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A B S T R A C T

This paper investigates the use of generalized 

cross-correlation in pattern matching when the objects may 

be of one or two dimensions. Generalized correlation can be 

used to determine the amount of dilatation and rotation 

between a given template and an object, in addition to 

determining the relative translation. Two techniques are 

discussed which break this four-dimensional correlation into 

two two-dimensional correlations making the problem 

computationally feasible. The techniques were developed for 

a specific class of images, however they can be applied to a 

more general class.



C H A P T E R  I

INTRODUCTION

In recent years it has become practical and ,desirable 

to have the computer analyze images. An image is a 

representation of a three-dimensional scene which may be 

composed of many objects on an arbitrary background. Image 

analysis can be used for many purposes in a variety of 

fields where the capability for a machine to interpret a 

scene is desired. Some applications include processing of 

satellite photographs and automatic monitoring of production 

lines. The ultimate goal is to be able to determine what 

objects appear in a three-dimensional scene and any desired 

information about those objects. The problem is that each 

object in the image has six degrees of freedom: two 

translations, size (dilatation), rotation in the plane, and 

two rotations out of the plane. To further complicate the 

problem one object may partially obscure another. Although 

at this time a complete solution is beyond our insight and 

capabilities, it is hoped that analysis of simpler cases 

will enable us to understand the problem completely.

In this context, the work presented here is based on 

the restriction that all images are of a single object on a 

black background. However, there are no restrictions on the



type of object that may appear in the image. For each 
object in which we are interested, we need a template which 
contains an instance of that object, to match with the 
object in the image. The object in the image may differ 
from the one in the template by translation, dilatation, and 
rotation. There are two questions which need to be answered 
in the context of this problem. They are, is there an 
instance of the template object in the image, and if so, 
what is the rotation, dilatation, and translation of the 
image object with respect to the template object. The 
techniques developed will then be extended to include images 
which meet slightly less stringent conditions.

Cross-correlation has been used in the field of pattern 
recognition primarily for the determination of the relative 
translation between the image and the template. In this 
paper, the term generalized correlation refers to the 
correlation of two functions with respect to dilatation 
(size), rotation, and translation. Techniques are described 
which enable one to use generalized correlation to determine 
the relative size and rotation along with the translations. 
When doing this, one is dealing with a four-dimensional 

problem which is computationally impractical. The goal of 
this work is to find new techniques to reduce the

dimensionality of the generalized correlation computation.
Chapter II discusses cross-correlation, correlation 

coefficients and computing cross-correlation using Fourier



Transforms. The reader familiar with these topics may skip 

this chapter with no loss of continuity.

Chapter III presents generalized correlation and two 

methods for computing it. Generalized correlation can be 

broken into two two-dimensional problems. Both methods 

transform the image into a domain in which some degrees of 

freedom are eliminated. The resulting problem is easier to 

attack.

Chapter IV presents algorithms to compute generalized 

correlation for both one and two dimensional images. The 

images are of single objects on a black background. For 

each dimensionality two approaches to the computation of 

generalized correlation are examined.

Chapter V examines these algorithms for applicability 

to other types of images. Examples of the types of images 

considered are multiple objects on a black background and a 

single object on a textured background. To extend this 

technique to other cases, it may be necessary to preprocess 

the image before the correlation can be done. *

Chapter VI is concerned with the problems encountered 

and some computational techniques used in implementing the 

algorithms on a digital computer. The problems are all 

results of the discrete and finite nature of the computer. 

Ways are discussed which minimize the effects of these 

limitations without any significant change to the 

algorithms.
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Chapter VII presents the results of testing the system 

for several different types of images while Chapter VIII 

concludes this paper with a discussion of the possibilities 

for the future.



C H A P T E R  II

BACKGROUND

Conceptually, correlation provides a quantitative 
measure of the similarity of two functions. This work uses 
two types of correlation, cross-correlation and generalized 
correlation. Cross-correlation, which is discussed in this 
chapter, is used to determine the degree of correlation 
between two functions when one is translated with respect to 
the other. Generalized correlation will be discussed in 
Chapter III. This chapter may be skipped by readers 
familiar with cross-correlation.

