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ABSTRACT

This research is  concerned with two log spectral estimators in 

the context of both stationary and nonstationary s ign als .  They 

d i f f e r  because in one smoothing is  realized before the logarithmic  

transformation, while the other is  smoothed in the logarithmic  

domain. It is  shown that for stationary signals  the two est im ators  

are similar ,  d if fering  in expected value by only a universal  

constant .  The f ir s t  estimator, however, i s  smoother. For 

nonstationary signals ,  the estimators are biased by d i f f e r e n t  

amounts dependent upon the nonstationarity.  The difference between 

the estimators is  shown to be a sensitive test for n o n s ta t i o n a r i ty . 

The estimators are used in the analysis and implementation of two 

so lution s  to the problem of blind deconvolution. It i s  found that  

the methods are equivalent for stationary s ignals ,  but d i f f e r  

markedly for nonstationary signals in the presence of s ta t io n a r y  

background noise.  Recommendations are made for the p r a c t ic a l  

d i g i t a l  implementation of the log spectral estimators.
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3̂  tx ( t )} ' Fourier transform of x ( t ) .

X ( f ) Fourier transform of x ( t ) .

Rxx(r) Autocorrelation function.

Cxx(t ) Autocovariance function.

P x * ( t )  Correlation coef f ic ien t .

Cxx(t ) Biased estimator of Cxx(r).

c'xx(^) Unbiased estimator of Cxx(r).

Gx(f) Spectral density function.

Gx(f) Log spectral density function.

I x(f)  Periodogram spectral estimator.

I x(f)  Log of the periodogram.

Px( f ) Smoothed spectral estimator ( B a r t le t t ) .

£x(f)  Log average spectral estimator (LAS).

Sx(f) Smooth spectral estimator.

Lx(f) Average log spectral estimator (ALS).

Ax ( f ) Activation Spectrum.

H(f) System response function.

E (X) , /c/x Expected or mean value of X.

X, Y Random v a r i a b l e s .  '

m Sample  mean.



s2 Sample variance.

coviX,Y) Covariance of X and Y.

EOF {X} Equivalent degrees of freedom of X.

fy(x) Probability density function (pdf).

Fx(x) Cumulative distribution function (c df) .

Mx ( t ) Characteristic function of x ( t ) .

K*(t) Cumulant function of x ( t ) .

Chi-square random variable.

Nl/J,r2) Normal or Gaussian distribution .

y  Euler’ s constant (Y  = 0.57721*” ) .

F ( t) ’ Gamma function.

\Mt) Digamma function.

^ ' ( t )  Trigamma function,

f Frequency.

®  Convc'lutional operator.

log, loge Natural logarithm operator (base e ) .

logi0 Commcin logarithm operator (base 10) .

v a r  {X} , o-*x V a r i a n c e  o f  X.

x i



CHAPTER 1

Spectral estimation is a well known and commonly used technique 

for data analysis (e.g., see C1I-C4]). With the advent of digital 

signal processing (e.g., see [5], [6] ) an^ the development of 

high-speed techniques such as the Fast Fourier Transform C71 , 

digital algorithms for spectral analysis have been implemented and 

many new applications discovered. This research is concerned with 

two particular estimators of log spectra and their application to 

digital signal processing.

Much is known about the statistics of spectral estimation. 

Conventional estimators, however, are often limited to stationary 

(time invariant) signals or, at most, to specific types of 

nonstationary processes [3] , CS] . Since many practical signals, such 

as speaking or singing, exhibit complex nonstationarity, these 

estimators may actually be misleading.

Data, including spectral estimates, are often presented on a 

logarithmic scale since such representations not only have a smaller 

dynamic range but frequently a variance independent from the data. 

Log spectral estimates are often computed by transforming a spectral 

estimator, smoothed by averaging, into the logarithmic domain. 

Research has been published, however, in which data (including 

spectral estimates) are averaged in the logarithmic domain (e.g.,
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see [3] -  [14] ) . As we shall see, particularly for nonstationary  

s ig n a ls ,  the order of averaging may produce s ig n i f ic a n t ly  d i f f e r e n t  

r e s u l t s .

’ In this  research, we are concerned with the s t a t i s t i c a l  

analysis  of two similar but different log spectral estim ators .  The 

f i r s t ,  for convenience termed the log average spectrum, i s  the 

logarithm of a conventional smoothed spectral estimator .  The 

second, the average log spectrum, d i f fe r s  in the fact that smoothing 

i s  done in the logarithnic domain. Ue consider the properties  of  

these estimators not only for stationary signals ,  but in terms of a 

model of nonstationari ty in which the energy at each frequency i s  

allowed to vary slowly with time.

A useful application of these estimators is  in an area of  

signal  processing known as blind deconvolution [15], the problem of  

separating two convolved signals where neither is  known a p r i o r i .  A 

knowledge of the properties of log spectral estimation is  helpful  in 

understanding two particular approaches to this problem.

These topics are discussed in two sections.  The f i r s t  

developes the s t a t i s t i c a l  analysis of the estimators.  The second 

discusses  their dig ita l  implementation and application to bl ind  

deconvolution. In the f i r s t  section, chapter 2 i s  a summary of  

fundamental results  from probability and s t a t i s t i c s ,  including a 

discussion of random processes and conventional techniques of  

spectral '  estimation. Since this material is  avai lable  from any of  

several excellent texts,  some of which are referenced in chapter 2,  

i t  i s  presented with a minimum of detail  and mathematical r ig o r .  It
✓

i s  intended to establish a common vocabulary and lay groundwork for



Chapter 3 is a detailed discussion of the two log spectral 

estimators in terms of stationary, Gaussian processes. Included are 

derivations of pertinent statistics. Empirical results for computer 

generated signals are presented. .

Chapter 4 contains an extension of these results into the 

domain of nonstationarity. A simple model is proposed and the 

statistical properties of the estimators derived. Empirical results 

are presented for some practical signals as well as for simulated 

data.

In the second section, chapter 5 presents an application of 

these results to digital signal processing in the context of blind 

deconvolution. The problem is discussed and two solutions are 

outlined: one based on the homomorphic filtering theory of 

Oppenheim, et al. Cl 61 , and the other on the application of 

conventional spectral estimates. An analysis of these two solutions 

is discussed in terms cf log spectral estimates. The impact of 

nonstationarity and additive, stationary noise is included, and the 

results of deresonating an old acoustic recording of the famous 

tenor Enrico Caruso are compared to an experiment simulating the 

actual data.

Finally, chapter B presents a summary of the conclusions of 

this research. A part of this summary includes suggested procedures 

for practical digital spectral estimation.

the remainder of this work.



STATISTICAL FUNDAMENTALS .

2.1 Random Variables and Probability Distributions

For a given experiment, the set of all possible outcomes is 

called a sample space. These outcomes may be grouped in various 

ways to form events which have a probability of occurance between 

zero and one [3,pp.56-57J . A random variable, X(k), is a function 

associating a real number between -» and +« with each outcome, k, in 

the sample space. In general, a random variable may be defined for 

either a continuous or discrete sample space.

For a discrete random variable, we define the probability 

distribution fy(x) as the probability that the random variable X 

takes on the particular value x. The distribution f*(x) has the 

properties [17,p.155]

f*(x) > 0 for all x (2.1a)

and

2 f x(x) = 1 (2.1b)

where the summation in (2.1b) is over all x.

For a continuous random variable, it becomes meaningless to 

talk about such a frequency distribution function. However, we can 

define a cumulative distribution function (cdf), F*(x), where F*(x) 

represents the probability that the random variable X has a value 

less than or equal to x ['4, p. 62], i.e.,
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Note that as x -♦ Fx(x) -* 0 and as x -* +«, Fx(x) -* 1.

If the cdf is smooth enough to be differentiable, we can also 

define a probability density function (pdf) f*(x) for a continuous 

random variable [4,p.62] .

f*(x) = dF><(x)/dx, for almost all x. (2.3)

Although not a distribution, the pdf of X may be used to calculate 

the probability that x i < X < x? by noting

Prob {xj < X < x?} = J’*’f><(x)dx . (2.4)

A pdf has properties similar to those of the probability 

distribution for discrete random variables [4,p.631, namely

fx(x) > 0 for all x (2.5a)

and

X:f,(x)dx = 1 . „ (2.5b)

If V is a function of the random variable X, i.e., V = g(X), 

and g(X) is one-to-one, differentiable, and either monotonica11 y 

increasing or decreasing then fa(y) is related to f*(x) 

by [17,p.312]

fu(y) = fx(g'1 (y)) • Idg"1 (y) / dyI . (2.6)

There are several probability density functions that are common 

and particularly useful to this research. One of the most important 

is the normal or Gaussian distribution denoted N(//,<7-2) and given 

by [17,p.220]

f X (X) - (2ltcr2) ~w . exp [- (x - //) 2 / 2a2] , Ixl < eo. (2.7)

See figure 2.1(a). The normal distribution is completely specified 

by the parameters m and r. It is particularly important because of 

the Central Limit Theorem which states, in one form, that sums of

F * (x )  «= P r o b  (X < x) . ( 2 . 2 )



independent, identically distributed random variables with finite 

means and variances quickly tend to a normal distribution regardless 

of the initial distribution [17,p.4311. Consequently, it is often 

possible to describe simple sums (such as averages) with Gaussian 

statistics. ,

Some other useful distributions are the uniform [17,p.22Q], 

fx(x) = 1 / (b -• a), a < x < b

= 0, otherwise, (2.8)

the lognormal [18,p.8], .

f x ( X ) =  (x2cr22ll) "1/2»exp [ - (  log X - fl)2 / 2cr2] , X >  □

= 0, otherwise (2.9)

(If X = exp(V) and V ~ N (yu, cr2} , then X has a normal distribution; 

see figure 2.1(b).) and the exponential [17,p.2201 

f*(x) = (1 / fi) *exp (-x / fi) , x > 0

= 0 , otherwise (2.10)

(see figure 2.1(c)).

Let Zlt Z?, •••, Zn be mutually independent normal random 

variables such that Z, ~ N(0,1). Then X = Z ? + Z22 + ••• + Zn2 

has a chi-square distribution [4,p.79] with n degrees of freedom 

given by

fx (xI = [2n/2r (n /2) I( x )  n/2_1*exp (-x /2) , x > 0

= 0, otherwise (2.11)

where T(x) is the gamma function (see Appendix A). Substitution of 

n = 2 shows that the exponential distribution is a chi-square 

distribution with n* = 2 (see figure 2.1(c)). The chi-square 

distribution is itself a special case of the more general gamma 

distribution [17,p.181]. If X * Z42 + Z?2 +, ••• + Zn2 and ZL ~



N (0, crz) uith cr2 not necessarily 1, then X/cr is a chi-square random 

variable uith n degrees of freedom (denoted x2n) . If the 7.C s are 

not zero mean, then a new distribution arises termed a non-central 

chi-square distribution 119,p.544],

If X = r'Tc'n, then V = logX is distributed as log chi-square 

with n degrees of freedom [20, p.25] (Y = log (r*x2n) ) . As shown in 

Appendix B, the log chi-square pdf has the form 

f y (y) = r-‘(n/2) [exp(y - log2r]n/2-‘-

exply - log2r - exp(y - log2r)] . (2.12)

For n = 2 , (2.12) reduces to the interesting form (figure 2.1(d))

f y (y) = expty - log/u* - exp(y - log/u*)] (2.13)

where = 2r is the expectation of X (see section 2.2). .

When more than one random variable is defined on a sample 

space, a joint probability density function may be defined. The 

joint cdf and pdf of tuo random variables, X and Y, are denoted 

Fx«(x»y) and fXy(x.y). respectively, and given by [4,p.65]

Fxa(x,y) = Prob (X < x, Y < y} (2.14a)

and

fxy(x.y) = 32FX:j (x, y) / 3x3y. (2.14b)

If f*u(x,y) = f x (x) • f a (y) then X and Y are said to be statistically 

independent [17,p.295].

2.2 Statistical Parameters

Although a random variable is described by its probability 

density function (or cdf), it is useful to define various parameters 

which help characterize it. Among the most common of these are the 

mean and variance. Such simple parameters are particularly useful 

in characterizing data when the pdf is not explicitly known.



(a) (b)

(c) (d)

FIGURE 2.1

Selected probability density functions: (a) Gaussian, (b) log- 
normal, (c) exponential or chi-square with 2 degrees of freedom, and 
(d) log chi-square with 2 degrees of freedom.
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The expected value (or expectation) of a function, g(X), of the 

continuous random variable X is defined as

E lg (X)} ■= j:;g (x) f*(x)dx . (2.15)

For a discrete random variable, (2.15) becomes .

E tg (X)} = 2g(x)f*(x) (2.IB)

where the summation in (2.IB) is over all x. The expectation 

operator has the important property of being linear. If X, Y are 

random variables and rlt r2 are constants, then

Elr,X + rzY) = r,E (X5 + r2E IY) . (2.17)

for all X, Y, rt, and r ? "17, p. 3553.

If g(X) = Xn, then Eig(X)) = E iXn} = Jl"x"fx (x) dx is called the 

n th moment of X. For n = 1 we have n = E (X) = J^"xfx(x)dx where u is 

the average or mean value of the random variable X.+ For n = 2, 

E (X2} is the mean square value.

Proceeding similarly, E {(X - /A<)n} is the nthl central moment of 

X. For n = 2, we define the variance (<7-2) as var (XJ = E ((X - //)2} 

and the standard deviation (a-) as the positive square root of the 

variance. It is easily shown that var IX} = E (X2} - E2 !X5 .

Qualitatively, the nean is a simple average, the mean square a 

measure of the general intensity of the random variable, and the 

standard deviation a measure of the spread about the mean. Dther 

parameters often given for a random variable include the median (the 

value of x for which there is equal area on either side under the 

pdf), and the mode (a value of x for which the pdf has a relative

+This and following results are given for continuous random 
variables only. Similar results apply to discrete random variables 
with appropriate summations replacing the integrals.



{ . . 

maximum) [17,pp.205,213] .

It i9 frequently useful to characterize a random variable, X, 

as being proportional or approximately proportional to a chi-square 

'random variable uith n degrees of freedom, i.e., X = r * X 2n. This is 

particularly useful in computing the statistical properties of 

spectral estimates [21, pp. 21-25] , [22] . To do so, a useful concept, 

Satterthwaite’s approximation, is used to estimate r and n. 

Specifically

n - EOFtXl = 2-EMX)/var{X) . (2.18a)

and .

r = var (X) / (2-E (X) ) = E ( X } / n  (2.18b)

where EDF (X} is the equivalent degrees of freedom of X [8, p. 273]. 

This approximation is used in chapter 4 when developing the 

statistics of log spectral estimators for nonstationary processes.

The moments of a given pdf often have a simple functional 

relationship to the parameters characterizing the distribution. 

Table 2.1 lists the mean and variance for the pdfs given in section

2.1 with reference to the indicated equations [17, pp.220,348].

These definitions can be extended to two or more random 

variables. Thus, as an example, for two randpm variables X and Y, 

we define the product moment and covariance as

eix-y) = j::j::x-yfxy(x,y)dxdy (2 .19a)

and

cov(X,Y} = E f (X - //*MY - //„)} (2.19b)

where f*y(x,y) is the joint pdf of X and Y and Mx and //y are their 

respective means. It can be shown [17,p.356] that

var (X + Y) = var{X) + varlYl + 2-cov{X,Y) (2.20a)

1 0



cov(X,Y} = E (X-YJ - E (Xi E {Y} . (2.20b)

If covlX.Y) = 0, then X and Y are said to be linearly 

independent (or uncorrelated). If X and Y are statistically 

independent, then E {X-Y] = EfXIElY} (since fxy(x,y) = fx(x)fy(y)) 

and, from (2.20b), cov(X,Y} = 0. Thus, X and Y are also 

uncorrelated. Note, however, that except under certain conditions 

(e.g., normality), the reverse is not necessarily true [4,p.74].

TABLE 2.1

. MEAN ANO VARIANCE FOR SELECTED .
PROBABILITY DENSITY FUNCTIONS

PDF Mean Variance •

Normal (2.7) fi cr2

Uniform (2.8) (b + a)/2 (b - a)z/12

Lognormal (2.9) exp(/* + i/2a2) exp ( 2 / j + 2c-2) -
exp + <rl )

Exponential (2.10) (i /.i*

r*X?n (2.11) r*n 2rzn

log (r*Xzn) (2.12) t ^(n/2) + ^'(n/2)
log(2r)

log(r.x^) (2.13) t log2r - y n2/G

' ■ 11

and

2.3 Statistical Estimates

In experimental work, it is often desirable to estimate from a

+ Y = Euler’s constant (v = 0.57721*-*) and \Mt), ^'(t) are the 
digamma and trigamma functions, respectively (see Appendix A).



given set of data (representing individual sample values of a random 

variable) one or more of the associated statistical parameters. The 

development and analysis of suitable estimators is the domain of 

statistical estimation theory.

Since a statistical estimate is derived from random samples, it 

is itself a random variable with an associated pdf (called the 

sampling distribution), nean value, variance, etc. If ct' estimates 

a, then a' is said to be consistent if E((a' - a)2} -► 0 as the 

number of samples increases and unbiased if the expected value of a' 

equals a [3,pp. 100-1] . For example, it can be shown that m =

(i/n ) SuiXj,, the sample mean, is both consistent and unbiased since 

E {m} - and E U m  - //)*) -► 0 as N -* », N is the number of samples,

.

In choosing an estimator for a particular parameter a, it is 

desirable to minimize the variance and the bias

B(a'}= E {a'J - a (2.21)

where Bta'Jis the bias, a the parameter and a' an estimator of a. 

Unfortunately, it is often the case that an unbiased estimator is 

not the one with the smallest variance, and vice versa. 

Accordingly, several different criteria have been devised for 

describing an estimator and compromising between these two 

conditions. For example, the mean square error [4,p.98] can be 

minimized where rnsefcc'} = E((cc' - a)2} = varfa'J + BMa'J. Another 

method is to compute the likelihood function [4,pp.99-102], and use 

the maximum of this function as the desired estimate. In this work,, 

we discuss both the bias and variance of the log spectral estimators 

and are not generally concerned with maximum likelihood



In the experimental aspects of this research, the mean and 

variance of experimental data are frequently estimated. The 

formulas used for these computations are standard and given 

by [3,pp.100-2]

m - (1 / N) S & x /  (2.22a)

and

s* *■ [1 / (N-l)] Z & U i  - m)2 (2.22b)

where m is the sample mean, s2 the sample variance and N the number 

of samples, X ;,. The factor 1 / (N—1) in (2.22b) insures that the 

sample variance is unbiased (although it does not have the smallest 

variance).

The above discussions concern point estimates, i.e., a single 

value as an estimate for a statistical parameter. It is frequently 

more useful to generate a confidence interval and specify the 

probability that the desired parameter falls within that interval. 

Computation of confidence intervals requires that the pdf of the 

sample data be known, which is often not the case. However, as many 

estimates involve sums of data (such as (2.22)), application of the 

Central Limit Theorem enables us to assume a normal distribution for 

the point estimates and derive approximate intervals. In several 

instances in this research, confidence intervals are computed along 

with point estimates. In doing so, the following formulas are 

utilized [23,pp.296-98] . Note that N is the number of samples and 

n = N - 1. .

