
A n I n t e r a c t i v e N - D i m e n s i o n a l

C o n s t r a i n t S y s t e m

C h in g - y a o H s u

B e a t B r u d e r l i n

UUCS-94-036

Department of Computer Science

University of Utah

Salt Lake City, U T 84112 U SA

December 8, 1994

A b s t r a c t

In this paper, we present a graph-based approach to geometric constraint solving. Geomet­

ric primitives (points, lines, circles, planes, etc.) possess intrinsic degrees of freedom in

their embedding space. Constraints reduce the degrees of freedom of a set of objects. A

constraint graph is created with objects as the nodes, and the constraints as the arcs. A

graph algorithm transforms the undirected constraint graph into a directed acyclic depen­

dency graph which can be directly used to derive a sequence of construction operations as

a symbolic solution to the constraint problem. The approach has been generalized to an n-

dimensional space, which, among other things, allows for a uniform handling of 2-D and

3-D constraint problems or algebraic constraints between scalar dimension. Solutions of

arbitrary dimensions can be interpreted as approaches to over- and under- constrained prob­

lems. In this paper, we present the theoretical background of the approach, and report the

results of it’s application within an interactive modeling system.

A n In teractive N - D i m e n s i o n a l C o n s t r a in t S y s t e m

Ching-yao Hsu, Beat Briiderlin

Department of Computer Science

University of Utah

Salt Lake City, Utah 84112

Abstract

In this paper, we present a graph-based approach to ge­

ometric constraint solving. Geometric primitives (points,

lines, circles, planes, etc.) possess intrinsic degrees of free­

dom in their embedding space. Constraints reduce the de­

grees of freedom of a set of objects. A constraint graph

is created with objects as the nodes, and the constraints

as the arcs. A graph algorithm transforms the undirected

constraint graph into a directed acyclic dependency graph

which can be directly used to derive a sequence of construc­

tion operations as a symbolic solution to the constraint prob­

lem. The approach has been generalized to an n-dimensional

space, which, among other things, allows for a uniform han­

dling of 2-D and 3-D constraint problems or algebraic con­

straints between scalar dimension. Solutions of arbitrary

dimensions can be interpreted as approaches to over- and

under- constrained problems. In this paper, we present the

theoretical background of the approach, and report the re­

sults of it’s application within an interactive modeling sys­

tem.

1 Introduction

Conventional modeling systems did not support the free

dimensioning of geometric objects by means of constraints,

but require users to construct them by a sequence of geomet­

ric operations. Mechanical parts designed by such a C A D

system are represented as fixed geometry; the geometric de­

sign is completely separated from other design criteria. It

is often difficult for a user to determine the exact coordi­

nates of the objects in the beginning or to add information

under a different view, later on. Changing a part may inad­

vertently violate previous design decisions. Most computer

aided design systems, nowadays, allow one to define geo­

metric constructions by means of parameters. The value of

the design parameters can be determined later, and a de­

pendency propagation mechanism automatically propagates

the new values to all directly and indirectly dependent parts

of the object. Although this increases the flexibility of C A D

based design significantly, great care has to be taken to de­

fine the geometric operations in the right order, which puts

an undue burden on the designer. Surveys of these works

can be found, for instance, in [26, 19, 27].

o

Geometric constraints have shown to be useful for inter­

active geometric design. The idea is to specify shape by

constraints such as distances, angles, etc. and use a con­

straint solver to derive the shape from such a specification.

A clear drawback of a constraint based approach is that it is

extremely difficult and not at all intuitive for a designer to

come up with a complete and consistent set of constraints.

Often we encounter over and under specified parts simul­

taneously that are hard to resolve in a specification. Also

constraint solving is a very difficult problem, even if the

specification is consistent. Following is an brief survey on

different kinds of constraint solving techniques in the litera­

ture.

1.1 Constraint Solving Methods

Constraint propagation is one of the basic mechanisms used

in early constraint based system for the derivation of solu­

tions that satisfy the given constraints. Here the system of

variables and constraints are represented as an undirected

graph. The nodes of the graph represent variables or con­

stants, and the edges represent equations relating the vari­

ables and constants. The solving of constraints is done by

finding an order of evaluation to satisfy all the equations

from the constants progressively. Propagation methods are

described, for instance, in [3, 8 , 9, 11, 21, 18, 30]. The weak­

ness of the propagation approach is that it can not handle

cyclic constraint situations, and hence it is usually coupled

with numerical methods as described below.

Most constraint based systems use numerical techniques

(e.g., relaxation, Newton-Raphson iteration) which can the­

oretically solve problems even if they don’t have a closed

form algebraic or geometric solution. In this approach, con­

straints are translated into a system of algebraic equations

and then solved using iterative methods. Numerical ap­

proaches are described in [12, 13, 22, 23, 28]. While they

are quite powerful and general, numerical techniques have

convergence problems that make them very unpredictable.

Because of its generality, a lot of systems switch to nu­

merical method when their basic mechanisms failed. Early

systems such as Sketchpad, ThingLab and Magritte used

relaxation as an alternative to their propagation methods.

