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Abstract

We are building a system that harnesses the idle resources (cpu, storage, and bandwidth)

of nodes (e.g., home desktops) distributed across the Internet to build useful distributed

services like content distribution or remote backup. Users are compensated in return for

contributing their nodes’ idle resources to the system. Collective managers bundle and

manage the contributed resources and resell them to end customers.

For such a collective system to work, the system must discourage cheating (e.g., cheating

users who lie about how many resources they have provided) and encourage nodes to stay

in the collective for extended periods of time. To achieve these goals, we have designed an

incentive system based on game theory and the economic theory behind law enforcement

that motivates just these behaviors. In this paper we describe our incentive system and

analyze its economic underpinnings to gain insight into how different players in the system

will behave. We demonstrate how our incentive system motivates nodes to stay in the

system for prolonged duration and deters cheating. For a typical system configuration,

we show that even if we can only detect cheaters 4% of the time we can create sufficient

economic deterrents to demotivate cheating.
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We are building a system that harnesses the idle resources (cpu, storage, and bandwidth) of nodes (e.g.,

home desktops) distributed across the Internet to build useful distributed services like content distribution or

remote backup. Users are compensated in return for contributing their nodes’ idle resources to the system.

Collective managers bundle and manage the contributed resources and resell them to end customers.

For such a collective system to work, the system must discourage cheating (e.g., cheating users who lie

about how many resources they have provided) and encourage nodes to stay in the collective for extended

periods of time. To achieve these goals, we have designed an incentive system based on game theory and

the economic theory behind law enforcement that motivates just these behaviors. In this paper we describe

our incentive system and analyze its economic underpinnings to gain insight into how different players in

the system will behave. We demonstrate how our incentive system motivates nodes to stay in the system

for prolonged duration and deters cheating. For a typical system configuration, we show that even if we can

only detect cheaters 4% of the time we can create sufficient economic deterrents to demotivate cheating.

1 Introduction

Modern computers are becoming progressively more powerful with ever-improving processing, storage, and

networking capabilities. Typical desktop systems have more computing/communication resources than most

users need and are underutilized most of the time. These underutilized resources provide an interesting plat-

form for building distributed applications and services. Two important obstacles to successfully harnessing

these idle resources are ensuring prolonged participation of the nodes in the system and deterring selfish

behaviors.

We are building a system to harness idle resources as managed collectives. Rather than employing purely

P2P mechanisms, a collective uses collective managers that manage the available resources of large pools

of untrusted, selfish, and unreliable participating nodes. Participating nodes contact collective managers to

make their resources available, in return for which they expect to receive compensation. Each participating

node runs a virtual machine (VM) image provided by the collective manager(CM). CMs remotely control

these VMs and use these processing, storage, and network resources to build distributed services needed

by customers. Collectives are similar to computational grids [8] in that there is a degree of centralized

management and control, but a key difference is that the nodes comprising a collective do not belong to a

single administrative entity, are inherently untrusted, and join and leave the collective (churn) more rapidly

than typical grid nodes. Figure 1 illustrates a possible use of a collective to implement a content distribution

service that distributes large content files (e.g., movies, music, or software updates) to thousands of clients

in a cost-effective way.

Since individual participants in a collective are selfish (rational) nodes, it is important to mitigate the

negative effects of selfish behavior. Selfish nodes can resort to cheating for earning more than their fair share



Figure 1: Collective Content Distribution Service

of compensation. Cheating behavior has been observed extensively in distributed systems, e.g., free riding

in Gnutella [1] and software modifications to get more credit than earned in SETI@home [12].

Another challenge faced by collectives is ensuring that nodes stay in the system for prolonged durations,

which improves the system stability and allows tasks to be scheduled more efficiently. For example, a

collective manager can use historical data of node availability to make informed decisions regarding issues

such how many replicas of a particular datum to maintain. A lower degree of replication needed to ensure a

given level of availability using nodes that tend to persist in the collective for a long time or quickly rejoin

when they temporarily leave.

To address these challenges, we have designed an incentive system based on game theory and the eco-

nomic theory behind law enforcement that motivates just these behaviors. In 1968, Becker [3] presented

an economic model of criminal behavior where actors compare the expected costs and expected benefits of

offending, and only commit crimes when the expected gains exceed the expected costs. Since then there

has been significant research extending the work of Becker – Polinsky et. al [16] provides a comprehensive

overview of the research dealing with deterrents in law enforcement.

In Section 2 we present a brief overview of our system design and its novel incentive system that mo-

tivates participating nodes to remain in the system for long, predictable durations. Our incentive model

employs a currency-based system that rewards work performed, as well as the consistency of the work. Fur-

ther, it is a well known phenomenon in game theory that repeated interactions give rise to incentives that

differ fundamentally from isolated interactions [15]. Thus, the collective manager employs offline analysis

of data provided by participating nodes, partners, clients, and collective managers to determine future pay

rates for each node. Consistently desired behavior leads to increased rewards, e.g., the pay rate of nodes in-

creases in response to predictable long term availability. Undesirable behavior results in decreased rewards,

e.g., the pay rate of nodes decreases in response to being caught lying about work done in an attempt to

receive undeserved compensation.

