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Abstract ‘
Computational geometry algorithms deal with geometric objects, usually represented by 

coordinates in an n-dimensional Euclidean space. Most efficient algorithms implement 

geometric operations as floating point arithmetic operations on the coordinates. Since 

floating point numbers can only approximate the "real" world, these operations often lead 

to topologically inconsistent results, especially when degenerate cases are handled. 

Recently, a variety of methods have been developed to cope with this, so called, robustness 

problem. This paper describes a new approach based on the optimistic assumption that in 

the majority of cases the decisions can be made consistently, even with imprecise data. 

Degenerate cases are decided with some tolerance. A test is applied for detecting when 

decisions made by the algorithm that logically depend on each other are inconsistent due to 

ambiguities arising from the approximation. In case of ambiguities, the inconsistencies can 

be resolved by increasing the tolerance. The proposed ambiguity test can be carried out in 

constant time whenever a decision is made during computation. Therefore, this method 

does not change the asymptotic complexity of the underlying algorithm in most practical 

cases, which is a clear advantage over previous approaches.

1 In troduction
Efficient algorithm design is one of the major topics in computational geometry. The nature 

of computational geometry algorithms is that they consist of operations on geometric 

objects (e.g., intersecting lines and planes, positioning objects, etc.) and of decisions 

based on geometric relations o f such objects (e.g. that two lines are parallel or not, points 

are coincident with lines, etc.). The analysis of the complexity o f most algorithms relies on 

the fact that these basic operations and comparisons can be computed in constant time. 

However, this is only the case if the underlying geometric primitives are represented with
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constant precision. Many algorithms in computational geometry therefore use a floating 

point representation. Floating point numbers are very flexible in representing large domains 

of real values. Floating point arithmetic operations are carried out in constant time, and they 

are efficiently implemented in the hardware of most computers. On the other hand, floating 

point numbers only approximate the domain o f real numbers. This causes severe 

difficulties with the interpretation o f the data, when branching decisions in an algorithm are 

based on the comparison of approximate data. The result o f the algorithm can be 

inconsistent.

Robustness against inconsistent interpretation is an important requirement for most 

algorithms involving numerical data. In computational geometry, degenerate cases, such as 

parallel or collinear lines, coincident points, etc. already make the structure o f algorithms 

more complicated. Together with the inaccuracies due to the limited precision o f floating 

point variables and operations degenerate cases can lead to unpredictable and inconsistent 

results. Some recent publications address the robustness problem in computational 

geometry [HHK 88], [HOF 89], [SES 88], [YAP 88], [GSS 89], [OTU 87]. Most o f the 

proposed solutions drastically increase the complexity of the algorithm, or they restrict the 

domain o f representable objects. It seems necessary to trade in speed and expressiveness 

for robustness.

We present a new, more pragmatic approach to the robustness problem in computational 

geometry which does not have most of the drawbacks of previous approaches. The method 

applies simple reasoning on the uncertainty domain of the data, and thus finds out whether 

or not we can trust the decisions made during computations. It detects ambiguities that may 

have lead to decisions that are inconsistent with decisions made elsewhere in the algorithm. 

No explicit reasoning about the dependency o f a decision from other decisions is required. 

The method can be applied to most existing computational geometry algorithms without 

changing their logical structure, and without affecting their asymptotic time complexity in 

the majority o f cases. Moreover, it imposes almost no restriction on the intended data 

model, in the sense that it handles both, degenerate and generic cases. The underlying 

operations can all be implemented in limited precision floating point arithmetic.

2 Handling Approxim ate Data
Representing real values, such as point coordinates, angles, etc. by floating point variables 

poses some inherent problems:
a) Floating point variables are only an approximation o f the Euclidean space 9tn, and b) 

arithmetic operations cause round-off errors that accumulate with the number of successive



operations carried out on these numbers. As a consequence, we can have only limited faith 

in data represented by floating point values. Each value is surrounded by a region o f 

uncertainty £  which is a function o f the accuracy o f the data representation and the 

preceding operations carried out on the data.

Exam ple: Point sets in 9^2
For a given, finite set S o f points we try to find pairs o f coincident points (for each 
point we have the computed x/y-coordinates and a radius o f  error e). We can 
observe the following: If for two points the £ regions don't overlap we can assume
that the points do not coincide in reality. On the other hand, if  the £ regions overlap 
there are two possible interpretations: a) the points are meant to be identical or they 
were meant to be distinct but happen to be less than e  apart. The uncertainty in the 
representation makes it impossible to prefer one interpretation from the other; it 
remains ambiguous.