Lately, another kind of constraint solvers is emerging,

which satisfies the constraints using a sequence of construc­

tion steps and solves problems solvable by ruler and compass

construction. It can be viewed as an extension of the con­

straint propagation paradigm into higher dimensions. The

basic principle behind constraint propagation is that an ob­

ject can be evaluated when enough information about it is

available. These methods differ in the way the order of

constraint type arity valency

distance 2 1

slope 2 1

vector 2 2

angle 3 1

midpoint 3 2

Table 1: Constraint types and their valencies.

evaluation is determined, and can be roughly divided into

two categories, the rule-based approach and the graph-based

approach. Work belonging to this group can be found in

[2, 4, 10, 14, 5, 6 , 7, 20, 25, 31, 24],

1.2 An Overview

It is our objective to develop an approach for evaluating the

degrees of freedom of under-constrained networks of con­

straints so that user can draft in a less restricted way in

the early design stage. W e will show that with this ap­

proach, users are not forced to specify shapes completely by

constraints but can add constraint definitions incrementally,

and manipulate the geometric models within their degrees

of freedom.

The graph-based approach developed in this paper is

based on the law of conservation (see section 3.1). Section 2

introduces the basic definitions and concepts. Section 3 de­

velops the basic algorithm for the degree of freedom analysis

of a constraint network; it returns an intermediate represen­

tation, the dependency graph. Section 4 is concerned with

some details of the basic algorithm and properties of the de­

pendency graphs. Section 5 suggests ways to evaluate the

dependency graph by a sequence of geometric construction

operations. Section 6 presents several extensions to the basic

algorithm to represent algebraic equations, and congurence

relations. Section 7 deals with a 3-D application of the al­

gorithm.

2 Basic Definitions and Concepts

2.1 Geometric Model

A parametric geometric model is defined as a collection O

= { 0i ,02, . . . , 0fc } of geometric objects and a set C = {

ci, C2, . . . , cm } of geometric constraints among the members

of O.

Geometric objects such as points, lines, and circles own de­

grees of freedom, which allow them to vary in size, shape, ori­

entation, or position. The set D O F = { do fi, do/2, • • •, dofk

} of degrees of freedom owned by objects in O completely

determine the set of states of the geometric model.

Geometric constraints such as those defined for 2-D points

in Table 1 define an n-ary geometric relation among a set of

n objects, c, = Ci(o,1,Oi2, . . . , o,n, A), where A is the param­

eter of the constraint. Depending on the constraint type,

the parameter may be a single scalar value or a vector. A

constraint reduces the degrees of freedom from the set of

objects by a certain number. This number will be called

the valency of the constraint, as defined in [2]. In general, a

valency of a constraint Ci is a positive number which is less

than or equal to the sum of the degrees of freedom owned

n

0 < valency(ci) < Y ^ D O F (o t]) (1)

3 = 1

where D O F (o ,j) refers to the degrees of freedom of the ob­

ject o ; ., and valency(ci) denotes the valency of the con­

straint Ci. If the valency is equal to the total number of the

degrees of freedom owned by the n objects, we call the con­

straint a full-valency constraint. A full-valency constraint

completely determines the state of the objects constrained.

W e also define separately a special class of constraints,

local constraints, which are unary constraints consuming all

or part of the degrees of freedom owned by an object. For

example, a constant x-coordinate constraint on a 2-D point

fixes its x-coordinate in space; therefore we say that one

degree of freedom owned by the point is consumed by that

constraint. If the local constraint consumes all the degrees

of freedom, we call it a fu ll local constraint.

2.2 Constraint Network

In the following sections, we will use constraint networks as

the graph representation of a geometric model.

A constraint network is an undirected graph which con­

sists of a finite set of nodes and a finite set of arcs. A node in

the network represents an object and is depicted as a rect­

angle box with two numbers separated by a slash. The first

number, D O F OWned denotes the degrees of freedom owned by

the unconstrained object; the second number, D O F COnsumed

denotes the degrees of freedom consumed by the local con­

straints, if there are any. A n n-ary relation is represented

by an undirected arc with fan-out equal to n. W e label the

arc with the valency of the constraint on the side as shown

in Figure 1. In the following sections, we will use object and

node, as well we constraint and arc interchangeably.

If the constraint specification is consistent and non-

redundant, a constraint network is said to be fully con­

strained, if the total number of degrees of freedom is equal

to that of the valencies. O n the other hand, to constrain

n points relative to each other in 2-D space, for example,

only 2n - 3 distance or angle constraints are required. The

solution will be a rigid body with three remaining degrees

of freedom. If we ignore rigid body transformations for the

moment, we can define well-constrained, under-constrained,

and over-constrained constraint network informally as fol­

lows: A constraint network is well-constrained, if the num­

ber of states of the constraint network is finite. If some

of the objects lie in a continuum, and hence there are infi­

nite number of states, then the constraint network is said

to be under-constrained. Finally, the constraint network

is over-constrained if there is no valid state to satisfy the

constraint network. Note that a constraint network can be

partly under-constrained and partly over-constrained at the

same time.

For an under-constrained network, there will be many de­

grees of freedom stored in it. W e will be able to change

the state of the constraint network by manipulating objects

within all or a subset of the degrees of freedom stored. Dif­

ferent portions of the constraint network will be involved if

different subsets of the degrees of freedom are used.

2.3 The Degrees of Freedom Stored

Before discussing how a portion of a constraint network can

be manipulated, the definition of the degrees of freedom

by the n objects.