In Section 3, we analyze the impact of our incentive model from an economic standpoint to derive

key properties of our incentive system. We examine the impact of decisions made by dishonest nodes and

analyze the gain vs loss possibilities for participating nodes as we vary the likelihood of bad actors being

caught. We show that while we cannot prevent users from cheating, our mechanisms mitigate cheating

behavior by making it economically unattractive. We show that a small probability of catching cheaters

(under 4%) is sufficient for creating a successful deterrence against cheating. We further show that our

incentive system can be used successfully to motivate nodes to remain in the system for prolonged durations.



2 Collective System

Design Overview

In our model, a collective supports the development of distributed services built using the idle resources

of untrusted end nodes. There are two main types of nodes in a collective: participating nodes (PNs) and

collective managers (CMs).

Participating nodes are end nodes that have idle compute, storage, or network resources. They are typi-

cally connected to the Internet though some sort of broadband service. PNs have different compute/communication

capabilities, go up and down in unpredictable ways, and are inherently untrusted.

Collective managers are service providers to whom individual nodes provide their idle resources. A CM

uses these resources to provide a set of meaningful services to clients, in return for which it compensates

PNs. Multiple competing CMs can co-exist, each providing different services and/or pricing models.

A typical distributed service built on a collective consists of components that run colocated on the CM

(called service managers) and other components that run on the PNs. A service manager is responsible for

converting client service requirements into small components and distributing these components to a set of

PNs. Typically each service component will be replicated to provide availability and scalability.

Figure 1 shows how we might provide a collective content distribution service (CCDS). A content dis-

tributor contracts with a CM to purchase access to resources managed by the CM. The content distributor

interfaces with a service manager co-located on the CM node, which divides the content into multiple (prob-

ably encrypted) chunks and caches them across multiple PNs. Clients contact the content distributor’s server

to purchase content and are given the location and decryption keys of encrypted chunks of content. Clients

then contact individual PNs to download the purchased content. In this scenario, the content distributor is

responsible for advertising and selling content, but the actual content delivery is handled by nodes in the

collective. In particular, it does not need to maintain its own content distribution network, ala Akamai [2],

or data centers with large bandwidth pipes, but rather exploits idle bandwidth of hundreds or thousands of

end nodes, ala BitTorrent [7]. Unlike BitTorrent, the content distributor can be receive guarantees regarding

availability, average download latency, and other quality of service issues that are critical when building a

successful Internet business.

Incentive Model

In a collective system, a PN’s compensation is based on how much its resources contribute to the success

of services running on the collective. A CM shares its profits with PNs in proportion to their contribution

towards different services. For example, in the CCDS example, PNs will receive a fraction of the money

paid by the content distributor roughly proportional to the fraction of the total content that they deliver. The

basic unit of compensation is a CM-specific credit that acts as a kind of currency. Users can convert credits

to cash or use them to buy services from the CM or associated partners.

For the incentive system to work, the CM needs an accurate accounting of each PN’s contribution. The

CM cannot simply trust the contribution reported by each node, since dishonest nodes can exaggerate their

contributions. In this section we discuss how we discourage dishonest behavior economically.

Contribution accounting is mostly done at the service level and depends on the design of the service

involved. The basic idea is to collect information from multiple sources (e.g., PNs, partners, clients, and

the CM) and do offline data analysis to decide the individual node’s contribution. We employ the following

mechanisms:

Credits Earned ✴Work Performed: The work performed to support a service invocation, e.g., down-

loading a movie, should be credited to the appropriate PNs. Each PN sends a detailed daily report of its

activities to the CM. In the absence of dishonest PNs, each service activity can be credited to unique con-



tributing PNs. If nodes are dishonest, more than one node will request credit for the same work. To resolve

conflicts, the accounting system needs additional information.

Accountability: Each PN and each client is identified by a unique public/private key pair. The CM acts

as the root of the public key infrastructure (PKI) employed by its collective. Each PN and client is issued a

certificate signed by the CM that associates the public key of the PN or client with their unique IDs. These

keys and certificates are used to create secure communication channels and to digitally sign the reports sent

to the CM.

Offline Cheater Detection: To identify dishonest nodes, the system collects data from PNs, CM

scheduling records, service scheduling records, partners’ sales records, and even completion reports by

client applications (if available). This data is used to resolve conflicts by comparing what work nodes claim

they did against what other entities claim was done. Conflict resolution is done offline periodically (e.g.,

daily). With multiple information sources, it is possible to detect dishonest/cheating behaviors by PNs. How-

ever, we do not assume that CMs will be able to detect all instances of cheating behaviors – in Section 3.4

we show that our incentive model works even when we can only detect 4%-5% of cheating behaviors.

Variable Pay Rates (Raises and Cuts): To provide an incentive for nodes to provide stable resource

levels and to penalize node churn, the amount of credits received by a node in return for work depends on

the node’s long term consistency. A node that remains in the CM’s pool for long periods of time and that

provides continuous predictable performance receives more credit for a unit of work than a node that flits in

and out of the CM’s pool.

Credit-per-unit-work (pay) rates are divided into levels. PNs enter the system at the lowest pay rate; a

node’s pay rate increases as it demonstrates stable consistent contributions to the collective. The number of

levels and the behavior required to get a “pay raise” are configurable parameters for any given service.

To discourage dishonest behavior, the system can apply a pay cut when it identifies a node mis-reporting

the amount of work it performs. The size of the pay cut can be configured on a per-service basis. Dishonest

behavior in one service leads to pay cuts in other services run on that node. As an alternative, we could ban

PNs from the system when they are caught cheating, but doing so eliminates nodes who might “learn their

lesson” after finding that cheating does not pay in the long run. If a node continues to cheat, its pay rate

becomes negative (i.e., it accumulates debt that must be worked off before being paid), which has the same

effect as simply banning them.

