and buffer allocations. We propose a method in which the users
state the desired protocol directly in terms of the desired high-level effect, namely synchro
nization and coordination, using the synchronous rendezvous construct. These descriptions
are much easier to understand, much cheaper to verify than asynchronous protocols due to
their small state spaces, and can be synthesized into efficient asynchronous protocols. In
this paper, we present our protocol refinement procedure, prove its soundness, and provide
examples of its efficiency. Our synthesis procedure applies to large classes of DSM proto
cols.

Keywords: Refinement, DSM protocols, Communication protocols.

1 Introduction

With the growing complexity of concurrent systems, automated procedures for developing
protocols are growing in importance. In this paper, we are interested in protocol refinement
procedures, which we define to be those that accept high-level specifications of protocols,
and apply provably correct transformations on them to yield detailed implementations of
protocols that run efficiently and have modest buffer resource requirements. Such proce
dures enable correctness proofs o f protocols to be carried out with respect to high-level spec
ifications, which can considerably reduce the proof effort. Once the refinement rules are
shown to be sound, the detailed protocol implementations need not be verified. Also, if the
refinement rules apply for a family of protocols, then case-specific proofs can be avoided.

In this paper, we address the problem of producing correct and efficient cache coherence
protocols used in distribu ted shared mem ory (DSM) parallel computing systems. DSM sys
tems have been widely researched in the academia as the next logical step in parallel pro
cessing [CKK96,LLG+ 92, Kea94]. High-end workstation manufacturers also have intro
duced DSM systems lately [Cra93] thus providing added confirmation to the growing im
portance of DSM. A central problem in DSM systems is the design and implementation of
distributed coherence protocols for shared cache lines using m essage passing [HP96]. The
present-day approach to this problem consists o f specifying the detailed interactions possi
ble between computing nodes in terms o f low-level requests, acknowledges, negative ac
knowledges, and dealing with “unexpected” messages. Difficulty o f designing these proto
cols is compounded by the fact that verifying such low-level descriptions invites state ex
plosion (when done using model-checking [EM95,DDHY92]) or tedious (when done using
theorem-proving [PD96]) even for simple configurations. Often these low-level descrip
tions are model-checked for specific resource allocations (e.g. buffer sizes); it is often not
known what would happen when these allocations are changed. Protocol refinement can
help alleviate this situation considerably. Our contribution in this paper is a protocol refine
ment procedure which can be applied to derive a large class o f DSM cache protocols.

Most o f the problems in designing DSM cache coherence protocols are attributable to the ap
parent lack o f atomicity in the implementation behaviors. Although some of the designers of
these protocols may begin with a simple atomic-transaction view o f the desired interactions,
such a description is seldom written down. Instead, what gets written down as the “highest
level” specification is a detailed protocol implementation which was arrived at through ad
hoc reasoning of the situations that can arise. In this paper, we choose CSP [Hoa78] as our
specification language to allow the designers to capture their initial atomic-transaction view.
After model-checking this atomic-transaction protocol, it is automatically transformed into
a detailed implementation. We refer to the atomic-transaction view as rendezvous pro toco l
and the detailed implementation as asynchronous protocol. Rendezvous protocols are, typ

ically, several orders of magnitude more efficient to model-check than their corresponding
detailed implementations. In addition, as empirically observed in the context of a state of
the art DSM machine project called the Avalanche [CKK96], our procedure can automat
ically produce protocol implementations that are comparable in quality to hand-designed
asynchronous protocols, where quality is measured in terms o f (1) the number of request,
acknow ledge , and negative acknowledge (nack) messages needed for carrying out the ren
dezvous specified in the given specification, and (2) the buffering requirements to guarantee
a precisely defined and practically acceptable progress criterion.

2 Cache Coherency in Distributed Systems

In directory based cache coherent multiprocessor systems, the coherency o f each line of
shared memory is managed by a CPU node, called home node, or simply hom e1. All nodes
that may access the shared line are called remote nodes. The home node is responsible for
managing access to the shared line by all nodes without violating the coherency policy of
the system. A simple protocol used in Avalanche, called migratory, is shown in Figures 2
and 3.

The remote nodes and home node engage in the following activity. Whenever a remote node
R wishes to access the information in a shared line, it first checks if the data is available (with
required access permissions) in its local cache. If so, R uses the data from the cache. If not,
it sends a request for permissions to the home node of the line. The home node may then
contact some other remote nodes to revoke their permissions in order to grant the required
permissions to R. Finally, the home node grants the permissions (along with any required
data) to R. As can be seen from this description, a remote node interacts only with the home
node, while the home node interacts with all the remote nodes. This suggests that we can
restrict the communication topology o f interest to a sta r configuration, with the home node
as the hub, without loosing any descriptive power. This decision helps synthesize more ef
ficient asynchronous protocols, as we shall see later.