Cross-Correlation 
The cross-correlation function computes the correlation 

between two functions in terms of relative translations. In 
one dimension this takes into account the effects of only 
one variable (degree of freedom), namely the translation 
(shift). The cross-correlation <J>(u) of two functions f(x) 
and g(x) is defined as

 ̂) =T 21T ! /j f f (x )g (x + u )d*

where Ti and T 2 are denote the interval of interest. Thus, 
for any value of u, <t>(u) is the correlation between f and a 
version of g which has been shifted u units. In the case of



two dimensional functions, the cross-correlation accounts 

for translations in the x and y directions and is defined by

+ (“>v )=t P T T  rP r7  / ti J^f(x,y) g ( x + u , y + v ) d y d x

where T* , T2 , Ri , and R2 denote the interval of interest.

One of the disadvantages of the cross-correlation 

function is that it gives no indication to the absolute 

degree of similarity. All it provides for each shift is a 

measure of the area of overlap between the two functions. 

This deficiency can be rectified by normalizing the 

correlation to arrive at the correlation coefficient r(u) 

which is defined as

r(u)=- ♦ Cu)

(x )2dx / } ^ g ( x + u ) 2dx

The correlation coefficient r(u) ranges in value from +1 to 

-1. It is interesting to note that r(u)2 can be interpreted 

as the fraction of one function attributable to the other 

[1]. It has been shown that the correlation coefficient is 

an absolute measure of the closeness of two functions in a 

least squares sense [2]. The correlation-coefficient in two 

dimensions is

r / v _ ___________________________________________ j> (u , v )__________________________________________________

T J T T 7  R l V ' ' /;T ^ R ^ f ( x >l')2dy dl(/ T i / R i g()<+U-->'+ v ) 2 d y d x

When using cross-correlation in two dimensional pattern 

matching, there are usually two objectives. The first is to



determine if there is an instance of the template in the 

image and the second is to find where that instance occurs. 

Both answers can be found by examining the 

correlati on-coeffici ent function r(u). This function has 

maximum value at the position corresponding to the most 

probable translation of the image relative to the template. 

At that point one can then make the decision whether or not 

the maximum is significant by examining the value of the 

function. This technique is often used with optical 

functions (also called matched filtering), but has the 

limitation that the template must be the same size and 

orientation as the image [3]*

Computation of Cross-Correlation 

The cross-correlation between two functions f(x) and 

g(x) can be computed using Fourier Transforms as follows:

* ( u ) = / - 1 ( F ( a ) ) G * ( a ) ) )

where F( oj) and G(u>) are the Fourier Transforms of f(x) and 

g(x) respectively, and " 1 denotes the inverse Fourier 

Transform. The advantage of this approach to computing 

cross-correlation over direct integration is when working 

with discrete functions the Discrete Fourier Transform can 

be implemented in an efficient manner such that it becomes 

faster to cross-correlate two functions using Fourier 

Transforms than using the defining summation. The 

implementation details of cross-correlation will be





C H A P T E R  III

A limitation of cross-correlation is that the functions 

are correlated for relative translations only. The concept 

of generalized correlation is to correlate two functions for 

relative rotation and dilatation (scaling) as well as for 

translations. This chapter presents generalized correlation 

and discusses techniques for computing it. The goal of the 

computational techniques is to develop algorithms for 

efficient evaluation of the generalized correlation by using 

transforms to arrive in a domain in which the problem 

statement leads to a simple evaluation technique.

Generalized correlation will be discussed first, 

followed by a discussion of the computation techniques to be 

used. The algorithms are presented in the next chapter 

since each algorithm uses a different set of techniques to 

determine the generalized correlation. The computation of 

the generalized correlation is based on separating the 

problem into two simpler sub-problems.

Generalized Correlation

Generalized correlation extends the concept of c r o s s 

correlation to account for the ways other parameters affect 

the value of the correlation-coefficient. In one dimension

THE M A T H E M A T I C S  OF G E N E R A L I Z E D  C O R R E L A T I O N



the correlation is done for both dilatation (size) and 

translation. The correlation can then be defined as a 

function of translation, u, and size, s. This gives

1 r T$ (u , s ) =T -i1 - j T 2f (x ) g (sx + u ) dx 
1 2 “ 1 1 1 1

with the corresponding correlation coefficient

- n ------------------------------------------- -----------
■ ■ v / T 2 f ( x ) 2c l x J T 2 g ( s x  + u ) 2 d x

r(u ,s )=— .----p . ----- iilLil)

T - V V J  T2 f ( x ) 2d x j j :

Note: Generally, only the correlation function will be used 

since the correlation coefficient can be obtained at any 

time by dividing by the product of the norms, or rms values, 

of the functions over the appropriate interval.

Generalized correlation in two dimensions uses two 

parameters which do not appear in the cross-correlation. 