Other factors can be applied to determine a particular node’s pay rate. For example, nodes that are

particularly important to a given service due to their location or unique resources (e.g., a fat network pipe

or extremely high availability) may receive a bonus pay rate to encourage them to remain part of the CM’s

pool.

3 Economic Analysis

This section explores the design of our incentive system from an economic perspective. In particular, we

use game theory and probabilistic analysis to gain better insight into the implications of our design choices.

Our economic analysis focuses on the two main entities in our system, collective managers and partic-

ipating nodes. Participating nodes are assumed to be self interested, rational parties, which from a game

theory standpoint means that they act in ways that maximize their long term financial gain even if this in-

volves cheating. A collective manager is a trusted party that manages the resources of participating nodes

to support commercial services. Its goal is to build a successful business providing services to external

customers using its PNs’ resources.

In game theory, systems are modeled as games played between players. Players are faced with a series

of options from which they must choose. The outcome of each game (choice) depends on the player’s choice

and the choice(s) made by their opponent(s). The most famous example of game theory is the Prisoner’s



Dilemma [11], where two prisoners who are both accused of a crime are separated and individually given the

option of either “cooperating” (staying silent) or “defecting” (confessing to the crime and testifying against

the other prisoner). If both prisoners stay silent, they receive a 6-month sentence. If both prisoners defect,

they both receive a 5-year sentence. If one prisoner cooperates and the other defects, the one who defects is

set free, while the one who cooperates is given 10-year sentence. In a variant of the game where the players

play the game repeatedly, researchers have found that they tend to learn to cooperate with one another and

thus receive light sentences [11]. We exploit this phenomenon in our incentive model.

We model the interaction between participating nodes and the collective manager using a basic game

theoretic utility model. At any given time, we present PNs with two orthogonal choices: (i) should they

remain in the collective or not and (ii) should they report the correct amount of work for the last reporting

period or attempt to claim they did more work than they did to receive a higher (undeserved) payment from

the CM. In this game at any time slot s, a rational PN node can either choose to share or not share its

resources based on the expected reward of each choice. We can represent the choices available to PNs and

the collective manager using simple tables like Tables 1-4. Each column represents the options available to

the collective manager and each row represents the options available to a PN. Entries in table take the form

❛❂❜ where ❛ is the payoff (reward) for the row player (i.e., PN) and ❜ is the payoff for the column player

(CM). In a typical game theory situation, the two players make simultaneous decisions, but in our scenario

PNs make their decision (share, no share) and then CMs make their decision (reward or not reward the PN).

The “games” played as a part of collective are non zero-sum games, meaning that one player’s gain is

not necessarily another player’s loss (and vice versa). PNs are not assumed to be altruistic, but rather we

want to derive an incentive model where it is in each node’s rational self-interest to cooperate. In other

words, it is our goal to design rules for the “game” such that rational actors will find cheating economically

unattractive. In the remainder of this section, we consider different scenarios and determine whether the

outcome realized achieves this goal.

3.1 Perfect Monitoring

We start by assuming a perfect monitoring scenario, i.e., the collective manager has perfect information

about the contributions made by PNs it manages. In this case a PN cannot successfully lie to a CM about

how much work it performs, because if they lie, they are guaranteed to be caught.

Table 1 shows the payoff structure for this scenario. A dash means that a particular case is not possible

in this scenario, e.g., it is not possible for a PN to choose “Not Share” and have the CM choose to “Reward”

it. Assuming a CM shares its income 50%-50% between itself and the PN concerned, we get the value of

●❙❂●❙ for the PN share case. This means that if a PN share its resources, noth it and the CM receive ●❙

benefit. Here ●❙ is a positive number, which denotes the gain (payoff) received for sharing.

Reward No Reward

Share ●❙❂●❙ -

Not Share - 0/0

Table 1: Payoffs for Perfect Monitoring Case

If we apply standard game theory analysis to this utility table, both (share/reward) and (no-share/no-

reward) are Nash equilibrium [11]. Informally, a strategy is a Nash equilibrium if no player can do better

by unilaterally changing his or her strategy. Even though (share/reward) is pareto optimal, meaning that it

leads to both players receiving their highest reward, both cases are equally possible from a Nash equilibrium

point of view.

This analysis assumes that both players choose their actions independently, which as we mentioned

above is not the case in our design. In our case, a CM makes its choice only after analyzing the action of



the PN concerned, which is why the two dashed states are not possible. Hence, a PN knows that the CM

will always choose reward in response to share, which tilts the equilibrium balance towards (share/reward)

instead of (no-share/no-reward). This behavior of the collective manager greatly simplifies our analysis of

the various scenarios discussed throughout the paper and leads to pareto optimal choices for rational PNs.

Cost of Sharing: Table 1 does not model the fact that there is a cost associated with performing a job

(e.g., power charges). Let ❝ be the cost of performing a job, which typically will be small since we are

exploiting idle resources, but positive. Table 2 shows a modified reward structure that accounts for this cost.