The 100(1 - a)% confidence interval for a sample mean, m , with 

unknown variance is given by
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[m - t (a / 2; n) *s / N1/2 < // < m + t (a / 2; n) *s / N1/z] (2.23)

where t(oc/2;n) is the 100(a/2) percentage point for Student’s 

t-distribution [17,p.180] with n degrees of freedom. Similarly, the 

100(1 - a)% interval for a sample variance, s2, is given by

[n*s2/ x 2(oc/2; n) < <r2 < n*s2/ x 2(l - cc/2;n)3 (2.24)

where X ?(a/2;n) is the lQ0(a/2) percentage point for the chi-square 

distribution with n degrees of freedom. See [233 for tables of 

percentage points.

Closely allied to confidence intervals is the concept of 

hypothesis testing. Basically, the idea is to formulate a 

hypothesis regarding a set of random data, compute a test statistic 

(as a function of the data, hypothesis, sample size, etc.) and 

determine a region of acceptance. If the test statistic falls 

within the region, the hypothesis is accepted; otherwise it is 

rejected. In later discussions, we will use an hypothesis test 

called a chi-square goodness of fit test to determine if observed 

data obeys a predicted probability distribution [23,pp.458-BO].

2.4 Random Processes.

Physical phenomena are frequently represented by a series of 

observed data. This data, whether continuous (analog) or discrete 

(digital), may be characterized by a functional relationship between 

the independent variable(s)+ of the observation and data values.

1 4

+For a one-dimensional process, the independent variable is often 
time. Except where noted, these discussions are for functions of 
time only. However, many of these results are applicable in two or 
more dimensions (e.g., see [24] and [25]).



Data resulting from one particular set of measurements is called a 

sample function; the collection of all possible sample functions 

forms a process or time series.

A time series is broadly classified as deterministic or random 

(non-deterministic). A deterministic process is one in which there 

is an explicit (although not necessarily simple) mathematical 

relationship between the data and the independent variable. All 

sample functions for such a process are determined by the same 

functional relationship, Uithin the limits of the measuring device, 

measurements taken at ont3 time are equivalent to those taken later. 

Random processes (or stochastic processes) do not have such explicit 

functional relationships, but are sets of random variables and are 

best described statistically [3,pp.1-14].

Many common phenomena are deterministic. A vibrating string, 

the orbit of a satellite, and the current flowing in an electronic 

circuit, for example, are conveniently described by an explicit 

mathematical function (such as a sinusoid for a simply vibrating 

string). Conversely, the location of an electron in an atom, 

thermal noise in an amplifier or the amount 'of water passing a 

particular point in a mountain stream are examples of random 

processes.

Often the categorization of physical data is arbitrary and a 

matter of convenience. One might argue, for example, that the 

motion of a vibrating spring is not exactly sinusoidal because of 

random interactions with molecules of air. Similary, given enough 

information about the physical nature of the stream bed and its 

surrounding environment, etc., the flow of water might be accurately
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predicted for all time. Clearly, however, for most applications, a 

simple vibrating string is best thought of as deterministic and the 

stream as random.

These considerations motivate our classifying signals such as 

accoustic waves, light being recorded on film and seismic waves as 

random processes. A particular recording, photograph or seismic 

chart is a finite realization or sample function of the process.

Mathematically, a random process is an ordered or paramaterized 

set of random variables and is denoted (xj(t)J , -» < t < », where j 

indexes sample functions of the process 14,pp.144]. A particular 

realization of the process is x(t). Frequently, we drop the braces 

and subscript and simply write x (t) for both the process and a 

realization allowing context to discriminate between them. For each 

value t, we associate a random variable with the process.

As mentioned, a process may be either discrete or continuous in 

either the independent or dependent variables. Throughout these 

discussions, we generally deal with continuous processes. However, 

for practical application in digital signal processing, the 

processes must be discrete in both the dependent (quantized) and 

independent (sampled) variables. Uith proper consideration given to 

the problems introduced by sampling and quantizing, most of the 

analysis may be directly applied to discrete as well as continuous 

processes. A discrete process is denoted (xj(n)}. However, to 

again simplify notation, the subscript j is dropped and the process 

indexed as x(n).

The collection of all sample functions that might be produced 

by the same random phenomenon is called an ensemble [3,p.10]. Uhile
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each member of the ensemble is an explicitly different time series, 

they all have the same statistical properties.

Except for ergodic processes (section 2.S) a particular sample 

function, x(t), does not suitably represent the entire process 

(xj(t)} . For a given ensemble, there are (usually) an infinite 

number of possible sample functions. However, once a particular 

sample function is realized, it becomes a deterministic function 

over the domain for which it is realized, and may be treated as 

9uch. For a particular value of t, then, it represents one sample 

value of the random variable associated with that value of t. Llith 

other sample functions it may be used to estimate the statistics of 

the process at that point.

A random process may be described to a first order by the 

probability density function, fy(x,t), associated with each 

paramaterized random variable, x(t). Consequently, we may define 

the simple moments of the process at each time, t, e.g., the mean, 

variance, etc. A process is more completely described in terms of 

higher order statistics by defining the joint pdf associating the 

random variables at arbitrary times t4, t2, •••, tn and the 

corresponding multivariate moments [4,p.146]. However, as these 

pdfs and moments may be rather complicated, it usually suffices to 

describe the simpler first and second order moments such as the mean 

and covariance (section 2.7).

A random process is often refered to in terms of the 

statistical properties that characterize it. For example, if the 

random variables associated with the process obey a normal 

distribution, the process is called a normal or Gaussian random
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process. Similarly, if the spectrum (defined in section 2.8) is 

flat, it is refered to as white. Such descriptive terms will be 

useful in later discussions.

2.5- Ensemble and Time Averages

As mentioned in the previous section, since a random process is 

a parameterized set of random variables, the simple moments of a 

process may be computed by statistical averages called ensemble 

averages [5,p.382]. Accordingly, the expected value of a process is 

E fx(t)} = J!:xf*(x,t) dx (2.25)

where f*(x,t) is the first order pdf associated with the random 

variable at time t. Since fx(x,t) is a function of time, so is the 

expected value. Other ensemble averages may be defined by extending 

(2.25)

E (g (x (t))) = I Sg U)  f*(x, t) dx . (2.26)

In working with random processes, it is often the case that 

only one member of the ensemble is available making it impossible to 

compute ensemble averages. For this reason random processes are 

also characterized by averages computed over time. For example, the 

time average representing the expected value is

Hi = <x(t)> = 1 is? (1 / 2T) J^x (t) dt (2.27)

and the variance is

cr2j = <(x(t) - n y >  = Us? (1/2T) S.l (x(t) - Aj)zdt (2.28) 

where the subscript j on f j ■ and cr2j indicates that the averages are 

now a function of the j1h member of the ensemble rather than time. 

Another important time average, the mean square value <x2(t)>, is 

interpreted as the average power in the process. Other time 

averages are similarly defined [5,p.38S].
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In general, for a given process, time averages are not equal to 

ensemble averages. Processes for which they are equal are said to 

be ergodic. If this is true for all possible statistics, then the 

process is strongly or strict sense ergodic; if true for only 

selected statistics then it is weakly ergodic. For such processes, 

estimates of time averages, which can be computed from one sample 

process, serve well as estimates of the corresponding ensemble 

averages. Ule have found it particularly useful in this research to 

frequently assume a process is ergodic to enable such estimates to 

be meaningful.

Random processes are also classified as stationary or 

nonstationary. Broadly, a stationary process is one for which the 

statistical properties are independent of time, e.g., fxtx.tj = 

fx(x,t2) for all tj, t2. If all possible statistics are independent 

of time, then the processs is strongly or strict sense stationary. 

However, if only the first k moments are time independent, then it 

is weakly stationary to the kth order. Note that while an ergodic 

process is necessarily stationary, the reverse may not be 

true [3,p.89]. Interestingly, if S normal process is weakly 

stationary, then it is also strongly stationary and 

ergodic [4,p.149], In these discussions, by a stationary process we 

mean one which is strongly stationary.

Some processes exhibit simple nonstationarity. For example, 

the mean value may increase by a simple linear trend. Such 

nonstationarities may be easily recognized and removed. Many 

signals, however, such as the acoustic waves pertinent to this

IS
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research, exhibit much more complex nonstationarity. Not only do 

the mean and variance change with time, but the energies associated 

with a particular frequency change from moment to moment (if in fact 

such a concept is preserved) . The effects of this type of 

nonstationarity are a focal point of this research. As will be 

seen, such processes are often modeled by assuming stationarity over 

a short interval.

2.7 Autocorrelation and Autocovariance Functions

Two important statistical parameters of a random process are 

the autocorrelation and autocovariance functions. For the process 

x(t), the autocorrelation function is defined as

Rxx(r, t) = Etx(t)*x(t + r)} ' (2.29)

and the autocovariance function as

Cxx(r,t) = E {t>< (t) - //(t)]-[x(t + r) - n i t  + r) ] ) (2.30) 

where //(t) is the expected value of x(t) at time t and r is the 

displacement or lag. For zero mean processes, the covariance and 

correlation functions are equal.T For two processes, x(t) and y(t), 

a cross-correlation function is defined as

Rx«(r,t) = Elx(t)-y(t + r)} . (2.31)

If x(t) is stationary, then Rxx(t , t) and CXx(t , t) are functions 

of r only, i.e., RXx(t , t) = Rxx t̂ ) and C*x (t , t) = CXx (t ). They are 

both even functions, since Rxx (-t ) = R*x(t ), Cxx(-t ) = Cxx(t ), and 

it can be shown that

varlx(t)) = Cx<(0), (2.32a)

2 0

^Throughout this research, we make the simplifying assumption of 
zero mean processes and, thus, RXx(t , t) = Cxx(t , t).



|Rxx(t )| < IRx*(0)|, (2.32b)

1C**(t) | < |cxx(0)| . (2.32c)

A normalized form of the autocorrelation function, the correlation 

coefficient is defined as p(r) = R^fr)/R^fO) . It has the property 

of ranging between -1 and +1 [3,pp.70-71].

These functions all have the property of providing a measure of 

the linear dependence between two processes (cross-correlation) or 

of a process with itself (autocorrelation) for a given lag, r. For 

a completely uncorrelated process (often called a purely random 

process or white noise) Cxx(t ) = cr2*S(r) where S(t ) is the Dirac 

delta function [4,p.157].+

Two common estimators of the autocovariance function (often 

called sample autocovariance functions) are 

cxx(r) = (1 / T) J’e'm  [x (t) - //*]•

Cx (t + |r|) - //x] dt (2.33a)

and

c xxx(t) = (1 / CT - |t|] ) S?'r' Lx (t) -*/„]• '

[x(t + |t |) - //x3 dt (2.33b)

where x (t) is a sample function of the ergodic process (x(t)l. It 

can be shown [4,p.175] that

E (CxX(r)) ■= [1 - ( |t| / T) ] Cxx (t) (2.34a)

and

E (c\x(r)) = C>x(r) . . (2.34b)

2 1

and

+The definition of the autocovariance and autocorrelation 
functions and the correlation coefficient may differ somewhat from 
author to author (e.g., see [3,pp.68-9], [4,pp.154-157]).



Hence c'xx(r) is an unbiased estimator of Cxx(t) (although it does 

not have the smallest mean square error) whereas c X)< ( t )  is 

asymptotically unbiased. The variances of (2.33) are somewhat more 

involved than the expectations, however they are generally 

proportional to (1/T); accordingly, these estimators are consistent 

since li"1 [var {cxx(r)) ] = CE {(c \ x (r) - cxx(r))2)] = 0 [4, pp. 175-8] .

2.8 Spectral Density Function

The Fourier transform of a deterministic function gives a 

frequency distribution of signal strength [4,p.25]. However, since 

a sample function of a random process generally has infinite energy, 

i.e., J?"x*(t)dt = co, its Fourier Transform may not exist [26,p.485]. 

The mean square value or average power <xJ(t)>, however, is finite 

(since crx* is finite) and has a frequency distribution called the 

power spectral density function or simply the spectrum.

The spectrum, G><(f) , of a stationary random process, x(t), is 

actually defined as the one-dimensional Fourier transform of the 

autocovariance function, Cx*(7), associated with x(t)

Gx(f) = f ^ r ) }

= J:“Cxx(t ) -exp (-2nj f r) dr, 1 f I < co (2.35)

where f represents frequency and j = t-l)1/J. Gx(f) shows how the 

variance or average power of a process is distributed with 

frequency [4,p.217]. •

By rewriting (2.35) in terms of an inverse Fourier transform,
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+A1ternatively, Gx(f) is frequently defined in terms of the
autocorrelation function, Rxx(t ) [3,p.76]. However, this may
introduce impulses into the spectrum if E {x (t)i * 0. For zero mean 
processes the two approaches are equivalent.



C*x(r) = J^G*(f)-exp (2nj fr) df (2.3Sa)

and

Cx*(0) = cr2̂  = nGx(f)df . (2.36b)

For a purely random process, Cxx(r) = ct-VS(t ) and, thus, Gx(f) =
/ a •

er2x is constant; hence the descriptive term white noise. .

The spectrum of a real valued process is non-negative and even,

X • 6 • |

Gx(f) > 0 for all f ' (2.37a)

and

G,<(-f) ■ G><(f) for all f. (2.37b)

Another important property is the relationship of G*(f) to linear 

stationary systems. If H(f) is the frequency response of a linear 

system, x (t) the input and y(t) the output, then

Gy(f) = |H(f)|*-G*(f) . (2.38)

For two processes, x(t) and y(t), we define the cross-spectrum, 

Gxy (f), as

Gxy (f) = f  {Cxa(r)} ' (2.39)

where Cxa(r) is the cross-covariance of x(t) and y(t) [5, pp. 390-94] . 

Similar properties to (2.37) can be derived for the cross-spectrum.

The preceeding definitions are for stationary processes. If 

x(t) is nonstationary, then the autocovariance is a function of two 

variables and a simple spectrum is not defined. There are two basic 

approaches to defining the spectrum of a nonstationary process. One 

is to do it in terms of a two-dimensional Fourier transform. Being 

a function of two frequencies, however, such a spectrum may be 

difficult to interpret physically . Another approach is to compute
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a one-dimensional Fourier transform in terms of the lag, r, so that 

the resulting spectrum is a function of frequency, f, and time, t. 

This approach, however, has the undesirable effect that it may be 

negative at particular frequencies [3,p.361].

2.9 Spectral Estimators '

As the spectrum is the Fourier transform of the autocovariance 

function, it is natural to consider using the Fourier transform of a 

sample autocovariance function (such as given in (2.33)) as a 

spectral estimator; in fact, this is commonly done. Unfortunately, 

although sample autocovariance functions are generally consistent, 

their Fourier transforms are not; the variance does not tend to zero 

for large sample lengths. Consequently, smoothing techniques have 

been developed to reduce the variance of spectral estimators defined 

in this fashion. Ue first describe the properties of unsmoothed 

spectral estimators; smoothed estimators are discussed in section 

2.10.

Assume x(t) to be a zero-mean, stationary random process with 

spectrum Gx(f), and xT(t) to be a finite sample function of length 

T. Then define a sample spectrum or periodogram as

= ftaxxtr)] = J'-Jc*x(r)-exp (-2nj fr) dr (2.40)

where cx><(r) is the sample autocovariance function (2.33a) and 

;T(Cxx(t )} represents its finite Fourier transform [4,p.215]. As 

discussed in Appendix B, an equivalent definition of Ix(f) is

I*(f) = (l/T) |XT(f) I2 (2.41a)

and ,

XT(f) = f  {xT(t)J = ^ x T(t)-exp(-2iTjft)dt (2.41b)
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(e.g., XT(f) i9 the finite Fourier transform of xT(t)). (2.41) is a 

particularly useful formulation of the periodogram since the Fast 

Fourier Transform (see Appendix C) enables rapid computation of 

XT(f) as opposed to the relatively slow computation time for cxx(r).

Ue are interested in the expectation and variance of the 

periodogram. The expected value may be found by simply noting 

E(Ix(f)} = JlJE { c xx( t )  } *exp (-2rtj fr) dr

“ J1.?Cxx(r) • (1 - |r| / T)-exp C —2it j f r) dr (2.42)

where E(cxx(r)) is given by (2.34a). Clearly, because of the finite 

limits of integration and the factor (1 - lr|/T), the periodogram is 

a biased estimator of Gx(f). Note, however, that as T -* »,

E (Ix (f)) - j::C,(X(T).exp(-2itjfT)dr - Gx(f) (2.43)

so that the periodogram is asymptotically unbiased and

E(Ix(f)J a Gx(f) . (2.44)

This leads to an alternate definition of the spectral density 

function as

Gx( f) = iTia-E{Ix(f)} = Uff E {(i/T ) |XT(f) I2) . (2.45)

Ue can interpret (2.42) as being the Fourer transform of a 

windowed autocovariance function where ...

w, (t) = (1 - Irl/T), Irl < T

. = 0, otherwise (2.46)

is called the Bartlett window [5,p.443]. Using the fact that the 

Fourier transform maps ir.ultiplication into convolution, (2.42) can 

be written as a convolution of the spectrum, Gx(f), with the 

frequency representation of (2.45), i.e.,

E (Ix( f)) = Gx(r)©Ue(f) (2.47a)

■ 25
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U,(f) ■= ffwB(t)} = (TMsin(jtTf)/nTf)2 . (2.47b)

Since it is well known that for large T the representation of WB(f) 

in (2.47b) tends to an impulse, we again see that I*(f) is 

asymptotically unbiased.

Blackman and Tukey [21] introduced the terminology of calling a 

window in the time domain (as in (2.46)) a lag window and its 

frequency representation (2.47b) a spectral window. Several 

different spectral windows have been developed with various 

properties (e.g., see [4,p.244] and [27]). The selection of an 

appropriate window for a particular application is the focal point 

of much of the research in spectral analysis.

An important consequence of (2.42) and (2.47) is that the 

smoother the spectrum, Gx(f), the less biased the estimator tends to 

be. For a purely random process with Cxx(r) = cr2x*S(r), Ix(f) is an 

unbiased estimator for all T since [4,p.238]

. Ell*(f)> = G*(f) = cr2* . (2.48)

Conversely, the spectrum tends to be distorted in the vicinity of 

sharp peaks due to convolution with the side lobes in the spectral 

window. For this reason, it is usually desirable to use a sample 

autocovariance function with its associated spectral window having 

side lobes as small as possible. Alternatively, bias may be reduced 

if the signal is pre-whitened by passing it through a linear system 

with a frequency response equal or approximately equal to the 

inverse of the anticipated spectrum Gx(t).

General expressions for the variance of the periodogram are 

quite involved but have been derived by Jenkins and 

Watts [4,pp.412-183 and others. For a Gaussian, zero-mean, white



process x(t) ~ N(0,cr!x), however, it can be shown [4,p.233] that at 

the harmonic frequencies;, f = k/T, I k | = 0, 1, 2, ••• (and all 

frequencies for large T)

var(I,<(f)} = <r4>< . (2.43)

To a good approximation for non-white and non-Gaussian processes, 

(2.47) may be extended to become [4,p.2503

var (I* ( f ) } s G<2 (f ) • [1 + (sin(2rtTf) /2rtTf)2]

* Gx2 (f) . (2.50)

The exact formulation of (2.50) is not as important as the fact that 

it shows that the variance does not tend to zero for large T but 

rather to a constant approximately equal to the square of th.e 

spectrum itself. Ix(f) is thus an inconsistent estimator of G*(f).