They are dilatation (size) and rotation (orientation). Both 

of these parameters can be thought of as creating new 

functions, but it is more revealing to think of the 

correlation as a function of horizontal position -, u, 

vertical position, v, size, s, and rotation, a . This gives



y 1 =s (ycosct-xsi na )+v

One of the major problems with using generalized 

correlation in practice is that since it is a function of 

four independent variables it becomes computationally 

impractical for all but small intervals of u,v,s, and a. If 

one increases the interval for each variable by the same 

factor k then the amount of computation increases by k 1*. 

Furthermore, if the limits of both R and T are increased by 

some factor q the area of integration is increased by q 2 . 

Consequently it is desirable to find ways to compute the 

four dimensional correlation other than by direct 

i n t e g r a t i o n .

Separation of the Generalized Correlation 

This section discusses two techniques of dividing the 

four-dimensional correlation <J>(u,v,s,a) or r(u,v,s,a) into 

two two-dimensional problems. Both techniques are based on 

the independence of the four degrees of freedom. This 

independence enables one to determine the values of the 

parameters representing the degrees of freedom separately. 

Note that these separations assume that each image is of a 

single object on a black background. The first technique 

for computing the generalized correlation depends on the 

following property of the Fourier Transform: if

^ ( f ( x ) )  = F(oi)

then
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translations in one domain become linear phase components in 

the other, the magnitude of the Fourier Transform of an 

image has no information concerning the location of an 

object. This enables one to determine the scale and 

rotation without having translational information that one 

can not interpret correctly. The portion of the Fourier 

Transform removed, that is the phase, contains far more 

information than just the translational components. 

Removing the phase eliminates information that prevents the 

Fourier Transform from being ambiguous. An example of the 

ambiguities that phase resolves is a reflection of the 

object through the origin (in one dimension, a mirror 

image). Determination of the scale and rotation is 

discussed in the next section on exponential polar 

coordinates. This method of separation will be referred to 

as the magnitude method.

The second technique for computing the generalized 

correlation is based on the invariance of the centroid, or 

first moment of an object, under rotation and scaling. The 

centroid of a function f(x,y) occurs at a point (a,b) given

by

(x,y)(x,y)dydx 

/ i j / R j f  U . y ) dy dx



Computation of the centroid immediately obtains the 

translation portions of the correlation. The scale and 

rotation factors are then obtained by first tr ansl a t i n g  the 

object so that the centroid occurs at the o rigin and then 

correlating with respect to scale and rotation. This method 

will be referred to as the centroid method.

Exponential-Pol ar Coordinates

The previous section discussed ways of sep ara t i n g  the 

generalized correlation into two lower dimensional problems. 

In both cases, the image is left in a domain in which 

translational information is not present. What is desired 

is to cross-correlate these two functions with respect to 

scale and rotation to determine what those factors are. 

Cross-correlati on correlates functions for different shifts, 

hence in this case another domain is needed where scale 

changes are reflected as shifts in one direction and 

rotations as shifts in the other.

A rotation of an object, by the angle a, about the 

origin in a rectangular coordinate system is equivalent to 

shifting the object by a along the angle axis in a polar 

coordinate system. In making this conversion, it is 

necessary to insure that the correlation is not affected by 

the coordinate system in which the function is expressed. 

Examination of the Jacobian of the transformation gives



J / R Xy f (x «y)g (x ' ,y')dydx = / / Rr0f(r,e)g(r' ,9 1 )rdrde

x 1 = s (xcosa+ys i na) + u 

y 1=s(ycosa-xsi na) + v 

r ' = sr

and 0 ' =0 + a

for cross-correlation where Rxy and Rr0 are equivalent 

domains [4].

One of the disadvantages of rectangular coordinates is

that scaling an object affects its description in both x and

y. In polar coordinates, however, scaling affects only the

radius, r. By converting to an exponential basis for r,

scale factors are converted to shifts. This conversion is

achieved by the change of variables r=ew where w is the new

independent variable.

Figure 1 illustrates this conversion for a one

dimensional signal. In one dimension the radius r is

equivalent to the usual independent variable. Given f(r)

w
and a scaled version of it, f(ar), substituting r=e and 

b
a = e

f (r ) =f(ew )=g(w)

f ( a r ) = f ( a e W ) ;

=f(e e )

= f ( e w + b )=g(w+b)

w h er e

F i g u r e  1 (e) and (f) s h o w  a o n e - d i m e n s i o n a l  e x a m p l e  of two
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functions after the change of variables where each function 

has been multiplied by eW/̂  in preparation for 

cross-correlating. The transformed correlation is

/ R r f ( r ) g ( s r ) d r = / Rwf(w) g( w + v ) e w dw

where Rr and Rw denote equivalent domains.