2 .1 C o m p le x i ty o f P r o t o c o l D e s ig n

As already pointed out, most of the problems in the design o f DSM protocols can be traced to
lack of atomicity. For example, consider the following situation. A shared line is being read

lrThe home for different cache lines can be different. We will derive protocols focusing on one cache line,
as is usually done.

by a number o f remote nodes. One of these remote nodes, say R1, wishes to modify the data,
hence sends a request to the home node for write permission. The home node then contacts
all other remote nodes that are currently accessing the data to revoke their read permissions,
and then grants the write permission to R l. Unfortunately, it is incorrect to abstract as an
atomic step, the entire sequence o f actions consisting of contacting all other remote nodes to
revoke permissions and granting permissions to R l . This is because when the home node is
in the process of revoking permissions, a different remote node, say R2, may wish to obtain
read permissions. In this case, the request from R2 must be either nacked or buffered for
later processing. Such handling of unexpected messages requires introducing intermediate
states, called transient states, into the protocol, leading to the complexity o f DSM protocols.
On the other hand, as we will show in the rest of the paper, if the user is allowed to state the
desired interactions using an atomic view, it is possible to refine such a description using
a refinement procedure that introduces transient states appropriately to handle such unex
pected messages. Making such refined protocols efficient through syntactic restrictions is
discussed in Section 2.4.

2 .2 C o m m u n i c a t i o n M o d e l

We assume that the network that connects the nodes in the systems provides reliable, point-
to-poin t in-order delivery of messages. This assumption is justified in many machines, e.g.,
DASH [LLG+92], and Avalanche [CKK96]. We also assume that the network has infi
nite buffering, in the sense that the network can always accept new messages to be deliv
ered. Without this assumption, the asynchronous protocol generated may deadlock. Unfor
tunately, this assumption is not satisfied in many networks. A solution to this problem that
is orthogonal to the refinement process is given by Hennessy and Patterson [HP96]. They
divide the messages into two categories: request and acknowledge. A request message may
cause the recipient to generate more messages in order to complete the transactions, while
an acknow ledge message does not. The authors argue that if the network always accepts
acknowledge messages (as opposed to all messages in the case of a network with infinite
buffer), such deadlocks are broken. As we shall see in Section 3, asynchronous protocol
has two acknowledge messages: ack and nack. Guaranteeing that the network always ac
cepts these two acknowledge messages is beyond the scope of this paper.

2 .3 M e th o d o l o g y

We use rendezvous communication primitives of CSP [Hoa78] to specify the home node and
the remote nodes to simplify the the DSM protocol design. In particular, we use direct ad-

dressing scheme of CSP, where every input statement in process Q is o f the form P ?m sg (v)
or P?m sg, where P is the identity of the process that sent the message, m sg is an enumer
a ted constant (“message type”) and v is a variable (local variable o f Q) which would be set
to the contents of the message, and every output statement in Q is of the form P ! m sg (e)
or P !m sg where e is an expression involving constants and/or local variables of Q. When
P and Q rendezvous by P executing Q ! m (e) and Q executing P?m (v) , we say that P is an
active process and Q is a passive process in the rendezvous.

The rendezvous protocol written using this notation is verified using either a theorem prover
or a model checker for desired properties, and then refined using the rules presented in Sec
tion 3 to obtain an efficient asynchronous protocol that can be implemented directly, for ex
ample in microcode.

2 .4 P r o c e s s S t r u c t u r e

We divide the states of processes in the rendezvous protocol into two classes: internal and
communication. When a process is in an internal state, it cannot participate in rendezvous
with any other process. However, we assume that such a process will eventually enter a
communication state where rendezvous actions are offered (this assumption can be syntac
tically checked). The refinement process introduces transient states where all unexpected
messages are handled.

We denote the i th remote node by rt- and the home node by h. For simplicity, we assume
that all the remote nodes follow the same protocol and that the only form of communication
between processes (in both asynchronous and rendezvous protocols) is through messages,
i.e., other forms o f communication such as global variables are not available.

As discussed before, we restrict the communication topology to a star. Since the home node
can communicate with all the remote nodes and behaves like a server o f remote-node re
quests, it is natural to allow generalized input/output guards in the home node protocols
(e.g., Figure 1 (a)). In contrast, we restrict the remote nodes to contain only input non-determinism,
i.e., a remote node can either specify that it wishes to be an active participant o f a single
rendezvous with the home node (e.g., Figure 1(b)) or it may specify that it is willing to be
a passive participant o f a rendezvous on a number o f messages (e.g., Figure 1(c)). Also,
as in Figure 1(c), we allow r guards in the remote node to model autonomous decisions
such as cache evictions. These decisions, empirically validated on a large number o f real
DSM protocols, help synthesize more efficient protocols. Finally, we assume that no fair
ness conditions are placed on the non-deterministic communication options available from
a communication state, with the exception of the forward progress restriction imposed on

o
h!m

o
(a) Home node (b) Remote node (c) Remote node

Figure 1: Examples o f communication states in the home node and remote nodes

the entire system (described below).

