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In this paper, we present a graph-based approach to geometric constraint solving. Geomet­

ric primitives (points, lines, circles, planes, etc.) possess intrinsic degrees of freedom in 

their embedding space. Constraints reduce the degrees of freedom of a set of objects. A  

constraint graph is created with objects as the nodes, and the constraints as the arcs. A  

graph algorithm transforms the undirected constraint graph into a directed acyclic depen­

dency graph which can be directly used to derive a sequence of construction operations as 

a symbolic solution to the constraint problem. The approach has been generalized to an n- 

dimensional space, which, among other things, allows for a uniform handling of 2-D and 

3-D constraint problems or algebraic constraints between scalar dimension. Solutions of 

arbitrary dimensions can be interpreted as approaches to over- and under- constrained prob­

lems. In this paper, we present the theoretical background of the approach, and report the 

results of it’s application within an interactive modeling system.
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Abstract

In this paper, we present a graph-based approach to ge­

ometric constraint solving. Geometric primitives (points, 

lines, circles, planes, etc.) possess intrinsic degrees of free­

dom in their embedding space. Constraints reduce the de­

grees of freedom of a set of objects. A  constraint graph 

is created with objects as the nodes, and the constraints 

as the arcs. A  graph algorithm transforms the undirected 

constraint graph into a directed acyclic dependency graph 

which can be directly used to derive a sequence of construc­

tion operations as a symbolic solution to the constraint prob­

lem. The approach has been generalized to an n-dimensional 

space, which, among other things, allows for a uniform han­

dling of 2-D and 3-D constraint problems or algebraic con­

straints between scalar dimension. Solutions of arbitrary 

dimensions can be interpreted as approaches to over- and 

under- constrained problems. In this paper, we present the 

theoretical background of the approach, and report the re­

sults of it’s application within an interactive modeling sys­

tem.

1 Introduction

Conventional modeling systems did not support the free 

dimensioning of geometric objects by means of constraints, 

but require users to construct them by a sequence of geomet­

ric operations. Mechanical parts designed by such a C A D  

system are represented as fixed geometry; the geometric de­

sign is completely separated from other design criteria. It 

is often difficult for a user to determine the exact coordi­

nates of the objects in the beginning or to add information 

under a different view, later on. Changing a part may inad­

vertently violate previous design decisions. Most computer 

aided design systems, nowadays, allow one to define geo­

metric constructions by means of parameters. The value of 

the design parameters can be determined later, and a de­

pendency propagation mechanism automatically propagates 

the new values to all directly and indirectly dependent parts 

of the object. Although this increases the flexibility of C A D  

based design significantly, great care has to be taken to de­

fine the geometric operations in the right order, which puts 

an undue burden on the designer. Surveys of these works 

can be found, for instance, in [26, 19, 27].

o

Geometric constraints have shown to be useful for inter­

active geometric design. The idea is to specify shape by 

constraints such as distances, angles, etc. and use a con­

straint solver to derive the shape from such a specification. 

A  clear drawback of a constraint based approach is that it is 

extremely difficult and not at all intuitive for a designer to 

come up with a complete and consistent set of constraints. 

Often we encounter over and under specified parts simul­

taneously that are hard to resolve in a specification. Also 

constraint solving is a very difficult problem, even if the 

specification is consistent. Following is an brief survey on 

different kinds of constraint solving techniques in the litera­

ture.

1.1 Constraint Solving Methods

Constraint propagation is one of the basic mechanisms used 

in early constraint based system for the derivation of solu­

tions that satisfy the given constraints. Here the system of 

variables and constraints are represented as an undirected 

graph. The nodes of the graph represent variables or con­

stants, and the edges represent equations relating the vari­

ables and constants. The solving of constraints is done by 

finding an order of evaluation to satisfy all the equations 

from the constants progressively. Propagation methods are 

described, for instance, in [3, 8 , 9, 11, 21, 18, 30]. The weak­

ness of the propagation approach is that it can not handle 

cyclic constraint situations, and hence it is usually coupled 

with numerical methods as described below.

Most constraint based systems use numerical techniques 

(e.g., relaxation, Newton-Raphson iteration) which can the­

oretically solve problems even if they don’t have a closed 

form algebraic or geometric solution. In this approach, con­

straints are translated into a system of algebraic equations 

and then solved using iterative methods. Numerical ap­

proaches are described in [12, 13, 22, 23, 28]. While they 

are quite powerful and general, numerical techniques have 

convergence problems that make them very unpredictable.