V a l e n c y

(a) T h e r e p r e s e n t a t i o n

B

A

A , 2 / 0

stored in a connected component of a constraint network

is introduced.

The notion of a connected component of a constraint net­

work is defined with respect to the degrees of freedom stored.

W hen a node is fully constrained, it is fixed in space and can

no longer be manipulated. W e refer to these nodes as the

dead nodes. A dead node will potentially make the con­

straint network disconnected in terms of degrees of freedom.

There are two situations when a node becomes fully con­

strained:

1. When there is a full local constraint.

2. When it is fully constrained by fully constrained neigh­

bors.

W e define two objects, oi and on , to be connected if

• there exists a sequence of objects 0] ,02, . . . , 0n such

that there is at least one constraint defined between o,

and Oi+i for 1 < i < n, and

• none of the o;’s are dead nodes, for 1 < i < n.

A connected component of a constraint network is defined

to be a maximal connected induced subgraph as defined in

traditional graph theory [l] except that the notion of con­

nection is sharpened as above.

If G is a connected component of a constraint network,

the degrees of freedom stored in G can be calculated as

B , 2 / 0

D O F (G) = ^ 2 D O F 0wned{o)~ ^ 2 DOFconsumed(o) ~

oinG oinG

valency(c) (2)

cin G

(b) A d i s t a n c e c o n s t r a i n t

A , 2 / 0 B , 2 / 0

C , 2 / 0

(c) An a n g l e c o n s t r a i n t

Figure 1: The nodes and arcs of the constraint networks.

3 Degrees-of-Freedom Analysis

The goal of the degrees of freedom analysis is to extract from

a constraint network a connected portion which possesses a

specified degrees of freedom. W e can then manipulate the

portion of the constraint network through the degrees of

freedom acquired.

The algorithm presented below, is based on the law of

conservation1 . W e will first establish the balance equation

for any quantity which observes the law of conservation. W e

will then derive the balance equations for the degrees of

freedom of the nodes and arcs of the constraint network.

At the end, we will present the degrees-of-freedom analysis

algorithm which will generate a dependency graph as the

result.

3.1 The Balance Equation

Some quantity Xi with respect to a system, can either enter

the system or leave the system. It can also be generated or

destroyed within the system (as shown in figure 2). W e can

express the conservation law for x by the so-called balance

equation:

output of x = input of x + X generated —

X destroyed — x accumulated (3)

If the system does not change with time, or in other words,

the system is operated under steady-state conditions, equa­

tion 3 can be simplified with respect to the accumulation

1 Please refer to [15, 16] for a similar algorithm developed from
a 2-D geometric point of view.

input of % % generated

X destroyed

X accumulated

output of %

system system boundary

Figure 2: A system with input and output.

term. Since an accumulation means that the amount of

the quantity x in the system is increasing or, in the oppo­

site sense, decreasing, by the definition of steady-state the

accumulation term must be zero. Therefore, the balance

equation 3 can be shortened to:

output of x = input of x + X generated — x destroyed (4)

For background information on the balance equation, we

refer to text books on fluid flow or heat transfer.

3.2 The Dependency Graph

A dependency graph is a directed, acyclic hyper-graph de­

rived from the constraint network. Nodes and arcs in the

dependency graph are systems, obeying the law of conser­

vation of degrees of freedom, and therefore we can express

a balance equation for degrees of freedom for each of them.

A node in the dependency graph represents an object and is

depicted as a trapezoidal box (figure 3) with the long side

representing the input side and the short side representing

the output side. There are three rows of numbers in the box.

The top row enumerates the individual degrees of freedom

leaving the box for the next level up. The bottom row shows

the individual degrees of freedom entering the box from the

previous level down. The center row is the balance equation

for the node.

A n arc (figure 4) represents a constraint between at least

one child node and a single parent node. The arc is labeled

with the negative valency of the constraint and the arrow

at the top shows the direction of the flow. For an n-ary

constraint, there will be n - 1 child nodes. However, the

fan-out is always one.

W e can write balance equations for both nodes and arcs

based on the law of conservation of degrees of freedom.

Therefore by equation 4, for a node, we have (see also Fig­

ure 3),

DOFout = D O F .n + D O F owned — D O F con3umed (5)

D O F in = J 2 D O F '"W

D O F 0ut = D O F out(j)

3

For an arc (see also Figure 4),

D O F out = D O F in — valency

D O F in = ^ D O F . n i k)

(6)

A A

DOFout (0) DOFout (j)

DOFowned — DOFoonsumed + DOFin — DOFout

DOFin (0) DOFin (i)

/\7\ 7\

Figure 3: The node of a dependency graph.

D O F out

/ \

- V a l e n c y

• • •

DOFin (0) DOFin (1) • • • DOFin (k)

Figure 4: The arc of a dependency graph.

Here, we treat D O F owned as the degrees of freedom gen­

erated by the object at constant rate, and D O F consum^d as

the degrees of freedom destroyed at constant rate within the

object. Likewise, the valency is the degrees of freedom de­

stroyed at constant rate within an arc. The incoming degrees

of freedom which are zero or negative can be interpreted as

the amount by which the degrees of freedom of the node is

restricted.