In computational geometry algorithms such decisions as whether two points are coincident, 

or not, whether two lines are collinear, parallel (degenerate cases), or whether they intersect 

(generic case), etc., are very important. Making "wrong" decisions usually has an 

unpredictable outcome. Therefore, w e must find a way o f handling decisions on 

approximate data consistently. A heuristic that is applied by many algorithms using floating 

point data representation is the tolerance paradigm.

2.1 The Tolerance Paradigm
W e define a distance d  (in Euclidean metric) between two geometric objects r\ and r2 :

d = \ r \ -  r2\

If the distance d  is less than the uncertainty o f the data £  we arbitrarily decide that d  = 0 

(i.e. the two objects coincide), otherwise we say that they are distinct. For each geometric 

object we have to estimate an upper bound for £  from the operations that were applied to 

compute its coordinates. There exists a variety o f techniques for estimating errors, such as 

interval arithmetic, condition numbers, etc. We do not further discuss these techniques 

here, but instead refer to the literature (see, e.g. [ALH 83]).

The tolerance paradigm is a compromise applied by many algorithms; it works fine in most 

cases. However, it also has some severe consequences, as the following examples show:

2 .2  Consequences of the Tolerance Paradigm (Examples):
a) In an assembly consisting o f small and big objects: When the dimensions o f a small 

object is smaller than the £  uncertainty o f the vertices o f some big object then all



vertices o f the small object coincide in one point (compared to the big one). 

Therefore, "features" that are smaller than the data uncertainty disappear in this 

interpretation.

b) When we want to find out which o f 3 points (see fig. 1) coincide according to the 

tolerance paradigm, we might find that the £  regions o f points A and B overlap. 

Therefore, we would determine A coincides with B. For the same reason we would 

say that B coincides with C. The £  regions o f A and C don't overlap. We therefore 

conclude that A and C do not coincide.

Fig. 1. Comparing three points with uncertainty.

On the other hand, coincidence is an equivalence relation. From the transitivity 

property of equivalence relations we must conclude that, if A coincides with B, and 

B coincides with C then also A coincides with C, which contradicts the previous 

finding. We conclude that by applying the tolerance paradigm for deciding 

coincidence we are sometimes inconsistent with the intended model (the tolerance 

paradigm does not preserve the transitivity property of the incidence relation).

c) When we approximate a circle by a polygon the points on the circle will always 

have a certain distance S from the polygon. We try to make 8  smaller than the £  

uncertainty o f the circle. This can be done by adding more and more points to the 

polygon. By doing so, also the angles between adjacent line segments in the 

polygon become smaller. At some point the angles become smaller than the £  

resolution for angles. Therefore, we assume that adjacent line segments are 

collinear. However, since collinearity is transitive, all the lines in the polygon will 

be collinear. This, in turn, means that all lines in the plane are parallel, and all 

circles are straight lines. This, again, contradicts the intended model.



The conclusion w e draw from the above examples is that certain objects cannot be 

consistently represented with limited precision arithmetic, even together with the tolerance 

paradigm.

Note! These problems can occur, independent of the size of £, and therefore, independent 

of the precision that is used for the computations, as long as the precision is finite. 

Therefore, estimating the range of uncertainty for the data is a necessary, but not sufficient 

requirement for consistently computing with floating point numbers. ,

There have been done some very different approaches to the robustness problem in 

computational geometry:

• Arbitrary precision rational arithmetic [SES 89]

• Reasoning [HHK 88], (see also [BCK 88], [BRU 88], [CHO 88])

• Perturbation of data to avoiding degeneracies [EDM88]

• Line cracking [MEL 88]

• £-geometry [GSS 89]

An overview on a variety o f methods can be found in [HOF 89]. A short discussion of 

some of them, in comparison with the approach presented here, is given in the concluding 

chapter of this paper.