Because of its generality, a lot of systems switch to nu­

merical method when their basic mechanisms failed. Early 

systems such as Sketchpad, ThingLab and Magritte used 

relaxation as an alternative to their propagation methods.

Lately, another kind of constraint solvers is emerging, 

which satisfies the constraints using a sequence of construc­

tion steps and solves problems solvable by ruler and compass 

construction. It can be viewed as an extension of the con­

straint propagation paradigm into higher dimensions. The 

basic principle behind constraint propagation is that an ob­

ject can be evaluated when enough information about it is 

available. These methods differ in the way the order of



constraint type arity valency

distance 2 1

slope 2 1

vector 2 2

angle 3 1

midpoint 3 2

Table 1: Constraint types and their valencies.

evaluation is determined, and can be roughly divided into 

two categories, the rule-based approach and the graph-based 

approach. Work belonging to this group can be found in 

[2, 4, 10, 14, 5, 6 , 7, 20, 25, 31, 24],

1.2 An  Overview

It is our objective to develop an approach for evaluating the 

degrees of freedom of under-constrained networks of con­

straints so that user can draft in a less restricted way in 

the early design stage. W e  will show that with this ap­

proach, users are not forced to specify shapes completely by 

constraints but can add constraint definitions incrementally, 

and manipulate the geometric models within their degrees 

of freedom.

The graph-based approach developed in this paper is 

based on the law of conservation (see section 3.1). Section 2 

introduces the basic definitions and concepts. Section 3 de­

velops the basic algorithm for the degree of freedom analysis 

of a constraint network; it returns an intermediate represen­

tation, the dependency graph. Section 4 is concerned with 

some details of the basic algorithm and properties of the de­

pendency graphs. Section 5 suggests ways to evaluate the 

dependency graph by a sequence of geometric construction 

operations. Section 6 presents several extensions to the basic 

algorithm to represent algebraic equations, and congurence 

relations. Section 7 deals with a 3-D application of the al­

gorithm.

2  Basic Definitions and Concepts

2.1 Geometric Model

A  parametric geometric model is defined as a collection O 

=  { 0i ,02, . . . , 0fc } of geometric objects and a set C =  { 

ci, C2, . . . ,  cm } of geometric constraints among the members 

of O.

Geometric objects such as points, lines, and circles own de­

grees of freedom, which allow them to vary in size, shape, ori­

entation, or position. The set D O F  =  { do fi, do/2, • • •, dofk 

} of degrees of freedom owned by objects in O completely 

determine the set of states of the geometric model.

Geometric constraints such as those defined for 2-D points 

in Table 1 define an n-ary geometric relation among a set of 

n objects, c, =  Ci(o,1,Oi2, . . . ,  o,n, A), where A is the param­

eter of the constraint. Depending on the constraint type, 

the parameter may be a single scalar value or a vector. A  

constraint reduces the degrees of freedom from the set of 

objects by a certain number. This number will be called 

the valency of the constraint, as defined in [2]. In general, a 

valency of a constraint Ci is a positive number which is less 

than or equal to the sum of the degrees of freedom owned

n

0 < valency(ci) < Y ^ D O F ( o t]) (1)

3 = 1

where D O F (o ,j ) refers to the degrees of freedom of the ob­

ject o ; ., and valency(ci) denotes the valency of the con­

straint Ci. If the valency is equal to the total number of the 

degrees of freedom owned by the n objects, we call the con­

straint a full-valency constraint. A  full-valency constraint 

completely determines the state of the objects constrained.

W e  also define separately a special class of constraints, 

local constraints, which are unary constraints consuming all 

or part of the degrees of freedom owned by an object. For 

example, a constant x-coordinate constraint on a 2-D point 

fixes its x-coordinate in space; therefore we say that one 

degree of freedom owned by the point is consumed by that 

constraint. If the local constraint consumes all the degrees 

of freedom, we call it a fu ll local constraint.

2.2 Constraint Network

In the following sections, we will use constraint networks as 

the graph representation of a geometric model.

A  constraint network is an undirected graph which con­

sists of a finite set of nodes and a finite set of arcs. A  node in 

the network represents an object and is depicted as a rect­

angle box with two numbers separated by a slash. The first 

number, D O F OWned denotes the degrees of freedom owned by 

the unconstrained object; the second number, D O F COnsumed 

denotes the degrees of freedom consumed by the local con­

straints, if there are any. A n  n-ary relation is represented 

by an undirected arc with fan-out equal to n. W e  label the 

arc with the valency of the constraint on the side as shown 

in Figure 1. In the following sections, we will use object and 

node, as well we constraint and arc interchangeably.