Reward No Reward

Share ✭●❙ � ❝✮❂●❙ -

Not Share - 0/0

Table 2: Payoffs for Perfect Monitoring Case with cost of sharing included

3.2 Imperfect Monitoring

The previous analysis assumes that the CM has perfect knowledge regarding whether a PN is accurately

reporting how much work it performs. Table 3 shows a payoff table if we assume that a CM can only detect

PN lies with some non-zero probability. Here ❝ continues to represent the cost for a PN to perform a unit

of work. Rational PNs now have an additional choice available to them; they can chose to lie to the CM,

claiming to do work that they have not done. ●✁❤❡❛t is the expected reward that a PN will receive if it lies,

and ▲ is the loss incurred by the CM due to incorrect awarding of credits. If the system cannot detect lies,

then ●✁❤❡❛t is equal to ●❙ , in which case a rational PN will always lie, since this lets it receive a reward

without doing any work. Thus, if CMs cannot detect lying PNs, the system will destabilize since cheating

PNs will always claim to do work, but not do it.

Reward No Reward

Share (●❙ � ❝✮❂●❙ -

Cheat ●✁❤❡❛t❂ � ▲ -

Not Share - 0/0

Table 3: Payoffs for Imperfect Monitoring Case

Our collective service is designed to make it nearly impossible for PNs to successful lie about their

contributions. However, it is impractical to track enough information to catch all instances of a PN lying. If

we assume that only a fraction of all lies will be detected, we can analyze the impact of undetected lies to

determine what probability of lie detection is necessary to motivate selfish PNs to report the truth. Assume

that the probability of detecting a lie (offense) is ♣♦. In that case, the expected payoff for lying (●✁❤❡❛t) is:

●✁❤❡❛t ✂ ✭✶ � ♣♦✮ ✄ ●❙

We can create a deterrent that punishes PNs when they are caught cheating, i.e., when they provide

incorrect accounting information. If ❋ is the amount we penalize PNs when we catch them lying, the

expected payoff for lying (●✁❤❡❛t) becomes:

●✁❤❡❛t ✂ ✭✶ � ♣♦✮ ✄ ●❙ ✰ ♣♦ ✄ �❋

We can represent ❋ as a certain fraction of ●❙ , i.e., a PN is penalized a fraction (defined as ❜) of pay for

each unit of work it falsely claims to have done. Adding this penalty results in an expected reward for lying
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(●❝❤❡❛t) as:

❋ ❂ ❜ ✄ ●❙ where ❜ ❃ ✵

●❝❤❡❛t ❂ ✭✶ � ♣♦✮ ✄ ●❙ � ♣♦ ✄ ❜ ✄ ●❙

●❝❤❡❛t ❂ ●❙ ✄ ✭✶ � ♣♦ � ♣♦ ✄ ❜✮

This results in the payoff table shown in Table 4:

Reward No Reward

Share ✭●❙ � ✁✮✂●❙ -

Lie ●❙ ✄ ✭✶ � ♣♦ � ♣♦ ✄ ❜✮✂ � ▲ -

Table 4: Payoffs for Imperfect Monitoring with Penalties

Figure 3.2 plots possible payoff for a single unit of reward (●❙ ❂ ✶) as a function of ♣♦, the probability

of being caught. Different curves in the graph represent the payoff for different values of ❜, i.e., different

sized penalties relative to the standard reward. We observe that the potential payoff of lying drops below

zero when the probability of being caught crosses a threshold that depends on ❜. Specifically, we can derive

●❝❤❡❛t ❁ ✵ as follows:

●❙ ✄ ✭✶ � ♣♦ � ♣♦ ✄ ❜✮ ❁ ✵ ❂☎ ♣♦ ❃
✶

✶ ✰ ❜

So for ❜ ❂ ✶, a probability of ✵✿✺ or more is required to make fake sharing economically uninteresting to a

user. A collective manager can effectively use different values of ❜ to create different degrees of deterrence.



3.3 Variable Pay Rates

In the previous analysis, we considered only single-round games. However, in our system, PNs typical

participate in a series of games, which lets us employ the game theory of repeated interactions [11] to

analyze the impact of repeated interactions on the behavior of PNs.

A simple solution treats repeated interactions as independent, using the rules presented in earlier sec-

tions. In this case, we can use the sum of the individual round payoffs to understand the dynamics of repeated

interactions. However, this approach does not exploit our ability to employ a variable pay rate mechanism

that responds to observed PN behavior to motivate rational PNs to cooperate. We use pay variability to

acheieve two types of positive behaviors from PNs: (i) to encourage nodes to remain in the collective for

extended, predictable periods and (ii) to punish cheaters.

To address our first goal, that of encouraging nodes to remain in the collective for extended periods, the

amount of payment that a node receives in return for work is varied depending on its long term “consistency”.

A node that remains in the CM’s pool for long periods of time and that provides continuous predictable

performance receives more credit for a unit of work than a node that flits in and out of the CM’s pool.

In our design, pay rates(❘) are divided into ❧ levels, (❘✶❀❘✷❀ ✿✿✿❘�), whereby each pay rate is a fixed

constant above/below the level below/above it, as follows:

❘♥ ❂ ❘✶ ✰ ■ ✄ ✭✁ ✂ ☎✮❘♥ ❁❂ ❘� (1)

PNs enter the system at the lowest pay rate (❘✶); a node’s pay rate increases as it demonstrates stable con-

sistent contributions to the collective. If a node contributes successfully to collective for ❚r❛✐s❡ consecutive

time periods, its pay rate is increased. Periods during which no work is scheduled on a node are not counted

for this calculation. The number of levels (❧), initial pay rate (❘✶), pay rate increment (■), and effort needed

to warrant a raise (❚r❛✐s❡) are configurable parameters for a given service, and are dependent on the profit

margins of the service.