In Appendix B, it ie shown from (2.41a) that a zero-mean, white 

Gaussian process x(t) ~ N(0,cr!x), the quantity 2Ix(f) /  is 

distributed exactly as chi-square with two degrees of freedom. For 

other processes, if T is large, then 2Ix(f)/Gx(f) is approximately 

X 7Z. By using the appropriate functions from Table 2.1, asymptotic 

results similar to (2.44) and (2.50) are easily derived directly 

from the properties of the chi-square distribution. In chapters 3 

and 4 we make wide use of the distribution of the periodogram.

2.10 Smooth Spectral Estimators

In 1946 Daniell [28] suggested that consistent estimates of the 

spectrum could be obtained by averaging the periodogram at adjacent 

frequencies. Other research by Bartlett, Blackman and Tukey, and 

others [8,p.258] extended and modified this idea and helped 

introduce the notion of e smooth spectral estimator.
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The Daniell estimator is actually part of a broader class of 

smooth spectral estimators formed by convolving the periodogram with 

a spectral window so that

S><(f) = Ii(f)®U(f) = f  {cxx(r)-u(t)} . (2.51)

where S><(f) is the smoothed estimator and w(t), U(f) are a 

lag-spectral window pair. As indicated in (2.51), this convolution 

is the equivalent of multiplying the autocovariance estimator by an 

appropriate lag window. Uhile in theory any window may be used, in 

practice the selection is usually limited to windows for which 

Ul (f) > 0 for all f. If U(f) is negative for any f, Sx(f) may also 

be negative for particular frequencies.

In general, lag windows have the properties

w (0) = 1, (2.52a)

w (— t) = w(t), (2.52b)

and

w (t) = 0 ,  Itl > n, n < T . (2.52c)

Note especially that while the sample length is T, the window is 

non-zero only on the interval t—M , M3 where fl < T and thus the 

autocovariance estimator need only be computed for lags up to II.

The expected value of S*(f) is

E tSx (f)} = flElc^lrJJ-wtt)}

= f  {Cxx (r)-wB ( t ) -w ( t ) }

= G* (f) ©IJB (f) © U  (f) as Gx(f)®U(f) (2.53)

where the approximation in the last step is for T much larger than M 

(since under that condition, UB(f) will be narrow compared to U(f) 

and much more like an impulse). If the spectrum is sufficiently 

smooth, then E{S*(f)} = Gx(f). If G*(f) is not smooth, then clearly
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the narrower the spectral window, the more fidelity in the 

convolution of (2.53) and the smaller the bias. In fact, 

approximate expressions of the bias of S><(f) have been computed for 

various spectral windows [4,p.247]. In general these expressions 

are proportional to (l/t1)n where n > 0 is some integer power. 

Clearly, then, a6 M increases (with a coresponding decrease in the 

bandwidth of the spectral window), the bias will be smaller. From 

this point of view, then, it is desirable to choose the width of the 

lag window to be as large as possible.

Approximate expressions of the variance of Sx(f) have also been 

derived [4,p.251], [5,p.552]

var (Sx (f)} st (i/T) -G*2 (f) © U 2 (f)

. a (i/T).G/(f)-j::U2(f)df /

^ (l/T)-G/(f).j::w2(t)dt * G*2(f).(K/T) (2.54)

where the approximation in the last step is again for G*(f) smooth 

and N larger than fl. Thus the variance is now not only proportional 

to the square of the spectrum, but to the area under the squared lag 

window, K = X“w2(t)dt), and to (1/T). Values of K for different 

spectral windows have been computed (e.g., see [4,p.252]) and are 

generally proprotional to fl. Thus ue see that the variance of S x (f) 

is reduced as T increases and M decreases (making Sx(f) consistent). 

This .last condition, houever, is the opposite of that required to 

decrease the bias. As usual, then, a compromise must be achieved 

between small variance (small tl) and small bias (large M) . As 

mentioned in section 2.3, this is often done by minimizing the mean 

square error, mse{S><(f)} = var{S*(f)i + B2{S*(f)}.

The above results may be expressed differently by approximating
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(1) nSx(f)/Gx(f) with a chi-square distribution having n = 2T / K 

degrees of freedom (given by the equivalent degrees of freedom 

(2.18a)), and (2) the effective bandwidth, (3, of the spectral window 

where 0 ^ (1/K). Recall that K ~ M and note that n * 2T/3 and 

var{Sx(f)J a 2Gx*(f)/n a Gx2(f)/T(3. As the bandwidth increases, 

then, the degrees of freedom becomes larger and the corresponding 

variance smaller. However, the increased bandwidth means poorer 

resolution and larger bias. Conversely, if H is large, then the 

bandwidth is small giving better resolution and smaller bias, but 

the degrees of freedom is smaller with a corresponding larger 

variance. The appropriate choice of a spectral window to compromise 

this situation is a fundamental topic of spectral analysis 

research [4,pp.252-57] .

In 1948, Bartlett [29] proposed a slightly different method of 

computing smooth spectral estimates. From (2.43) we see that an 

alternate definition of the spectrum involves the expected value of 

the periodogram. It would seem logical, then, to improve the 

periodogram estimator by computing its sample mean. If several 

sample functions were available, this could be done by computing 

several periodograms and averaging frequency by frequency; this is 

usually not the case, however. If the process is ergodic, then by 

applying the concepts of section 2.S we can compute periodograms 

from adjacent segments of the one sample function xT(t). These 

peridograms are then averaged to produce Bartlett’s smooth 

estimator [4,pp.239-43]. Thus we define
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Ii(f) = ( l/T) • I Xe X;, (t) *exp (-2n j f t) dt I2 (2.55b)

where x(t) has been divided into N segments of length H such that 

M*N ■ T and Ii.(f) is the periodogram computed from the ith segment, 

x. <t) .+ .

The mean and variance of P>< (f) come directly from (2.47), 

(2.50), and (2.55a). If x(t) is Gaussian and white, then xt(t) is 

independent of xj(t), i * j and, hence, I;(f) is independent of 

Ij(f). If the process ifs correlated, but Cx>;(r) is small for r > M, 

the segment length, then 11(f) is still nearly independent of Ij(f). 

Thus it is reasonable to assume that c o v (f) , I ■ (f)) = 0, i * j, so 

that

E IP* (f)} = i/NlAEHJf)} = Etljf)} = Gx(f) © U B (f) (2. 56a)

and •

var {Px(f)) = (l/NJM^vartlitf)}

= vardjf)} /N a Gx2(f) /N (2.56b)

where U„(f) is the Bartlett window (2.47b) on [—M , H] . For a

Gaussian, zero-mean, white process x(t) ~ NCO,^2*), (2.56) becomes
/

E (Px(f)} = ^  • (2.57a)

and

var (Px(f) I = . (2.57b)

Like Ix(f), Px(f) is asymptotically unbiased. However, it is a 

consistent estimator since varlP^ff)} tends to zero for large N.

The tradeoff between bias and variance encountered with the
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+Note that the frequency smoothing procedure of Daniel 1 also 
computes a form of the sample mean of Ix(f) and is often called 
frequency smoothing. Bartlett’s procedure is similarly called time 
or ensemble smoothing.



previously discussed class of smoothed estimators also apply to 

P*(f). As before, an effective bandwidth and equivalent degrees of 

freedom can be computed. From the relationship n m 2T|3 where n is 

the. equivalent degrees of freedom and |3 is the bandwidth, we have 

(3 ^ n/2T. In Appendix A, however, it is shown that n is 

approximately 2N (exactly 2N for a Gaussian, white, zero-mean 

process) and thus (3 * 2N/2T = I/d. For finite data, T is fixed. 

Thus, as fl is made smaller, N becomes larger and the variance is 

reduced. However, this again produces less resolution with a 

subsequent increase in bias. Conversely, fewer periodograms 

improves the resolution and bias, but increases the variance.

The Bartlett procedure is particularly useful in practice since 

it enables periodograms to be computed for short segments of data. 

Uith application of the Fast Fourier Transform (see Appendix C) , 

these computations mau be made rapidly and the resulting 

periodograms averaged. For this reason, the remainder of this 

effort centers on the Bartlett estimator with some slight but 

significant modifications to produce our log spectral estimators.

A modified form of the Bartlett procedure was proposed by 

Uelch [22] in 1967. In this case, a lag window is applied to each 

of the data segments, x^(t), before computing the Fourier transform 

giving

P*(f) =

Jt(f) = Cl / tn-U) ]-| X'Jx. {t)-w (t)-exp {-2rt j f t) d112,

and

U = (1 /fl) J'Sw*(t)dt 

where the factor U insures that JL(f) is asymptotically unbiased.
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Welch gives the expected value and variance as

E (P* (f) I = G* (f) © U  (f) , (2.53a)

U (f) = [1 / (n-LI) ] • IX” w (t)-exp (-2it j ft) dtl2, (2.59b)

and

var {Px(f)} * G<*(f) /N (2.59c)

where Ui (f) is now the magnitude squared of the Fourier transform of 

the lag window. .

This procedure enables selection of an appropriate spectral 

window with desired properties, yet retains the computational 

advantag.es of the Bartlett estimator. Note in particular that 

windows with negative velues may be used since the expected value 

(2.59a) now involves convolution with the square of the magnitude of 

the spectral window. Welch extends his analysis to the case where 

the data segments, x^t), overlap. Although the periodograms are no 

longer independent, thus increasing the variance, more are available 

to be averaged. Welch found that this is a net gain in reduction of 

the variance. In this research, we are concerned only with 

non-overlapping segments and the corresponding assumption that the 

periodograms are independent.

Welch’s algorithm is widely used in modern spectral analysis 

and is the one used for the experimental computations in this 

research. Further details of the digital implementation of (2.58) 

are given in Appendix C including a discussion of the spectral 

window used.

Figures 2.2 and 2.3 illustrate the effect of spectral 

smoothing. Figure 2.2(a) is a periodogram computed from simulated 

Gaussian, zero-mean white noise with a-2x = 1000 (see Appendix C for



a detailed description of the production of this data). It is 

apparent from this graph that EfP*(f)} = E{I>;(f)) = 1000 and 

varfly(f)} = (1000)2 as predicted by (2.57). Figure 2.2(b) is the 

average of 4 periodograms for this same data. Note how the standard 

deviation has been reducsd by a factor of 2 (since the variance is 

reduced by 1/N, the standard deviation is reduced by (1/N)1/Z). 

Similarly, figures 2.2(c) and 2*2(d) are smooth estimates with N = 

16 and G4 respectively.t

Figure 2.3+t parallels figure 2.2 for a colored Gaussian 

process (the white process depicted in figure 2.3 was filtered using 

the linear system shown in figure 4.8(c)). Note how for N = 1 

(figure 2.3(a)) the standard deviation is as large as the signal and 

masks all but the general shape of the spectrum. After smoothing G4 

periodograms (figure 2.3(d)), the nature of the spectrum is much 

more evident.
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+The standard deviation of this and other figures may be visually 
judged as being half the "fuzziness" surrounding the apparent 
expected value. The variance is then the square of the standard 
deviation.

++In figure 2.3 and the remaining figures, unless otherwise noted, 
the abcissa represents frequency in Hertz on a logarithmic scale.
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FIGURE 2.2

Progressively smoothed spectral estimates for a Gaussian, white 
process, N(0,1000) with: (a) N = 1 (periodogram), (b) N = 4, (c) N = 
16, and (d) N = 64.



(a) ( b )

(c) (d)

FIGURE 2.3

Progressively smoothed spectral estimates for a Gaussian, colored
process, N(0,1000) with: (a) N = 1 (periodogram), (b) N = 4, (c) N =
16, and (d) N = 64.
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CHAPTER 3

LOG SPECTRAL ESTIMATES FOR STATIONARY PROCESSES

3.1 Logarithmic Representation of Data

Physical data are commonly displayed on a logarithmic scale. 

This is because (1) the logarithm compresses the dynamic range 

permitting small changes in the value of the data to be observed 

simultaneously with large ones as well as enabling digital storage 

with fewer bits; (2) such a transformation may produce data which is 

more nearly Gaussian in character [30,p.74]; and (3) as will be 

shown, it can result in data with a variance or confidence intervals 

independent of the value of the signal. Examples include the 

logarithmic Richter scale used in seismology and, of course, power 

spectra represented in decibels. + .

3.2 Log Spectral Density Function

In section 2.8 the spectral density function was defined for a 

stationary random process. It is a simple extension of this concept 

to define the log spectral density function (log spectrum) as

+Log spectra are commonly presented on the decibel scale (dB = 
10*log10G where G represents power). Throughout these discussions, 
however, derivations are in terms of the natural logarithm to 
produce equations of manageable mathematical complexity. Data and 
figures, though, are in decibels unless othewise noted. In all 
cases, results of the equations can be converted to decibels by 
using the appropriate multiplicative constant derived from the 
identity logl0x = logex/loge10 = (0.43429--0 loge x.



Gx(f) = log G>< (f) = logj" {Cx><(t ) ) (3.1)

where Cxx (t) is the autocovariance function associated with the 

stationary process x(t). Since the spectrum is non-negative, the 

log spectrum is defined for all frequencies except where G*(f) = 0.

3.3 Log Spectral Estimation ■

In sections 2.3 and 2.10 we derived formulas for the 

expectation and variance of various spectral estimators. Ue now 

extend these concepts by defining log spectral estimators and 

describing their statistical properties.

An obvious log spectral estimator is simply the logarithm of 

the periodogram, 11(f). Similarly, we could compute the logarithm 

of one of the smoothed spectral estimators. Alternatively, w.e could 

effect the logarithmic transformation before the smoothing process. 

As we shall see, reversing the ordering of the logarithmic 

transformation and smoothing process produces two significantly 

different estimators (particularly for nonstationary processes).

This research is limited to a discussion of two particular log 

spectral estimators. Both are smoothed by the Bartlett averaging 

procedure of non-overlapping periodograms or their logarithms. Log 

spectral estimators smoothed in frequency by convolution with a 

spectral window are not explicitly considered. .

3.4 Log Average Spectrum

The log average spectrum (LAS) is the logarithm of the smoothed 

spectral estimator, Px(f) (2.55a). Ue thus have

Px(f) = logPK(f) = log[(i/N) Z ^ I J f ) ]  (3.2)

where P*(f) is the log average spectrum, and I;,(f) is given by
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3.5 Average Log Spectrum

The average log spectrum (ALS) is derived by computing the 

logarithmic average of the periodograms. Ue thus have

Lx(f) - (l/N)2^iL(f) = (l/N) 2&logIi(f) • (3.3)

where Lx(f) is the average log spectrum.

As is discussed more fully in chapter 5, the motivation for 

this estimator conies from consideration of a generalized linear 

system that obeys superposition across convolution [IS]. Such a 

system uses a Fourier transform followed by a logarithm to map 

convolution into addition. At this point, linear operations may be 

performed. If this operation is an averaging process, and only 

magnitudes are considered, this procedure is equivalent to computing 

the average log spectrum.

3.5 Statistical Properties of the Log Average Spectrum " ' 

The difference between linear and logarithmic averaging has

been discussed in the literature for a variety of distributions and 

applications. Cox [3] shows that this difference has a lower bound 

which is a function only of the dynanmic range of the data (this is 

discussed further in section 3.9). His result is independent of any 

specific distribution. Mitchell [11] has derived expressions for 

the expectation of this difference for four distributions, including 

the uniform and lognormal; Hershey [10] for the expectation and 

variance assuming Gaussian data; and Musal [12] and Sugai and 

Christopher [14] for the Rayleigh and Maxwell distributions. In a 

recent paper, Ricker and Williams [13] discuss the advantages of log
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power estimates in terms of the logarithmic average of chi-square 

data. Results similar to those of Ricker and Williams form the 

basis for the remainder of this work.

The statistical properties of (3.2) and (3.3) are most easily 

derived if x(t) is a stationary, Gaussian, white process with 

spectral density function G*(f) = er**. Departures from these 

conditions are discussed in section 3.9.

With these assumptions, as discussed in Appendix B, 

2N-PX(f) / «72x is distributed as x 22N (for N averaged periodograms) and 

thus P*(f) = logPy(f) = log(ct2><-x 2zn/ 2N) . From Table 2.1, with r = 

cr2x/2N and n = 2N, we have .

E{px(f)J = loga^ + ^(N) - log(N) ^ logcr*x (3.4a)

and

var{p><(f)} = ^'(N) a 1/N (3.4b)

where jMN) is the digamma function (see Appendix A). For large N 

(e.g., N > 20) jMN) * log(N), ^'(N) ^ 1/N and the approximations of

(3.4) hold.

3.7 Statistical Properties of the Average Log Spectrum

Under the assumptions of section 3.6, 2Il(f)/«72x is distributed 

as X?2 and so i*(f) =* logIt(f) - log (crVxz2/2). Again, using Table 

2.1, with r = <tj*/2 and n = 2, and noting that IL(f) is independent 

of Ij(f), i * j ■

E (Lx (f)} = E {(1/N) 2i.fi log IL (f) > = (1/N) 2&E{logIi(f)}

= (i /n ) ^Alogc^x - y = logcr2* - y (3.5a)

varfLx(f)) = var ( ( i /n ) ^ ^ l o g l ^ f ) )
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= (i/n) 22c?ivar flog I - (f)} = it*/ (GN) •

= it2/ (GN) = 1.6449— /N (3.5b)

where Y is Euler’s constant (v = 0.57721 — ).

From (3.4) and (3.5) we can see that for stationary, white 

Gaussian processes, the two estimators are essentially equivalent 

since their expected values differ (asymptotically) by a universal 

constant independent of the process. The log average spectrum is 

asymptotically unbiased; the average log spectrum biased. However, 

this latter bias, being constant, is easily removed.

For both estimators, var{px(f)}, var{Lx(f)J -* □ as N -► ». 

However, for a given value of N, clearly var{Lx(f)} > var{px(f).}. 

Specifically,

var (Lx(f)} / var(px(f)}

. = (it2/6)/^'(N) ^ 1.6449— /N . (3.6)

Thus the variance of the log average spectrum is about 39% less than 

that of the average log spectrum. Equivalently, the log average 

spectrum has 22% less standard deviation (is 22% smoother).

3.8 The Activation Spectrum

A useful and interesting finding of this research is the 

difference between the ALS and LAS estimators ■

Ax(f) = Lx(f) - px(f) . (3.7)

where Ax(f) is termed the activation spectrumt. From (3.4) and 

(3.5) we see that the expected value of Ax(f) is given by
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+The term activation spectrum was suggested to the author by T. 
G. Stockham, Jr., Department of Computer Science, University of 
Utah. Motivation for this term is discussed in section 4.4.



E(A*(f)} = log (N) - (N) - y *  -y . (3.8)

For a stationary process, then, the activation spectrum is 

aymptotically equal to Euler’s constant.

As discussed in chapter 4, (3.8) does not hold for 

nonstationary processes. In fact, the activation spectrum may have 

a value significantly different from Euler’s constant, providing a 

test for nonstationarity in the presence of stationary noise.

Even for a stationary process, (3.8) is particularly useful. 

For example, if it is desired to identify a coherent signal in 

stationary backgrond noise, there will be a higher coherent signal 

to noise ratio in the ALS estimator. Since the coherent peak will 

have nearly the same value in both estimators (not being random) , 

the background noise will be down an additional 2.5 dB (the decibel 

equivalent of Euler’s constant) in the ALS estimator. However, this 

increase in S/N ratio is achieved at the expense of stability (i.e., 

greater variance).