3 Avoiding Inconsistencies by Detecting Ambiguities
The major problem arising from the approximation o f data is that we cannot make a 

distinction between values that are meant to be equal, but differ by a small amount due to 

some round-off error, and values that are meant to be different by a very small distance in 

the configuration space, but the distance is smaller than the inaccuracy. We must accept that 

the two cases are indistinguishable, and therefore must be handled identically, for instance, 

by deliberately interpreting small distances as zero (as this is postulated by the tolerance 

paradigm). However, in some border cases, when the difference is just about £, the 

outcome o f the decision becomes unpredictable. At some instance we decide a very small 

value to be zero, at some other instance the value is just big enough to escape this criterion; 

it is left unequal zero. When the two cases are logically connected (like in the case of 

transitivity of point coincidence) the result is inconsistent and the outcome of the algorithm 

is unpredictable.

In the following, we present a new approach that is based on the fact that decisions cannot 

be made independently o f each other, in the sense that previous decisions never should 

contradict later decisions when they logically depend on the previous decision. Instead of



applying symbolic reasoning on the possibly involved logical dependencies o f geometric 

relations (this would require the application o f a usually complicated theorem proving 

program, and is often computationally expensive or even intractable) we reason about the 

influence each decision has on the uncertainty o f the data. At each instance we make a 

three-valued decision (generic/degenerate/ambiguous). Later decisions may find that a 

previous 'degenerate' decision now results in 'ambiguous' but never indirectly implies 

'generic'. A 'generic' decision may become 'ambiguous' later, but never im plies 

'degenerate'. By this we can guarantee that the outcome o f the algorithm is never 

inconsistent. Either the algorithm runs successfully, i.e. no ambiguities are discovered, or 

we detect ambiguities, in which case we may try to rerun the algorithm with a different 

estimate for the £  values, and hopefully resolve the inconsistencies.

In the following we describe how geometric relations are computed under the assumption 

that the data has some uncertainty. We first describe the method at the example o f point 

coincidence in 3-D Euclidean space. Later, we show how the method is generalized for 

other geometric objects, relations and dimensions.

4 Com puting Point Coincidence Consistently
First we have to describe the data structure for points used by the approach. Each point 

object P is represented by three regions, £, /?, 8, as depicted in fig. 2. The interpretation of 

those regions is as follows: £  is the uncertainty of the data point P. This means that the 

point which is approximated by P is in reality somewhere within the sphere with center P 

and radius £.

Fig. 2. Point with data with error 

Tolerance region: £

Buffer region: /J 

Distinction region: S

When we compare P with a second point Q, and the two £  spheres o f P and Q have a non 

empty intersection the two points could have the same location in reality, but they could 

also be distinct. We follow the tolerance paradigm, and determine that P and Q are equal. 

To consistently decide when two points are distinct we define a second region around each 

point called S 2  £. We say that a point Q is distinct from a point P when its S sphere has



an empty intersection with the 8  sphere o f P. To make sure that subsequent decisions are 

consistent with previous ones we need to keep some information about each decision made. 

In the following we describe the strategy o f comparing points consistently:

Initially the £  region is a sphere with center P and a radius representing an upper bound for 

round-off errors in computing the position o f  the point P. 8  must include £  (e.g. we can 

initialize the 8  region to be a sphere with center P and twice the radius o f the £  sphere). We 

also define a so called buffer region p  that is between £  and 8, and separates the two (we 

initialize /? = 5). The role o f the /? region will be explained later. The following invariants 

must hold during the subsequent comparisons:

£  c  /?, and p  c  8 .

When comparing two points we update the £, f3, and 8  regions in order to make sure that 

subsequent decisions do not contradict previous ones. When the £  regions of the two points 

overlap we arbitrarily decide that they are equal. The consequence o f this decision is that 

each point can now be located everywhere in the uncertainty region o f the other point. 

Therefore the new £  region o f the two points will be the union o f the two spheres In 

other words, not only geometric operations contribute to the uncertainty o f the data, but 

also deciding geometric relations.

We consider two points to be clearly distinct if  the 8  region o f one point does not overlap 

with the 8  region o f the other point. When we decide that two points P and Q are equal 

using the above criterion for equality we have to make sure that every point R that is equal 

to, say Q, is also identical to P, but also that every point Z that is distinct from, say P, is 

also distinct from Q, and vice versa, otherwise, we violate the transitivity o f the equality 

relation. As we have seen before this behavior is not guaranteed by the tolerance paradigm. 

To explain the various cases that may occur we look at fig. 3. Points P and Q are shown 

with their £  and 8  regions. P and Q are equal, because their £  regions overlap. When we 

compare P and Q separately with the points U, V and Z, we find that the 5 region o f Z has 

no overlap with the 8  region o f neither P nor Q.