To discourage cheating, the system can apply a pay cut when it identifies a node mis-reporting the

amount of work it performs. When such an offense is detected, the PN’s pay rate is reduced by the amount

of pay increases that would normally accrue for ❚❝✉t steps (periods) of useful work. Typically ❚❝✉t is a

multiple of ❚r❛✐s❡ (i.e., ❚❝✉t ❂ ♦ ✄ ❚r❛✐s❡ where ♦ ✕ ☎), so pay is dropped by some configurable number

of pay levels. The size of the pay cut (❚❝✉t) can be configured on a per-service basis, depending upon the

criticality of the offense committed.

We can represent a PN’s pay rate at any time t as ❘✭✆✮:

❘✭✆✮ ❂ ❘✶ ✰ ■ ✄
✆☎

❚r❛✐s❡
✂ ◆❞❡t❡❝t❡❞ ✄ ■ ✄

❚❝✉t

❚r❛✐s❡

Here ✆☎ represents the number of timeslots where some useful work was performed or claimed to have

been performed and the lie went undetected. After time ✆☎, a node will receive ■ ✄ ✆☎✝❚r❛✐s❡ pay increases.

◆❞❡t❡❝t❡❞ represents the number of detected offenses; each such offense leads to a decrease in pay rate

equivalent to ❚❝✉t steps.

3.4 Evaluating the Incentive Model

Let us use this model to analyze the accumulated payoffs for different node profiles to understand how our

mechanisms affect node behavior.

3.4.1 Short Lived vs Long Lived Nodes

To analyze the difference between short-lived and long-lived players, we plot the average pay rate received

by different honest nodes of similar capabilities with different active life times in the system. We assume
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❘✶ ❂ �, a sample increment of ✵✿✷ with 10 levels and ❚r❛✐s❡ ❂ ✼ (e.g., 7 days). Figure 3 plots the average

payrate vs the life of a player in the system. This graph clearly shows that patient long-lived players gain

clear advantage over short-lived players.

3.4.2 Deterring Cheating Behavior

A rational node will cheat only if the gain from cheating is more than that of honest behavior. Earlier we

discussed the expected gain for a single unit of the work. Here we discuss the expected gain for a series of

interactions.

A PN that performs work on behalf of a collective can complete only a limited amount of work per

time unit given its available resources. In comparison, a cheating PN can fake the completion of an almost

unbounded amount of work, irrespective of its resource capabilities. In this section we analyze the expected

accumulated gain of a node over a period of time of ♥ time periods, e.g., ♥ days (we use summation of gain

over t from 1 to ♥ to show this). We consider two scenarios. In the first scenario nodes behave honestly,

while in the second scenario nodes claim to complete more work than they really performed (i.e., they cheat).

Let ●❤♦✁❡s✂ be the expected gain of behaving honestly and ●❝❤❡❛✂ be the expected gain of cheating. If

●❝❤❡❛✂ is more than ●❤♦✁❡s✂, then a rational node will always take the cheating route to maximize its gain.

We can represent the difference between ●❝❤❡❛✂ and ●❤♦✁❡s✂ by ❉:

❉ ❂ ●❝❤❡❛✂ ✄ ●❤♦✁❡s✂

To remain effective in the face of cheating nodes,❉ should be less than zero in our system.

We can divide a node’s offenses1 (lies about work done) into two categories, detected offenses and

undetected offenses. As explained in previous sections, a detected offense not only leads to a fine but also

1We use the term offense to denote instances when a node attempts to cheat the system. This choice of terms is motivated by the

fact that the following analysis is derived from the game theory associated with criminal law, where offenses refer to crimes [3, 16].



impacts a node’s pay rate. Here we analyze the accumulated reward of a cheating node over a period of time

to understand the long term impact of cheating.

♣♦ Probability of detecting offenses

❘✭t✮ Pay Rate at time period t

❜ fine ratio, ❋✐♥❡ ❂ ❜ ✄ ❘✭t✮

◆�☛ Number of offenses per time period

◆❛❝✁✉❛❧ Number of work units that can be completed

by an honest node per time period

❚r❛✂s☎ Time periods required for a pay raise

❚❝✉✁ Time period equivalent to a pay

rate cut for an offense

✆ Ratio of pay cut rate to pay raise rate

(❚❝✉✁ ❂ ✆ ✄ ❚r❛✂s☎)

■ Pay raise increment

◆✁♦✁❛❧ Total number of offenses committed ❂
P✝
✁✞✶ ◆�☛✭t✮

✟ Number of Levels (max pay rate = ❘❧)

Table 5: Glossary of Mathematical Symbols Used

We first consider the case of perfect monitoring where every offense is successfully detected by the CM.

Since every offense is detected, a cheater will suffer a penalty for every offense.

●❤✠✡☞✌✍ ✎

✡❳

✍✏✑

✒✓✔✍✕✓✖ ✗ ✘✙✚✛

●✔❤☞✓✍ ✎

✡❳

✍✏✑

✒✓✔✍✕✓✖ ✗ ✘✙✚✛ ✜ ✒✠❢❢ ✗ ✢

Here ✒✓✔✍✕✓✖ represents the number of units of work per unit of time that the node can perform given its

available resources, and ✒✠❢❢ represents the number of units of work faked by a cheating node.