For a given set of periodogranis, the activation spectrum is the 

logarithm of the ratio of their geometric to arithmetic means. It 

is well known that for any data, this ratio has an upper bound of 1 

and, thus, its logarithm has an upper bound of 0. In [93, Cox shows 

that this ratio has a lower bound which is a monotonical ly 

decreasing function (only) of the dynamic range or activation of the 

data. Specifically, if K = max {Ii,(f)} /min {It(f)} is the dynamic 

range of a set of periodogranis (termed the spectral dynamic range),
s

then
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0 > A*(f) > logBflO (3.9)

where logB(K) is given by



log [B(K)] - 1 + log Clog(K)/ (K - 1)]

- log(K) / (K - 1) . (3.10)

This relationship is used again in chapter 4.

3.9 Results For Non-Gaussian, Correlated Processes.

The results of the previous.sections are exact for stationary, 

Gaussian, zero-mean, white processes. In practice, these conditions 

are seldom if ever met and the effects of departures are important. 

In chapter 4 we discuss nonstationari ty while in this section, 

non-Gaussian, correlated processes are considered.

The restriction to a zero-mean process is not severe. 11 may 

be easily met by subtracting the sampl.e mean of the process. If not 

done, the resulting spectrum will have an impulse at f = 0. 

Resulting spectral and log spectral estimators may then tend to be 

heavily biased in the vicinity of the origin due to convolution with 

side lobes of the spectral window.

The restriction to a Gaussian process is similarly not severe. 

If the process is not highly correlated, its Fourier transform will 

consist of sums of essentially independent random variables. By the 

Central Limit Theorem, then, Xt(f) = y  {xt(t)) will tend to normality 

regardless of the distribution of x-(t); this is particularly true 

for large segment lengths, M.

Correlation in the process, however, may be more significant. 

If the process is highly correlated, the resulting periodograms will 

be biased in accordance with (2.47a). E(Iv(f)} will depart from 

G*(f) as a function of the spectral window, UB(f), and the shape of 

the spectrum. This may be thought of as follows. In the vicinity
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of peaks in the spectrum, convolution with the spectral window has 

the effect of increasing the degrees of freedom of the chi-square 

random variable associated with each frequency. Thus, they may no 

longer be distributed as x\, but as x2n with n given by the 

equivalent degrees of freedom (2.18a). Conversely, X„(f) and X:(f) 

(the real and imaginary parts of Xt(f), respectively) may no longer 

be independent, thus reducing the degrees of freedom. Clearly, 

these considerations will affect (3.4) and (3.5). Also, if the 

process is highly correlated, the IL(f)s may not be independent and 

their covariance would be a significant term in (3.5b). A good 

example of this latter point is discussed by Uelch [22] in which he 

considers overlapping periodogranis that are definitely not 

independent.

If the spectrum is reasonably smooth and M and T are large, 

then the results for Gaussian, white processes may be extended with 

reasonable accuracy to more general processes. In this case, (3.4) 

becomes

E ipxCf) > a logGx(f) + ^(N) - log(N) ^ logGx(f) (3.11a)

and

var {p* (f)) * yfr'(N) * 1/N (3.11b)

and (3.5) becomes

E {L*(f)) ^ logGx(f) - Y (3.12a)

and

• var {L*(f)) * n :/(6N) *1. G4 49— /N (3.12b)

where G*(f) is the spectrum of x(t). Similarly, for the activation 

spectrum, (3.8) becomes

E (Ax (f)} « log (N) - vMN) - Y * -Y . (3.13)
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The basic relationships between the LAS ar.d ALS estimators is 

basically preserved even for more general processes.

3.10 Experimental Results

Figure 3.1 illustrates both the log average spectrum (a) and 

average log spectrum (b) for a computer simulated, stationary, 

white, Gaussian process x(t) ~ N(0,1000) (see Appendix C) . From

(3.4) and (3.5) we would expect Px(f) = 30 dB, and Lx(f) = 27.5 dB. 

These values, as well as the greater stability of the LAS estimate 

are clearly observed. Figure 3.1(c) illustrates the activation 

spectrum and figure 3.1(d) the spectral dynamic range for this same 

data. The predicted value of the activation spectrum, Ax(f) = -2.5 

dB, is apparent. These estimates were computed by averaging 200 

periodograms. .

Figure 3.2 is similar to figure 3.1 but is for a colored, 

stationary process. In this case, the stationary, Gaussian data of 

Figure 3.1 has been passed through a system with a non-flat 

frequency response (see figure 4.8(c)) ahd the log spectrum 

estimated. As before, figure 3.2(a) is the LAS estimator, figure 

3.2(b) the ALS, figure 3.2(c) the activation spectrum and figure 

3.2(d) the spectral dynamic range. Note that although this is now a 

correlated process, the activation spectrum is still centered about 

-2.5 dB as predicted by (3.13).

Tables 3.1 - 3.4 present the sample mean (2.22a) and variance 

(2.22b) for the data of figures 3.1(a) and 3.1(b) (for various 

numbers of averaged periodograms). Also given are the predicted 

values from (3.4) and (3.5) as well as well as confidence intervals
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FIGURE 3.1

Log spectral estimates for a Gaussian, white process, N(0,1000)
(linear x-axis): (a) log average spectrum (N = 200), (b) average log
spectrum, (c) activation spectrum, and (d) spectral dynamic range.
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FIGURE 3.2

Log spectral estimates for a Gaussian, colored process, N(0,1000)
(a) log average spectrum (N = 470), (b) average log spectrum (N = 470)
(c) activation spectrum, and (d) spectral dynamic range.
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TABLE 3.1

SAMPLE MEAN OF THE LOG AVERAGE SPECTRUM FOR A 
STATIONARY, GAUSSIAN, UHITE PROCESS - N (0,1000)

N Lower Sample Upper Predicted
Confid. Mean Confid. Value

1 26.5937 27.5184 28.4431 27.4932
2 28.7438 28.8484 28.9530 28.8258
4 29.3746 29.4460 29.5174 29.4346
6 29.5582 29.6161 29.6740 29.6281
8 29.6787 29.7275 29.7763 29.7229

10 29.7410 29.7848 29.8286 29.7792
20 29.8810 29.9112 29.9414 29.8905
30 29.9130 29.9373 29.9616 29.9272
40 29.9277 29.9486 29.9695 29.9455
50 29.9487 29.9674 29.9861 29.9564

100 29.9655 29.9790 29.9925 29.9782
200 29.9848 29.9943 30.0038 29.9891
400 29.9936 30.0003 30.0070 29.9946

TABLE 3.2

SAMPLE MEAN OF THE AVERAGE LOG SPECTRUM FOR A
STATIONARY, GAUSSIAN, WHITE PROCESS - N (0,1000)

N Lower Sample Upper Predicted
Confid. Mean Confid. Value

1 26.5937 27.5184 28.4431 27.4932
2 27.4351 27.5540 ' 27.6729 27.4932
4 27.4501 27.5379 27.6197 27.4932
6 27.4242 27.4949 27.5656 27.4932
8 27.4681 27.5287 27.5893 27.4932

10 27.4540 27.5090 27.5640 27.4932
20 27.4780 27.5166 27.5552 27.4932
30 27.4741 27.5049 27.5357 27.4932
4 0 27.4671 27.4939 27.5207 27.4932
50 27.4814 27.5051 27.5288 27.4932

100 27.4815 27.498S 27.5157 27.4932
200 27.4902 27.5024 27.5146 27.4932
400 27.4926 27.5013 27.5100 27.4932
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TABLE 3.3

SAMPLE VARIANCE OF THE LOG AVERAGE SPECTRUM FOR A 
STATIONARY, GAUSSIAN, WHITE PROCESS - N (0,1000)

N Lower Sample Upper Predicted
Confid. Mean Confid. Value

1 28.9348 30.2015 31.5535 31.0254
2 11.1743 11.6635 12.1857 12.1642
4 5.1990 5.426S 5.669G 5.3532
G 3.4275 3.5775 3.7377 3.4200
8 2.43G8 2.5434 2.6573 2.5111

■10 1.9578 2.0435 2.1350 1.9836
20 0.9345 0.9754 1.0191 0.9670
30 O.GOOS 0.6269 0.6550 0.6393
40 0.55S1 0.465S 0.4864 0.4775
50 0.3555 0.3711 0.3877 0.3810

100 0.1871 0.1952 0.2040 0.1896
200 0.0913 0.0953 0.0996 0.0945
400 0.0457 0.0477 0.0498 0.0472

TABLE 3.4

SAMPLE VARIANCE OF THE AVERAGE LOG SPECTRUM FOR A 
STATIONARY, GAUSSIAN, WHITE PROCESS - N (0,1000)

N Lower Sample Upper Predicted
Confid. Mean Confid.^ Value

1 28.9348 30.2015 31.5535 31.0254
2 14.4477 15.0802 15.7553 15.5127
4 7.3385 7.G597 8.0026 7.7564
G 5.1030 5.3264 5.5649 5.1709
8 3.7444 3.9084 4.0833 3.8782

10 3.0905 3.2258 3.3702 3.1025
20 1.5178 1.5842 1.G552 1.5513
30 0.9702 1.0127 1.0580 1.0342
40 0.7330 0.7651 0.7994 0.7756
50 0.5750 0.6002 0.6270 0.6205

100 0.2991 0.3122 0.3262 0.3103
200 0.1509 0.1575 0.1646 0.1551
400 0.0772 0.0806 0.0842 0.0776



LOG SPECTRAL ESTIMATES FOR NONSTATIONARY PROCESSES ■

4.1 The Problem of Nonstationarity

When the log spectral estimates described in chapter 3 are 

computed for nonstationary processes, results with properties quite 

different from (3.11) and (3.12) are observed. Since most practical 

signals exhibit some nonstationarity, it is important to understand 

the reasons for these differences and to try to quantify them. ’

An inspection of figures 4.1 - 4.5 clearly reveals some of 

these differences.+ Figure 4.1 presents estimates of the log 

spectrum of a 1907 recording of Enrico Caruso singing "Vesti la 

Giubba. " Both the log average spectrum (a) and the average log 

spectrum (b) are shown along with the activation spectrum (c) and 

the spectral dynamic range (d). Figures 4.2 and 4.3 are similar 

estimates of more recent recordings of the same selection sung by 

Jussi Bjoerling and Mario Lanza, respectively. Figures 4.4 and 4.5 

are log spectral estimates for a female singer (Sharon Brockbank) 

and a string ensemble digitized directly during live recording 

sessions.

Two initial observations are apparent. First, the log average 

spectrum has a considerably different shape from the average log

, CHAPTER 4

+In these figures, the log spectral estimates have been arbitarily 
biased by -90.30899872 dB before displaying.
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FIGURE 4.1

Log spectral estimates (N = 470) for a 1907 recording of Enrico
Caruso singing "Vesti la Giubba": (a) log average spectrum, (b) average
log spectrum, (c) activation spectrum, and (d) spectral dynamic range.
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FIGURE 4.2

Log spectral estimates (N = 544) for a modern recording of Jussi 
Bjoerling singing "Vesti la Giubba": (a) log average spectrum, (b) 
average log spectrum, (c) activation spectrum, and (d) spectral dynamic 
range.
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FIGURE 4.3

Log spectral estimates (N = 390) for a modern recording of Mario
Lanza singing "Vesti la Giubba": (a) log average spectrum, (b) average
log spectrum, (c) activation spectrum, and (d) spectral dynamic range.
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FIGURE 4.4

Log spectral estimates (N = 500) for a female singing (digitized
live): (a) log average spectrum, (b) average log spectrum, (c) activa
tion spectrum, and (d) spectral dynamic range.
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FIGURE 4.5

Log spectral estimates (N = 500) for a string ensemble (digitized
live): (a) log average spectrum, (b) average log spectrum, (c) activa
tion spectrum, and (d) spectral dynamic range.
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spectrum for the same process. Their difference is clearly greater 

than 2.5 dB. Secondly, while one would expect the log average 

spectrum to be more stable, in fact it appears that the average log 

spectrum is smoother. In the remainder of this chapter, we propose 

a model for nonstationary processes and subsequently explain these 

observations.

Before proceeding, however, an important point must be clear. 

The Bartlett spectral estimator developed in section 2.10 and used 

in chapter 3 estimates the single spectrum associated with a 

stationary process. Further, it explicitly assumes the process to 

be ergodic so that adjacent data segments can be used to represent 

sample functions of the ensemble. Clearly, both of these 

requirements fail for nonstationary processes. Not only is the 

process not ergodic, but because of the nonstationarity, there is no 

single, mathematically defined spectrum with which to compare the 

resulting spectral estimates. Hence, in these discussions we are 

not able to do more than try to understand what the log average 

spectrum and average log spectrum represent as computational 

procedures and how to interpret them. It is meaningless to ask 

which is a better estimator in the sense that they are not really 

estimating a conventional statistical parameter of the random 

process. •

Nonetheless, computation of the average log spectrum and log 

average spectrum can be quite useful for practical signals. In some 

sense, they represent an "average" description of the distribution 

of power with frequency and, as such, estimate this "average" 

spectrum. The LAS and ALS estimators differ in how they compute
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this average. In the LAS, small values of the periodogranis 

contribute little to the average, while in the ALS, the logarithmic 

transformation results in both large and small values contributing 

more equally. By properly interpreting this average, a general 

characterization of the process is possible.

There is another interesting application of these estimators 

which, in fact, provides a method of directly comparing them. If 

the nonstationary process has been passed through a linear system, 

it is possible to estimate the frequency response of this system 

from the log average or average log spectra of the input and output 

processes. Equation (2.38) shows the relationship between the 

magnitude of the frequency response of the linear system, H(f), and 

the spectra of the input and output. If we assume that this 

relationship is approximately true for a nonstationary process with 

the spectrum being replaced by the "average" spectrum, then dividing 

the "average" spectral estimate of the output by that of the input 

yields an estimate of IH(f) 12. Alternatively, the ALS or LAS 

estimators may be subtracted to yield an estimate of log|H(f)|J. 

In this case, it is meaningful to ask which yields the most stable 

and the least biased estimate. This question is explored more fully 

in chapter 5.

4.2 A Model of Nonstationarity

To compute the properties of the log average spectrum and 

average log spectrum for nonstationary processes the following model 

is proposed. Ue assume that the nonstationary process, ix(t)) , is 

produced by passing an underlying stationary process, {y(t)l,
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through a time-varying linear system. Ule further assume that the 

linear system changes slowly enough to be considered stationary over 

each data segment for which a periodogram is to be computed. Thus, 

the resulting process may be considered stationary for each segment. 

From segment to segment, however, the energies at each frequency may 

vary considerably.

The statistical fluctuations in the process, then, are modeled 

by appropriately changing the frequency response of this 

time-varying linear system. Clearly, these changes represent, in 

some sense, a "schedule" of nonstationarity. In general, this 

schedule is a function of the physical phenomena producing the 

random process. One would expect, for example, that it would be 

approximately the same for different recordings of the same musical 

selection even though each recording may represent a statistically 

different process.

Admittedly this is a simple model. Clearly, many signals are 

nonstationary over very short intervals. For the signals 

represented in figures 4.1 - 4.3, the individual data segments were 

0.4096 seconds long whereas speech typically exhibits 

nonstationarity over much shorter intervals. A model encompassing 

such detail, however, would be enormously complex. As will be seen, 

a simpler model serves well in understanding the log spectral 

estimators.

Mathematically, this, model is represented by

xt(t) ^ bL(t) 0  yt(t) . (4.1)

where Xj,(t) is a finite sample function of the nonstationary process 

x(t), yL(tJ is a finite sample function of the underlying stationary
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process, y(t), and bL(t) is the impulse response of the itl' linear 

system. The relationship in (4.1) is only approximately equal since 

the convolution is performed after windowing y(t). In practice, it 

is x(t) that is windowed. However, by taking note of these effects, 

ue may proceed with the analysis. '

He now compute a periodogram from xt(t). The periodogram is a 

function of both the underlying process y(t) and the ith system 

response. Thus, we have

Ix.-m = (l/T) If (xL(t)) lJ 

■ ^ (l/T) iriyl(t)©bL(t)} I2 a (i/T) I2

^ Iyil(fH&(f)l2 (4.2)

where Y^f), (3̂ (f) are the finite Fourier transforms of y ,. (t) and 

(t) , respectively, and IyiL (f) is the periodogram associated with 

Y(t). Similarly, the log periodogram is

ixti(f) “ loglx-Jf) - logIytL(f) + log|&(f)|2 (4.3)

and the smoothed spectral estimator of (2.55) i9 '

Px(f) = (1/N) S^Ix.itf) = (l/N) (f)-1/3, (f) I2 . (4.4)

The log average spectrum and average log spectrum are defined 

exactly as in (3.2) and (3.3), but are written in terms of the 

periodogram associated with y (t) as

. p*(f) - logP„ ( f) - log C (i/N) I^Ix,v(f)3

* log C (l/N) SAI«,i(f)-l^(f) l2̂ (4.5a)

and

Lx(f) = (i/n ) I &logl^tf)

, ^  (i /n) 2 A l o g I M.i(f) + (i/N)ZAlogl&(f)l*

a Ly(f) + (i/N)2i^logl(3L(f)l2 . (4.5b)

Thus, we see that the log spectral estimators for the nonstationary
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process are biased from an estimate of the log spectrum of the 

underlying stationary process, y(t), by amounts that are a function 

of the time-varying linear system and the method of averaging 

(linear or logarithmic). If the (3L(f)s are equal, then the biases 

are equal and represent mererly a gain or attenuation; this, of 

course, is expected since under that condition, x(t) is stationary.

The net result of (4.5) is to define the log average spectrum 

and log average spectrum for x(t) in terms of the log spectral 

estimates of y(t). The proper interpretation of y(t) is variable. 

The precise definition of y(t) and its associated log spectrum, as 

well as the definition of |3;,(f), will influence the biases 

associated uith (4,5). Nonetheless, (4.5) does provide a uay of 

comparing and understanding the log spectral estimators of x(t).

4,3 Statistical Properties ' '

In computing the statistical properties of p*(f) and Lx(f), an 

important point should be kept in mind. For a given experiment, the 

PitfJs are deterministic. For fixed i and f, Iyii(f) is a random 

variable; in constrast, jSt(f) is a constant. Thus, for example,

The mean and variance of I*,i(f) and Px(f) are easily computed 

from (4.2) and (4.4). Proceeding as in section 2.10 and noting 

again the approximations for non-Gaussian, non-white processes, we 

have

E t i & m n  = ifMfji (4.6a)

and

var {|/SL (f) I2) - 0 . (4.6b)

(4.7a)



var {Ix.t (f)} ^ l(3t(f) r-var {IUliJ a 1(3- (f) T-Ga2 (f) , (4.7b)

E (Px ( f) } ^ E { (l/N)

= (1/N) Z&|fr(f) l2-E ily,,(f)}

a Gy (f) • (l/N) 2^l(3t(f) I2 (4.7c)

and

var{Px(f)) si var {Ci / n )  S ^Ix.JfH

= (d/N)22^l(3Jf) l4)*var{Iyi-(f) } '

= Ga2(f).((i/N)22^il(3i(f)l4) (4.7d)

where Ga(f) is the spectral density function of the stationary 

process y(t). Note that we have used (4.G) to justify bringing 

l/3i(f)|2 out of the expectation and variance operators as a scaler.