4 A n Algorithm for Constructing the De­
pendency Graph

As stated earlier, our goal is to extract from the constraint

network a connected portion that possesses a given degree

of freedom. In the algorithm discussed below, the connected

portion will be represented as a dependency graph. This is

an inverse problem, since we determine how many degrees

of freedom we request from the root node, i.e. the topmost

node. The task of the algorithm is it, to construct the rest of

the dependency graph, yielding the desired output. There­

fore, a top-down approach seems to be the natural choice.

At each node or arc, we know how many degrees of free­

dom leaving the system, and given the degrees of freedom

generated and destroyed in the system, we will be able to

calculate the degrees of freedom entering the system. These

degrees of freedom, in turn, become the degrees of freedom

leaving the systems in the previous level down.

To avoid cyclic dependency (i.e. a node occurs more than

once in the path of the directed acyclic graph), we will con­

struct the dependency graph in a breadth-first manner. For

more information, please refer to [17].

4.1 The Algorithm

First, we pick an object from the constraint network and

request a specified degree of freedom, called D O F requeste<i,

from it.

W e make the object the root node and compute the

amount of degrees of freedom that should enter the node

giving the amount leaving by rearranging equation 5:

D O F in{root) = D O F 0ut{root) — D O F owned(root) +

DOFcon sumed (root) (7)

where D O F out(root) — D O F reque!ited- The amount D O F in

determines the total number of degrees of freedom we need

to acquire from the child nodes in order to satisfy the re­

quest.

If m constraints, ci, C2, . . . , cm are attached to this object,

we then expand the node by distributing the D O F i„ among

all constraints2 and creating their corresponding arcs:

DO Fi„(root) = DOFout(ci) + D O F out(c2) +

■ • • + D O F out(cm) (8)

Notice that if the node expanded is not the root node, we

need to exclude from the set of the m constraints any con­

straints which have already been used elsewhere in the de­

pendency graph.

For arc i, we can calculate the amount of degrees of free­

dom entering by rearranging equation 6:

D O F in(a) = D O F out(ci) — valency(ci) (9)

W e then divide D O F in(ci) provided the number of the

fan-in of the arc is greater than one. Let the number of the

2This notion will be made clear in section 4.4.

fan-in be equal to n, and the child nodes are 0 1 , 02 , . . . ,on .

Then

D O F ,n (ct) = D O F out(o i) + D O F 0ut(oi) +

■ ■ ■ + D O F out(on) (10)

where D O F out(oj) is the degrees of freedom leaving the child

node j. It can also be regarded as the request of degrees of

freedom to this node.

W e will repeat this process down the branches until either

of the following conditions is met:

1. There are no more unused constraints, or

2. D O F 0ut of a node is less than or equal to zero.

W hen one of those conditions is met, we can stop recursion

and make the node a leaf node. If the second condition is

met, we also set DOFconsumed equal to DOFowned (i.e. to

locally fix the state of the object).

Note that if there are a mix of positive and negative de­

grees of freedom in the list of D O F out in a node, we first

store the negative degrees of freedom away, and set it to

zero. After the dependency graph is constructed, we pass

the negative degrees of freedom up to its parent, and reset

DOFconsumed of the parent node.

4.2 An Example

Figure 5 (a) shows a simple geometric model consisting of

five points and four distance constraints in 2-D space. Fig­

ure 5 (b) shows the corresponding constraint network.

Figure 5 (c) shows one instance of the possible depen­

dency graphs derived by requesting one degree of freedom

from point C. In order to satisfy this request, we need to im­

port minus one degrees of freedom from the neighborhood

of point C, i.e. point B and point D . W e can choose from

the following combinations to meet the requirement:

• requesting -1 from point B and 0 from point D,

• requesting 0 from point B and -1 from point D ,

• requesting -2 from point B and 1 from point D , etc.

The figure shows the first combination. For point B, the

request for degrees of freedom is zero, which signifies a ter­

mination condition. Therefore, we set DOFconsumed equal

to DOFowned for point B , and stop recursion. By applying

the algorithm in this manner, we achieve the dependency

graph shown.

4.3 The Degrees Of Freedom Requested

The maximum degrees of freedom we are able to attain from

a node in the constraint network will depend on the number

of degrees of freedom stored in the connected neighborhood

of that node.

W e define the connected neighborhood of an object o to be

the maximal connected induced subgraph which contains o.

Suppose G is the connected neighborhood of the object o.

The maximum attainable degree of freedom of the object o

is then

DOFmax(o) = D O F (G) (11)

O n the other hand, the lower bound on the degrees of

freedom that can be requested is zero. There are two ways

of constructing the dependency graph if zero degrees of free­

dom are requested. First, if the algorithm above is applied,

DOFout equal to zero is one of the termination conditions.

blindly, there will be circumstances when a request for a de­

gree of freedom fails. For example, it is a contradiction when

a positive degree of freedom is requested from a dead node

because the node possesses no degrees of freedom. Back­

tracking is used to search for alternative dependency graphs

under these circumstances.

The described procedure would potentially generate in­

finitely many dependency graphs. By enforcing the follow­

ing rules, we limit the set of solutions to be finite:

• The total amount requested may not exceed that stored

in the object.

DOFout < DOFowned ~ D O Fconsumed (12)

• No positive degrees of freedom are imported.

D O F ,„ (i) < 0 for all i (13)

These rules also guarantee that the dependency graphs gen­

erated are valid.