If the cheating node commits one (detected) offense in every time slot, it will always be paid at or below

the base pay rate, ✘✑. Effectively,

●✔❤☞✓✍ ✣

✡❳

✍✏✑

✒✓✔✍✕✓✖ ✗ ✘✑ ✜ ✒✠❢❢ ✗ ✢❀

where ✢ is the fine levied by a CM upon detecting an offense. In this case, ●✔❤☞✓✍ ❃ ●❤✠✡☞✌✍, so cheating

is not economically attractive. Even when nodes only cheat once in a while, the fine and lower pay rate lead

to less net income than honest nodes, which is unsurprising given the assumption of perfect monitoring.

In case of imperfect monitoring, the system does not detect all offenses. Let ✤✠ be the probability that a

offense is successfully detected by the CM. In this case, the accumulated gain over a period of time depends

upon the distribution over time of offenses performed by the node.

We first consider a case where a node performs ✒✠❢❢ offenses during every time period (e.g., every

day). Given ✒✠❢❢ offenses in a time period, each having a probability of detection of ✤✠, we can represent

the probability of all offenses going undetected by ✤✡❞✠. ✤✡❞✠ is the cumulative probability that none of

✒✠❢❢ offenses is detected, which is ✙✥ ✜ ✤✠✛
✦♦✧✧ . Given ✤✡❞✠, we can estimate the pay rate at any time

interval using the following equation:

✤✡❞✠ ✎ ✙✥ ✜ ✤✠✛
✦♦✧✧

✘✙✚✛ ✎ ✘✙✚ ✜ ✥✛ ✜ ✤✠ ✗ ✒✠❢❢ ✗ ★ ✗ ✩ ✰ ✤✡❞✠ ✗
✩

✪✫✓✬✌☞



5 10 15 20 25
−500

−400

−300

−200

−100

0

100

D
 −

 D
if
fe

re
n
c
e
 b

e
tw

e
e
n
 g

a
in

s
 o

f 
g
e
n
u
in

e
 v

s
 s

e
lf
is

h
 N

o
d
e

Number of Offenses per time slot

 

 

p=0

p=0.05

p=0.1

p=0.15

1

Figure 4: D for Different Number of Offenses

Here ♣♦ ✄◆♦❢❢ represents the expected number of detected offenses. Each detected offense leads to pay rate

cut equivalent to � ✄ ■ . Note that ❘✭t✮ is capped at ❘❧.

We can represent the accumulated gain of a cheating node, ●❝❤❡❛✁, as follows:

❙❯ ❂ ✭✶ ✂ ♣♦✮ ✄ ◆♦❢❢ ✰ ◆❛❝✁✉❛❧

●❝❤❡❛✁ ❂

♥❳

✁☎✆

❙❯ ✄ ❘✭t✮ ✂ ♣♦ ✄ ◆♦❢❢ ✄ ❋

Here ❙❯ represents the number of units of work successfully billed by a PN, which includes both real work

and undetected falsely claimed work. ❋ represents the fine for a detected offense, which we represent as a

multiple of the equivalent reward for performing a unit of work, i.e., ❋ ❂ ❜ ✄ ❘✭t✮ where ❜ ❃ ✵

To visualize the implication of these equations, let us consider the case of accumulated gain over a period

of 25 days, where each time slot is one day. We use ❘✆ ❂ ✵✿✶ (initial pay rate), a sample increment of ✵✿✵✷

(pay increase per day of sustained honest operation) with 10 levels, ❚r❛✐s❡ ❂ ✼, ❚❝✉✁ ❂ ✼, ◆❛❝✁✉❛❧ ❂ ✺✵, and

❋ ❂ ✶ ✄ ❘✭t✮. In Figure 4 we plot ❉, the difference between the accumulated gain of cheating and genuine

node as we vary ◆♦❢❢ from 1 to 25.

The results make clear that increasing the probability of detecting offenses leads to a very sharp decrease

in the value of ❉. If ♣♦ is 0 meaning no offenses are ever detected, ❉ is positive and increases with each

offense, so nodes are motivated to cheat. However, ❉ quickly becomes negative for ♣♦ values of 0.05, 0.1

and 0.15. Thus rational nodes will determine that it is in their own best interest to not cheat even when the

chance of being caught is small, and the disincentive to cheat increases as the number of offenses increases.

As an alternative to fining and reducing the pay rate of PNs when the CM catches them lying about work

performed, we could simply ban users found to commit an offense. Our approach warns misbehaving nodes

to mend their ways, and rational nodes will realize that there is no benefit from cheating and cooperate.

If individual nodes persist in misbehaving, their pay rate will soon turn negative (due to cuts), which for



practical purposes is as effective as banning the node.

3.4.3 Worst Case Analysis

In this section we investigate the maximum expected benefit (❉♠❛①) that a dishonest node can gain from

cheating. We can divide the gain/loss from cheating into three categories: (i) the payoff from undetected

cheating (●❝❤❡❛t), (ii) the loss due to fines for detected cheating (▲❢✐♥❡s), and (iii) the losses accrued from

receiving a pay cut due to detected cheating (▲♣❛②❝✉t).