To make this operation geometrically simple we say the new uncertainty region £  of both points is the 

smallest sphere including the union of the two £  spheres.
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Fig. 3. Comparing several points with £- and S regions with each other.

It is therefore clearly distinct from both points, P and Q, which would be consistent with a 
later decision that P = Q. Point U is distinct from P but not from Q since its S region 

overlaps with the S region o f Q. Therefore, a later decision that P = Q would contradict 

this decision. Similarly we would get a contradiction for point V which is distinct from Q 

but not from P. Therefore, a point is clearly distinct from two points P and Q (where P = 
Q), when its S region does not overlap the with union of the two 8  regions. Whenever we 

merge two points that we found to be equal, the new common 8  region will be the union of 

the two previous 8  regions 2\  We also must make sure that the £  region of some point R 

remains completely within the 8  region o f any point Fj that was found to be coincident 

with R. Otherwise, if  £  o f R grows beyond the boundaries o f the 8  region o f Fj, it may 

happen, that some point S that was said to be distinct from Fj can be equal R which is a 
contradiction. This leads us to the role of the region. Whenever we consider two points 

to be coincident their common fi region will become the intersection o f the two previous (3 

regions (which were originally set to 8). Thus, the f3 region of each point is contained in 

the intersection o f the 8  regions of all points that were compared and found to be coincident 

with it. When £  grows into (3 this means that the point in reality may exist outside the 8

2) For simplicity we compute the new 8  region to be the smallest sphere including the union of the two 
8  spheres.

For simplicity we compute the new [5 region to be the biggest sphere included in the intersection of the 
two (5 spheres.



region o f at least one o f the other points that were considered to be coincident. In this case 

we report an ambiguity.
Note that after updating the £, S, and /J regions, the spheres a not necessarily concentric 

any longer!

To formally prove that the method described here defines point coincidence consistently 
with the model o f points in we first have to give some formal definitions. .

Definitions (coincident, distinct, equivalence class, consistent set o f points).

Two points Pj, Pk, are coincident: Pj =  Pk, iff £j c  <5k a  ^  c  <5j 4 )

Two points Pj, Pk, are distinct: Pj *  Pk, iff <5j n  & = 0

If
The points P i , .. Pk, build an equivalence class — P j , iff LJ £i c  O  Si

i =  1 . .
1 1

A set o f point S is consistent, if  VPj, Pk e  S, either Pj = Pk, or Pj *  Pk.

Note, that this definition o f consistent corresponds to the previously given definition for the 

data structure of points with the starting condition, VP; £j £  5j, and the update operations 

upon pairwise comparison o f points, if  we don't find an ambiguous situation, i.e. as long

as £; c  P i , where $  = O  .

Pj = Pi

Lem m a 1 If a set of points S is consistent then coincidence o f points is an equivalence 

relation for this set.

Proof o f Lemma 1 We can easily show that from the above definitions follows:

VPj,Pk g P;j c  S: Pj = Pk , and —13 Pj,Pk e  ( =  P i j : Pj *  Pk- Therefore, Pj ^

Pk is equivalent to —i (Pj = Pk). The transitivity, reflexivity, and symmetry 

properties o f the coincidence relation can be directly derived. D

4) Note that the condition for coincidence is weaker than the one given previously. It is no longer 
necessary that the £ regions overlap.



5 Computing Relations of Higher Dimensional Objects  
C o ns is ten tly

The method described for the coincidence relation o f points can be generalized to relations 

of other geometric objects (e.g parallelism o f lines and planes, collinearity, coplanarity, 

incidence o f points with lines or planes, or lines with planes, etc.). We describe the method 

in more detail for the incidence relation o f points and lines, and the collinearity o f lines in 

2D. We then mention how this method is extended to three-dimensional linear objects 

(points, lines, and planes), or even higher dimensions.

5.1  Two-dim ensional Objects and Relations
Between points and lines we can determine the so called incidence relation. When we have 

incidence o f one point with two lines, either the two lines are identical or the point is an 

intersection point o f the two lines. Fig. 4 shows three pairwise intersecting lines. Each line 

is shown with an £  environment.

I
1

Fig. 4. Intersecting 3 lines with uncertainty.

We can observe the following possibilities. Either pi, p2 , and p3 are pairwise distinct, or if  

P2 = P3 . then either P2 = P3 = Pi. or I2 = I3 . Otherwise the relations are inconsistent. Again 

we see that the relations depend on each other. Dependencies o f incidence relations between 

points and lines can become arbitrarily complex. A little more complicated example is 

shown in fig. 5.