If the constraint specification is consistent and non- 

redundant, a constraint network is said to be fully con­

strained, if the total number of degrees of freedom is equal 

to that of the valencies. O n  the other hand, to constrain 

n points relative to each other in 2-D space, for example, 

only 2n - 3 distance or angle constraints are required. The 

solution will be a rigid body with three remaining degrees 

of freedom. If we ignore rigid body transformations for the 

moment, we can define well-constrained, under-constrained, 

and over-constrained constraint network informally as fol­

lows: A  constraint network is well-constrained, if the num­

ber of states of the constraint network is finite. If some 

of the objects lie in a continuum, and hence there are infi­

nite number of states, then the constraint network is said 

to be under-constrained. Finally, the constraint network 

is over-constrained if there is no valid state to satisfy the 

constraint network. Note that a constraint network can be 

partly under-constrained and partly over-constrained at the 

same time.

For an under-constrained network, there will be many de­

grees of freedom stored in it. W e  will be able to change 

the state of the constraint network by manipulating objects 

within all or a subset of the degrees of freedom stored. Dif­

ferent portions of the constraint network will be involved if 

different subsets of the degrees of freedom are used.

2.3 The Degrees of Freedom Stored

Before discussing how a portion of a constraint network can 

be manipulated, the definition of the degrees of freedom

by the n objects.
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stored in a connected component of a constraint network 

is introduced.

The notion of a connected component of a constraint net­

work is defined with respect to the degrees of freedom stored. 

W hen  a node is fully constrained, it is fixed in space and can 

no longer be manipulated. W e refer to these nodes as the 

dead nodes. A  dead node will potentially make the con­

straint network disconnected in terms of degrees of freedom. 

There are two situations when a node becomes fully con­

strained:

1. When  there is a full local constraint.

2. When  it is fully constrained by fully constrained neigh­

bors.

W e  define two objects, oi and on , to be connected if

•  there exists a sequence of objects 0] ,02, . . . , 0n such 

that there is at least one constraint defined between o, 

and Oi+i for 1 < i < n, and

•  none of the o;’s are dead nodes, for 1 < i < n.

A  connected component of a constraint network is defined 

to be a maximal connected induced subgraph as defined in 

traditional graph theory [l] except that the notion of con­

nection is sharpened as above.

If G is a connected component of a constraint network, 

the degrees of freedom stored in G  can be calculated as

B , 2 / 0

D O F (G )  =  ^ 2  D O F 0wned{o)~ ^ 2  DOFconsumed(o) ~

oinG oinG

valency(c) (2)

cin G

(b ) A  d i s t a n c e  c o n s t r a i n t

A , 2 / 0 B , 2 / 0

C , 2 / 0

(c )  An  a n g l e  c o n s t r a i n t  

Figure 1: The nodes and arcs of the constraint networks.

3 Degrees-of-Freedom Analysis

The goal of the degrees of freedom analysis is to extract from 

a constraint network a connected portion which possesses a 

specified degrees of freedom. W e  can then manipulate the 

portion of the constraint network through the degrees of 

freedom acquired.

The algorithm presented below, is based on the law of 

conservation1 . W e will first establish the balance equation 

for any quantity which observes the law of conservation. W e 

will then derive the balance equations for the degrees of 

freedom of the nodes and arcs of the constraint network. 

At the end, we will present the degrees-of-freedom analysis 

algorithm which will generate a dependency graph as the 

result.

3.1 The Balance Equation

Some quantity Xi with respect to a system, can either enter 

the system or leave the system. It can also be generated or 

destroyed within the system (as shown in figure 2). W e can 

express the conservation law for x  by the so-called balance 

equation:

output of x  =  input of x  +  X generated —

X destroyed — x  accumulated (3)

If the system does not change with time, or in other words, 

the system is operated under steady-state conditions, equa­

tion 3 can be simplified with respect to the accumulation

1 Please refer to [15, 16] for a similar algorithm developed from 
a 2-D geometric point of view.
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Figure 2: A  system with input and output.

term. Since an accumulation means that the amount of 

the quantity x  in the system is increasing or, in the oppo­

site sense, decreasing, by the definition of steady-state the 

accumulation term must be zero. Therefore, the balance 

equation 3 can be shortened to:

output of x =  input of x +  X generated — x  destroyed (4)

For background information on the balance equation, we 

refer to text books on fluid flow or heat transfer.

3.2 The Dependency Graph

A  dependency graph is a directed, acyclic hyper-graph de­

rived from the constraint network. Nodes and arcs in the 

dependency graph are systems, obeying the law of conser­

vation of degrees of freedom, and therefore we can express 

a balance equation for degrees of freedom for each of them. 