In two dimensions the same change of variables r=ew is 

applied radially. Using this transformation, scaling in r 

is equivalent to shifting in w. Again, we need to insure 

the correlation is invariant. Here the Jacobian of the 

transformation r=ew gives

■^Rref ( r’0 ) 9 ( s r’0)r drd0=/ / R w e f ( w’e)9 ( w + v’0 )e2Wdwde

The two step change of coordinate systems shown can be

thought of as a single change of variables where

w
x=e cosa

and .

y = e ws i n a

This gives the same result as the two step process described 

a b o v e .

This one-dimensional coordinate system will be referred 

to as exponential coordinates, while the two-dimensional 

will be called exponential-polar coordinates. The advantage 

in converting from rectangular coordinates to exponential- 

polar coordinates is that scale changes map into shifts 

along the w axis and rotation maps into shifts along the 0
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axis. A two dimensional cross-correlation can then be done 

to determine the scale and rotation. Note that this 

conversion is defined only for non-negative values of r.

Generalized correlation can determine the

translational, rotational, and scale relationships between 

two functions. Two methods have been discussed for 

separating the generalized correlation into two problems 

which are easier to solve. Both techniques assume that the 

function is a single object on a black background. 

Exponential coordinates were developed as a domain in which 

scale changes are reflected as shifts along one axis and 

rotations are reflected as shifts along the other axis.



C H A P T E R  IV

ALGORITHMS FOR COMPUTING 

GENERALIZED CORRELATION

Generalized correlation can be useful in pattern 

matching. When given a template which has an instance of 

the object to be found, generalized correlation helps one 

discern if that object appears in the image. Traditionally, 

the template object can differ from the instance in the 

image only by translation, thus cross-correlation is used to 

find the instance. The use of generalized correlation makes 

it possible for the template object to differ from the 

instance in the image by a rotation and scale change in 

addition to the translations.

The previous chapter discussed the significance of 

generalized correlation and the mathematical techniques used 

in computing it. This chapter will present algorithms which 

use generalized correlation in pattern matching. The 

techniques presented compute the correlation assuming the 

function being correlated is of a single object on a black 

background. First, the magnitude and centroid methods for 

one-di mensional pattern matching will be described. 

Secondly, these methods will be discussed in relation to 

two-dimensional pattern matching.
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This work is concerned with two of the degrees of 

freedom of a one-dimensional function. The first degree of 

freedom is translation. The object of interest may occur 

anywhere along the independent axis. Cross-correlation is 

often used to determine the value of this variable. 

However, cross-correlation can not determine if the 

independent variable has been scaled. This is the second 

degree of freedom with which this section is concerned. As 

previously discussed, generalized correlation in 

one-dimension facilitates the computation of the most 

probable values for the variables which represent these 

derees of freedom by breaking the two-dimensional problem 

into two o ne-dimensional problems.

Magnitude Method

The algorithm for computing the one-dimensional 

generalized correlation by the magnitude method is outlined 

in Figure 2. The first step is to take the magnitude of the 

Fourier Transform of both the template and the image. This 

removes all information concerning the location of the 

o b j e c t s .

The second step converts scale factors to shifts by

converting to exponential coordinates as discussed in the 

exponenti al-polar section of Chapter III. This conversion 

is dependent on two factors: a) the scaling being done about

O n e - D i m e n s i o n





the origin, and b) there being no translation between the 

template and the image. Using the magnitude of the Fourier 

Transform insures the above conditions are met, because the 

magnitude of the Fourier Transform of a scaled object is 

scaled about the origin and there is no translation in it. 

This makes the conversion possible. Since the magnitude of 

a real function is even, only the non-negative frequencies 

need be considered. This is a prerequisite for the use of 

the exponential coordinates.

The third step computes the cross-correlation of the 

two functions, i .e .,magnitude of template in exponential 

coordinates and magnitude of image in exponential 

coordinates. This cross-correlation is from -» to » since 

the coordinate change maps the frequencies between 0 and 1 

into the range -» to 0. The peak in this correlation occurs 

at the location b, where the true scale factor s is related 

to b by

-b
s = e

as derived in Chapter III. At this point a decision can be 

made whether or not the image contains an instance of the 

object in the template. Computing the

correlation-coe fficient (which ranges between +1 and -1) 

gives the user a basis on which to decide. The decision of 

which values represent a match must be determined 

experimen tally on sample data.