2 .5 F o r w a r d P r o g r e s s

Assuming that there are no r loops in the home node and remote nodes, the refinement
process guarantees that at least one o f the refined remote nodes makes forward progress,
if forward progress is possible in the rendezvous protocol. Notice that forward progress is
guaranteed for some remote node, not for every remote node. This is because assuring for
ward progress for each remote node requires too much buffer space at the home node. If
there are n remote nodes, to assure that every remote node makes progress, the home node
needs a buffer that can hold n requests. This is both impractical and non-scalable as n in
DSM machines can be as high as a few thousands. If we were to guarantee progress only for
some remote node, a buffer that can hold 2 messages suffices, as shown in Section 3. Inci
dentally, assuring forward progress for each individual remote node corresponds to strong
fairness, and assuring forward progress for at least one remote node corresponds to weak
fairness [MP92],

3 The Refinement Procedures

We systematically refine the communication actions in h and r,- by inspecting the syntactic
structure of the processes. The technique is to split each rendezvous into two halves: a re
quest for the rendezvous and an acknowledgment (ack) or negative acknowledgment (nack)
to indicate the success or failure o f the rendezvous. At any given time, a refined process is

Row State Buffer contents Action
C l Communication (Active) empty (a) Request for rendezvous

(b) goto transient state
C2 Communication (Active) request (a) delete the request

(b) Request home for rendezvous
(c) goto transient state

C3 Communication (Passive) request Ack/nack the request
T1 Transient ack Successful rendezvous
T2 Transient nack go back to the communication state
T3 Transient request Ignore the request

Table 1: The actions taken by the remote node when it enters a communication state or a
transient state. After each action, the message in the buffer is removed.

in one o f three states: internal, communication, and transient. Internal and communication
states o f the refined process are same as in the corresponding unrefined process in the ren
dezvous protocol. Transient states are introduced by the refinement process in the following
manner. Whenever a process P has Q ! m (e) as one of the guards in a communication state,
P sends a request to Q and awaits in a transient state for an ack/nack or a request for ren
dezvous from Q. In the transient state, P behaves as follows:

R l. If P receives an ack from Q, the rendezvous is successful, and P changes its state ap
propriately.

R2. If P receives a nack from Q, the rendezvous has failed. P goes back to the communi
cation state and tries the same rendezvous or a different rendezvous.

R3. If P receives a request from Q, the action taken depends on whether P is the home node
or a remote node. If P is a remote node (and Q is then the home node), P simply ignores
the message. (This is because, as discussed in the next sentence, P “knows” that Q will
get its request that is tantamount to a nack o f Q’s own request.) If P is the home node,
it goes back to the communication state as though it received a nack (“implicit nack”),
and processes the Q’s request in the communication state.

The rules R1-R3 govern how the remote node and home node are refined, as will now be
detailed.

3 .1 R e f in in g t h e R e m o te N o d e

Every remote node has a buffer to store one message from the home node. When the remote
node receives a request from the home node, the request would be held in the buffer. When
a remote node is at a communication or transient state, its actions are shown in Table 1. The
rows o f the table are explained below.

C l When the remote node is in a communication state, and it wishes to be an active par
ticipant o f the rendezvous, and no request from home node is pending in the buffer,
the remote node sends a request for rendezvous to home, goes to a transient state and
awaits for an ack/nack or a request for rendezvous from home node.

C2 This row is similar to C l, except that there is a request from home is pending in the
buffer. In this case also, the remote sends a request to home and goes to a transient
state. In addition, the request in the buffer is deleted. As explained in R3, when the
home receives the remote’s request, it acts as though a nack is received (implicit nack)
for the deleted request.

C3 When the remote node is in a communication state, and it is passive in the rendezvous,
it waits for a request for rendezvous from home. If the request satisfies any guards
of the communication state, it sends an ack to the home and changes state to reflect
a successful rendezvous. If not, it sends a nack to home and continues to wait for a
matching request. In both cases, the request is removed from the buffer.

T l , T2 If the remote node receives an ack, the rendezvous is successful, and the state of
the process is appropriately changed to reflect the completion o f the rendezvous. If
the remote node receives a nack from the home, it is because the home node does not
have sufficient buffers to hold the request. In this case, the remote node goes back to
communication state and retransmits the request, and reenters the transient state.

T3 As explained in R3, if the remote node receives a request from home, it simply deletes
the request from buffer, and continues to wait for an ack/nack from home.