. The mean and variance of the log spectral estimators may now be 

derived. This is easiest for the average log spectrum since the 

effect of log I & (f) |2s is additive. From (3.12) and (4.5), and 

extending (4.6) to log I & (f) I2, we have

E tLx (f)} * E{LM(f)l + E { ( i / n )  Z&loglfr(f) I2}

- E (La (f)} + (i/n ) (log l(3i(f) I2)

. a logGy(f) - v + ( i / n )  Zuilogl&tf) |2 ' (4.8a)

and

... varlU(f)} a var{Ly(f)} + var { ( i / n )  S & l o g  Ifttf) I2}

a n V 6 N  a 1.6449—/N . (4.8b)

Corresponding results for the log average spectrum are somewhat 

more difficult and require an additional approximation. In general, 

the /3i(f)8 are different for each i. Thus, P><(f) is now a sum of 

weighted chi-square random variables. Exact computations using this 

distribution yield complicated open form results [31], [8, p.273] . 

However, as was done in section 2.9 for Sx(f) , we approximate P*(f)
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as a chi-square random variable with a constant of proportiona1ity 

and degrees of freedom given by (2.IS). Thus P*(f) = r*x2r, with 

n = EDF IP* (f)) = 2-E2{P*(f)} / var tPx (f) J 

. «= 2(Gy(f).[(i/N)2uJ(3i(f)l23)2/(Gy2(f)-[(l/N)2I ^ 1|(3l(f)|4])

= 2N- C(i/N) S&lfrtf) I2)2/[(i/m ) SAiPi<f) I4] (4.9a)

and

r = E (Px(f)) / n = Gy( f) • [ ( i /n) I2]/n . (4.9b)

Using Table 2.1, then,

E {Px(f) J * ^(n/2) + log(2r) '

■ jMn/2) - log(n/2) + log (Gy ( f) • [ (l/N) Z t"J|3 i, ( f ) I2] ) 

a logGy(f) + log [(l/N) 2i.o.l/3i(f) I2] (4.10a)

and ‘

var(px(f)) » ^'(n/2) a 2/n

= [( i /n)  2AI(3i-(f) I4] / (N- [ ( i /n) S ^ l ^ f )  I2)2) . (4.10b) 

Ue see, then, that the log spectral estimators for the 

nonstationary process, x(t), are biased from the corresponding 

estimators for the underlying stationary process by amounts that are 

a function of the schedule of nonstationarity. Since this schedule 

may differ from process to process, it is difficult to comment 

quantitatively about the effect of these biases. However, some 

general observations are possible.

For the average log spectrum, the bias is the logarithm of the 

geometric mean of the the |&(f)|2s; for the log average spectrum it 

is the logarithm of the arithmetic mean. As discussed in section 

3.8, the geometric mean is always less than the arithmetic mean; 

thus from (3.9), ( i / n )  log 1(3̂ ( f) I2 < log ( i / n )  2 ^  1/3;, (f) I2. The way in 

which we define the |(3L(f) i2s is arbitrary to the extent that the



|/3i,(f)|2s can be arbitrarily scaled; the spectrum associated with 

the underlying process is then adjusted accordingly.

Thus the biases in (4.10) can be adjusted to be completely 

negative or positive. However, the ALS bias will always be 

numerically less than the LAS; if the biases are negative, the ALS 

bias will be more negative while if they are positve, the LAS bias 

will be more positive. The general effect is that peaks will tend 

to be accentuated in the log average spectrum while troughs will be 

accentuated in the averge log spectrum.

If the /3i,(f)s are the same, the bias terms are equal and act 

merely as scalers. If they specifically equal one, then (4.8) and

(4.10) reduce to the results for stationary processes, (3.11) and 

(3.12). '

Both estimators are consistent. Interestingly, while the ALS 

variance is the same as for a stationary signal the LAS variance is 

a function of the nonstationarity. For particular values of the 

(3;,(f)s, it may even be greater than the ALS variance. In fact, this 

is what we observe in figures 4.1 - 4.5. '

More quantitative insight into (4.8) and (4.10) is possible by 

extending our model somewhat. Specifically, note that in these 

equations, (i/n) SvoJ&ff) I2 is a sample mean of |/3(f)l2 (computed from 

the N samples, &(f)); (l/N) I(3̂ (f) lz is a sample mean of

log|/3(f)|2; and so on. By assuming a particular form for the 

distribution of the l&ff)!2 from segment to segment, we can make 

more precise comments about the relationship of the log spectral 

estimators.
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In l ight of the above comments, we f i r s t  rewrite (3.8) and



(3.10) in terms of the appropriate expectations of ||3(f)|2. If N is 

large enough, this is a reasonable approximation. Thus we have

E (Lx(f)) a logGa(f) - y + E (log 1/3(f) I2} , (4.11a)

var {Lx(f)} a n V G N  = 1.6449-/N, (4.11b)

E {Px(f)} a logGy(f) + logE (1(3 (f) I2} , (4.11c)

and .

var {px(f)} a E (|(3(f) I4} / (N-E2 (1)3 (f) I2} ) . (4. lid)

There are several reasonable choices for the distribution of 

Ij3(f)|*. Undoubtedly the distribution is different for each 

experiment. For the purposes of this research, however, we assume 

that the logarithm of 1̂ 3(f) J2 is uniformly distributed on some 

interval, [a,b]. This is equivalent to stating that the logarithm 

of the power in the time varying system is linearly distributed. 

Although possibly a crude model, it is not unreasonable for vocal 

and instrumental signals since it is well known that the 

conventional musical notation; pp, p, mp, mf, f, ff; represents 

logarithmically increasing amplitudes. Also, experimental results 

(described in section 4.G) suggest that it is close enough to allow 

meaningful results to be derived that are helpful in gaining a more 

intuitive understanding of log spectral estimation for nonstationary 

processes.

Uith this assumption, the results of Appendix B, section B.3, 

are applicable. If we let X = log|(3(f)|2 and Y = |(3(f)|2 then 

(B.29) and (B.30) can be substituted in (4.11). Note that a < 

logl/3(f)|* < b, A < |/3 (f) I2 < B, D = B/A is the dynamic range of 

l(3(f)|2, and d = log(D). Note also that the dynamic range of |(3(f)l* 

will in general be a function of frequency, f. However, this is not
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shown exp l ic i t ly .  Rewriting (4.11), then, we have

E{L><(f)) ss logGy(f) - ~f + b - d/2 (4 .12a)

var (L*(f)) s-nVBN - 1.6449—/N, (4.12b)

E {px(f)} a logGy(f) + b - log(d) + log(l - 1/D)

a: logGy(f) + log(B) - log(d) (4.12c)

and

var {p><(f)) a (B2/ 2d) / IN* (B2/ dz) ] a d/2N . (4.12d)

From (4.12) we can see that for this model, the bias terms are 

a function of the dynamic range of 10(f) I2. The +b terms merely 

scale the estimators by the same amount. Since, as d increases, d / 2  

increases much more rapidly than log(d), the ALS estimator will 

generally be influenced more by the nonstationarity.

Moreover, .

and we see that as the dynamic range gets larger, this ratio of 

variance gets smaller. If d > 3.2998*” the log average spectrum 

will have a larger variance and will thus be less stable. This 

value corresponds to d > 14.3 dB. As shown in section 4.G, for the 

data of figure 4.1 (with log |/3(f) I2 uniformly distributed) d 

15.89 ^ 69,0 dB. Hence, one would expect the LAS variance to be 

about 4 times that of the ALS, or, equivalently, the LAS standard 

deviation to be twice that of the ALS. Although difficult to judge, 

this seems to be in reasonable agreement with figure 4.1.

During the course of this research, an interesting collateral 

issue arose. The results expressed in (4.10) are derived by 

assuming the distribution of Px(f) to be proportional to a 

chi-square distribution with the degrees of freedom given by (2.18).

var (Lx(f)}/var(Px(f)) a it2/3d = 3.2998— /d (4.13)



As an alternative approach, the same calculations were made by 

approximating Px(f) with a lognorrnal distribution (2.9). The 

motivation for this is the observation that logPx(f) has a 

distribution which tends to be more Gaussian than Px(f) ; this is 

particularly true for large N. Thus, by assuming Px(f) to' be 

lognorrnal and Px(f) to be normal the desired statistics of Px(f) can
s

be derived.

Using this approach, the mean and variance of Px(f) 

corresponding to (4.10) are '

E {px (f)) a  log Gy (f) + log [ ( i / n )  Z & U M f )  1*3 .

- (1/2) var {px(f)} (4.14a)

and .

var (px(f) J - log [1 +

+ ( (i/n) S u J & f f )  I4) /  (N [ (i/n) ( f ) I*] *) ]

a  (d/N)Z&l&(f)r) /  (N C (i/n) I^l^(f) I2] 2) (4.14b)

It is interesting that (4.10) and (4.14) are so similar. The 

approximating expressions for the variance are the same; the 

expressions for the mean are the same if the digamma function in

(4.10) is approximated by the first two terms of its series 

expansion (A.11).

Computations using (4.14) agree well with the data of section

4.6. For small N, the lognorrnal approach tends to predict values 

higher than the observed mean and lower than the observed variance. 

The chi-square approach does just the opposite; however, the results 

generally agree more closely. Since the results of this alternative 

approach yield no new information (beyond the fact that two 

seemingly unrelated distributions give such similar results),

67



4.4 The Activation Spectrum

Ue again define the activation spectrum, Ax(f), as the 

difference between the average log spectrum and the log average 

spectrum (3.7). The expected value of Ax(f) is derived from (4.8a) 

and (4.10a) as

E {Ax (f)} a -y

+ ((i/n) I^logl^(f)!2 - log t (i/n) X^l&(f) I2] ) . (4.15) 

In terms of the assumed uniform distribution of 1og 10(f) 12, this 

becomes

E CAX(f) > a -y + (E (log |(S(f) I2) - logE (|0 (f) I2) ) '

— -Y - [d/2 - log (d) 3 . . (4.1G)

From (4.15) we see that the activation spectrum has a value 

equal to or less than -v. From (4.15) we see that this additional 

amount is the logarithm of the ratio of the geometric and arithmetic 

means of the l/3;,(f)|2s. Thus the lower bound of this ratio, 

developed by Cox (3.10), is applicable. As the dynamic range of the 

nonstationarity decreases, the term in parenthesis in (4.15) becomes 

less negative and (4.15) approaches (3.13)^, the result for a 

stationary process. The net result is that the greater the 

nonstationary, represented by an increased dynamic range of the 

l(3;,(f)|2s, the more negative Ax(f) will tend to be.

This is explicitly clear in (4.1G). In this equation, the term 

in brackets is given as a direct function of dynamic range. Since 

this function is monotonically decreasing for increasing d (as 

easily seen by computing its derivitive) , the greater the dynamic 

range of the (f) |2s the more negative the activation spectrum.

G8
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This result is perhaps one of the most useful of this research. 

The activation spectrum provides a sensitive test for 

nonstationarity and gives a distribution of no'nstationari ty with 

frequency. This is the motivation for terming Ax(f) the activation 

spectrum; practical signals often consist of a nonstationary process 

plus stationary noise. An examination of Ax(f) for such a process 

reveals those frequencies in which the activity of the signal 

predominates.

Turning again to figures 4.1 - 4.5, inspection of the 

activation spectra provides insight into the nature of the 

represented signals. In figure 4.1, for example, Ax(f) has a 

characteristic "necklace" shape. This results from (1) the fact 

that this recording of Caruso has a large, resonant peak in the 

spectrum near 700 Hz and (2) the strong presence of stationary 

surface noise. In the vicinity of this peak, the signal 

predominates and Ax(f) has a deep trough. On either side of 700 Hz, 

however, the S /N ratio slowly decreases. The result is a gradual 

lessening of the nonstationary character of the signal indicated by 

a positive increase in Ax(f). Outside the effective bandwidth of 

the singing (1G0 Hz, 3250 Hz) Ax(f) is close to -2.5 dB indicating 

that the signal is essentially stationary noise. It is interesting 

to note that listening to this recording through a sharp cut-off low 

pass filter indicates that there is no audible music energy below 

180 Hz, the cutoff indicated by Ax(f). .

Similar observations; may be made about the other figures. The 

activation spectrum of the female singer (figure 4.4) is very 

negative indicating the extensive dynamics of the singing. It is
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also apparent that there is little activity in the lower 

frequencies. Conversely, the activation spectrum of the string 

ensemble (figure 4.5) shows the presence of activity at both very 

low and very high frequencies. This, of course, would be expected 

from the wide-band nature of musical instrumentation.

Another interesting point is the apparent correlation between 

the spectral dynamic range of a process and the activation spectrum. 

Again, this is evident in the figures. Clearly the spectral dynamic 

range is influenced not only by the randomness of the periodogranis, 

but by the 1(3̂ (f) I*s. As their dynamic range increases, the 

spectral dynamic range increases and, as shown by (4.IB), the 

activation spectrum becomes more negative. This is particularly 

interesting since the work of Cox predicts only that the activation 

spectrum is bounded by a curve that is a function of the spectral 

dynamic range. These results show that not only is Ax(f) bounded by 

this curve, but will generally be statistically correlated with it 

(and, thus, to the spectral dynamic range).

One other phenomenon present in these figures is the presence 

of occasional peaks in the activation spectrum with values greater 

than -2.5 dB (occasionally very close to zero). These represent the 

presence of a coherent component of the signal. Since such a 

component does not statistically vary, A*(f) is zero (although the 

presence of some noise in these components prevents it from actually 

being zero). In these particular figures, the peaks are most 

generally at BO Hz or 120 Hz representing sinusoidal hum in the 

electronics used for reproducing and recording the signals.
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Up to this point, our derivations and discussions have been in 

terms of noiseless signals. In the case of stationary processes, 

this is not significant since noise is (usually) stationary and 

additive; the resulting process is therefore also stationary. Noise 

is of consequence only if it is desired to separate its spectrum 

.from that of the signal.

For nonstationary processes, however, the effect can be 

significant. Where the noise is large compared to the signal, the 

resulting process behaves as a stationary process; where the noise 

is comparatively small, the signal acts as a nonstationary process. 

Thus it is important to discuss its effect further.

It is easiest to understand the effect of additive noised if we 

assume that it alters the distribution of the ||3t(f)|2s and, thus, 

is absorbed in (4.15). Other approaches would be considerably more 

difficult.

To understand just how noise perturbs the I(3̂ (f) I*s, consider, 

first, noise added to a stationary process. If the signal and noise 

are uncorrelated, as is usually the case, and letting x(t) = y(t) + 

n(t), then G*(f) « Ga(t) + GN(t) where x(t), y(t) are stationary 

processes and n(t) is stationary noise. Then logG*(f) =

log(Gu(f) + GN(f)). Clearly, logGx(f) is bounded below by the 

larger of Gu(f) and GN(f).

In the case of nonstationarity, as modeled in section 4.2, the
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+Not all noise in a signal, of course, is necessarily additive. 
Many situations, however, can be accurately modeled as such.



effect of the nonstationarity is to reduce or increase the spectrum 

of the underlying stationary process, y(t), by an amount dependent 

upon each l&tf)!2. If noise, however, has been added to the 

nonstationary process, then no matter how small a particular 

|(3L(f)|2, the spectrum will not be less than the value of the 

spectrum of the noise. The effective dynamic range of the |(3L(f)l2s 

is thus reduced. The noise has effectively raised their minimum 

possible value.

As the noise increases, the interval [A,B] over which 10(f) I2 

is distributed decreases while A increases. Simultaneously, 

(l/N) Z & l o g  |(3L(f) I2 and log [ ( i /n ) I /3L (f) 12] increase until, when the 

noise is great enough, they are equal, their difference is zero and 

the bias terms in (4.8) and (4.10) now represent the spectrum of the 

noise. Accordingly, E {A>;(f)} will now be -2.5 dB as expected for a 

stationary process.

Since (i/n) ̂ ^ l o g  l&tf) I* < log (l/N) 2 u J & ( f ) I2 ar>d both quantities 

increase with the addition of noise, the first quantity, the ALS 

bias, will be affected the most. Thus, the average log spectrum is 

most sensitive to the addition of noise. One can, in fact, conceive 

of situations where, if the difference in the ALS and LAS is 

significant enough and the noise large enough, the average log 

spectrum would be almost completely engulfed by the spectrum of the 

noise. This is an important consideration in deciding which 

estimator to use in a particular situation. As will be seen in

chapter 5, this has important consequences when using log spectral

/
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estimators to estimate linear system functions.



. 73

4.6 Experimental Results •

Figure 4.G represents the result of computing log spectral 

estimates for a simulated nonstationary, Gaussian, white process. 

This process was generated by multiplying each data segment by a 

random number with a hyperbolic distribution (see Appendix C ) . This 

is equivalent to the time-varying linear system discussed in' section

4.2 being a time-varying amplifier. For reasons to be discussed 

later in this section, the distribution of I(3 (f) 12 was selected to 

have a dynamic range of d = 15.888 = S9.0 dB over the inerval [A,B] 

where A = 0.00075977 and B = S035.0S. For these values, E{L*(f)} &

30.8 dB, E {px(f)} a 55.3 dB, and E(Ax(f)} a -25.0 dB. Also, (4.13) 

predicts that var(Px(f)} a 4.8*var {p* (f)} (about twice the standard 

deviation). All these values are in apparent agreement with figure

4.6. .

Tables 4.1 - 4.4 are the sample means and sample variances for 

the data of figure 4.S compared to the theoretically predicted 

values. These tables are similar to tables 3.1 - 3.4. As before, 

agreement between theory and the empirical result is good.

Figure 4.7 presents the results of a more significant 

simulation experiment. In this case, the nonstationary, white 

process of figure 4.6 was passed through two linear systems to color 

the process, and then added to stationary noise. The particular 

system and amount of noise was chosen in an attempt to 

parametrically duplicate the real process depicted in figure 4.1 

(Caruso singing from an old acoustic recording) .