A  node in the dependency graph represents an object and is 

depicted as a trapezoidal box (figure 3) with the long side 

representing the input side and the short side representing 

the output side. There are three rows of numbers in the box. 

The top row enumerates the individual degrees of freedom 

leaving the box for the next level up. The bottom row shows 

the individual degrees of freedom entering the box from the 

previous level down. The center row is the balance equation 

for the node.

A n  arc (figure 4) represents a constraint between at least 

one child node and a single parent node. The arc is labeled 

with the negative valency of the constraint and the arrow 

at the top shows the direction of the flow. For an n-ary 

constraint, there will be n - 1 child nodes. However, the 

fan-out is always one.

W e  can write balance equations for both nodes and arcs 

based on the law of conservation of degrees of freedom. 

Therefore by equation 4, for a node, we have (see also Fig­

ure 3),

DOFout =  D O F .n  + D O F owned — D O F con3umed (5) 

D O F in =  J 2 D O F '"W

D O F 0ut =  D O F out( j)

3

For an arc (see also Figure 4),

D O F out =  D O F in — valency 

D O F in  =  ^ D O F . n i k )

(6)

A A

DOFout ( 0 ) DOFout ( j )

DOFowned — DOFoonsumed + DOFin — DOFout

DOFin (0 ) DOFin ( i )

/\7\ 7\

Figure 3: The node of a dependency graph.

D O F  out
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DOFin  ( 0 )  DOFin  ( 1 )  •  •  •  DOFin  (k )  

Figure 4: The arc of a dependency graph.



Here, we treat D O F owned as the degrees of freedom gen­

erated by the object at constant rate, and D O F consum^d as 

the degrees of freedom destroyed at constant rate within the 

object. Likewise, the valency is the degrees of freedom de­

stroyed at constant rate within an arc. The incoming degrees 

of freedom which are zero or negative can be interpreted as 

the amount by which the degrees of freedom of the node is 

restricted.

4 A n  Algorithm for Constructing the De­
pendency Graph

As stated earlier, our goal is to extract from the constraint 

network a connected portion that possesses a given degree 

of freedom. In the algorithm discussed below, the connected 

portion will be represented as a dependency graph. This is 

an inverse problem, since we determine how many degrees 

of freedom we request from the root node, i.e. the topmost 

node. The task of the algorithm is it, to construct the rest of 

the dependency graph, yielding the desired output. There­

fore, a top-down approach seems to be the natural choice. 

At each node or arc, we know how many degrees of free­

dom leaving the system, and given the degrees of freedom 

generated and destroyed in the system, we will be able to 

calculate the degrees of freedom entering the system. These 

degrees of freedom, in turn, become the degrees of freedom 

leaving the systems in the previous level down.

To avoid cyclic dependency (i.e. a node occurs more than 

once in the path of the directed acyclic graph), we will con­

struct the dependency graph in a breadth-first manner. For 

more information, please refer to [17].

4.1 The Algorithm

First, we pick an object from the constraint network and 

request a specified degree of freedom, called D O F requeste<i, 

from it.

W e  make the object the root node and compute the 

amount of degrees of freedom that should enter the node 

giving the amount leaving by rearranging equation 5:

D O F in{root) =  D O F 0ut{root) — D O F owned(root) +

DOFcon sumed (root) (7)

where D O F out(root) — D O F reque!ited- The amount D O F in 

determines the total number of degrees of freedom we need 

to acquire from the child nodes in order to satisfy the re­

quest.

If m constraints, ci, C2, . . . , cm are attached to this object, 

we then expand the node by distributing the D O F i„  among 

all constraints2 and creating their corresponding arcs:

DO Fi„(root) =  DOFout(ci) +  D O F out(c2) +

■ • • + D O F out(cm) (8)

Notice that if the node expanded is not the root node, we 

need to exclude from the set of the m constraints any con­

straints which have already been used elsewhere in the de­

pendency graph.

For arc i, we can calculate the amount of degrees of free­

dom entering by rearranging equation 6:

D O F in(a )  =  D O F out(ci) — valency(ci) (9)

W e then divide D O F in(ci) provided the number of the 

fan-in of the arc is greater than one. Let the number of the

2This notion will be made clear in section 4.4.

fan-in be equal to n, and the child nodes are 0 1 , 02 , . . .  ,on . 