11

Fig. 5 Nine intersecting lines (Pascal's theorem).

The figure consists of 9 lines j ,  k, I, m, n, o, p , q and r . At each of the eight points A, B, 

C, D, E, F, H and I, three of the lines intersect. According to Pascal's theorem (in the 

version given here) also lines o, q and j must intersect in one point (point G in drawing).

For a given set o f 9 lines we want to verify that it is not in conflict with Pascal's theorem, 

i.e., either at all nine points A, B, C, D, E, F, H, I and G three o f the lines intersect, or in 

at least two cases the three intersecting lines create three intersection points. In the latter 

case the hypothesis is not fulfilled, therefore, the theorem does not apply.



Fig. 6 Disproving Pascal's theorem with approximated points and lines.

When the lines are approximated by floating point values we can think o f them as thick 

lines, as shown fig. 6. The lines in this figure correspond to the lines in fig. 5, but we 

slightly rotated the two lines o and q around the points B and C, respectively. Therefore, 

the previous points D, E, and G aren't single points any longer. For each of them we have 

three points instead. Since the lines are approximated, also the intersection points can only 

be computed with limited accuracy (they are approximated by circles). According to the 

tolerance paradigm the three points D', D" and D'" (replacing point D) would be 

considered coincident. The same is the case with points E', E" and E'". In place of point 

G we now have three points G1, G" and G"' with disjoint £  regions. Since they are too far 

apart they will not be considered coincident according to the tolerance paradigm. In all but 

one case three lines intersect in one point. Therefore, this interpretation violates Pascal's 

theorem.

The conclusion from this example is that, determining relations of points and lines using 

the tolerance paradigm is not necessarily consistent with the theory of Euclidean geometry. 

This is no surprise since we already showed that the basic axioms for point coincidence 

may be violated. Also, we conclude from this example that, if we used symbolic reasoning



for obtaining a consistent interpretation o f geometric relations we would need a powerful 

theorem prover capable o f proving, for instance, Pascal's theorem. Already this relatively 

simple example is much too time consuming to do with automated theorem proving 

methods (see e.g. [BCK88], [BRU 88], [CHO 88]). The theorem proving part alone 

would take many times more computing cycles than the original algorithm which just 

intersects 9 lines with each other, and finds pairs of coincident points. In practical 

applications we usually deal with thousands o f lines, and theorem proving becomes 

intractable. In general, it is not always easy to determine what has to be proved to make the 

underlying model o f an algorithm consistent; each model has its own theory.

In the following we want to extend the idea of having £, /}, and 5  regions to line objects, 

and make incidence and collinearity decisions consistent. Fig. 7 shows the £  environment 

for a line in two dimension. The line actually represents a line segment o f finite length. The 

£  region of a line segment is a rectangle that has the same orientation as the line and width 

£  The rectangle has to be long enough to contain all points incident with that line segment.

Fig. 7. The £-environment of a line in 2D.

As it was the case for points we define f3 and 8  environments also for line segments. The 8  

region is initially a rectangle of the same length and orientation as the £  rectangle, but with 

greater width. The f3 region is initially the same as the 5 region. The procedure to determine 

collinearity of two lines is done similarly to the computing o f the coincidence relation for 

two points. We define that two lines are not collinear if  they either intersect, or if  they are 
parallel and their 8 regions have a non empty intersection. Otherwise, we assume they are 

collinear in which case the new £  region will be the union o f the two individual £  regions 

(approximated by the smallest rectangle with the average orientation o f the two lines 

containing both previous £  rectangles. See fig. 8a). An intersection operation is done with 

the (3 regions (approximated by a rectangle o f the same orientation and length as the £



rectangle, and just wide enough to exclude all the comer points of the two previous j3 

rectangles. See Fig 8b), and a union operation is carried out with the 5 regions. Again, the 

£  region is not allowed to grow into the /3 region, otherwise it is inconsistent. Two line 

segments are therefore defined to be collinear, if the £  and /3 regions can be updated 

consistently {£  £  p) with the described procedure.Two parallel lines are separate, if their S 

regions don't overlap.

Fig. 8a. Updating the £  region, after merging 2 collinear lines in the plane.