If it is decided that there is a match, then there



remains only to determine the amount the image has been 

shifted with respect to the template. First, using the 

scale factor already determined, a scaled version of the 

template is created in which the template object is the same 

size as the object in the image. The image is now 

cross-correlated  with the scaled template. The peak occurs 

at a point u, meaning the image has been shifted by u units 

with respect to the template. It is not necessary that the 

correlation coefficient be computed at this point if the 

match/no match decision has been made.

Summarizing the magnitude method for o ne-dimensional 

generalized correlation, there are five steps.

1. Find the magnitude of the Fourier Transform of the image 

and the template

2. Convert both the image and the template to exponential 

coordinates

3. Cross-correlate to determine the scale factor

4. Create a scaled version of the template of the same size 

as the image

5. C ross-correlate to determine the translation

Centroid Method

The centroid method for computing one-dimensional 

generalized correlation determines where the centroid of the 

image is and translates the image so the centroid is at the 

origin. This removes the translational effects. The next 

step would be to convert the image into exponential



coordinates. It is at this point the centroid method in 

one-dimension breaks down.

The conversion to exponential coordinates has two 

assumptions. The first is the object is scaled about the 

origin. The second is the values of the function f(r) for 

negative r do not matter. After shifting the centroid to 

the origin, the first condition holds, however, the second 

one does not. This is because there is part of the function 

on each side of the origin. As a result the centroid method 

is not used in one-dimension.

Two-Dimension

Four degrees of freedom will be considered using 

two-dimensional generalized correlation. Two of the degrees 

of freedom are the translation in x and the translation in 

y. An object can occur anywhere in the plane and so both 

translations are needed to locate it. The other two degrees 

of freedom are rotation and change of size (scaling). 

Two-dimensional cross-correlation can be used to locate an 

object in an image when the template object differs only by 

translation. However, generalized correlation can locate an 

object in an image when the template differs by two 

translations, a rotation in the plane and a change in size. 

Trying to correlate with respect to four independent 

variables is a four-dimensional problem which was discussed 

in Chapter III.

The f o u r - d i m e n s i o n a l  g e n e r a l i z e d  c o r r e l a t i o n  can be



separated into two sub-problems. The first technique of 

separation to be discussed is the magnitude method. This is 

based on using the magnitude of the Fourier Transform to 

remove the translational information from the analysis. The 

second technique is the centroid method. This method 

determines the translation by using the fact that the 

centroid of an object is invariant under rotation and 

scaling of the object about the centroid.

Magnitude Method

The magnitude method for computing the two-dimensional 

generalized correlation is very similar to the magnitude 

method for one-dimensional generalized correlation. The 

basic approach is:

1. Remove the translational information

2. Determine the scale factor and the rotation

3. Use the scale and rotation factors to help determine the 

translations

It is important to remember that it is assumed that the 

functions are each of a single object on a black background. 

Figure 3 outlines the flow of the algorithm.

The first step of the algorithm is take the magnitude 

of the two-dimensional Fourier Transform of the image and of 

the template. This removes the translation dependent 

information. The magnitude of the Fourier Transform of an 

image is an even function along radial lines. The 

importance of this is that in the process of eliminating the
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phase more information is lost than need be, including the 

ability to distinguish between a rotation of a and a 

rotation of a+ir. The consequences will be discussed more 

l a t e r .

The second step of the a lgorithm is to convert the 

magnitude from rectangular coordinates to expon ential-polar 

coordinates. This conversion was described in Chapter II. 

The magn itude of the Fourier Transform is centered at the 

origin. Scaling and rotating an object in the image domain, 

scales and rotates the magnitude about the origin. This is 

a prerequisite for the transformation to have the desired 

e f f e c t .

The magnitudes of the image and the template are then 

cross-corr elated in exponentia l-polar coordinates. If the 

image is scaled by a and rotated by a then the peak in the 

correlation occurs at (b,g) where

a = e-b 

and either a = £

o r a = (3 +tt .

The value of a can not be determined completely because the 

correlation is done with the magnitudes of the image and the 

template. At this point the decision can be made whether or 

not the object in the image is the same as the object in the 

template. The correlation coefficient can be calculated to 

give an indication of whether or not the functions match. 

The closer the value of the correlation coefficient is to 1



the more probable the two functions are the same. However, 

the smallest value which indicates a match has to be 

determined ex perimentally for each type of application.

The fourth step uses the information generated in the 

previous step to make two templates which have an instance 

of the object the same size as the instance in the image. 