Then

D O F ,n (ct) =  D O F out(o i) +  D O F 0ut(oi) +

■ ■ ■ + D O F out(on) (10)

where D O F out(oj) is the degrees of freedom leaving the child 

node j. It can also be regarded as the request of degrees of 

freedom to this node.

W e  will repeat this process down the branches until either 

of the following conditions is met:

1. There are no more unused constraints, or

2. D O F 0ut of a node is less than or equal to zero.

W hen  one of those conditions is met, we can stop recursion 

and make the node a leaf node. If the second condition is 

met, we also set DOFconsumed equal to DOFowned (i.e. to 

locally fix the state of the object).

Note that if there are a mix of positive and negative de­

grees of freedom in the list of D O F out in a node, we first 

store the negative degrees of freedom away, and set it to 

zero. After the dependency graph is constructed, we pass 

the negative degrees of freedom up to its parent, and reset 

DOFconsumed of the parent node.

4.2 An Example

Figure 5 (a) shows a simple geometric model consisting of 

five points and four distance constraints in 2-D space. Fig­

ure 5 (b) shows the corresponding constraint network.

Figure 5 (c) shows one instance of the possible depen­

dency graphs derived by requesting one degree of freedom 

from point C. In order to satisfy this request, we need to im­

port minus one degrees of freedom from the neighborhood 

of point C, i.e. point B  and point D . W e  can choose from 

the following combinations to meet the requirement:

•  requesting -1 from point B  and 0 from point D,

•  requesting 0 from point B  and -1 from point D ,

•  requesting -2 from point B  and 1 from point D , etc.

The figure shows the first combination. For point B, the 

request for degrees of freedom is zero, which signifies a ter­

mination condition. Therefore, we set DOFconsumed equal 

to DOFowned for point B , and stop recursion. By applying 

the algorithm in this manner, we achieve the dependency 

graph shown.

4.3 The Degrees Of Freedom Requested

The maximum degrees of freedom we are able to attain from 

a node in the constraint network will depend on the number 

of degrees of freedom stored in the connected neighborhood 

of that node.

W e  define the connected neighborhood of an object o to be 

the maximal connected induced subgraph which contains o. 

Suppose G is the connected neighborhood of the object o. 

The maximum attainable degree of freedom of the object o 

is then

DOFmax(o) =  D O F (G )  (11)

O n  the other hand, the lower bound on the degrees of 

freedom that can be requested is zero. There are two ways 

of constructing the dependency graph if zero degrees of free­

dom are requested. First, if the algorithm above is applied, 

DOFout equal to zero is one of the termination conditions.





blindly, there will be circumstances when a request for a de­

gree of freedom fails. For example, it is a contradiction when 

a positive degree of freedom is requested from a dead node 

because the node possesses no degrees of freedom. Back­

tracking is used to search for alternative dependency graphs 

under these circumstances.

The described procedure would potentially generate in­

finitely many dependency graphs. By enforcing the follow­

ing rules, we limit the set of solutions to be finite:

• The total amount requested may not exceed that stored 

in the object.

DOFout <  DOFowned ~ D O  Fconsumed (12)

•  No positive degrees of freedom are imported.

D O F ,„ ( i) <  0 for all i (13)

These rules also guarantee that the dependency graphs gen­

erated are valid.

5 Evaluating the Symbolic Solution

Once we have a dependency graph, we will be able to eval­

uate it under various conditions, for instance when manip­

ulating part of the constraint network interactively within 

the degrees of freedom acquired.

The dependency graphs produced by the exhaustive 

search will have some extra degrees of freedom (the difference 

between the degrees of freedom of the dependency graph and 

the one requested). These extra degrees of freedom are easily 

identified in the dependency graphs since they are all stored 

in the leaf nodes. As a consequence, we can manage to off­

set these extra degrees of freedom acquired easily. For one 

thing, we can impose temporary local constraints on those 

leaf nodes. Once we have process all the nodes in this man­

ner, the degrees of freedom of the dependency graph will be 

equal to that of requested.

For the following discussion, we will assume that the de­

grees of freedom of the dependency graph is equal to that 

of requested. These degrees of freedom acquired are at our 

disposal. For instance, if we use an interactive user interface 

which supports locator devices, we can use them to interac­

tively specify these degrees of freedom. In particular, if two 

degrees of freedom are requested from a 2-D point, we can 

manipulate the coordinates of the point by assigning them 

the coordinates of the locator device.

After fixing the degrees of freedom acquired, the depen­

dency graph itself becomes a fully constrained system. We 

can solve for the new state of the dependency graph by using 

a variety of established methods for solving fully constrained 

systems.