Fig. 8b. Updating the j3 region, after merging 2 collinear lines in the plane.

Incidence of a point and a line is decided as follows: (Fig 9 shows a point and a line with 
their £  and /3 regions). We define that a point and a line are not incident if their 8  regions



have an empty intersection, otherwise we assume they are incident, and update the £, (3 and 

S regions of the point and the line.

Fig. 9. Incidence of point and line with £ and (3 regions'.

The radius of the £ circle of the point and the width of the £ rectangle are increased by the 

minimal amount, such that the lines of the rectangle become tangent to the circle, (see fig 

10)

Fig. 10. The updated £ and (3 regions of the incident point and line.

The radius of the [3 circle of the point and the width of the [3 rectangle are decreased by the 
minimal amount such that the lines of the rectangle become tangent the /3 circle. The 

diameters of the £ and (3 circles of the point will be the same as the widths of the £  and /? 

rectangles of the line. Updating the 5 regions is handled the same way as the £ regions and 

is therefore not explicitly shown here. We define that a line and a point are incident, if the 
described updates can be made consistently (Note, that the £ and /3 circles are not 

necessarily concentric after the updates have been made). If the £ region is not completely 

contained in the [3 region after the update an ambiguity will be reported to the main 

algorithm.



Intersecting two lines should have the same outcome as computing the incidence of one 
point with two non collinear lines. Updating £  and j3 is therefore handled accordingly (an 

illustration is given in fig. 11). Note that the £  and f3 regions of the two lines will have 

equal width after intersecting. The 8  regions of the lines will be updated the same way as 

the £  regions (not shown in fig. 11) such that they will have equal width afterwards.

V
Fig. 11. Intersecting two lines with £  and f3 regions.

The 8  region of the point will have at least the maximal extent of the intersection of the two 
P  regions of the line. Thus, we take into consideration that intersecting two lines at a small 
angle is less accurate. In the extreme (when intersecting two collinear lines) the 8  region 

would be infinitely large. Since collinear lines are merged and not intersected this case will 
not occur.

We now have to show that using these £, ft and 8  regions consistently we never violate any 

law of planar Euclidean geometry.

Theorem 2 When computing collinearity of lines, incidence between points and lines and 
coincidence of points for a given, finite set of points and lines applying the described 
methods and data structures we either detect an ambiguity, or we can be sure that if the 
hypothesis of any first order theorem in Euclidean geometry expressed with these 

predicates, points and lines is satisfied then also the conclusion is satisfied.



Proof o f Theorem 2 Wherever the algorithm detects an unambiguous degenerate case 
all the £, f$ and S regions of the involved elements will be updated, such that they are of 

equal with afterwards. Incident elements share the data for the £, (5 and S regions (see also 

section 6). Thus, we can ensure that a later change of one region gets propagated through 
all elements that are directly or indirectly related, and all the related £  and (5 regions will be 

of equal width. Therefore, there exist lines (one in the middle of the £  region of each line) 

and points (one in the middle of the £  region of each point) that satisfy the predicates 

exactly. If the points and lines occuning in an instance of the hypothesis of some theorem, 
and if they satisfy the conditions of that hypothesis, then the points and lines occurring in 
the conclusion can be constructed from these points and lines, and will also satisfy the 
conclusion of the theorem. Since these thought points and lines are totally within the £  

regions of the points and lines, the £  regions of the points and lines in the conclusions will 

overlap. If on the other hand we found that the conclusion is not satisfied (because the S 

regions do not overlap) then this means that either the hypothesis is not satisfied or 

somewhere the condition (£ £  (5 c  S) must have been violated during the algorithm and an 

ambiguity would have been reported. D

5.2  Linear Objects of Dimension Three and Higher
The uncertainty regions of objects should have simple shapes, complementing the 
dimensionality of the object in an n-dimensional space. They also should be symmetric in 
the complement space. For a point in a one-dimensional space these regions are intervals of 
length 2 • £. For a point in 2D they are a circles with radius £. In 3D the regions are spheres 

with a radius £. The £, (5 and S regions of line segments in 3D have the form of cylinders 

(instead of the rectangles in 2D) (see fig. 12). The cylinders are bound on both sides, such 
that all points incident with a line are within the two ends of the cylinder. The uncertainty 
regions of planes are planar plates with thickness £, f5 or d, respectively. Again, we limit 

the valid region of the plane such that it contains all line segments and points incident with 
that plane. A simple way of approximating this is to define a cylindrical disc with height £, 

(5 or 5, and a radius large enough to contain all the points and lines (see fig. 13).