In one template the object has been rotated by 6 and in the 

other the object has been rotated by 3 + it . This insures 

that one of the two scaled templates has the object oriented 

the same way as it is in the image. The last step 

cross-correlates the original image with the two scaled and 

rotated templates. The translations and the decision of 

which rotation is correct is made in this step. The 

correlation coefficient for each correlation must be 

computed. The correlation with the larger peak value is the 

one with the correct value. Furthermore, the peak occurs at 

(u,v) or, in other words, the image was shifted by u in one 

direction and v in the other direction relative to the 

template. The correlation coefficient computed here could 

be used to make the decision on whether the template and 

image match rather than computing it when correlating for 

scale and rotation.

In overview, the algorithm for computing

two-dimensional generalized correlation is:

1. Compute the magnitude of the Fourier Transform of the 

image and of the template



2. Convert both to exponential-po lar coordinates

3. Cross-correlate to find the scale factor and the two 

possible rotations (3 and 3+ir)

4. Create two scaled and rotated templates, one for each 

rotation to find the correct rotation and the 

translation

Centroid Method

The centroid method for computing the generalized 

correlation in two-dimensions computes the centroid of the 

image and template in order to determine and remove the 

translation. It is necessary that the image and the 

template both be of a single object on a black background 

otherwise the location of the centroid of the image may not 

be at the centroid of the object. This would cause an 

incorrect analysis of the situation. Figure 4 outlines the 

flow of this algorithm.

The first step is compute the centroid of the image and 

of the template. Then shift the image and the template so 

the centroid of each is at the origin. In this step the 

translation has been determined and removed. What remains 

to be determined is the scale factor, rotation, and whether 

the image object is an instance of the template object.

The second step converts the image and the template 

from rectangular coordinates to expon ential-polar 

coordinates. Since the centroid is invariant under scaling 

and rotation, the image will be scaled and rotated about the





conversion to exponentia l-polar coordinates will have the

desired results.

The third and last step is the cross-correlation to

determine the scale factor and the rotation. If the image

has been scaled by a and rotated by a then the peak in the

cross-cor relation occurs at (b,g) where

- b
a = e 

and a = g .

The correlation coefficient can be calculated in order to 

assist in the match/no match decision. Again, the closer 

the value of the coefficient is to 1, the more likely it is 

that the peak is caused by a match between the template and 

the image.

The centroid method algorithm is relatively short and 

simple. It is:

1. Compute the centroids of the template and image, shift 

so the centroids are at the origin

2. Convert to exponentia l-polar coordinates

3. Cross-correlate to determine the scale factor and the 

rotation

Summary

This chapter has described algorithms for using 

generalized correlation when the template and the image are 

of a single object on a black background. Algorithms for 

both one-dimensional and t wo-dimensional pattern matching

o r i g i n  w i t h  r e s p e c t  to the t em p l a t e .  This in s u r e s  that the





APPLICA TIONS OF GENERALIZED CORRELATION 

TO PATTERN MATCHING

The algorithms described in Chapter IV assume both the 

image and the template are of a single object on a black 

background. Under some circumstances it is possible to use 

these techniques as part of a pattern matching scheme when 

the image is not of a single object on a black background. 

The three schemes presented in this chapter consider images 

composed of multiple objects on a black background, a single 

object on a textured background, and a single object with 

additive noise.

Multiple Objects on a Black Background

The algorithms presented for computing generalized 

correlation were developed for the special case of a single 

object on a black background. These techniques can be 

extended to other cases under various circumstances. One 

case to which these algorithms are applicable is that of 

multiple objects on a black background.

The case of multiple objects on a black background can 

not be handled directly with either the magnitude method or 

the centroid method. The magnitude method fails because the 

Fourier Transform of the image is the sum of the Fourier
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Transforms of the objects in the image. The magnitude is 

the square of the Fourier Transform and this causes the 

effects of each object to be mixed in such a way that the 

algorithm can not sort them out. The centroid method fails 

because the centroid of the image is unlikely to be at the 

centroid of an object.

These difficulties can be avoided by appropriate 

p reprocessing of the image. The image can be divided into 

pieces where each piece is of a single object on a black 

background. Each piece can then be used as an image in the 

generalized correlation procedure. The problem of dividing 

the image into the appropriate pieces is a special case of 

image segmentation. There are several techniques available 

for segmentation including edge detection and boundary 

tracing, texture classification, and various types of 

feature extraction [5].