3 .2 R e f in in g t h e H o m e N o d e

The home node has a buffer of capacity k messages (k > 2). All incoming messages are
entered into the buffer when there is space, with the following exception. The last buffer
location (called the progress buffer) is reserved for an incoming request for rendezvous that
is known to complete a rendezvous in the current state of the home. If no such reservation

Row State Condition Action
C l Communication buffer contains a request from

r,- that satisfies a rendezvous
(a) an ack is sent to r,-
(b) delete request from buffer

C2 Communication (a) no request in the buffer
satisfies any required rendezvous
(b) home node can be active
in a rendezvous with r,- on m s- (i.e.
Vi !m, is a guard in this state)
(c) no request from r,- is pending
in buffer

(a) ack buffer is allocated
(if not enough buffer space
a nack may be generated)
(b) a request for rendezvous

is sent to r,-
(c) goto transient state

T1 Transient ack from r,- rendezvous is completed
T2 Transient nack from r, rendezvous failed.

Go back to the communication
state and send next request. If
no more requests left, repeat
starting with the first guard.

T3 Transient (a) request from r,
(b) waiting for ack/nack from r;

treat the request as a
a nack plus a request

T4 Transient (a) request from rj ri has arrived
(b) waiting for ack/nack from r,-
(c) buffer has > 2 free entries

enter the request into buffer

T5 Transient (a) request from rj ^ r t- has arrived
(b) waiting for ack/nack from r,-
(c) buffer has 2 free entries
(d) the request can satisfy a
guard in the communication state

enter the request into
progress buffer

T6 Transient request from r , has arrived
(all cases not covered above)

nack the request

Table 2: Actions taken by the home node when it is in a communication state or transient
state.

is made, a livelock can result. For example, consider the situation when the buffer is full
and none o f the requests in the buffer can enable a guard in the home node. Due to lack of
buffer space, any new requests for rendezvous must be nacked, thus the home node can no
longer make progress. In addition, when the home node is in a transient state expecting an
ack/nack from rt-, an additional buffer need to be reserved so that a message (ack, nack, or
request for rendezvous) from r l can be held. We refer to this buffer as ack buffer.

When the home is in a communication or transient state, the actions taken are shown in
Table 2. The rows o f this table are explained below.

C l When the home is in a communication state, and it can accept one or more requests

pending in the buffer, the home finishes rendezvous by arbitrarily picking one of these
messages.

C2 If no requests pending in the buffer can satisfy any guard of the communication state,
and one of the guards of the communication state is 7% !m„ home node sends a request
for rendezvous to r,-, and enters a transient state. As described above, before sending
the message, it also reserves an additional buffer location, ack buffer, so that forward
progress can be assured. This step may require the home to generate a nack for one of
the requests in the buffer in order to free the buffer location. Also note that condition
(c) states that no request from r l is pending in the buffer. The rationale behind this
condition is that, if there is a request from r t pending, then r t is at a communication
state with r t being the active participant o f the rendezvous. Due to the syntactic re
strictions placed on the description of the remote nodes, can’t satisfy any requests
for rendezvous in this communication state. Hence it is wasteful to send any request
to r, in this case.

T1 When the home is in transient state, if it receives an ack, the rendezvous is successful,
and the state o f the home is modified to reflect the completion of the rendezvous.

T2 When the home is in transient state, if it receives a nack the rendezvous failed. Hence
the home goes back to the communication state. From the communication state, it
checks if any new request in the buffer can satisfy any guard of the communication
state. If so, an ack is generated corresponding to that request, and that rendezvous is
completed. If not, the home tries the next output guard of the communication state.
If there are no more output guards, it starts all over again with the first output guard.
The reason for this is that, even though a previous attempt to rendezvous has failed, it
may now succeed, because the remote node in question might have changed its state
through a r guard in its communication state.

T3 When the home is expecting an ack/nack from rf-, if it receives a request from r, instead,
it uses the implicit nack rule, R3. It first assumes that a nack is received, hence it goes
to the communication state, where all the requests, including the request from r, , are
processed as in row T2.

T4 If the home receives a request from r ?, when it is expecting an ack/nack from a different
remote r,-, and there is sufficient room in the buffer, the request is added to the buffer.

T5 When the home is in a transient state, and has only two buffer spaces, if it receives a mes
sage from r j, it adds the request to buffer according to the buffer reservation scheme,
i.e., the request is entered into the progress buffer iff the request can satisfy one of the
guards of the communication state. If the request can’t satisfy any guards, it would
be handled by row T6 .

T 6 When a request for rendezvous from r j is received, and there is insufficient buffer space
(all cases not covered by T4 and T5), home sends a nack to r j. r j would retransmit
the message.