W e  will again use the example shown in Figure 5 to de­

scribe how different kinds of constraint solvers are used to 

evaluate the dependency graph.

• Constructive constraint solver:

In constructive constraint solvers, the constraint net­

work is satisfied using step-by-step constructions. To 

solve the dependency graph shown in Figure 5 (c), we 

first pin down the one degree of freedom of point C 

interactively. Since point B  is fixed, point C  must lie 

on the circle centered at point B. In other words, it 

only takes one parameter to completely determine the 

position of point C. After that is done, the position of

point D  can be determined by intersecting the two cir­

cles centered at point E  and new point C respectively. 

For more detailed information, please refer to [15, 16]. 

Generally we try to find solutions as intersections of 

circles and lines. If this is not possible we can try to 

apply some iterative search method.

Another constructive constraint solver quite useful for 

this purpose is Fudos’ bottom-up method [4], In their 

method, a cluster corresponds to a well constrained sys­

tem, and behaves like a rigid body which can only be 

translated or rotated. Therefore, to maintain a con­

straint network, clusters detected in the dependency 

graphs need not be evaluated again. .

•  Numerical constraint solver:

In numerical constraint solvers, the constraint network 

are satisfied by first translating it into a system of equa­

tions and then the system is solved by iterative method 

such as Newton-Raphson method.

For example, a distance constraint between two points, 

(-Xi,Yi) and (X-2, K>), can be translated into the fol­

lowing equation:

(X i - X 2)2 +  (Yi -  Y2)2 -  D 2 = 0

After translating the dependency graph shown in Fig­

ure 5 (c) into a system of equations, we get three equa­

tions derived from three distance constraints respec­

tively, and four variables representing the coordinates 

of point C  and point D . As before, one degree of free­

dom of point C  needs to be fixed interactively. Finally, 

we have a total of four variables and four equations, 

which can generally be solved by Newton-Raphson it­

eration.

One advantage of using numerical methods in this ap­

plication is that the constraint networks were already 

satisfied, and each time, we only make a small perturba­

tion to the previous states. Therefore, we will not have 

the problem of coming up with good initial guesses. 

However, the disadvantage is that while reevaluating 

the states of the constraint networks incrementally, we 

will, from time to time, come across states which make 

the Jacobian matrices ill-defined.

W e  experimented with both, constructive, and numerical 

methods in our implementation of the algorithm. W e  con­

cluded that a constructive, geometric method is very efficient 

and robust in those cases where an analytic solution can be 

found. W e  plan to extend this method by adding an iterative 

component which approximates solutions if no analytic solu­

tion can be found. The degree of freedom analysis step helps 

making the constraint subsystem fully constrained, and also 

in coming up with an evaluation plan.

6 Extensions of the Approach

In this section, we describe several extensions and variations 

to the basic algorithm.

6.1 Representing Parameters as Objects

In this section we propose to represent parameters of con­

straints explicitly as an object in the constraint network. 

Figure 7 shows the representation of a distance constraint 

with the parameter. Scalar parameters own one degree of 

freedom. If the parameter represents a constraint it’s degree
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Figure 7: Constraint network with parameters.

of freedom is consumed locally. Without locally constrain­

ing the parameter, adding the distance constraint would not 

change the overall degree of freedom. To change the value of 

the parameter in this representation, we only need to make 

the node representing that parameter the root node, and 

request one degree of freedom from it. This principle can 

be used to implement an incremental constraint solver that 

finds a solution, everytime a new constraint is added. Once 

the constraint is established, the value of the parameter is 

fixed by a local constraint.

Using parameter objects, we can also represent congru­

ence relations, i.e. equality relations between parameters of 

the constraints. Whenever the parameters of different con­

straints afe set to be equal, they will share the single object 

that represents the parameter.

6.2 Algebraic Relations

Using the parameter representation described above, the 

degrees-of-freedom analysis can also be extended to han­

dle algebraic relations, between variables or between the pa­

rameters of the constraints. Algebraic operations ’+ ’ and 

’x ’ are introduced as relations with valency one between 

parameters.

Let’s first take a look at an example involving algebraic 

relations only. The graph in figure 8 (a) for example, shows 

a linear equation between 5 variables. To change C, a prop­

agation method such as retraction will come up with a plan 

like the one shown in figure 8 (b). It says that once we get 

a new value for C, we can use A  and C  to deduce B, and 

use C and E  to deduce D . Transforming the same problem 

into our representation, we obtain a constraint network as 

shown in figure 8 (c). Figure 8 (d) shows a dependency 

graph that will lead to an evaluation plan equivalent to the 

plan constructed by the retraction approach.