From figure 4.1, we note that the maximum displacement in the 

activation spectrum is approximately -25.0 dB. Utilizing our model



2.000E+1 2.000E+1
2 0 3 0 4 05 000E+3 2 0 3 0 4 05 000E+3

(a) (b)

FIGURE 4.6

Log spectral estimates (N = 470) for a simulated nonstationary, 
Gaussian, white process using models proposed in the text: (a) log 
average spectrum, (b) average log spectrum, (c) activation spectrum, 
and (d) spectral dynamic range.
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TABLE 4.1

SAMPLE MEAN OF THE LOG AVERAGE SPECTRUM FOR A 
NONSTATIONARY, GAUSSIAN, UIHITE PROCESS ~ N (0,1000)

N Lower Sample Upper Predict'
Confid. Mean Conf id. Value

1 55.3390 57.0889 58.8348 57.0616
2 53.9090 54.0772 54.2454 54.1206
4 52.0983 52.2284 52.3585 51.9698
S 56.8090 50.9198 57.03Q6 56.8528
8 55.6504 55.7587 55.8670 55.6792

10 54.6814 54.7897 54.8980 54.7102
20 55.9079 55.9733 56.0387 55.9442
30 57.2617 57.3150 57.3683 57.3414
40 56*5273 56.5759 56.6245 56.6199
SO 55.5664 55.6149 55.6634 55.6587

100 55.5762 55.6115 55.6468 55.6360
200 55.6499 55.6767 55.7035 55.6977
400 56.0007 56.0203 56.0399 56.0203

TABLE 4. 2

SAMPLE MEAN CF THE AVERAGE LOG SPECTRUM FOR A
NONSTATIONARY, GAUSSIAN, WHITE PROCESS ~ N (0,1000)

N Lower Sample Upper Predicted
Confid. Mean Conf id. Value

1 55.3390 57.0869 58.8348 57.0616
2 32.2972 32.4165 32.5358 32.3380
4 33.4278 33.5127 33.5976 33.4560
6 39.4839 39.5545 39.6251 39.5445
8 37.5603 37.6209 37.6815 37.5776

10 31.7308 31.7860 31.8412 31.7455
20 34.3654 34.4044 34.4434 34.3593
30 37.4663 37.4974 37.5285 37.4699
40 35.3651 35.3924 35.4197 35.3715
50 32.0416 32.0661 32.0906 32.0146

100 31.7146 31.7325 31.7504 31.6973
200 30.6875 30.7008 30.7141 30.6549
400 30.4686 30.4788 30.4890 30.4321
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TABLE 4.3

SAMPLE VARIANCE OF THE LOG AVERAGE SPECTRUM FOR A 
NONSTATIONARY, GAUSSIAN, UHITE PROCESS ~ N (0,1000)

N Lower Sample Upper Predicted
Confid. Mean Confid. Value

1 28.9329 30.1995 31.5515 31.0254
2 28.9058 30.1712 31.5220 27.2819
4 17.2785 18.0350 18.8424 23.3037
6 12.7498 13.0798 13.9038 15.6508
8 11.9725 12.4SS0 13.0501 15.2449

10 11.9724 12.4305 13.0500 15.2446
20 4.3713 4.5G27 4.7009 4.8791
30 2.9015 3.028S 3.1G42 3.4021
40 2.4137 2.5194 2.G322 2.8277
50 2.4042 2.5034 2.G218 2.8182

100 1.2705 1.3201 1.3855 1.4421
200 0.7349 0.7071 0.8014 0.7437
400 0.3914 0.4085 0.4268 0.3926

TABLE 4.4

SAMPLE VARIANCE OF THE AVERAGE LOG SPECTRUM FOR A 
NONSTATIONARY, GAUSSIAN, UHITE PROCESS ~ N (0,1000)

N Lower Sample Upper Predict
Confid. Mean Confid. Value

1 28.9329 30.1995 31.5515 31.0254
2 14.5432 15.1798 15.8594 15.5127
4 7.3668 7.6893 8.0335 7.7564
6 5.0955 5.3186 5.5567 5.1709
8 3.7566 3.9210 4.0966 3.8782

10 3.1157 3.2521 3.3977 3.1025
20 1.5516 1.6 [96 1.6921 1.5513
30 0.9867 1.0299 1.0760 1.0342
40 0.7586 0.7918 0.8272 0.7756
50 0.6149 0.6418 0.6705 0.6205

100 0.3265 0.3408 0.3561 0.3103
200 0.1818 0.1898 0.1983 0.1551
400 0.1059 0.1105 0.1155 0.0776



of |(3(f)|J, this corresponds to a dynamic range of d 2  15.888 a G9.0 

dB. This value is obtained by numerically solving (4.1G) for d. By 

noting the value of the log average spectrum in figure 4.1(a), and 

utilizing the fact that the underlying stationary process is 

distributed as N(0,1000), the values of A and B given earlier were 

also derived. These parameters were then used, as described in 

Appendix C, to produce the process depicted in figure 4.6

This nonstationary process was then colored by passing it 

through two linear systems. The frequency response of the first, 

figure 4.8(a), was derived from a linear average of the log average 

and average log spectra of figure 4.2. This system has the effect 

of coloring the spectrum of the simulated process to approximate 

that of a typical spectrum of singing. In producing this -system, 

the log spectral estimates were further smoothed by convolving them 

with a spectral window. Note that this is similar to the frequency 

smoothing discussed in section 2.9; in this case, however, it is the 

log spectral estimates that are smoothed.

The process was then filtered again with the system depicted in 

figure 4.8(b). This is a linear combination of the LAS and ALS 

estimates (see chapter 5) of the frequency response of the acoustic 

recording horn that produced the sharp resonant peaks in the data of 

figure 4.1. This was to simulate those sharp resonances.

The additive noise was generated by passing a stationary random 

process (see figure 3.1) through the system shown in figure 4.8(c). 

The shape of this freqency response was produced from log spectral 

estimates computed from passages of the Caruso recording containing 

surface noise only; as such, it is an estimte of the spectrum of
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that noise. The value of this simulated "Caruso" noise was then 

scaled to a value representative of actual surface noise and added 

to the simulated nonstationary process. To add a final touch of 

comparability, a SO Hz sinusoid was added to simulate a coherent 

peak.

As can be seen from figure 4.7, the resulting log spectral 

estimates are quite comparable to figure 4.1. Note particularly 

that the activation spectrum exhibits the same characteristic 

"necklace" shape. This correlation demonstrates that the models 

proposed in this chapter do a reasonable job of explaining the 

marked differences observed in log spectral estimates of 

nonstationary processes.
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FIGURE 4.7

Log spectral estimates (N = 470) for a simulated nonstationary, 
Gaussian, colored process with additive, stat ionary, colored noise. 
Compare to figure 4.1: (a) log average spectrum, (b) average log spec
trum, (c) activation spectrum, and (d) spectral dynamic range.
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FIGURE 4.8

System frequency responses used in production of the simulated 
nonstationary process of figure 4.7: (a) modern recording of singing 
from figure 4.2, (b) resonant response of the recording horn from the 
data of figure 4.1 (see chapter 5), (c) stationary surface noise from 
the data of figure 4.1.



5.1 Digital Log Spectral Estimation

Uith the advent of modern computer technology, computation of 

spectral estimates has become a practical reality. High speed 

techniques enable rapid computation of Fourier transforms and, thus, 

periodograms. Similarly, high-speed convolution [32] and digital 

filter design enable practical spectral smoothing and its 

application to linear systems. '

As mentioned previously, a direct application of log spectra is 

to the estimation of linear system functions. In the remainder of 

this chapter, ue uill discuss this application in the context of 

both log average and average log spectra.

5.2 Blind Deconvolution

In practice, signals are frequently encountered that are the 

convolution of tuo other signals. For example, a blurred photograph 

is the convolution of an image uith a point spread func t ion 

representing the out-of-focus or moving lens. Other similar 

situations arise in acoustics, geophysics, etc. The problem of 

separating such signals is called deconvolution and is the topic of 

much current research (e.g., see [33], [34], and [35]).

In some instances, one of the signals is knoun and it is a 

straightforward matter to recover the other. Houever, a more

CHAPTER 5

AN APPLICATION OF LOG SPECTRAL ESTIMATORS



complex problem is to separate them when both are unknown; this 

problem has come to be known as blind deconvolution [15]. t This 

more difficult problem is simplified if one of the unknown signals 

is of a smaller extent than the other (as is often the case when a 

long selection of speech or singing is passed through a .linear, 

stationary system). In this situation, the different extents 

provide a distinguishing characteristic needed to separate the 

signals.

Ue will find it convenient to proceed in terms of the specific 

situation found in old, acoustic recordings. These were often made 

using the recording apparatus depicted in figure 5.1 [15]. The 

musical signal was amplified by an acoustic horn which in turn drove 

a stylus as it cut a grove in a wax disc. As indicated, the singing 

signal, s(t), appearing at the mouth of the horn was affected by 

passage through the horn. Specifically, it was convolved with the 

impulse response of the horn and the resulting recorded signal, 

v(t), was badly resonated. Further degredation in the playback 

signal, p(t), resulted from addtive surface noise.

If h(t) is known, a restoration filter can be derived and the 

signal deresonated. However, h(t) generally varied from recording 

to recording' and, thus, must be estimated a priori. Ue will first 

derive a solution to this problem in terms of the homomorphic theory 

of Oppenheim [IS] and its relationship to log spectral estimation
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tThe discussion of blind deconvolution and its specific 
application to deresonating acoustic recordings is discussed more 
fully in [15] which was co-authored by the author of this document. 
The reader is refered to that article to compliment the brief 
discussion presented here.
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FIGURE 5.1

Typical setup used in producing old acoustic recordings: (a) 
physical system and (b) schematic representation.



via the average log spectrum. This leads naturally to a similar 

approach using the log average spectrum.

5.3 Homomorphic Deconvolution

The theory of homomorphic filtering, or generalized linear 

filtering, is an extension of the familiar linear system theory. A 

linear system has the characteristic that it obeys superposition 

across addition. If the response of the system to x,(t) is yx(t), 

and the response to x2(t) is y2(t), then the response to r ^ f t )  + 

r7x.,(t) is rty,(t) + r2y2(t). A generalized linear (or homomorphic) 

system has the same property but across one of a broad class of 

operators.

Such a system transforms the signals so that the desired 

operation is mapped into addition. At this stage, linear filtering 

may be introduced into the system. For example, if two signals have 

been convolved, a Fourier transform (mapping convolution into 

multiplication) followed by a complex logarithm (mapping 

multipiicaton into addition) results in the transformed signal being 

the sum of the two inputs. After linear filtering, the inverse 

logarithm and Fourier transform are performed. The result is that 

if x1(t)®x2(t) is an input to the system, then the output is 

yt (t) ® y 2(t). „ '

The homomorphic theory can be naturally applied to blind 

deconvolution. For example, the frequency response of a system 

through which a signal had been processed might be estimable if the 

resulting convolved signal were mapped into a sum of the component 

signals by a homomorphic system as described above. This estimate 

could then be used to produce a restoration filter.
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' Proceeding according to this theory, then, we express the 

relationships of figure 5.1 mathematically as

p (t) ■ s(t)©h(t) + n(t) (5.1)

where p (t) is the playback signal, s(t) the singing, h(t) the 

resonant impulse response and n(t) the additive noise. At this 

point, we assume the process to be noiseless (we consider the 

effects of noise later). Taking the Fourier transform and complex 

logarithm of both sides of (5.1), we have

logP(f) = logS(f) + logH(f) (5.2)

At this stage, one might consider averaging several recordings 

(members of the ensemble) so that the effect of logS(f) would 

reduce to zero (or some constant) leaving an estimate of logH(f). 

Note here that h(t) is deterministic while we consider s(t) to be 

random. Unfortunately, only one recording is usually available. 

Therefore, following the procedure of earlier chapters, we assume 

the process to be ergodic, and average over adjacent data segments. 

Thus we have

(t) = Wj,(t)'p(t) = Wj, (t) • [s (t) ®  h (t) ]

a Sj, (t) © h  (t) . (5.3)

The approximate equality in (5.3) results from a consideration of 

windowing effects. If the windows are long and smooth enough, then 

the approximation holds closely. .

Applying the Fourier transform and complex logarithm once 

again, (5.3) becomes

logPL(f) ^ logSL(f) + logH(f) . (5.4)

Since this a complex logarithm, we can rewrite (5.4) in terms of the 

real and imaginary parts. Doing this and averaging over the N data
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(l/N) 2 ^  log |P.(f) I a log IH (f) I + (i/n ) I ^ l o g  IS, ( f) I (5.5a) 

and . •

(l/N) Z & lP - Jf) “ ^H(f) + (i/n) Zi-*^St(f) . (5.5b)

Ue desire that the last term in (5.5a) and (5.5b) will average 

to zero leaving an estimate of the frequency response of the 

resonating system. In general, however, this does not happen. This 

is because the last term in (5.5a) is really in the form of a log 

average spectrum and, as such, is an estimate of the spectrum of 

s(t). Clearly, such a spectrum of a musical selection is not only 

non-zero, but not even flat. .

Turning our attention to (5.5b), the problem is not whether the 

last term averages to zero but rather computing the average in a 

meaningful way. The problem is in deciding the actual value of the 

phase. Values of the arctangent function used in this computation 

are between 0 and 2n; the actual value may differ from this by any 

integer multiple of 2n. The problem of "unwrapping the phase" or 

computing its proper value is complex and the object of current 

research.

Ue will concentrate on the average magnitudes of (5.5a). 

Experimentation has shown that the ear is relatively insensitive to 

phase [3G]. Consequently, a system restored using an estimate of 

only the magnitude of the degrading system will nearly always be 

subjectively the same as a more accurate system computed using phase 

information. .

Returning to (5.5a), ue note specifically that 

log|Sj,(f)l = (l/2) log IS;, (f) I* = (1/2) logIs (f) where Is (f) is the

SG
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periodogram associated with s(t). Thus ( i /n ) 2 ^  log IS* ( f) I = (i/2)Ls (f), 

the averge log spectrum of s(t). Similarly, (i/n) 2 log |Pt(f) I is the 

ALS of p(t) and (5.5a) can be written

(l/2)LP(f) a log|H (f) I + (1/2) Ls (f) . (5.6)

To compute an estimate of log IH(f) i, we make the following 

assumption. For a modern recording, the first term on the right 

side of the equal sign in (5.6) is a constant since for practical 

purposes the recording equipment has a flat response. If we assume 

that the spectrum of a nodern recording is similar to that of the 

acoustic recording, then an average such as (5.6) for the modern 

recording can be subtracted from (5.G) leaving the first term alone.

If L M (f) is the average log spectrum of a modern prototype 

recording, then we will define an estimate of log IH(f)I as

• log IH' (f) t = (1/2)LP(f) - (1/2)LM (f)

a logIH (f) I + (1/2)Ls (f) - (i/2)L^(f) (5.7)

where logIH' (f) I is an estimate of log|H(f)|. Applying the results 

of (3.12), we can easily compute the expectation and variance of 

this estimate as

E (logIH ' (f) I) a logIH (f) I

+ (1/2) 1 ogGs (f) - (l/2) logGM (f) = 1 ogIH (f) I (5.8a)

and

var (loglHMf) |) a var {(1/2)Ls (f)} + var {(1/2)L M (f)}

= 2-(it2/24N) = it2/ 12N = 0.82247-../N . (5.8b)

5.4 Power Spectrum Deconvolution

The above approach suggests that an alternative estimate could 

be obtained using the log average spectrum rather than the averge 

log spectrum. Doing this (5.7) becomes :
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log IH ' If) | = (1/2) pp (f) - (1/2) pM (f)

= log |H Cf) I + (1/2) ps (f) - (1/2) pit (f) . (5.9)

The expected value and variance for this approach are 

E {log IH ' (f) |} a log |H Cf) I + Gs(f) - G M (f)

= log IH (f) I (5.10a)

and

var (log IH (f) |} ^ var(ps(f)} + var(pM (f)}

= 2-[^(N)/4] ^ 1/2N = 0.5/N . (5.10b)

From (5.9) and (5.10) we see that, for the stationary noiseless 

case, both approaches yield unbiased estimators of logIH(f) I. 

However, the log average estimate is more stable. .

The first method, involving the ALS estimator, is refered to as 

the homomorphic estimator while the second is called the power 

spectrum estimator. Clesrly, except for their variance, the methods 

are equivalent for stationary, noise-free signals. In both cases, 

the restoration filter will be the inverse of |H(f)|.

5.5 The Effect of Additive Noise .

In deriving (5.8) and (5.10), we have neglected the effects of 

noise in the deconvolution procedure. Returning to (5.1), and now 

considering the noise, n(t), we again window and compute the Fourier 

transform and complex logarithm giving

logPt (f) * log [St (f) *H (f) + N(f)3 . (5.11)

Because of the sum under the brackets in (5.11), the right-hand side 

of the equation does not reduce to a sum of logarithms. Proceeding 

anyway, we again define an estimate of log IH (f) I as in (5.7) and

(5.9) so that for the homomorphic approach we have
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and for the power spectrum approach

log IH ' (f) I = (1/2) pP( f) - (1/2) pM ( f) . (5.13)

Computing the expectation gives us

E {log |H M  f) I) a (1/2) logGP(f) - (1/2) log GM ( f) (5.14)

for both approaches. Now, if the noise is uncorrelated from the 

signal, v(t), then Gp(f) = Gs(f)*|H(f) I2 + G(J(f) and (5.14) becomes 

E {log |H' (f) U a

a (1/2) log [ (Gs (f) «|H (f) I2 + G„(f)) / Gs ( f) ] (5.15)

where we have again assumed that the spectrum of the modern 

prototype, G„(f), equals the spectrum of the original signal, G s (f).

From (5.15) we are thus motivated to form the compensating 

fi1 ter, R (f), as #

R (f) = exp [ (-1/2) log [ (Gs (f) - IH {f) I2 + GM(f)) / G s (f)])

= (Gs (f) / [Gs (f) • IH {f) I2 + GM (f) ] )1/2 . (5.1G)

Ue see that for the noise-free case, (5.1G) reduces to the inverse 

of IH(f) I. In the noisy case, (5.1G) has the interesting property 

of naturally preventing ill-conditioning, i.e., attempting to 

restore a signal at frequencies where noise predominates thereby 

amplifying the noise. However, the compensating filter of (5.1G) 

becomes small when the spectrum of the noise is large thus 

preventing ill-conditioning.

5.6 The Effect of Nonstationarity

If the process is now assumed to be nonstationary, a much more 

realistic assumption, then the above results are modified in 

accordance with the results of chapter 4. At this point, assuming

S3

log |H' (f ) I = (1/2)Lp - (1/2)LM(f ) . (5.12)



that both the modern and acoustic recordings are nonstationary, we 

model the acoustic recording as having been passed through a 

time-varying linear system uith frequency responses ^(f) and the 

modern recording through a system with frequency responses a^f).

If the prototype recording is the same selection, and the 

recordings are noise free, then it is not unreasonable to assume the 

^(f) = aL(f) for i = 1, 2, 3, •••, N. In this case, (5.8) and

(5.10) become

E (log IH' (f) |} * log IH (f) I (5.17)

for both approaches, but

var (logIH' (f) I) * jt2/12N (5.18)

for the homomorphic approach, and 

var (log |H' (f) 1.1 *

« (1/2) ( [ ( l / N )  I & l k m  I 4) /  CN ( ( i / n )  Z & l f M f )  I2) 2! ) ( 5 . 1 9 )  

for the power spectrum approach.

Thus, even for nonstationary processes, the two approaches are 

unbiased. However, the power spectrum estimate may nou be less 

stable.

In general, however, the acoustic recording is not noise-free 

while the modern recording is to a reasonable approximation. Thus, 

absorbing the noise, as before, in the (3t(f) terms, (5.17) becomes 

E (log IH' (f)|J ^ log IH (f) I

+ (1/2) [(l/N) log 1(3, (f > I2 - (l/N) I&lctim I2) (5.20) 

for the homomorphic estimator, and

EUogIH' (f) I) * (1/2) log IH (f) I

+ (1/2) [log (l/N) ZuilPJf) I2 - log (l/N) ZuJocL(f) I2] (5.21) 

for the power spectrum tjstimator. As discussed in chapter 5, the
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homomorphic estimator tends to be influenced more by the presence of 

additive, stationary noise. Thus, ue uould expect the estimator in 

(5.20) to exhibit more bias. As shoun in section 5.7, this 

observation is dramatically observed in actual computations.

5.7 Experimental Results

Two restorations are discussed in this section. The first is a 

restoration of the 1907 recording of Caruso singing "Vesti la 

Giubba" depicted in figure 4.1. The other is the simulated 

nonstationary signal from figure 4.7. This latter restoration has 

the property that the original resonating system, H(f), is availble 

for direct comparison with the estimates.