5 Evaluating the Symbolic Solution

Once we have a dependency graph, we will be able to eval­

uate it under various conditions, for instance when manip­

ulating part of the constraint network interactively within

the degrees of freedom acquired.

The dependency graphs produced by the exhaustive

search will have some extra degrees of freedom (the difference

between the degrees of freedom of the dependency graph and

the one requested). These extra degrees of freedom are easily

identified in the dependency graphs since they are all stored

in the leaf nodes. As a consequence, we can manage to off­

set these extra degrees of freedom acquired easily. For one

thing, we can impose temporary local constraints on those

leaf nodes. Once we have process all the nodes in this man­

ner, the degrees of freedom of the dependency graph will be

equal to that of requested.

For the following discussion, we will assume that the de­

grees of freedom of the dependency graph is equal to that

of requested. These degrees of freedom acquired are at our

disposal. For instance, if we use an interactive user interface

which supports locator devices, we can use them to interac­

tively specify these degrees of freedom. In particular, if two

degrees of freedom are requested from a 2-D point, we can

manipulate the coordinates of the point by assigning them

the coordinates of the locator device.

After fixing the degrees of freedom acquired, the depen­

dency graph itself becomes a fully constrained system. We

can solve for the new state of the dependency graph by using

a variety of established methods for solving fully constrained

systems.

W e will again use the example shown in Figure 5 to de­

scribe how different kinds of constraint solvers are used to

evaluate the dependency graph.

• Constructive constraint solver:

In constructive constraint solvers, the constraint net­

work is satisfied using step-by-step constructions. To

solve the dependency graph shown in Figure 5 (c), we

first pin down the one degree of freedom of point C

interactively. Since point B is fixed, point C must lie

on the circle centered at point B. In other words, it

only takes one parameter to completely determine the

position of point C. After that is done, the position of

point D can be determined by intersecting the two cir­

cles centered at point E and new point C respectively.

For more detailed information, please refer to [15, 16].

Generally we try to find solutions as intersections of

circles and lines. If this is not possible we can try to

apply some iterative search method.

Another constructive constraint solver quite useful for

this purpose is Fudos’ bottom-up method [4], In their

method, a cluster corresponds to a well constrained sys­

tem, and behaves like a rigid body which can only be

translated or rotated. Therefore, to maintain a con­

straint network, clusters detected in the dependency

graphs need not be evaluated again. .

• Numerical constraint solver:

In numerical constraint solvers, the constraint network

are satisfied by first translating it into a system of equa­

tions and then the system is solved by iterative method

such as Newton-Raphson method.

For example, a distance constraint between two points,

(-Xi,Yi) and (X-2, K>), can be translated into the fol­

lowing equation:

(X i - X 2)2 + (Yi - Y2)2 - D 2 = 0

After translating the dependency graph shown in Fig­

ure 5 (c) into a system of equations, we get three equa­

tions derived from three distance constraints respec­

tively, and four variables representing the coordinates

of point C and point D . As before, one degree of free­

dom of point C needs to be fixed interactively. Finally,

we have a total of four variables and four equations,

which can generally be solved by Newton-Raphson it­

eration.

One advantage of using numerical methods in this ap­

plication is that the constraint networks were already

satisfied, and each time, we only make a small perturba­

tion to the previous states. Therefore, we will not have

the problem of coming up with good initial guesses.

However, the disadvantage is that while reevaluating

the states of the constraint networks incrementally, we

will, from time to time, come across states which make

the Jacobian matrices ill-defined.

W e experimented with both, constructive, and numerical

methods in our implementation of the algorithm. W e con­

cluded that a constructive, geometric method is very efficient

and robust in those cases where an analytic solution can be

found. W e plan to extend this method by adding an iterative

component which approximates solutions if no analytic solu­

tion can be found. The degree of freedom analysis step helps

making the constraint subsystem fully constrained, and also

in coming up with an evaluation plan.

6 Extensions of the Approach

In this section, we describe several extensions and variations

to the basic algorithm.

6.1 Representing Parameters as Objects

In this section we propose to represent parameters of con­

straints explicitly as an object in the constraint network.

Figure 7 shows the representation of a distance constraint

with the parameter. Scalar parameters own one degree of

freedom. If the parameter represents a constraint it’s degree

a

A

A, 2 / 0 B, 2 / 0

A=3

B=2

C=5
E=7

a, 1/0

Figure 7: Constraint network with parameters.

of freedom is consumed locally. Without locally constrain­

ing the parameter, adding the distance constraint would not

change the overall degree of freedom. To change the value of

the parameter in this representation, we only need to make

the node representing that parameter the root node, and

request one degree of freedom from it. This principle can

be used to implement an incremental constraint solver that

finds a solution, everytime a new constraint is added. Once

the constraint is established, the value of the parameter is

fixed by a local constraint.

Using parameter objects, we can also represent congru­

ence relations, i.e. equality relations between parameters of

the constraints. Whenever the parameters of different con­

straints afe set to be equal, they will share the single object

that represents the parameter.

6.2 Algebraic Relations

Using the parameter representation described above, the

degrees-of-freedom analysis can also be extended to han­

dle algebraic relations, between variables or between the pa­

rameters of the constraints. Algebraic operations ’+ ’ and

’x ’ are introduced as relations with valency one between

parameters.