❉♠❛① ❂ ●❝❤❡❛t � ▲❢✐♥❡s � ▲♣❛②❝✉t

Given a particular fine, ❋ ❂ ❜ ✄ ❘✭✁✮, we can estimate ●❝❤❡❛t and ▲❢✐♥❡s using the following equations:

●❝❤❡❛t ❂

♥❳

t✂✶

◆♦❢❢ ✭✁✮ ✄ ✭☎ � ✆♦✮ ✄ ❘✭✁✮

▲❢✐♥❡s ❂

♥❳

t✂✶

◆♦❢❢ ✭✁✮ ✄ ✆♦ ✄ ❜ ✄ ❘✭✁✮

●❝❤❡❛t � ▲❢✐♥❡s ❂

♥❳

t✂✶

❘✭✁✮◆♦❢❢ ✭✁✮ ✄ ✭☎ � ✭❜ ✰ ☎✮✆♦✮

The maximum value of R(t) is ❘❧, which we can use to refine our estimate as follows:

●❝❤❡❛t � ▲❢✐♥❡s ✔

♥❳

t✂✶

❘❧◆♦❢❢ ✭✁✮ ✄ ✭☎ � ✭❜ ✰ ☎✮✆♦✮

●❝❤❡❛t � ▲❢✐♥❡s ✔ ❘❧ ✄ ✭☎ � ✭❜ ✰ ☎✮✆♦✮ ✄

♥❳

t✂✶

◆♦❢❢✭✁✮

●❝❤❡❛t � ▲❢✐♥❡s ✔ ❘❧ ✄ ✭☎ � ✭❜ ✰ ☎✮✆♦✮◆t♦t❛❧

Here ◆t♦t❛❧ is the total number of offenses over the time period and ◆♦❢❢ ✭✁✮ represents the number of units

of work faked by a cheating node for time slot ✁ .

When a PN is caught cheating, its pay rate is decreased in addition to it receiving a fine, which decreases

how much it receives for work it actually performs. Since the max pay rate is capped at ❘❧, the impact of a

pay cut persists only until a PN’s pay rate recovers to ❘❧, which occurs if it is honest or not caught cheating

for a period of time. Thus, the impact of pay cuts is minimized when pay raises are frequent. If we assume

that all cheating occurs when a PN’s pay rate is ❘❧, we can calculate the minimum loss induced by being

caught cheating.

Assume that cheaters receive a pay rate cut of ❚❝✉t ❂ ✝ ✄ ❚r❛✐s❡. In other words, being caught cheating

reduces a PN’s pay rate by the equivalent of ✝ pay raises. In this case, we can calculate the loss a PN suffers

due to the decreased pay rate from a single detected cheating event (▲s✞♣❛②❝✉t) as follows:

▲s✞♣❛②❝✉t ✕

♦❳

❦✂✶

◆❛❝t✉❛❧ ✄ P✟✠❘✟✁✡❈☛✁✭☞✮

▲s✞♣❛②❝✉t ✕

♦❳

❦✂✶

◆❛❝t✉❛❧ ✄ ☞ ✄ ❚r❛✐s❡ ✄ ■

▲s✞♣❛②❝✉t ✕
✝✭✝ ✰ ☎✮

✷
✄ ❚r❛✐s❡ ✄ ◆❛❝t✉❛❧ ✄ ■



The total number of expected detected offenses can be calculated as ♣♦✄◆t♦t❛❧ . Using this, we can refine

the previous equation to find ▲�❛②❝✉t:

▲�❛②❝✉t ✕
✁✭✁ ✰ ✶✮

✷
✄ ❚r❛✐s❡ ✄ ◆❛❝t✉❛❧ ✄ ■ ✄ ♣♦ ✄ ◆t♦t❛❧

This lets us calculate ❉♠❛① as follows:

❉♠❛① ❂ ●❝❤❡❛t ✂ ▲❢✐♥❡s ✂ ▲�❛②❝✉t

❉♠❛① ✔ ❘❧ ✄ ✭✶ ✂ ✭❜ ✰ ✶✮♣♦✮◆t♦t❛❧

✂
♦☎♦✆✝✞
✟ ❚r❛✐s❡ ✄ ◆❛❝t✉❛❧ ✄ ■ ✄ ♣♦ ✄ ◆t♦t❛❧

A rational node is motivated to cheat only if the gain from cheating is more than the gain from behaving

honestly. For our variable pay system to deter cheating, we should select system paramaters to ensure that

❉♠❛① is negative. Using the above equation, we can determine what conditions are necessary for ❉♠❛① to

be negative as follows:

♣♦ ❃
❘❧

❘❧✭❜ ✰ ✶✮ ✰
♦☎♦✆✝✞
✟ ❚r❛✐s❡ ✄ ◆❛❝t✉❛❧ ✄ ■

At first glance, this formula might appear complicated, but we can gain some intuition by solving it for

a sample case. If we use the same parameters that were used for Figure 4 (1-day time slots, a pay scale with

10 levels that increases 20% per ❚r❛✐s❡ ❂ ✼ days, a pay decrease when caught cheating equal to ❚❝✉t ❂ ✼

days worth of raises, ◆❛❝t✉❛❧ ❂ ✺✵, ❘✝ ❂ ✵✿✶, ■ ❂ ✵✿✵✷, and ❜ ❂ ✶), we need only detect cheaters with a

probability ♣♦ greater than
✸
✠✻ ❂ ✵✿✵✡✾✺ (roughly 4.0%). This probability remains unchanged for different

values of ❘✝ as long as pay raise increment (■) is 20% of ❘✝. In contrast, if we assess fines, but not pay

decreases, when a PN is caught cheating (the model derived in Section 3.2), the probability ♣♦ of catching

a cheater must be greater than ✵✿✺ to build an effective deterrent. Thus, varying pay based on longevity and

honesty is an important feature for our incentive model.