The only limitations on analyzing an image with 

multiple objects on a black background are imposed by the 

limitations of current algorithms to separate the objects. 

As the algorithms for object separation improve, this 

process will become more valuable.

Single Object on an Evenly

Textured Background .

Images of real objects are rarely on a black background 

(because any surface will reflect some light). This makes 

it desirable to find ways of using generalized correlation
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when the background surface is evenly textured. This 

surface must be approximately the same everywhere in the 

image in order for this analysis to be valid.

There are two approaches to this problem. The first 

approach is to process the image with the texture and 

determine under what conditions generalized correlation will 

work acceptably. The second approach is remove the object 

from the texture and then process the object. Both the 

magnitude method and the centroid method will be analyzed 

with each approach.

Processing with Textured Background

The methods this work discusses for computing 

generalized correlation will not always work when the image 

is of an object on a textured background. Through 

understanding why these techniques will not always work, an 

understanding of when they will work can be developed. The 

centroid method is not appropriate for images with textured 

background because the texture affects the location of the 

centroid. Consequently, when the centroid is shifted to the 

origin, there is no assurance that the centroid of the 

object is at the origin. In fact, the presence of 

background texture is virtually a guarantee the centroid 

method will fail.

The magnitude method is not as sensitive to textured 

backgrounds as the centroid method. The texture does affect 

the magnitude of the Fourier Transform, however under some



conditions this can be thought of as noise. If the 

amplitude or brightness of the texture is much lower than 

that of the object, the portions of the magnitude 

attributable to the object will dominate the magnitude of 

the image. As long as this is true the generalized 

correlation will be approximately correct, but the error due 

to the texture will be reflected by lower values for the 

correlation coefficient.

When the components of the magnitude due to the object 

no longer dominate those due to the texture, the algorithm 

breaks down. This can be caught by the correlation 

coefficient because it will decrease in value as the effect 

of the texture increases. The result of this is computing 

generalized correlation can be done with images of a single 

bright object on a dark background.

Separation of Object from the Texture

The second approach for processing images of a single 

object on an evenly textured background is remove the object 

from the background. This can be done by using a texture 

classifier to determine where the evenly textured background 

ends and the object begins [6]. The extracted object is 

then placed on black background to be used in generalized 

correlation .

Unfortunately the texture classifiers that are 

currently available in general can not do a perfect job of 

separating the object from the texture. What generally



happens is the ext racted object still has some small 

portions of the texture and has lost some corners or 

protrusions of the original object. Next, the extracted 

object is placed on a black background to be used in 

generalized correlation.

The magnitude m ethod will work well if there is very 

little texture and e s sentia lly all of the object present. 

As the quality of the extraction goes down the ability of 

the magnitude m ethod to find the correct parameters will 

degrade. This is because the portions of the texture that 

are included as part of the object cause potentially severe 

distortions of the magnitude.

When applying the centroid method it may suffer if the 

centroid of the pieces  of the object not extracted and the 

centroid of the pieces of texture added are not very close 

to the centroid of the original object. If these centroids 

are not close together, the extracted object will not be 

centered properly for the conversion to exponential-polar 

coordinates. In the cases when the centroid of the 

extracted object is appropriate, this method will work. The 

correlation coefficient must be checked to insure that it is 

possible to recognize when the degradations become severe.

The ability of these algorithm s to produce meaningful

results when separa t i n g  the object from a textured 

background is dependent upon the techniques available to 

separate the objects from the texture. Both methods become



less useful as the extracted object differs more and more 

from the original object.

Additive Noise 

Generalized correlation in the presence of additive 

noise is equivalent to working with a single object on a 

textured background where the object has been degraded. The 

discussion of the algorithms when working with a single 

object on a black background apply here. The only 

difference is the correlation coefficient will be lower 

because the object has been degraded.

Summary

This chapter has described algorithms for using 

generalized correlation in two-dimensional pattern matching. 

Two basic algorithms were used, both based on separating the 

generalized correlation into sub-problems. The two 

algorithms were the magnitude method and centroid method 

described in Chapter IV. These were developed for a single 

object on a black background in one and two dimensions. 

They were then examined for use with multiple objects on a 

black background, a single object on an evenly textured 

background, and an image that has been degraded by additive 

noise.
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IMPLEMENTATION PROBLEMS AND 

COMPUTATIONAL METHODS

Implementing the computation of generalized correlation 

by the algorithms described in Chapters IV and V on a 

digital computer presents several problems. This chapter 

presents the implementation problems, why they arise and 

steps to be taken to solve them. Also included is a section 

on computational methods.