Next, we will look at an example involving both geometric 

and algebraic relations. Figure 9 (a) shows a symmetric 

triangle with an additional algebraic relation defined on the 

three sides. The algebraic relation is

a + 0  =  7

where 7 is a constant. Point A  is fixed in space. W hen  point 

B is dragged, a dependency graph is constructed as shown 

in Figure 9. A n  evaluation plan for a constructive constraint 

solver can be set up to maintain the triangle:

1. Point B  is assigned the coordinates of the locator de­

vice.

A=3
C(unbounded)

E=7

-<C--- "
B(unbounded)

A, 1 / 0

............
D (unbounded)

(b )

C, 1 / 0

B, 1 / 0 E, 1/0

D, 1 / 0

(c)

l-0+0=l 

0 0

-1

l-0+0=l

0

l-0+0=l

0

A

1 0 0 1

1 l-l+0=0 l-l+0=0 1

1 0 0 1

(d)

Figure 8: An example of algebraic constraints.
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Figure 9: A  symmetric triangle with algebraic constraints.

2. Parameter a  is equal to the distance between point A  

and new point B.

3. Parameter /3 is equal to 7 - a.

4. Point C is determined by intersecting the two circles 

centered at new point B  and point A  respectively with 

the radii equal to the new parameters.

7 Constraints in 3-D

In this section, we describe an interactive 3-D constraint sys­

tem that supports polyhedron definition and manipulation. 

A  polyhedron is made up of half planes, edges, and vertices. 

A  repertoire of constraints can be defined on these geomet­

ric objects. W e  will show how the same degrees-of-freedom 

analysis algorithm can be used to deal with interactive ma­

nipulation of 3-D models.

7.1 Boundary Representations as Constraint 
Networks

Boundary representations (B-reps) of polyhedra usually con­

sist of faces, edges, and vertices. However, polyhedra could 

be defined by only one type of primitives, namely half spaces. 

Edges and vertices are objects derived from intersecting half 

spaces. A  half space is defined by an oriented plane. A  point 

p  on the plane can be written as:

p • n (14)

A  half space in 3-D has two rotational and one translational 

degrees of freedom. The end points of all the unit normal 

vectors will fall on the surface of the unit sphere centered 

at the origin. W e  will refer to the point as the orientation 

point of the corresponding half plane.

An  edge in a B-rep is derived by intersecting two planes. 

W e  can represent the incidence relation between edges and 

planes by constraints, as shown in figure 10 (a).

A  vertex can be derived from three intersecting planes, or 

by intersecting one edge and one plane, as shown in figure 10

(b) and (c).

Note that the total number of degrees of freedom stored 

in the constraint network is unchanged by the introduction 

of the derived objects, since they are totally dependent on 

the half spaces.

Representing a derived object is sometimes useful, for in­

stance, when a constraint is defined on it. There are several 

types of constraints that are defined on derived objects. For 

example, a distance constraints can be defined between a 

plane and a vertex, or between two vertices as shown in 

figure 11.

Figure 12 shows an example polyhedron (a block, with a 

notch cut out). Suppose that vertices v4, and v6 are fixed in 

space. If we grab vertex vl and request one degree of free­

dom, the degree-of-freedom analysis algorithm will set up a 

dependency graph as shown in figure 13. The dependency 

graph indicates that in order to move vertex vl with one 

degree of freedom, we have to change plane p3 with one de­

gree of freedom, while keeping pi and p2 fixed. Since v4 and 

v6 are fixed, plane p3 will rotate around the axis through 

v4 and v6. In addition, vertex v2 which is on p3 will move 

along the edge derived from intersecting planes p2 and p5. 

Similarly, vertex v3 will move along the edge derived from 

intersecting planes p2 and p6. Figure 14 shows the snap­

shots taken from the interactive system, running this exam­

ple problem. The execution time to build the dependency
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Figure 10: Incidence relation between planes, edges, and 

vertices.

graph was about 1/20 second on a Sparc-10. The evalua­

tion of the symbolic solution is done in real time. Note that 

all the incidence constraints between the planes and vertices 

were derived automatically from the boundary representa­

tion, by the system; only the two position constraints were 

added interactively.