3 .3 R e q u e s t /R e p l y C o m m u n i c a t i o n

The generic scheme outlined above replaces each rendezvous action with two messages: a
request and an ack. In some cases, it is possible to avoid ack message. An example is when
two messages, say r e q and r e p l are used in the following manner: r e q is sent from the
remote node to home node for some service. The home node, after receiving the r e q mes
sage, performs some internal actions and/or communications with other remote nodes and
sends a r e p l message to the remote node. In this case, it is possible to avoid exchanging
ack for both r e q and r e p l . If statements h ! r e q (e) and h ? r e p l (v) always appear
together as h ! r e q (e) ; h ? r e p l (v) in remote node, and r t ! r e p l always appears af
ter r, ? r e q in the home node, then the acks can be dropped. This is because whenever the
home node sends a r e p l message, the remote node is always ready to receive the message,
hence the home node doesn’t have to wait for an ack. In addition, a reception o f r e p l by
the remote node also acts as an ack for r e q . Of course, if the remote node receives a nack
instead of r e p l , the remote node would retransmit the request for rendezvous.

This scheme can also be used when r e q is sent by the home node and the remote node re
sponds with a r e p l . In this case, of course, after receiving r e q , the remote node performs
local actions only (i.e., no rendezvous actions) and responds with a r e p l .

4 Correctness

We argue that the refinement is correct by analyzing the different scenarios that can arise
during the execution of the asynchronous protocol. The argument is divided into two parts:
(a) all rendezvous that happen in the asynchronous protocol are allowed by the rendezvous
protocol, and (b) forward progress is assured for at least one remote node. Note that the for
ward progress is not assured for any given remote node due to buffer considerations (Sec
tion 2.5).

The rendezvous finished in the asynchronous protocol when the remote node executes rows
C l, C3, or T1 of Table 1 and the home node executes rows C l or T1 o f Table 2. To see that
all the rendezvous are in accordance with the rendezvous protocol, consider what happens

when a remote node is the active participant in the rendezvous (the case when the home node
is the active participant is similar). The remote node r,- sends out a request for rendezvous
to the home h and starts waiting for an ack/nack. There are three cases to consider.

1. h does not have sufficient buffer space. In this case the request is nacked. In this case,
no rendezvous has taken place.

2 . h has sufficient buffer space, and it is in either an internal state or a transient state
where it is expecting an ack/nack from a different remote node, rj. In this case, the
message is entered into the h's buffer. When h enters a communication state where it
can accept the request, it sends an ack to r8 , completing the rendezvous. Clearly, this
rendezvous is allowed by the rendezvous protocol. If h has to send a nack to r t later
to make some space in buffer by row C2, r, would retransmit the request, in which
case no rendezvous has taken place.

3. h has sent a request for rendezvous to r t and is waiting for an ack/nack from r; in a
transient state. (This corresponds to R3 of page 7). In this case, r8- simply ignores
the request from h. h knows that its request would be dropped. Hence it treats the
request from r, as a combination of nack for the request it already sent and a request
for rendezvous. Thus, this case becomes exactly like one of the two cases above, and
h generates an ack/nack accordingly; hence if an ack is generated it would be allowed
by the rendezvous protocol.

As can be seen from this case analysis, an ack is generated only in case 2, and in this case
the rendezvous is allowed by the rendezvous protocol.

A formal argument of correctness would involve demonstrating an abstraction function,
abs, that maps a state in the asynchronous protocol to a state in the rendezvous protocol, and
showing that for every sequence of states in the asynchronous protocol, there is an equiva
lent sequence of states in the rendezvous protocol. Of course, since the asynchronous pro
tocol implements a rendezvous in multiple steps while the rendezvous protocol implements
the same rendezvous in a single step, abs must allow stuttering steps. Let Si be the set of
states in the asynchronous protocol, q —>i q indicate a state transition from q to q in the
asynchronous protocol, and q —̂ q indicate a state transition from q to q in the rendezvous
protocol.

V q’iE Si : qi q[abs(q i) = ab s(q l) V abs(q i) ~^h ab s(q l). (1)

Such an abstraction function can be designed as follows:

1. All requests for rendezvous in the medium and buffers are discarded. If a request for
rendezvous from a process P is discarded, the state of P is modified from transient state
back to the communication state, i.e., abs modifies the system as though the request
was never sent.

2. If there is an ack towards a process P, the ack is discarded, and the state of P is modified
to the state which P would attain after consuming the ack.

3. All nacks in the medium and buffers are also discarded. If a nack sent to P is discarded,
the state of P is changed from transient state back to the communication state.

One can show that —>7 defined by Tables 1 and 2, along with the above abs function satisfies
Equation 1. Note that in the case of request/reply transformation, a r e p l message is treated
as an ack.