Let’s first take a look at an example involving algebraic

relations only. The graph in figure 8 (a) for example, shows

a linear equation between 5 variables. To change C, a prop­

agation method such as retraction will come up with a plan

like the one shown in figure 8 (b). It says that once we get

a new value for C, we can use A and C to deduce B, and

use C and E to deduce D . Transforming the same problem

into our representation, we obtain a constraint network as

shown in figure 8 (c). Figure 8 (d) shows a dependency

graph that will lead to an evaluation plan equivalent to the

plan constructed by the retraction approach.

Next, we will look at an example involving both geometric

and algebraic relations. Figure 9 (a) shows a symmetric

triangle with an additional algebraic relation defined on the

three sides. The algebraic relation is

a + 0 = 7

where 7 is a constant. Point A is fixed in space. W hen point

B is dragged, a dependency graph is constructed as shown

in Figure 9. A n evaluation plan for a constructive constraint

solver can be set up to maintain the triangle:

1. Point B is assigned the coordinates of the locator de­

vice.

A=3
C(unbounded)

E=7

-<C--- "
B(unbounded)

A, 1 / 0

............
D (unbounded)

(b)

C, 1 / 0

B, 1 / 0 E, 1/0

D, 1 / 0

(c)

l-0+0=l

0 0

-1

l-0+0=l

0

l-0+0=l

0

A

1 0 0 1

1 l-l+0=0 l-l+0=0 1

1 0 0 1

(d)

Figure 8: An example of algebraic constraints.

j V a
\

\

\ c

a I
i

I
i

I

P
A

a+ p = y

(a) T h e m o d el

a, 1 / 0 p, 1 / 0

B, 2 / 0
1

C, 2 / 0

(b) T h e c o n s t r a i n t n e t w o r k

B

0 0 I 0 1
1 1

I 2—2+0=0 1 l-l+0=0 1 2-0+0=2

I 0 1 0 1
0

(c) T h e d e p e n d e n c y g r a p h

Figure 9: A symmetric triangle with algebraic constraints.

2. Parameter a is equal to the distance between point A

and new point B.

3. Parameter /3 is equal to 7 - a.

4. Point C is determined by intersecting the two circles

centered at new point B and point A respectively with

the radii equal to the new parameters.

7 Constraints in 3-D

In this section, we describe an interactive 3-D constraint sys­

tem that supports polyhedron definition and manipulation.

A polyhedron is made up of half planes, edges, and vertices.

A repertoire of constraints can be defined on these geomet­

ric objects. W e will show how the same degrees-of-freedom

analysis algorithm can be used to deal with interactive ma­

nipulation of 3-D models.

7.1 Boundary Representations as Constraint
Networks

Boundary representations (B-reps) of polyhedra usually con­

sist of faces, edges, and vertices. However, polyhedra could

be defined by only one type of primitives, namely half spaces.

Edges and vertices are objects derived from intersecting half

spaces. A half space is defined by an oriented plane. A point

p on the plane can be written as:

p • n (14)

A half space in 3-D has two rotational and one translational

degrees of freedom. The end points of all the unit normal

vectors will fall on the surface of the unit sphere centered

at the origin. W e will refer to the point as the orientation

point of the corresponding half plane.

An edge in a B-rep is derived by intersecting two planes.

W e can represent the incidence relation between edges and

planes by constraints, as shown in figure 10 (a).

A vertex can be derived from three intersecting planes, or

by intersecting one edge and one plane, as shown in figure 10

(b) and (c).

Note that the total number of degrees of freedom stored

in the constraint network is unchanged by the introduction

of the derived objects, since they are totally dependent on

the half spaces.

Representing a derived object is sometimes useful, for in­

stance, when a constraint is defined on it. There are several

types of constraints that are defined on derived objects. For

example, a distance constraints can be defined between a

plane and a vertex, or between two vertices as shown in

figure 11.

Figure 12 shows an example polyhedron (a block, with a

notch cut out). Suppose that vertices v4, and v6 are fixed in

space. If we grab vertex vl and request one degree of free­

dom, the degree-of-freedom analysis algorithm will set up a

dependency graph as shown in figure 13. The dependency

graph indicates that in order to move vertex vl with one

degree of freedom, we have to change plane p3 with one de­

gree of freedom, while keeping pi and p2 fixed. Since v4 and

v6 are fixed, plane p3 will rotate around the axis through

v4 and v6. In addition, vertex v2 which is on p3 will move

along the edge derived from intersecting planes p2 and p5.

Similarly, vertex v3 will move along the edge derived from

intersecting planes p2 and p6. Figure 14 shows the snap­

shots taken from the interactive system, running this exam­

ple problem. The execution time to build the dependency

el

p2

(a)

(b)

(c)

Figure 10: Incidence relation between planes, edges, and

vertices.

graph was about 1/20 second on a Sparc-10. The evalua­

tion of the symbolic solution is done in real time. Note that

all the incidence constraints between the planes and vertices

were derived automatically from the boundary representa­

tion, by the system; only the two position constraints were

added interactively.