An  interesting observation is that there is a correspon­

dence between the dependency graph found by the algo­

rithm, and the resolvable sequence defined in Sugihara’s pa­

per [29]. One of the resolvable sequences that can be defined 

for the model above is:

( ■ ■ • pi • • ■ p2 ■ ■ • p5 ■ ■ ■ p6 • • • v4 • • • v6 • • • vl p3 v2 v3 )

In this partial sequence, we observe that all the objects that 

are fixed in the dependency graph appear before the vertex 

vl. Vertex vl is placed after plane pi and p2; therefore it 

has one degree of freedom along the intersecting edge. Once 

we placed vl, we can place p3, v2, and v3 as shown in the 

resolvable sequence.

In the next example, we added distance constraints be­

tween vertices vl and v2, v2 and v5, v5 and v3, v3 and v4. 

The construction sequence found by the solver involves in­

tersections between spheres and planes. The behavior, when 

dragging vertex vl is quite different to before. Two snap­

shots of the interactive session are shown in figure 15.

With the added constraints, the system took about 10 

seconds to derive the symbolic solution in form of a depen­

dency graph. Again the evaluation can be done at inter­

active speeds. There is indication, that the execution time 

for the symbolic part of the constraint solution grows ex­

ponentially with the number of constraints involved (due to 

the non-deterministic nature of the search). This behav­

ior is typical for all symbolic algebraic constraint solvers 

(for instance Grobner bases or the resultant method), and 

there is evidence that a polynomial complexity cannot be 

achieved, except in very restricted problem domains. This 

is usually not a problem for two dimensional problems, or 

for mostly underconstrained situations. However, in three 

dimensions, and for well constrained problems this might 

become prohibitive. Once the symbolic solution is found, it 

can be evaluated in linear time, however. Fortunately, due 

to the geometric nature of the constraint solver, it can be in­

tegrated well with other geometric construction operations. 

The idea is to use constructors and dependencies most of 

the time, and to add only a few dimensions as constraints, 

rather than expressing everything in a constraint context. 

Also, there are many possibilities for preprocessing and for 

speeding up the constraint solving which haven’t been ex­

plored, yet.

The degree of freedom analysis algorithm works well in 

the above case. However, if we fix vertices v3 and v4 in­

stead, the algorithm will possibly construct a dependency





Figure 16: A  representation with redundant degrees of free­

dom and valencies.

graph similar to the one above (by simply exchanging the 

labels v3 and v6 in figure 13), but it will fail to evaluate it. 

The reason is that the algorithm assumes general positions 

for all objects, and hence it is unable to recognize the special 

case where vertices vl, v3, and v4 are collinear. The pro­

posed solution, namely to rotate p3 about an axis through 

v3 and v4 does not yield the desired degree of freedom for 

vl. One remedy is to represent the edges explicitly. This 

way, the analysis algorithm will realize that vl is incident on 

an edge that is completely constrained by v3 and v4, and the 

only degree of freedom vl has, is along this edge. Through 

backtracking it will produce a dependency graph that will 

move half plane pi in one degree of freedom and fix half 

plane p3. However, this approach raises another difficulty. 

Representing all the incidences between edges and vertices 

is redundant, and will lead to an over-constrained system. 

O n  the other hand, since the redundant constraints are al­

ways consistently over-constrained we may fix the problem 

by artificially increasing the degrees of freedom of each ver­

tex to compensate for the redundancy. Figure 16 shows a 

subset of the constraint network around vertex vl (points 

are 9-dimensional, edges are 4-dimensional).

8 Conclusion

The graph based algorithm presented in this paper is a very 

general tool for reasoning about constraint systems. The 

algorithm is independent of the dimension of the space. W e 

have presented a number of 2-D examples as well as an appli­

cation to 3-D space. The method works for both, geometric 

constraint systems and algebraic ones.

A  variety of symbolic or numerical techniques can be used 

in the evaluation part. W e  chose to implement a geometric, 

constructive method, which seeks to find solutions by inter­

sections of geometric objects, such as lines, circles, planes, 

spheres, etc. A  construction plan is derived directly from the 

dependency graph. A n  iteration mechanism could also find 

solutions that cannot be directly computed symbolically.

The approach may prove to be a powerful tool in interac­

tive geometric modeling, especially in 3D, with newly emerg­

ing virtuality devices, such as gloves, and bats. The success, 

however, will hinge upon powerful evaluation methods, and 

powerful user interfaces techniques. The framework given 

here lays the theoretical foundations. The prototype imple­

mentation shows that the approach is working quite well in 

interactive situations.

With the approach taken here we provide the capability

to simulate the degrees of freedom of under-constrained net­

works of constraints which enable user to design in a less 

restricted way. Users are not forced to specify shapes com­

pletely by constraints but can freely mix constraint defini­

tions with geometric constructions in a more intuitive way.
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