To see that at least one of the remote nodes makes forward progress, we observe that when
the home node h makes forward progress, one of the remote nodes also makes forward
progress. Since we disallow any process to stay in internal states forever, from every in
ternal state h eventually reaches a communication state from which it may go to a transient
state. Note that because of the same restriction, when h sends a request to a remote node,
the remote would eventually respond with an ack, nack, or a request for rendezvous. If any
forward progress is possible in the rendezvous protocol, we show that h would eventually
leave the communication or the transient state by the following case analysis.

1. h is in a communication state, and it completes a rendezvous by row Cl of Table 2.
Clearly, progress is being made.

2. h is in a communication state, and conditions for row Cl and C2 of Table 2 are not
enabled, h continues to wait for a request for rendezvous that would enable a guard
in it. Since a buffer location is used as progress buffer, if progress is possible in the
rendezvous protocol, at least one such request would be entered into the buffer, which
enables C l.

3. h is in a communication state, row C2 of Table 2 is enabled. In this case, h sends a re
quest for rendezvous, and goes to transient state. Cases below argue that it eventually
makes progress.

4. h is in a transient state, and receives an ack. By row T1 of Table 2, the rendezvous is
completed, hence progress is made.

5. h is in a transient state, and receives a nack (row T2 of Table 2) or an implicit nack
(row T3 of Table 2). In response to the nack, the home goes back to the commu
nication state. In this case, the progress argument is based on the requests for ren
dezvous that h has received while it was in the transient state, and the buffer reserva
tion scheme. If one or more requests received enable a guard in the communication
state, at least one such request is entered into the buffer by rows T4 or T5. Hence
an ack is sent in response to one such request when h goes back to the communica
tion state (row Cl), thus making progress. If no such requests are received, h sends
request for rendezvous corresponding to another output guard (row C2) and reenters
the transient state. This process is repeated until h makes progress by taking actions
in Cl or T l. If any progress is possible, eventually either T1 would be enabled, since
h keeps trying all output guards repeatedly, or Cl would be enabled, since h repeat
edly enters communication state repeatedly from T2 or T3, and checks for incoming
requests for rendezvous. So, unless the rendezvous protocol is deadlocked, the asyn
chronous protocol makes progress.

5 E x a m p l e P r o t o c o l

We take the rendezvous specification of migratory protocol of Avalanche and show how the
protocol can be refined using the refinement rules described above. (The architectural team
of Avalanche had previously developed the asynchronous migratory protocol without using
the refinement rules described in this paper.) The protocol followed by the home node is
shown in Figure 2, and the protocol followed by the remote nodes is shown in Figure 3.
Initially the home node starts in state F (free) indicating that no remote node has access
permissions to the line. When a remote node r t needs to read/write the shared line, it sends
a r e q message to the home node. The home node then sends a g r (grant) message to r t
along with data. In addition, the home node also records the identity of r, in a variable o
(owner) for later use. Then the home node goes to state E (exclusive). When the owner no
longer needs the data, it may relinquish the line (LR message). As a result of receiving the
LR message, the home node goes back to F. When the home node is in E, if it receives a
r e q from another remote node, the home node revokes the permissions from the current
owner and then grants the line to the new requester. To revoke the permissions, it either
sends an in v (invalidate) message to the current owner o and waits for the new value of
data (obtained through ID (invalid done) message), or waits for a LR message from o. After
revoking the permissions from the current owner, a g r message is sent to the new requester,
and the variable o is modified to reflect the new owner.

The remote node initially starts in state I (invalid). When the CPU tries to read or write

Figure 2: Home node of the migratory protocol

Figure 3: Remote node of the migratory protocol

(shown as rw in the figure), a r e q is sent to the home node for permissions. Once a g r
message arrives, the remote node changes the state to V (valid) where the CPU can read or
write a local copy of the line. When the line is evicted (for capacity reasons, for example),
a LR is sent to the home node. Or, when another remote node attempts to access the line,
the home node may send an in v . In response to in v , an ID (invalid done) is sent to the
home node and the line reverts back to the state I.

To refine the migratory protocol, we note that the messages r e q and g r can be refined using
the request/reply strategy. This is because the remote node after sending a r e q message
immediately waits for a g r message from the home node. The home node, on the other
hand, after receiving a r e q message, either sends a g r message (resulting in state change
from F to E) or may have to contact a remote node and then send a g r message (resulting in a
state change from E back to E, via E-I1-I3-E or E-I1-I2-I3-E). Similarly, the messages in v
and ID can be refined using request/reply, except that in this case in v is sent by the home
node, and the remote node responds with an ID. By following the request/reply strategy, a
pair of consecutive rendezvous such as r,?req; r ,!gr or r, !in v; r,?ID (data) takes only 2
messages as in Figures 4 and 5.