An interesting observation is that there is a correspon­

dence between the dependency graph found by the algo­

rithm, and the resolvable sequence defined in Sugihara’s pa­

per [29]. One of the resolvable sequences that can be defined

for the model above is:

(■ ■ • pi • • ■ p2 ■ ■ • p5 ■ ■ ■ p6 • • • v4 • • • v6 • • • vl p3 v2 v3)

In this partial sequence, we observe that all the objects that

are fixed in the dependency graph appear before the vertex

vl. Vertex vl is placed after plane pi and p2; therefore it

has one degree of freedom along the intersecting edge. Once

we placed vl, we can place p3, v2, and v3 as shown in the

resolvable sequence.

In the next example, we added distance constraints be­

tween vertices vl and v2, v2 and v5, v5 and v3, v3 and v4.

The construction sequence found by the solver involves in­

tersections between spheres and planes. The behavior, when

dragging vertex vl is quite different to before. Two snap­

shots of the interactive session are shown in figure 15.

With the added constraints, the system took about 10

seconds to derive the symbolic solution in form of a depen­

dency graph. Again the evaluation can be done at inter­

active speeds. There is indication, that the execution time

for the symbolic part of the constraint solution grows ex­

ponentially with the number of constraints involved (due to

the non-deterministic nature of the search). This behav­

ior is typical for all symbolic algebraic constraint solvers

(for instance Grobner bases or the resultant method), and

there is evidence that a polynomial complexity cannot be

achieved, except in very restricted problem domains. This

is usually not a problem for two dimensional problems, or

for mostly underconstrained situations. However, in three

dimensions, and for well constrained problems this might

become prohibitive. Once the symbolic solution is found, it

can be evaluated in linear time, however. Fortunately, due

to the geometric nature of the constraint solver, it can be in­

tegrated well with other geometric construction operations.

The idea is to use constructors and dependencies most of

the time, and to add only a few dimensions as constraints,

rather than expressing everything in a constraint context.

Also, there are many possibilities for preprocessing and for

speeding up the constraint solving which haven’t been ex­

plored, yet.

The degree of freedom analysis algorithm works well in

the above case. However, if we fix vertices v3 and v4 in­

stead, the algorithm will possibly construct a dependency

Figure 16: A representation with redundant degrees of free­

dom and valencies.

graph similar to the one above (by simply exchanging the

labels v3 and v6 in figure 13), but it will fail to evaluate it.

The reason is that the algorithm assumes general positions

for all objects, and hence it is unable to recognize the special

case where vertices vl, v3, and v4 are collinear. The pro­

posed solution, namely to rotate p3 about an axis through

v3 and v4 does not yield the desired degree of freedom for

vl. One remedy is to represent the edges explicitly. This

way, the analysis algorithm will realize that vl is incident on

an edge that is completely constrained by v3 and v4, and the

only degree of freedom vl has, is along this edge. Through

backtracking it will produce a dependency graph that will

move half plane pi in one degree of freedom and fix half

plane p3. However, this approach raises another difficulty.

Representing all the incidences between edges and vertices

is redundant, and will lead to an over-constrained system.

O n the other hand, since the redundant constraints are al­

ways consistently over-constrained we may fix the problem

by artificially increasing the degrees of freedom of each ver­

tex to compensate for the redundancy. Figure 16 shows a

subset of the constraint network around vertex vl (points

are 9-dimensional, edges are 4-dimensional).

8 Conclusion

The graph based algorithm presented in this paper is a very

general tool for reasoning about constraint systems. The

algorithm is independent of the dimension of the space. W e

have presented a number of 2-D examples as well as an appli­

cation to 3-D space. The method works for both, geometric

constraint systems and algebraic ones.

A variety of symbolic or numerical techniques can be used

in the evaluation part. W e chose to implement a geometric,

constructive method, which seeks to find solutions by inter­

sections of geometric objects, such as lines, circles, planes,

spheres, etc. A construction plan is derived directly from the

dependency graph. A n iteration mechanism could also find

solutions that cannot be directly computed symbolically.

The approach may prove to be a powerful tool in interac­

tive geometric modeling, especially in 3D, with newly emerg­

ing virtuality devices, such as gloves, and bats. The success,

however, will hinge upon powerful evaluation methods, and

powerful user interfaces techniques. The framework given

here lays the theoretical foundations. The prototype imple­

mentation shows that the approach is working quite well in

interactive situations.

With the approach taken here we provide the capability

to simulate the degrees of freedom of under-constrained net­

works of constraints which enable user to design in a less

restricted way. Users are not forced to specify shapes com­

pletely by constraints but can freely mix constraint defini­

tions with geometric constructions in a more intuitive way.

Acknowledgments
Thanks to Greg Alt for his work on the graphical user

interface.

References

[1] Aho, a ., H opcroft , J., AND Ullm an, J. Data Struc­

tures and Algorithms. Addison-Wesley, 1983.

[2] A ldefeld , B. Variation of geometries based on a

geometric-reasoning method. Computer Aided Design

20, 3 (April 1988), 117-126.

[3] Borning, A . H . The programming language aspects

of thinglab, a constraint-oriented simulation labora­

tory. A C M Transactions on Programming Languages

and Systems 3, 4 (October 1981), 353-387.

[4] B o u m a , W . , F u d o s , I., a n d H o f f m a n n , C. A ge­

ometric constraint solver. Technical Report CSD-TR-

93-054, Department of Computer Science, Purdue Uni­

versity, 1993.