Fig. 12. The e  environment of a line in 3D.

For even higher dimensional linear objects (hyper planes and points) we can define the 
corresponding n-dimensional spheres and cylinders. Computing the relations and updating 
the £, P  and 8  regions works similarly as in 2D. Basically, this means to carry out set 

operations (union and intersection) on these objects. To avoid possibly complicated 
geometric operations we approximate the result again by an n-dimensional sphere or 
cylinder, as we did it in 2D. A 3D application of this method is described in [BRU 90].

6 The Global Strategy of Ambiguity Testing and its Influence on 
the Complexity of Geometric Algorithms

One of the major advantages of this method is that it can be applied to most existing 
algorithms of computational geometry without the necessity o f changing their logical 
structure. The algorithm can basically be run the same way as an algorithm that was 
originally designed for exact arithmetic. An upper bound for the round-off error must be 
estimated for every geometric operation. This additional data must be stored with the 
geometry information of each object in form of £, p  and 5 regions. Whenever the algorithm 

computes a relation between two objects, the decisions and updates are made according the 

criteria described in the previous sections.



When the E, j3 and 8  regions of an object are updated we have to make sure that all its 

dependent objects get updated as well. This is achieved by letting objects that are related by 
a degeneracy condition share the same error data.

The error data  of all objects are stored in records, separate from the objects. The records 
contain three spheres for E, (3 and 8. For each of the spheres a center and a radius are 

stored. The centers of the spheres are defined relative to a point in the origin o f the 
coordinate system.

A poin t object stores the vertex coordinates and a pointer to an error data record. Its error 
regions are defined by the spheres in the error data record offset by the coordinates of the 
vertex.

A line object stores a starting- and an end point and a pointer to an error data record. The 
uncertainty regions of a line are the cylinders obtained by sweeping the spheres of the error 
data record from start to end point.

Different objects related by a degeneracy condition have a pointer to the same error data, 
and they are linked together in a list. When comparing a new object with an object out of a 
set of related objects, in the case of a degeneracy, the error regions get updated, and the 
new object is inserted into the linked list of the related objects. When the new object already 
belongs to some other set of related objects we have to merge the two sets which means to 
redirect all the pointers of one set. To build a set of n related elements we have to do at 
most n log n pointer assignments.

If we can complete the algorithm without detecting ambiguous situations we know that the 
result is consistent (theorem 2). If on the other hand, the algorithm detects some ambiguity, 
this means that a consistent interpretation of the data with the specified tolerance is not 
possible. A way of dealing with detected inconsistencies is to increase the tolerance of the 
objects for which we detected the inconsistency. We would have to rerun the algorithm 
with the new £, 8  and /? regions. Starting all over again is necessary because the new 

tolerances might produce new inconsistencies in some other parts of the algorithm. We may 

have to iterate this procedure until we encounter no more ambiguous situations. When we 
start with e regions big enough to embrace the largest accumulated error for the respective 

objects we have a high chance of finding a consistent interpretation the first time. An



ambiguity will only be detected when a generic case comes to lie very close to the 
degenerate case and is erroneously taken for a "real" degenerate cases. For this reason, 
comparing relatively exact data with relatively inexact data leads to undecidable 
comparisons when the £ regions overlap. In this case it is recommended to assign the same 

tolerance to all objects in the model. Sometimes, the data is ambiguous in the sense that no 
clear distinction between degenerate cases and generic cases can be made. In the example of 
set operations on polyhedra we can provoke this situation by intersecting two identical 
cubes that are slightly rotated against each other by a small angle with just about the amount 
of the tolerance for angles (such an example is described in [HHK 88]). Comparing the 
planes results in ambiguities. Ignoring them would likely lead to dangling edges or faces in 
the resulting object. After making the £ for the uncertainty of planes somewhat larger the 

almost coplanar planes will be considered coplanar, and the two cubes will be considered 
identical. The intersection of the two cubes would be identical to one of the two cubes 
intersected which is consistent with the larger tolerance introduced. In this example the 
algorithm succeeds in the second run. In search for the worst case, we consider the 
example where n points are lined up in a row. Each point has a distance slightly smaller 
than £ from its nearest neighbor. When comparing these points pairwise we would find that 

each point coincides with its nearest neighbor, but points that are farther apart are 
considered distinct. Since every point has one neighbor that is considered equal, and they 
are all on a line, they are all identical because of the transitivity law. When updating the £, 