The refined home node is shown in Figure 4 and the refined remote node is shown in Fig-

Figure 4: Refined home node of the Migratory protocol

Figure 5: Refined remote node of the Migratory protocol

ure 5. In these figures, the operators “??” and “!!” are used instead of “?” and “!” to em
phasize that the communication is asynchronous. In both these figures, transient states are
shown as dotted circles (the dotted arrows are explained later). As discussed in Section 3.2,
when the refined home node is in a transient state, if it receives a request from the process
from which it is expecting an ack/nack, it would be treated as a combination of a nack and a
request. To emphasize this, we write [n a c k] to imply that the home node has received the
nack as either an explicit nack message or an implicit nack. Again, as discussed in Sec
tion 3.2, when the home node doesn’t have sufficient number of empty buffers, it nacks
the requests, irrespective of whether the node is in an internal, transient, or communica
tion state. For the sake of clarity, we left out all such nacks other than the one on transient
state (labeled r (x) ??m sg /n ack).

As explained in Section 3.1, when the remote node is in a transient state, if it receives a
message from the home node, the remote node ignores the message; no ack/nack is ever
generated in response to this request. In Figure 5, we showed this as a self loop on the tran
sient states, labeled h? ?*.

Protocol N Asynchronous protocol Rendezvous protocol
Migratory 2 23163/2.84 54/0.1

4 Unfinished 235/0.4
8 Unfinished 965/0.5

Invalidate 2 193389/19.23 546/0.6
4 Unfinished 18686/2.3
6 Unfinished 228334/18.4

Table 3: Number of states visited and time taken in seconds for reachability analysis of the
rendezvous and asynchronous versions of the migratory and invalidate protocols. All veri
fications were limited to 64MB of memory.

The asynchronous protocol designed by the Avalanche design team differs from the protocol
shown in Figures 4 and 5 in that in their protocol the dotted lines are r actions, i.e., no ack is
exchanged after an L R message. We believe that the loss of efficiency due to the extra ack
is small. We are currently in the process of quantifying the efficiency of the asynchronous
protocol designed by hand and the asynchronous protocol obtained by the refinement pro
cedure.

Efficiency

We verified the rendezvous and asynchronous versions of the migratory protocol above and
invalidate, another DSM protocol used in Avalanche, using the SPIN [Hol91] model checker.
The number of states visited by SPIN on these two protocols is shown in Figure 3. The
complexity of verifying the hand designed migratory or invalidate is comparable to the ver
ification of asynchronous protocol. As can be seen, verifying of the rendezvous protocol
generates far fewer states and takes much less run time than verifying the asynchronous
protocol. In fact, the rendezvous migratory protocol could be model checked for up to 64
nodes using 32MB of memory, while the asynchronous protocol can be model checked for
only two nodes using 64MB of memory.

6 B u f f e r R e q u i r e m e n t s a n d F a i r n e s s

In Section 2.5, we mentioned that the refinement process preserves forward progress for at
least one remote node, but doesn’t guarantee forward progress for any given remote node.

This means that, it is possible that one of the nodes may starve. For example, a request
for a rendezvous from a remote node might be continually nacked by the home node. This
problem can be solved if the size of the buffer in the home node is n, where n is the number
of the remote nodes. In this case, the home node never generates a nack. If the messages in
the home node’s buffer are processed in a fair manner, one can show that no remote node is
starved.

However, this requires too much memory to be reserved for buffers. For example, in a mul
tiprocessor with 64 nodes, if each node of the multiprocessor acts as home for 1024 lines
(a modest number of lines), the node needs to reserve a total of 64K messages to be used
as buffer space. Clearly, it is impractical to reserve such a large amount of space for buffer.
Hence, it is impractical to guarantee forward progress per each remote node by refinement
alone. However, it is usually not difficult to ensure the forward progress when other prop
erties of modern CPUs are considered. A modern CPU can have a small number, say 8,
of transactions outstanding. If the home node were to reserve a buffer that can handle 513
messages (512 = 64 x 8 for requests for rendezvous, 1 for ack/nack) and the buffer pool is
managed as a resource shared by all the 1024 shared lines, forward progress can be assured
per each shared line per each remote node.

7 R e l a t e d W o r k

Chandra et al [CRL96] use a model based on continuations to help reduce the complexity of
specifying the coherency protocols. The specification can then be model checked and com
piled into an efficient object code. In this approach, the protocol is still specified at a low-
level; though rendezvous communication can be modeled, it is not very useful as the tran
sient states introduced by their compiler cannot adequately handle unexpected messages.
In contrast, in our approach, user writes the rendezvous protocol using only the rendezvous
primitive, verifies the protocol at this level with great efficiency and compiles it into an ef
ficient asynchronous protocol or object code.