For both these experiments, the data from figure 4.2 (Jussi 

Bjoerling singing "Vesti la Giubba") was used as the modern 

prototype. As can be seen from the activation spectrum, figure 

4.2(c), this signal is relatively noise free. Before using the log 

spectral estimates for this recording, however, they were further 

smoothed in frequencies by convolving the estimators with a spectral 

window (as discussed in section 4.S). This is justified since the 

additional smoothing reduces the variance of the system estimate and 

no major resonance phenomena are expected in ^this data which could 

produce sharp peaks. Figures 5.2(a) and (c) show both the ALS and 

LAS estimates. Figures 5.2(b) and (d) are these estimates smoothed 

in frequency.

Figure 5.3 shows the esimates of the resonant frequency 

response, log|H(f)|, and the compensating filters from (5.IS) as 

computed by both approaches. Note that these restoration filters
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are truncated outside the effective bandwidth of the process. This 

is to further prevent ill-conditioning and to reduce the surface 

noise of the recording as much as possible.

There i9 clearly a difference in the two compensating filters. 

A 9 predicted by (5.20) and (5.21), this is expected. Because of the 

sharp resonant peak in the log spectral estimates of the Caruso 

recording, the biasing effect of the surface noise affects the 

homomorphic estimator principly in the low and high frequency 

regions with the effect being most pronounced for the bass 

frequencies. The failure of the homomorphic filter to properly 

compensate in the bass region is apparent in figure 5.3 (b) . 

However, as there is nothing to compare this filter with, it is not 

possible to measure this bias and verify that, in fact, the 

homomorphic estimate is biased more. It is also clear that the 

homomorphic estimate is more stable. Again, this is predicted by 

(5.18) and (5.19).

To compensate for the bias in the bass region of the 

homomorphic filter, an empirical bass boost was added (figure 5.4). 

As is evident from figure 5.4(b), this has the effect of producing a 

filter much closer to the power spectral filter, figure 5.3(d).

Auditioning of restorations produced by these two filters also 

reveals a difference. Unquestionably, both restorations show a 

definite improvement in the resonant quality; the reverberations so 

obvious in the original recording are missing. In general, however, 

the power spectral restoration is more pleasing to the ear. 

Interestingly, though, not all restorations attempted by these two 

methods exhibit the same preferential ordering. It is apparent that
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the presence of noise effects the listening quality of the 

restorations in a more complex way than just biasing the 

compensating filter.

Figures 5.5 and 5.S are the log spectral estimates for the 

homomorphic and power spectrum restorations, respectively. It can 

be seen that the effect of filtering the Caruso signal is to impart 

to it the general shape of the spectrum of the modern prototype 

(compare to figure 4.2). The effect of the nonstationary biases is 

also evident in the fact that the ALS estimate of the homomorphic 

restoration is very smooth compared to the LAS estimate. This 

results from the details: of the ALS estimate used to produce the 

compensating filter cancelling when computing this ALS estimate; 

similar hesults occur for the power spectrum restoration and the LAS 

estimates. .

Figure 5.7 shows the results of a similar restoration for the 

simulated process of figure 4.7. For this data, however, the 

resonant system is known (see figure 4.7(b)) and can be compared to 

the restoration filters, figure 5.7(b) and figure 5.7(d). Figure

5.8 is the sum of the compensating filters and the resonant system 

and represents the bias in the filters. The bias in the homomorphic 

filter, figure 5.8(a) is obvious. The fact that the two simulated 

filters in figures 5.7(b) and (d) are similar to the actual filters 

for the Caruso recording is further support of the effectiveness of 

the model we adopted of nonstationarity, and strongly supports the 

conclusion that the honomorphic approach is influenced more by 

noise.
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FIGURE 5.2

Log spectral estimates (N = 544) for the modern prototype from 
figure 4.2 used in estimating the resonant system, H(f): (a) average 
log spectrum, (b) average log spectrum smoothed in frequencies, (c) log 
average spectrum, and (d) log average spectrum smoothed in frequencies.
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FIGURE 5.3

Estimate of logjH(f)j for the Caruso recording of figure 4.1: (a) 
homomorphic estimate of log|H(f) j,  (b) homomorphic compensating f i l t e r ,  
(c) power spectrum estimate of log[H(f)|, and (d) power spectrum com
pensating f i l t e r .
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FIGURE 5.4

Emperical bass boost to compensate for noise biasing the homo
morphic compensating f i l t e r ,  figure 5.3(b): (a) bass boost and (b) 
homomorphic compensating f i l t e r  with the emperical bass boost added.



(a) (b)

(c) (d)

FIGURE 5.5

Log spectra l  estimates (N = 470) fo r  the homomorphical ly restored

Caruso record ing , f ig u re  4 .1 :  (a) log average spectrum, (b) average log
spectrum, (c) a c t i v a t i o n  spectrum, and (d) spectra l dynamic range.
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FIGURE 5.7

Estimates of 1og[H(f )j for the simulated nonstationary process of 
figure 4.7. Compare with the actual resonant system, figure 4.8(b):
(a) homomorphic estimate, (b) homorphic compensating f i l t e r ,  (c) power 
spectrum estimate, and (d) power spectrum compensating f i l t e r .
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FIGURE 5.8

Bias in the compensating f i l t e r s  of figure 5.7 computed as the sum 
of the resonant f i l t e r ,  figure 4.8(b) and the f i l t e r s  in figure 5.7(b) 
and figure 5.7(d): (a) homomorphic bias and (b) power spectrum bias.



CHAPTER S

G.l Statistical Summary

The principle equations representing the statistical properties 

of the log average spectrum (L*(f)) and average log spectrum (p*(f)) 

are

Elp><(f)} ^ 1 ogGxCf) + ^(N) - log(N) ^ logGx(f) ♦ 

var (p* (f)} ^ \jj' (N) tt 1/N,

E iLx(f)} * logG><(f) - v, 

var !L><(f)} a it2/ (GN) a 1.6449—/N,

and

E(Ax(f)) = log(N) - \̂ (N) - y a -y 

for the stationary process x(t) and

E 1LX (f)) at logGy (f) - r + (i/n) S^logl^tf) l:, 

var lL*(f)} « itVGN a 1.6449—/N,

E {̂ x(f)) a logGy (f) + log[(i/N) 2uil(S.(f)l2] , 

var{p*(f)} *

c(i/n) / (N-c(i/n) Zi=xi&(f) 2),

and

E (Ax (f)} ^ -y

+ ((l/N) ZJxlogl/3i(f) I2 - log [(l/N) 2i?tl/3i(f) I2! ) (6.2e) 

for a nonstationary process x(t) derived from the stationary process 

y(t). In all equations, Gx(f) and Ga(f) are the spectral density

CONCLUSION AND SUMMARY •

(6.1a) 

(6.lb) 

(6.1c) 

(6.Id)

(6.le)

(6.2a)

(6.2b)

(6.2c)

(6.2d)



functions of x(t) and y(t), respectively and &(f) is the frequency 

response of the ith time-varying linear system (see section 4.2).

6.2 Practical Conclusions

The results of this research have practical significance. The 

log average spectrum commonly arises in conventional spectral 

analysis; the average log spectrum arises naturally in certain 

applications of homomorphic signal processing and is an interesting 

alternative for estimating the log spectrum of a signal. Clearly, 

each estimator has advantages (and disadvantages) that should be 

considered for any particular application. .

The principal advantages of the log average spectrum are (1) a 

faster computation time (18% less than the average log spectrum on a 

PDP-10 computer system), (2) it is a smoother estimate of stationary 

processes, and (3) for nonstationary processes it is affected less 

significantly by additivcj, stationary noise. Its disadvantages are

(1) for nonstationary processes, it tends to be less stable and (2) 

it has a lower coherent signal to noise ratio. .

Similarly, advantages of the average log spectrum are (1) 

generally, it will exhibit more stability for nonstationary 

processes and (2) it has a higher coherent signal to noise ratio. 

Disadvantages are (1) it has less stability for stationary 

processes, (2) it can be significantly affected by the presence of 

additive noise for nonstationary processes, and (3) it requires a 

longer computation time.

It is the suggestion of the author that in general both 

estimators be computed in practical spectral analysis. The
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additional computation time is not significant considering the 

relative advantages. By doing this, not only can the two estimators 

be compared, but the activation spectrum can be computed. As shown 

in chapter 4, this can reveal significant and interesting 

information about the nature of a process. .

In the situation where these estimators are used to estimate a 

system response, as in chapter 5, the LAS will generally give better 

results since it is least affected by noise. However, in any 

particular experiment, either approach is potentially the more 

desirable in terms of achieving the desired goals.

In actually computing the LAS and ALS, two considerations are 

important. First, the choice of a spectral window affecting the 

overall bias of the estimates. It is important to choose a window 

that will yield the desired resolution (narrow peak) yet bias the 

estimates as little as possible (small side lobes). Unfortunately, 

these two criteria often conflict [27].

Second, the choice of the data segment lengths. Frequently, 

this choice is constrained by minimum resolution requirements and 

the total amount of data available. Generally, it is best to 

compute the minimum length required to give the desired resolution 

and use this to determine the number of segments to be used in the 

smoothing process. Keep in mind that the variance of the estimators 

can often be further reduced by overlapping the data segments as 

proposed by Uelch [22].

G.3 Further Research
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theoretical and practical nature. The results derived in this 

research are for spectral estimators smoothed by the Bartlett 

averaging procedure. Uhile there is reason to believe similar 

results apply to estimates smoothed by other techniques, it would be 

useful to extend this analysis. For example, one might consider the 

effect of smoothing the log periodogram by convolution with a 

spectral window. Similarly, the results could be extended to 

include the case where the data segments overlap. ■

Finally, it would be desirable to extend this analysis into two 

dimensional signal processing (images). In fact, these issues have 

been encountered in some image processing research. For example, in 

his doctoral dissertation [24], Cannon computes both the LAS and ALS 

estimators of an image. As shown in figure G.l (reprinted from [24] 

with permission from T. M. Cannon) there is clearly a difference 

between the two log spectral estimators (note that the activation 

spectrum was not explicitly computed). It is reasonable to believe 

that the results developed for one dimensional processes generally 

appiy in two dimensions since the mathematics involved can be 

readily extended into two dimensions. Computation of the activation 

spectrum for an image will undoubtedly enhance the understanding of 

the image as well as provide useful insight into selection of 

prototypes for image deblurring as proposed by Cannon [24] , 

Cole [25] and others.
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APPENDIX A

SPECIAL FUNCTIONS

A.l Euler's Constant

The Euler-Mascheroni constant, r, or simply Euler's constant, 

is given by [37,p.9]

y « U s  Ah (A. la)

where

AN = 2£(i'1) - log (N) . (A. lb)

Numerically, r = 0.E7721 S6649 01533*" .

A.2 The Gamma Function

The gamma function, T(t), is defined as [37,p.8]

r t t )  = J^x^-expt-xldx . (A.2)

By partial integration of (A.2), we have

r ( t+ l)  = t-rtt) (A.3)

and by substitution

T(l) = T(2) = 1 . (A.4)

A.3 The Digamma and Trigamma Functions ■

The so-called digamma function (or Euler's psi function), ^(t), 

is the logarithmic derivative of the gamma function [37,p.12],

^(t) = (d/dt) logT(t) = r /(t)/T(t) . (A.5)

There are several representations of y>(t) [37, pp. 12,13,16] . Among 

them is



lMt+1) - -r + - (t+i)-‘) . (A.B)

For N - 1, 2, 3, •••, we can write

\f/ (N+t) = 1/t + l/(t+l) + + 1 / (t+N-1) + iMt) . (A. 7) 

From (A.G), we have

(13 = -Y = -0.57721— (A. 8)

giving . .

vMN+1) = 1 + 1/2 + 1/3 + + l/N - Y . (A.3)

Approximations from asymptotic expressions for \Mt) are useful. 

Using a Euler-Maclaurin expansion [38,p.483]

\Mt) = log (t) - 1 / (21) - 1 / (1212) +

1/ (120t4) - ••• (A.10a)

so that

\Mt) a log(t) as t -* « . ' (A.10b)

A more accurate approximation is given by Cox and Lewis [20,p. 26] as 

yMt) = log (t) - 1 / (21 - 1/3 + 1 / [lBt]) . (A.11)

However, (A.10b) is suitable for our needs.

The first derivative of the diganima function, ^'(t), is 

frequently encountered and called the trigamma function. By 

differentiating (A.G), we have [37,p.26]

yfr'(t+l) = (t+i)'2 (A. 12a)

and

= it2/S = 1.6443 34067--- . (A. 12b)

By differentiating (A.7), for N = 1, 2, 3, •••

^(N+l) = ji2/6 - 1 - 1/4 - 1/3 - ... - l/N2 . (A.13)

As an approximation for ^'(t), from (A.10a) we derive

yfr'(t) - (1/t)- [1 + 1/ (21) + '

1/ (Gt2) - 1/ (30t4) - -■•] . (A.14)



from which we conclude

^'(t) a 1/t as t - o . ✓ (A. 15)

Bartlett and Kendall [33] give a sightly more accurate approximation 

yfr'(t) ^ 1/ (t - 1/2) (A. 1G)

and Cox and Lewis [20,p.28] give

yfr'(t) ^ 1 / (t - 1/2 + 1 / [10t]) . (A.17)

Table A.l is a list of values of ^(N), log(N), ^'(N), and 1/N 

for selected values of N. Comparison of appropriate values 

indicates the asymptotic accuracy of (A.10b) and (A.15). Figure A.l 

is a graphical representation of the data in Table A.l. See 

[40,pp.945-8] for additional integral and series representations of 

r (t) , \f/ (t) and \p' (t).
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TABLE A.l

SELECTED VALUES OF SPECIAL FUNCTIONS

N \f/ (N) Log(N) yp' (N) 1/N

1 -0.577218 0.000000 1.644934 1.000000
2 0.422784 0.693147 0.644934 0.500000
3 0.922784 1.098612 0.394334 0.333333
4 1.258118 1.386294 0.283823 0.250000
5 1.506118 1.603438 0.221323 0.200000

8 1.708118 1.791753 0.181323 0.166667
7 1.872784 1.345910 0.153545 0.142857
8 2.015641 2.079442 0.133137 0.125000
9 2.140841 2.197225 0.117512 0.111111
10 2.251753 2.302585 0.105188 0.100000

20 2.970524 2.935732 0.054041 0.050000
30 3.384438 3.401197 0.033895 0.033333
40 3.676327 3.688873 0.025315 0.025000
50 3.901990 3.312023 0.020201 0.020000
100 4.800182 4.605170 0.010152 0.010000
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APPENDIX B

DERIVATIONS

B.l Log Chi-square Statistics

The log chi-square distribution uas first described by Bartlett 

and Kendall [39] and has subsequently been used by others (e.g., see 

[13], [20], [25], and [30]). It has particular application in the 

statistical analysis of the logarithm of spectral estimators.

The probability density function of a log chi-square random 

variable may be easily derived from the chi-square distribution. 

Let V ■ g(X) = log(X) where X = r«xzn and xzn is a random variable 

having a chi-square distribution with n degrees of freedom. Then

V = log(X) = log(r*X2n) has a log chi-square distribution.

The pdf of X is easily obtained from (2.11) and is 

f„(x) = [r*2n/T(n/2) ]_1-

(x/r)n/2-‘.exp(-x/ [2r] ) . (B.l)

To determine the pdf of V, we note that X = g'MV) = exp(Y) = 

(d / dy) g"‘(y). Equation (2.G) may be used so that 

. = fx(g'1 (y)) •! (d/ dy) g"1 (y) I

= [f2r (n/2) ] _1* [exp (y) / (2r) ] n/2“‘.

exp(-exp (y) / [2r])*exp(y)

= r (n / 2) "*• [exp (y - log (2r)) ] n/2'‘.

exp(y - log(2r) - exp [y - log(2r)]) (B.2)

where the last step is obtained by noting that (2r)“‘ =



. 1 1 1

exp[-log(2r)]. For n = 2, the first two factors are unity and (B.2) 

reduces to

f«(y) = exp(y - log(2r) - expCy - log(2r)]) . (B.3)

If ue note that E (X) = //x = E(r>x2n) = r-n (see Table 2.1), then for 

n = 2, = 2r and (B.3) becomes

fu(y) «■ exp(y - log>c/* - expCy - log/t/J) (B.4)

as given in (2.13). (B.4) has been derived by others [41], [25] 

directly from an exponential distribution.

The mean and variance of Y = log(r*xJn) are derived by Bartlett 

and Kendall [39] from Ma(t), the characteristic function of Y. 

Mu(t) is given by .

My(t) - Efexp(jtY)} = E lexpt jtlog(X) )} = E {XJt}

= J'”xJt [r-2r (n / 2) ] (x/ [2r] )n/i-‘-exp (-x/ [2r] ) dx 

= r (n / 2 ) (2r)J,t J’”zJt*n/J"‘<exp (-z) dz (B.5)

where z « x/(2r) in the last step. Noting from (A.2) that 

T(n/2 + jt) = J'“zJt*n/J"1*exp (z) dz, (B.5) then becomes

My (t) = (2r)JM r ( n / 2  + jt)/T(n/2)] (B. 6)

and thus the cummulant function of Y is .

Ky(t) = log(M (t))

= jt*log(2r) + logT(n/2 + jt) - logr(N/2) . (B.7) 

Hence the mean and variance are

E {YJ ■ j'1 (d / dt) Ky (t) I (t=0) = log(2r) + \Mn/2) (B.8a)

and

var {YJ - j “2 (d2 / d t2) Ky (t) I (t=0) = ^'(n/2) (B.Sb)

where \Mt) and ^'(t) are the di gamma and trigamma functions 

respectively (see section A.3). For n = 2, and again noting that 

EIX) = /j* = 2r, (B.8) can be written



E (Y) = log(2r) + ^(1) = log//* - Y (B.Sa)

var (YJ = ^'(1) = n V B  = 1.6449— . (B. 9b)

B.2 The Periodogram

Let x (t) be a zero-mean, stationary random process and xT(t) a 

sample function of x(t) on the interval [0,T]. Then the periodogram 

of x(t) is defined as

• Ix(f) = yicxxtr)} = Cxx (t )-exp (-2it j f r) dr (B.10)

where cxx(r) is the sample autocovariance function given by (2.33a). 

An alternate definition of Ix(f) in terms of the Fourier transform 

of xT(t) may be derived as follows. .

Write (B.10) as

Ix(f) = SA t(l/T) J,r r,xT(t).xT(t+|r|)dt]*exp(-2itjfT)dr

+ S I C(l/T) J'rr'xT(t)-x(t+|T|)dt] .exp(-2njfr)dr (B. 11) 

where (2.33a) has been substituted for cxx(t) with Mx = 0* By using 

the transformation of variables '

s = t + r (B. 12)

and appropriately rewriting the limits of integration, (B.ll) 

becomes

Ix(f) = (l/T) • J'oXT(t)-xT (s)-exp (-2it j f ts-t] ) dt ds 

= (l/T) •J'’xT(s)*exp (-2it j f s) ds- 

J'oXT (t) *exp (+2rt j f t) dt 

= (l/T)-XT (f) -XT(f) * = (i/T) -|XT {f) I2 (B. 13)

where * denotes complex conjugation and XT(f) is the finite Fourier 

transform of xT(t). (B.13) is the same expression as given in 

(2.41). A more detailed derivation is given in [4, pp.214-151 and 

C3,pp.82-841.
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The definition of Ix{f) in (B. 13) can be used to derive the 

distribution of the periodogram. For a zero-mean, Gaussian, purely 

random (white) process, this can be done precisely and rather 

simply. Results for other processes are mathematically complex, but 

have been derived (e.g., see [42]). For correlated processes, 

however, these simpler results hold asymptotically and even for 

non-Gaussian processes are generally quite accurate.