3.4.4 System Tuning

Even if we are unable to identify a cheating PN, the CM can obtain an estimate of the frequency of cheating

in the system using service-level information. For example, in a collective content distribution system,

clients will retry unsuccessful downloads using a different PN, which will lead to multiple PNs requesting

credit for same work if the first failure was due to a cheating PN. If a CM observes a particular frequency

of undetected cheating, it can tune the parameters used to calculate pay rates and fines (e.g., the fine ratio ❜,

the pay cut ratio ✁, the rate of pay increases ❚r❛✐s❡, and the pay rate increment ■) to maintain an acceptable

profit margin.

3.5 Other Issues

Motivating Critical Nodes: Other factors can be applied to determine a particular node’s pay rate. For

example, nodes that are particularly important to a given service due to their location or unique resources

(e.g., a fat network pipe or extremely high availability) may receive a bonus pay rate to encourage them

to remain part of the CM’s pool. A service can define threshold criteria that are used to designate a node

as an important player, e.g., delivered bandwidth more than ❳ for more than 70% of the time over the

last 15 day period. Once a node reaches this threshold, it is designated as special and extra pay levels like

❘❧✆✝❀❘❧✆✟❀❘❧✆✸ are made available to them. Additionally ❚r❛✐s❡ can be reduced to provide extra rewards

to these nodes.



Multiple Identities: A cheating PN can easily change identities in an attempt to avoid any penalties it

receives. Our variable pay rate incentive system is designed to make this behavior unprofitable. A new user

starts at a low pay rate, and only gets pay raises after successfully completing work for a considerable time

period of time. When a node changes identities, its pay rate drops to the low base pay rate when it rejoins

the collective. It would be better off to remain in the collective and behave honestly. We envision CMs only

paying nodes every 15 to 30 days based on the amount of work they have performed, similar to how web ad

services like Google Adsense [10] are administered. If the probability of detecting offenses is above the low

4%-5% threshold needed to discourage malfeasance, a 15- to 30-day pay period is sufficient to ensure that

persistent cheater loses money by cheating. Overall, we expect rational nodes to learn that they earn more

from proper behavior than from cheating, and are willing to accept nodes recycling their identity to make a

fresh start after they learn this lesson.

4 Related Work

Cheating behaviors have been observed extensively, e.g., free riding in Gnutella [1] and software modifi-

cations to get more credits in SETI@home [12]. Our mechanism to handle cheating behaviors based on

multi-party accounting is similar to the role of accountability in dependable systems [22]. Our system can

use a payout system similar to the one used by Google adsense program [10] that allows website publishers

to display ads on their websites and earn money.

Unlike SETI@home [17] and Entropia [5], we harness idle storage and networking resources of PNs in

addition to idle processing resources. SETI@home rewards user credits similar to ours, but has no concept

of penalties or incentives for long term participation.

Unlike P2P systems like Kazaa [13] or Gnutella [9], we do not assume that PNs are altruistic. Our PNs

are rational nodes that are interested in maximizing income, not selflessly helping others.

Many other projects, e.g., BitTorrent [7], have focused on bartering as an incentive model for exploiting

idle resources. In such models, nodes typically participate in the system only long enough to perform a

particular transaction such as downloading a song. At other times, that node’s idle resources are not utilized

unless the node’s administrator is altruistic. In the collective, a CM will have much larger and more diverse

pools of work than personal needs of individual participants; thus a CM will be better able to consume the

perishable resources of PNs. PNs, in turn, will accumulate credit for their work, which they can use in

the future however they wish (e.g., for cash or for access to services provided by the CM). Many recent

projects [14, 18] have applied game theory techniques to build incentives models based on bartering. These

projects model nodes as rational self-interested parties similar to us.

Currencies have been used extensively in the systems community in various contexts [21, 4]. Recent

projects [20, 19] have used currencies to handle the problem of free riding in peer to peer systems. Though

none of these incentives techniques address the issue of motivating nodes to stay in the system for extended

durations. Also these projects do not provide any mechanisms for deterring cheating in presence of unde-

tected offenses in the system.

Systems like computational grids [8] also deal with distributed resources at multiple sites, though again

their main focus is on trusted and dedicated servers.

We can compare a collective to the formation of organizations/firms in real life [6]. Similar to employees

in firms, PNs in a collective need to be motivated to do better work and demotivated from shirking away

from work.



5 Conclusions

In this paper, we present an analysis of the incentive model we employ in a distributed designed to harness

the idle cpu, network, and storage resources of large pools of untrusted, selfish, and unreliable nodes. Our

analysis focuses on two important challenges: ensuring prolonged participation by nodes in the collective

and discouraging dishonest behavior. An analysis of the economic underpinnings of the system allowed us

to gain important insights into the likely behavior of different players in the system, which we used to derive

an incentive model that achieves our goals.

The most important contribution of the paper is to demonstrate how a mix of rewards and punishments

can be used to successfully motivate to behave in ways that benefit the collective. We also show how a

real system can sustain profitability even in presence of undetected offenses or deviations from the desired

behavior, as long as we are able to detect even 4%-5% of dishonest behaviors.
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