[5] BRuDERLIN, B . Constructing three-dimensional geo­

metric object defined by constraints. In Proceedings of

the 1986 Workshop on Interactive SD Graphics, AC M

S IG G R A P H (Chapel Hill, North Carolina, 1986).

[6] BRuDERLIN, B. Rule-Based Geometric Modelling. PhD

thesis, E T H Zurich, Switzerland, 1987.

[7] BRuDERLIN, B . Using geometric rewrite rules for solv­

ing geometric problems symbolically. Theoretical Com­

puter Science 2, 116 (August 1993), 291-303.

[8] Freeman-Benson, B . N ., and M alo ney , J. The

deltablue algorithm: A n incremental constraint hierar­

chy solver. Technical Report 88-11-09, Computer Sci­

ence Department, University of Washington, November

1988.

[9] Freeman-Benson, B . N ., M alo ney , J., and B o r n ­

ing, A . A n incremental constraint solver. Communi­

cations of the A C M S3, 1 (January 1990), 54-63.

[10] F u d o s , I., a n d H o f f m a n n , C. Correctness proof of

a geometric constraint solver. Technical Report CSD-

TR-93-076, Department of Computer Science, Purdue

University, December 1993.

[11] G o s l i n g , J. Algebraic constraints. Technical Report

CMU-CS-83-132, Carnegie-Mellon University, 1983.

[12] HrLLYARD, R ., AND Braid, I. Analysis of dimensions

and tolerances in computer-aided mechanism design.

Computer Aided Design 10, 3 (May 1978), 161-166.

[13] HlLLYARD, R ., AND Braid, 1. Characterizing non-ideal

shapes in terms of dimensions and tolerances. Computer

Graphics 12, 3 (1978), 234-238.

[14] Hoffm ann , C., and Verm eer, P . Geometric con­

straint solving in r2 and r3. In Computing in Euclidean

Geometry, 2nd Edition. World Scientific Publishing Co

Pte Ltd, 1994.

[15] Hsu, C ., AND BRtiDERLIN, B. Constraint objects - inte­

grating constrinat definition and graphical interaction.

In Proceedings of the 1993 A C M /S IG G R A P H Sympo­

sium on Solid Modeling Foundations and C A D /C A M

Applications (Montreal, Canada, May 19-21 1993).

[16] Hsu, C., and Bruderlin, B . Constraint objects - inte­

grating constrinat definition and graphical interaction.

Technical Report UUCS-93-019, Computer Science De­

partment, University of Utah, 1993.

[17] Hsu, C., and BRuDERLlN, B. Moving into higher

dimensions of geometric constraint solving. Technical

Report UUCS-94-027, Computer Science Department,

University of Utah, 1994.

[18] Jr., G . S., and Sussman, G . Constraints - a language

for expressing almost-hierarchical descriptions. Artifi­

cial Intelligence 14, 1 (January 1980), 1-39.

[19] JuSTER, N . Modelling and representation of dimen­

sions and tolerances: a survey. Computer Aided Design

24, 1 (1992), 3-17.

[20] Kram er, G . A . Using degrees of freedom analysis to

solve geometric constraint systems. In Proceedings of

the 1991 A C M /S IG G R A P H Symposium on Solid Mod­

eling Foundations and C A D /C A M Applications (New

York, 1991), A C M Press.

[21] LELER, W . Constraint Programming Languages: Their

Specification and Generation. Addison-Wesley Publish­

ing Company, Inc, 1988.

[22] Light, R ., and GossaRD, D . Modification of geo­

metric models through variational geometry. Computer

Aided Design 1 4 , 4 (July 1982), 209-214.

[23] Lin, V ., Gossard, D ., and Light, R . Variational ge­

ometry in computer-aided design. Computer Graphics

15, 3 (August 1981), 171-177.

[24] O w e n , J. Algebraic solution for geometry from

dimensional constraints. In Proceedings of the

1991 A C M /S IG G R A P H Symposium on Solid Modeling

Foundations and C A D /C A M Applications (May 1991).

[25] R oller , D . A n approach to computer-aided paramet­

ric design. Computer Aided Design 23, 5 (June 1991),

385-391.

[26] R oller , D ., Schonek, F ., and Verroust, A .

Dimension-driven geometry in cad: A survey. In Theory

and Practice of Geometric Modeling. Springer Verlag,

1989, pp. 509-523.

[27] Roy , U., LlU, C ., AND W o o , T . Review of dimen­

sioning and tolerancing: representation and processing.

Computer Aided Design 23, 7 (1991), 466-483.

[28] Serrano , D ., and Gossard, D . Combining mathe­

matical models and geometric models in cae systems. In

Proc. A SM E Computers in Enq. Conf. (Chicago, July

1986), pp. 277-284.

[29] SuGIHARA, K . Resolvable representation of polyhedra.

In Proceedings of the 1993 A C M /S IG G R A P H Sympo­

sium on Solid Modeling Foundations and C A D /C A M

Applications (Montreal, Canada, May 19-21 1993).

[30] SUTHERLAND, I. Sketchpad, a man-machine graphi­

cal communication system. P h D thesis, M IT , January

1963.

[31] Verroust, A ., Schoneck, F ., and R oller , D . Rule-

oriented method for parameterized computer-aided de­

sign. Computer Aided Design 2 4 , 10 (October 1992),

531-540.