(3 and <5 regions we will detect an inconsistency. We can rerun the algorithm with a new £ 

that is, for instance, twice as large for each point. Still there would be points that are farther 
away, such that they are considered distinct. We would have to rerun the algorithm again 
and again with ever increasing £ values. The algorithm will eventually stop when £ is at 

least as large as the distance of the two points on the opposite ends o f the line. In other 
words, the uncertainty is as large as the whole model, and all points are identical. This 
result reminds us of the fact that an approximation of real objects by floating point numbers 
has some inherent limitations.
What is the impact of this method on the complexity of some algorithm in the worst case? 
We assume that the time complexity of the original algorithm is 0(f(n)), where n is the total 
number of primitives (points, edges, planes, etc.). In one run of the algorithm, applying 
the ambiguity test increases the time by a constant factor and adds time n log n for the 

pointer operations in the worst case. For most algorithms n log n is a lower bound of 
complexity. For these algorithms the complexity is not changed by the ambiguity test. 
When an ambiguity is detected the algorithm will need to be run again with larger £-values.



In the worst case we find one additional degenerate case, and therefore add one new 
element to the closure of relation of a certain type. In the example of the n points in a row 
we might have to run the algorithm up to n times until we find a large enough tolerance that 
leads to a consistent result. In most practical cases, however, the algorithm will have to be 
run once only, sometimes twice, to produce a consistent result.

7 Conclusion and Future Plans
The greatest advantage of the approach presented here is that it delivers consistent results 
although we employ limited accuracy floating point variables and operations. This is 
usually preferable to the much slower rational arithmetic, or the complicated and time 
consuming symbolic reasoning about the logical dependencies in the data used by some 
approaches. The topological properties of the geometric objects are not changed as this is 
the case with the perturbation method which avoids degeneracies, or with the line cracking 
method which introduces new points and lines to avoid inconsistencies (e.g. [MIL 88]). 
The approach described here allows the algorithm to smooth out small differences where 
intended (e.g., approximately parallel planes become parallel, approximately coincident 
points become identical). Therefore, degenerate cases can really be treated as degenerate 
cases where this is desired.
The decision mechanism can be easily added to already existing computational geometry 
algorithms without changing their underlying structure. It is necessary to estimate an upper 
bound for round-off errors for each geometric operation, and to carry out some relatively 
simple book keeping on the accuracy intervals after each comparison. This does not 
significantly slow down the algorithm in most cases. Sometimes, however, the algorithm 
must be rerun several times to obtain a consistent result. In practice, most problems are 
well behaved in the sense that a clear distinction between degenerate and generic cases can 
be made. In these cases the algorithm is approximately as fast as an algorithm that does not 
check for inconsistencies. Another approach that is also based on floating point arithmetic 
is called "e-geometry" [GSS 89]. One of the major differences to this paper is that in £- 

geometry the uncertainty is associated with predicates (collinearity, incidence, etc.), rather 
than with objects. Associating £  with the objects has the advantage that no reasoning about 

the dependencies of the predicates is required. The objects themselves "remember" the 
decisions made about them, and decide whether or not they are consistent. Therefore, it is 
not even necessary to know which theorem needs to be satisfied to make a specific 

algorithm consistent. It is possible, however, that we pay the price for such generality in 
form of an £  that sometimes grows faster than really necessary.



The advantages make this approach well suited for complicated interactive geometric 
modelling applications. A solid modelling algorithm, based on this approach is described in 
[BRU 89]. Set operations are among the most complicated operations in geometric 
modelling. It is very difficult to prove that a heuristic approach to inference dependencies 
works correct in any case (see [HHK 88]).
In the future, we would like to find an adaptive method that does not require to rerun the 
whole algorithm if some ambiguity occurs, but rather tries to fix the problem locally. This 
does not seem to be so easy, and probably requires changing the structure of the algorithms 
in most applications. This in turn, would probably have a negative influence on the 
efficiency when degenerate cases occur. Also, we would like to apply this methods for 
robustly intersecting spline curves and sculptured surfaces. This seems possible, however, 
it is crucial for the success of this method to employ a good criterion for estimating upper 
bounds for errors. This seems difficult when an intersection curve is represented by a 
piecewise linear approximation.
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