Our work closely resembles that of Buckley and Silberschatz [BS83], Buckley and Silber-
schatz consider the problem of implementing rendezvous using message when the processes
use generalized input/output guard. However, since the focus of their problem is for imple
mentation in software, efficiency is not a primary concern. Their solution is too expensive
for DSM protocol implementations. In contrast, we focus on a star configuration of pro
cesses with suitable syntactic restrictions on the high-level specification language, so that
an efficient asynchronous protocol can be automatically generated.

Gribomont [Gri90] explored the protocols where the rendezvous communication can be
simply replaced by asynchronous communication without affecting the processes in any
other way. In contrast, we show how to change the processes when the rendezvous commu
nication is replaced by asynchronous communication. Lamport and Schneider [LS89] have
explored the theoretical foundations of comparing atomic transactions (e.g., rendezvous com
munication) and split transactions (e.g., asynchronous communication), based on left and
right movers [Lip75], but have not considered specific refinement rules such as we do.

8 C o n c l u s i o n s

We presented a framework to specify the protocols implementing distributed shared mem
ory at a high-level using rendezvous communication. These rendezvous protocols can be
efficiently verified, for example using a model-checker. After such verification, the pro
tocol can be translated into an efficient asynchronous protocol using the refinement rules
presented in this paper. The refinement rules add transient states to handle unexpected mes
sages. The rules also address buffering considerations. To assure that the refinement process
generates an efficient asynchronous protocol, some syntactic restrictions are placed on the
processes. These restrictions, namely enforcing a star configuration and restricting the use
of generalized guard, are inspired by domain specific considerations.

We are currently studying letting two remote nodes communicate in asynchronous proto
col so that better efficiency can be obtained. Relaxing the star configuration requirement
for the rendezvous protocol does not add much descriptive power. However, relaxing this
constraint for the asynchronous protocol can improve efficiency.

We are currently comparing the efficiency of hand-designed migratory and invalidate pro
tocols with those of the refined protocols on benchmark programs.

R e f e r e n c e s

[BS83] G. N. Buckley and A. Silberschatz. An effective implementation for the generalized
input-output construct of CSP. ACM TOPLAS, 5(2):223-235, April 1983.

[CKK96] John B. Carter, Chen-Chi Kuo, and Ravindra Kuramkote. A comparison of software
and hardware synchronization mechanisms for distributed shared memory multiproces
sors. Technical Report UUCS-96-011, University of Utah, Salt Lake City, UT, USA,
September 1996.

[Cra93] Cray Research, Inc. CRAY T3D System Architecture Overview, hr-04033 edition,
September 1993.

[CRL96]

[DDHY92]

[EM95]

[Gri90]

[Hoa78]

[Hol91]

[HP96]

[Kea94]

[Lip75]

[LLG+92]

[LS89]

[MP92]

[PD96]

Satish Chandra, Brad Richards, and James R. Laras. Teapot: Language support for writ
ing memory coherency protocols. In S1GPLAN Conference on Programming Language
Design and Implementation, May 1996.

D. Dill, AJ. Drexler, AJ. Hu, andC.H. Yang. Protocol verification as a hardware design
aid. In IEEE International Conference on Computer Design (ICCD): VLSI In Comput
ers and Processors, pages 522-525, 1992.

Asgeir Th. Eiriksson and Ken McMillan. Using formal verification/analysis methods
on the critical path in system design: A case study. In Proceedings o f the 7th Inter
national Conference on Computer-Aided Verification, pages 367-380, 1995. Springer
LNCS 939.

E. Pascal Gribomont. From synchronous to asynchronous communication. In C. Rattay,
editor, Specification and Verification o f Concurrent Systems, pages 368-383. Springer-
Verilog, University of Stirling, Scotland, 1990. Workshops in Computing.

C. A. R. Hoare. Communicating sequential processes. CACM, 21(8):666-677,1978.

Gerard Holzmann. Design and Validation o f Computer Protocols. Prentice Hall, 1991.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Ap-
porach. Morgan Kaufmann, 1996. Second Edition, Appendix E.

J. Kuskin and D. Ofelt et al. The Stanford FLASH multiprocessor. In Proceedings o f
the 21st Annual International Symposium on Computer Architecture, pages 302-313,
May 1994.

Richard J. Lipton. Reduction: A method of proving properties of parallel programs.
CACM, 18(12):717—721, December 1975.

D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. S. Lam. The Stanford DASH multiprocessor. IEEE COMPUTER,
25(3):63-79, March 1992.

Leslie Lamport and Fred B. Schneider. Pretending atomicity. In Research Report 44,
D igital Equipment Corporation Systems Research Center, Palo Alto, CA, May 1989.

Zohar Manna and Amir Pnueli. The Temporal Logic o f Reactive and Concurrent Sys
tems: Specification. Springer-Verlog, 1992.

Seungjoon Park and David L. Dill. Protocol verification by aggregation of distributed
transactions. In CAV, pages 300-309, New Brunswick, NJ, USA, July 1996.