Let x(t) be defined as before with the further restriction that 

it be Gaussian and white. Define .

XT(f) = xt (t) *exp (—2rt j f t) d t

= J oxt (t)-cos (-2nf t) dt + j• J oxt (t)-sin (—2nf t) dt 

- XR(f) + j-X,(f) (B. 14)

where XR(f) and X:(f) denote the real and imaginary parts of XT(f) 

respectively. Since xT(t) is normal for each t, 0 < t < T, and 

linear combinations of weighted normal random variables are 

themselves normal, it follows that XR(f) and Xx(f) have Gaussian 

distributions. For a non-Gaussian process, this will be

approximately true by the Central Limit Theorem. Furthermore,

E (XR(f)} = E (X,(f)} = 0 . . ' '

Koopmans [8,pp.261-63] , Jenkins and Ulatts C4,p.239] and others 

show that at the harmonic frequencies f = k/T, |k| = 0, 1, 2, ••• 

(and a.t all frequencies for large T) , the vector pairs 

(X„ (fj) , X, (fj)) and (X* (f2) , X, (f2)) are independent for f t ^ fz. 

This follows from the fact that

cov (XR (f J , XR (f2)} = cov (Xx (fj , Xx (f?)) = 0 (B.1B)

and that XR(f) and Xx(f) are Gaussian. It can be similarly shown 

that X„(f) and Xx(f) are independent of each other.
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First, the variance of X„(f) may be easily derived for the harmonic

frequencies (and again at all frequencies for large T)
■ ■ \ 

varfXR(f)} a var {/J xT (t)'cos (-2itf t) dt)

= var {;<T (t)!'cos2 (2itf t) dt

= cr2x» JJcos2 (2itf t) dt

= T(<tV 2), f - K/T. Iki = 0, 1, 2, ••• . (B. 17)

Similarly,

var {X, (f)} = T (cr2x / 2) , f = k/T, |k| = 1, 2, ... . (B.1S) 

Now, from (B.13) and (B.14)

I*(f) = (l/T) • [XR2 (f) + X,2 (f) ] . (B. 19)

and we see that the periodogram is the sum of two independent, 

identically distributed, squared, normal random variables. Thus it 

has a distribution proportional to a chi-square distribution with 2

degrees of freedom, r«xJ2. To determine r, we note
/

E (I* (f)) = (i/t) • (E {XR2 (f)} + E {Xx* (f) i )

= (l/T) • (var {XR (f)} + var (X, (f) i )

= ( i / t ) . ( W * / 2  + W 2x/2 )  = 

and using (2.18b) and (2.48)

r = E (Ix (f)) / ri - cr2* / 2 .

It follows then that

2*Ix (f) U\ = x2* .

It can be shown [8,pp.2G5-74] that similar results apply to 

smoothed spectral estimators with the degrees of freedom a function 

of the spectral window. Specifically, the Bartlett estimator, 

Px(f) = (i/n) 2 Ii(f) is an average of N x22 random variables. Since 

x(t) is Gaussian and white, each x-(t) is independent so that each
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periodogram is also independent and thus

2N-Px(f) /<7*x = x2?N . (B. 23)

These results are exact for a Gaussian, white process. More 

general results are discussed by Jenkins and Uatts [4], 

Koopmans [8], Hannan [42], and others, and are much more complex. 

However, the above are asymptotically valid for non-Gaussian, 

non-white processes and (B.22) and (B.23) can be rewritten .

2-Ix (f) /Gxtf) a x?2 (B. 24a)

and

2N-p><{f) / Gx( f) a  x 22I( (B. 24b)

where Gx(f) is the spectrum of x(t).

The equations in (B.24) were derived for the periodogram given 

by (2.40). However, they also apply to Welch’s modified periodogram 

(2.58b) since weighted sums of normal random variables are still 

normal.

Figure B.l demonstrates the above discussion for a simulated 

Gaussian, white process. Figure B.l (a) is a histogram for one 409S 

point segment of the process. Superimposed is a normal pdf computed 

from the sample mean and variance of the process. Although a 

chi-square goodness of fit test (95% level) failed by a small margin 

(171.83 compared to the test statistic 120.99), the general 

normality of the data is apparent.

Similarly, Figure B.l(b) is a histogram of the real part of the 

Fourier transform; Figure B.l(c) of the periodogram; and Figure

B.l(d) of the log-periodogram. Superimposed are normal, xzz, and 

logx?z distributions, respectively. Again, the agreement between 

theory and experiment is apparent. In these latter 3 figures,
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chi-square goodness of fit tests (35% level) showed agreement (33.84 

vs. 120.99 for (b) , 88.67 vs. 122.11 for (c) and 107.02 vs. 

122.11 for d). .

B.3 The Hyperbolic Distribution

If X is a random variable with a uniform distribution on the 

interval [a,b], then V = g(x) = exp(X) has a hyperbolic 

distribution. The form of this pdf is easily derived from (2.6).

Ue first note that the pdf of X is given by 

f*(x) = 1 / (b - a), a < x < b

= 0, otherwise (B.25).

Fur thermore, g (X) has an inverse given by X = g'MY) = log(Y) so 

that | (d / dY) g'1 (Y) | = |1/Y|, Y * 0. Since Y = exp(X), however, Y > 0 

and | (d / dY) g"1 (Y) | - 1/Y. Applying (2.6), yields 

fu Cy) = fx(g'‘(y) )*|dg"‘(y)/dyl

= l/[(b - a) y] , A < y < B 

= 0, otherwise (B.26)

where A and B are given by

A = exp(a) (B.27a)

and

B = exp(b) . (B.27b)

Before computing various moments of Y, it is useful to define 

two quantities representing the dynamic range over which Y and X are 

allowed to vary. Specifically

D = B/A (B. 28a)

and ' ■

d = log (D) = log(B/A) = log(B) - log(A) = b - a (B.28b) 

where D is the dynamic range of Y and d is its logarithm.
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FIGURE B.l

Experimental histograms of: (a) Gaussian, white data segment; (b) 
Fourier transform (real part) of (a); (c) periodogram computed from 
(a); and (d) log periodogram computed from (c). The smooth curves are 
theoretically predicted pdfs corresponding to the experimental data.



E M  = y*(yen-‘dy = (B - A) /d 

= (B/dMl - 1/D) a (B/d) 

where the approximation is for large D. Similarly, other 

may be computed: •

E {Y2} = -J'S y*- (yd)"4dy = (B2 - A2)/2d 

« (Bi/2d).(l - 1/D2) a B2 / 2d,

E (log (Y)) = EIX) = (a + b) /2

« (1/2) log {A * B) = {1/2) log(B2/D)

= log(B) - d/2 = b - d/2,

and

logE {Yi = log (B / d) + log(l - 1/D)

= log(B/d) = b - log(d) 

where again the approximations are for large D.

The expected value of Y is derived from (B.2S) and (2.

have
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APPENDIX C

C.l Digital Computation of the Periodogram

The modified periodogram of (2.58) may be computed digitally 

for a discrete process, x(n), by replacing the Fourier integral with 

a discrete Fourier transform (DFT). Equation (2.58) then becomes

P*(k) = (1/N) S&Jilk), (C. la)

Ju (k) = (l/nUHZ{?:ox(n)-w(n)-exp(-2iTjkn/M) |*, (C-lb)

and •

U = fl /M) Sr?-‘oWa(n) (C.lc)

as given by Welch [22].

The spectral window used in this research for (C.lb) is one 

form of a Tukey window called a Hanning window [4,p.244]. It has 

the continuous representation

w (t) = (1/2) + (1/2) *cos (nt / M) , It! < M (C. 2a)

in the time domain and

U(f) = H-(sin(2nMf)/2itf1fMl - [2Mf]2)'1, Ifi < « (C.2b) 

in the frequency domain. The discrete representation of (C.2a) is 

w(n) = (1/2) + (l/2)«cos(2nn/N), Ini < N/2 . (C.3)

For this window, U = 0.375. It is used both in the implementation 

of (C.l) and in the frequency smoothing of the log spectral 

estimators described in section 5.7.

The discrete Fourier transform of (C.lb) is most efficiently

DETAILS OF DIGITAL IMPLEMENTATION



computed by using the Fast Fourier Transform (FFT) commonly used in 

digital signal processing (e.g., see [2], [3], [5], and [6]). 

Essentially, it makes uses of certain symmetry properties of the DFT 

to reduce the computation time from being proportional to N2 to 

N*log?(N). For a DFT of length 8192 (the 409S point segments in 

this research are augmented with 4D9B zeros to enhance resolution) 

this is a reduction in time by a factor of about G30:l.

Further reduction in computation time is achieved by using a 

biplexed FFT. Using symmetry properties of the Fourier transform of 

real data, this algorithm simultaneously transforms two adjacent 

data segments. One segment is inserted as the real part of a 

signal, the other as the imaginary part. After applying the FFT, 

the individual transformations are then separated in the frequency 

domain by using odd-even symmetry. Time is thus reduced by nearly a 

factor of two.

An important consequence of digital implementation is the 

effect of quantization and sampling. These topics are discussed 

more fully in other references (e.g., see [5)). The effect of 

sampling, of course, is: to introduce aliasing in the frequency 

domain. For this reason, the data is filtered at approximately half 

the sampling frequency.

The effect of quantization is to add noise. Uith a 14-bit A/D, 

however, this is about 100 dB below the signal level. Of course, in 

the actual sampling process, it is necessary to keep signal levels 

low enough to prevent overflowing the 14-bit storage restraint and 

yet high enough to maxinize the number of quantization steps. In 

some instances (such as when filtering in the simulation of section
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5.7), it is necessary to digitally scale the signals to prevent 

overflowing the finite length data registers.

C.2 Generation and Representation of Experimental Data

Two forms of data are used in this research: computer generated 

random processes and real, physical data that has been sampled, 

quantized and stored digitally. The computer generated data is used 

to test the theoretical models while the real data represents actual 

implementation of the theory.

In all cases, the data is stored on highr speed magnetic discs 

with two 14-bit samples packed- in each 3G-bit word. The data is 

stored in integer format ranging between -8192 and + 8191. Each 

data record contains 40E6 words or 8192 samples. Since each data 

window is 4096 samples long, each record represents two segments.

The computer generated processes are formed from the FORTRAN 

routine RAN [43] which produces pseudo random numbers distributed 

uniformly on the interval [0,1]. Twelve consecutive random numbers 

are added to form one Scimple of an approximately Gaussian process. 

The parameters of the process are adjusted according to ,

V = - n) ' (C. 4a)

where

M ■= (1/2) - n / (VN), (C. 4b)

V = (12(r!/N)w, (C. 4c) 

N is the number of additions, X, is a uniform random variable on 

[0,1], and V is (asymptotically) a Gaussian random variable with 

mean = /u and variance = <rz. For N = 12 and fx = 0, V = <7 and M = 

1 /2 .



For this work, a normal process with fj. = 0 and o-2 = 1000 is 

used. The value 1000 represents a compromise between a distribution 

with frequent values greater than 8122 or smaller than 1 (which 

would be quantized to 0). Other processes are then formed from this 

basic process by appropriate manipulation (such as digital filtering 

with an appropriate linear system, e.g., figures 2.3 and 3.2).

The nonstationary process discussed in section 4.6 is produced 

by scaling each 4096 sanple section by a randomly chosen constant 

(this is equivalent to the time-varying linear system described in 

section 4.2 being an amplifier). The random gains are also 

generated from the routine RAN. In this case, the uniform random 

variables are scaled and exponentiated to have the desired 

characteristics. Specifically, if X is uniform on [0,1], then 

. V = exp [X- log (3 / A) + log (A) 3 (C.5)

has a hyperbolic distribution on [A,B] (see section B.3).

The real data come from a variety of sources. The singing of

figures 4.1 - 4.3 were digitized directly from phonograph records.

The female singer represented in figure 4.4 and the string ensemble

of figure 4.5 were digitized directly from a live microphone and,

hence, are free from the noise and distortion introduced by

intermediate recording. In all cases, the data was digitized under

the direction of T. G. Stockham, Jr. .
. ✓

In most cases the data was sampled at 10,000 Hertz and filtered 

at 4,000 Hertz. The sharp cutoff of this low-pass filtering is 

quite evident in the log spectral estimates. In the case of the 

live recordings, sampling was at 37,500 Hertz and filtering at 

15,000 Hertz. Sampling was accomplished with a 14-bit A/D converter
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C.3 Hardware and Software Description

The computations in this document were performed on two Digital 

Equipment Corporation PDP-10 computers; one a time-sharing system 

with a 2G2,144 word memory and the other a single-user system- with a 

65,53G word memory. These machines have floating multiply and 

floating add times of about 5 and 11 microseconds, respectively 

[443 . Mass storage of data was on high-speed magnetic disk; 

estimates were stored on magnetic tape. '

The log spectral estimates were computed using software written 

in FORTRAN (the author made extensive modifications of original 

software written by T. G. Stockham, Jr. for implementation of the 

homomorphic deconvolution algorithm). It has the capability of 

computing both the average log and log average spectra as well as 

displaying intermediate results. It also allows various statistical 

parameters to be computed at different stages. The routine makes 

use of several subroutines written in assembly language by the 

programming staff of the Sensory Information Group at the University 

of Utah.

Digital filtering was accomplished by implementation of a 

high-speed convolution algorithm [32]. This approach uses the fact 

that convolution is mapped into multiplication by the Fourier 

transform. By proper bookkeeping and data segmentation, convolution 

is realized by multiplying the Fourier transforms of the system 

impulse response and each data segment, inverse transforming, and 

summing.
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Typical computation times for a periodogram and log periodogram 

for one 409G point segment were:

Periodogram 5.0G seconds

Log periodogram G.17 seconds.

Typical times for the computation of log spectral estimators (for 

470 data windows) were:

Log average spectrum (alone) 39.0 minutes. .

Average log spectrum (alone) 47.7 minutes.

Both 48.1 minutes.

Computation of the log average spectrum required approximately 18% 

less time than the average log spectrum. Similar times were 

observed for filtering, via high-speed convolution, a process of the 

same length (42.0 minutes).
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and mean log averaging," Ĵ . Acoust> Soc. Amer. . vol. 51, 
pp. 1.194-97, Apr. 1972.

[11] S. K. Mitchell, "Comment on linear versus logarithmic 
averaging," Jj_ Acoust. Soc. Amer. . vol. 41, pp. 863-64, 
1967.

[12] H. M. Musal, Jr., "Logarithmic compression of Rayleigh and 
Maxwell distributions," Proc. IEEE (Lett.) . vol. 57, pp. 
1311-13, July 1969.

[13] G. G. Ricker and J. R. Uillians, "Averaging logarithms for 
detection and estimation," I EEE Trans. Infor. Theoru. vol. 
IT-20, pp. 378-82, May 1974.



128

[14] I. Sugai and P. F. Christopher, "Comments on logarithmic 
compression of Rayleigh and Maxwell distributions," Proc. 
IEEE (Lett.). vol. 58, pp 263-264, Feb. 1970.

[15] T. G. Stockham, Jr., T. M. Cannon and R. B. Ingebretsen, 
"Blind deconvolution through digital signal processing," Proc. 
IEEE, vol. G3, pp. 678-92, April 1975.

[16] A. V. Oppenheim, R. 14. Schafer and T. G. Stockham, Jr. , 
"Non-linear filtering of multiplied and convolved signals," 
Proc. IEEE, vol. 56, pp. 1264-91, Aug. 1968.

[17] E. Parzen, Modern Probab i I i tu Theoru and I ts Add I i cat i ons. 
New York: Wiley, 1560.

[18] J. Aitchison and J. A. C. Broun, The Loanorma I □ i str i but i on. 
London: Cambridge Univiversity Press, 1969.

[19] M. Dwass, Probabi I i tu and Statistics. New York: Benjamin, 
1970. .

[20] D. R. Cox and P. A. W. Lewis, The Stat i st i caI Ana I us i s of 
Ser i es of Events. London: Methuen, 19GG.

[21] R. B. Blackman and J. U. Tukey, The Measurement of Power 
Spectra. New York: Dover, 195S.

[22] P. D. Welch, "The use of fast Fourier transform for the 
estimation of power spectra: A method based on time averages 
over short, modified periodograms," I EEE Trans. Aud i o 
EIectroacoust.. vol. AU-15, pp. 70-73, June 19G7.

[23] A. H. Bowker and G. J. Lieberman, Ena i neer i na Statistics. 
Second Edition. Englewood Cliffs, N.J.: Prentice-Hal 1, 1972.

[24] T. M. Cannon, "Digital image deblurring by nonlinear 
homomorphic filtering," Comput. Sci. Dep., Univ. Utah, Salt 
Lake City, UTEC-CSc-74-091, Aug. 1974.

[25] E. R. Cole, "The removal of unknown image blurs by homomorphic 
filtering," Comput. Sci. Dep., Univ. Utah, Salt Lake City, 
UTEC-CSc-74-029, June 1973. .

[26] A. Papoulis, Probabi Ii tu. Random Var i abIes. and Stochast i c 
Processes. New York: McGraw-Hill, 1985.

[27] H. Huang, "A collection of digital window functions," M.S. 
Thesis, Comput. Sci. Dep., Univ. Utah, Salt Lake City, May 
1975. •

[28] P. J. Daniell, Discussion following "On the theoretical 
specification and sampling properties of autocorrelated time 
series," by M. S. Bartlett, J^ Rou. Stat. Soc. (Supp I . ) . 
vol. 8, pp. 27-41, 1946.



127

t29] M. S. Bartlett, "Snoothing periodogranis from time-series uith 
continuous spectra," Nature (London). vol. 161, pp. 686-S7, 
1948.

[30] J. W. Cooley, P. A. U. Lewis, and P. D. Welch, "The fast 
Fourier transform algorithm and its applications," IBM 
Research RC 1743. Feb. 9, 1967.

[31] J. D. Mason. University of Utah, Salt Lake City. Personal 
communication, 1974.

[32] T. G. Stockham, Jr., "High Speed Convolution and Correlation, " 
Spring Joint Computer Conf., AFI PS Proc.. vol. 28. 
Washington, D.C.: Spartan Books, pp. 439-41, 1966.

[33] L. C. Wood and S. Treitel, "Seismic signal processing," Proc. 
IEEE., vol. 63, pp. 649-61, Apr. 1975. .

[34] B. R. Hunt, "Digital image processing," Proc. IEEE, vol. 63, 
pp. 693-708, Apr. 1975. ■

[35] R. B. Smith and R. M. Otis, "Homomorphic deconvolution by log 
spectral averaging," submitted for publication to Geophus i cs. 
1974. .. '

[38] J. L. Goldstein, "Auditory spectral filtering and monaural 
phase perception," Ĵ _ Acoust. Soc. Amer.. vol. 41, no. 2, 
pp. 458-79, 1967.

[37] V. L. Luke, The Spec i a I Func t i ons and The i r Approx i ma t i ons. 
Vo I 1.. New York: Academic Press, 1963.

[38] CRC Standard tlathenat i ca I Tab I es. 22nd ed., Samuel tl. Selby, 
Ed. Cleveland, Ohio: CRC Press, 1973. ' •

[39] M. S. Bartlett and D. G. Kendall, "The statistical analysis of 
variance heterogeneity and the logarithmic transformation, " Jĵ  
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