The problems that arise are as a result of the finite 

nature of a digital computer. This requires images to be 

sampled at a finite number of points. Sampling and 

truncation are the fundamental issues of concern. The 

problems to be discussed are:

1. The initial sampling of an image

2. The infinite extent of the exponential-polar coordinate 

system

3. The interpolation necessary to change coordinate systems

Sampling an Image

The need for sampling the image is forced by the 

discrete nature of the digital computer. The sampling 

theorem states that in order to correctly determine the 

function from its samples, the sampling frequency must be at
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least twice the highest frequency present in the function 

[7]. Generally the image will have to be low pass filtered 

before it is sampled to meet this condition. Fortunately, 

many digitizers low pass filter the image as they sample. 

If this criterion is not met, the digitized version of the 

image may not be interpreted correctly.

The Infinite Nature of Exponential- 

Polar Coordinates 

During the discussion of the conversion from 

rectangular to exponential coordinates, it was noted that 

the range 0 to 1 is mapped into the range -» to 0. This is 

caused by the change in variables r=eW . Thus, after the 

change of variables the function has infinite spread, 

whereas before it has a finite spread.

As part of the coordinate change, it is important to 

insure that the integral of the function is invariant under 

this transformation. In Chapter III the following 

transformations were derived: in one dimension .

f (r) —* f (eW )ew/2

and in two dimensions

f (r ,6 ) —» f (eW ,6 ) eW .

The solution to the problem of the infinite extent of the 

transform lies in the ew and ew ^ 2 terms. The ew and eW/^  

terms become extremely small very quickly as w becomes more 

negative. Truncating the function for w<b where b<0 

introduces an error E which is

39



E " J _ c o f ^ e  ) e  d w

\pproxirnating f(ew ) over the range - °°<w<0 (equivalent to 

f(r) for (0<r<1) with a constant k = s u p ( f (0),f (1)) gives

c f b  . w / 2  ,E= J  ke dw• — co

= k e w / 2 <k

Consequently, if b is sufficiently negative, the error 

introduced by truncating can be kept as small as desired. 

Similarly, it can be shown the error caused by truncating in 

the exponential-pola r domain is less than 2* ke*3.

This analysis indicates that the error introduced by 

truncating the exponential and exponential-polar coordinate 

representations of images can be made acceptable. A simple 

expression which bounds the error as a function of the value 

of w at which the image is truncated was derived above.

Interpolation

Two factors make it necessary to interpolate the 

function which represents the image. The fact that the 

image has to be sampled coupled with the need to change 

coordinate systems makes it necessary to determine values of 

the function at points between samples. Thus it is 

necessary to perform some type of interpolation. The ideal 

interpolation scheme will be discussed first, followed by 

descriptions of two practical interpolation schemes..



Interpolation can be considered as a convolution of the 

function with an interpolation kernel. It is well known 

that if the sampled function is band limited (not aliased) 

the proper convolution kernel is

s i n ( it x / X ) 
U x / X )

where the samples are X units apart [8]. This kernel is 

referred to as sin(x)/x or sinc(x). Similarly the 

two-dimensional convolution kernel is

s i n (-rr x / X ) sin (iry/Y) 
' (irx/X ) (iry/ Y )

This interpolation kernel will perfectly recover any 

function which was properly filtered before sampling. To 

interpolate the function at a point (x,y) the following 

summation is used

f ( x . y ) =  I  I  s i n ( j ( y - . i V ) / Y )
k = - »  j  = -oo TT ( x -  k X ) /  X TT ( y  -  j  Y ) /  Y

The difficulty with sin(x)/x interpolation is the 

kernel has infinite support. Consequently, it can not be 

used since the computations need to be finite. This leads 

to the next section on interpolants actually implemented and 

u s e d .

Id ea l I n t e r p o l a t i o n

Practical Interpolation

Two i n t e r p o l a t i o n  s c h e m e s  are i m p l e m e n t e d .  They  are



bilinear and a windowed two-dimensional sin(x)/x 

i n t e r p o l a n t s . The bilinear interpolant is implemented 

because it uses a relatively small amount of execution tine. 

This can be very important when interpolating an image which 

contains a large number of points. The windowed sin(x)/x is 

used to approximate ideal interpolation. By comparing the 

results of this latter interpolant with those of the 

bilinear scheme, an estimate can be obtained of the error 

introduced by the bilinear scheme.

Bilinear Interpolation

Linear interpolation is one of the simplest and most 

common interpolants used. The linear interpolant is

f(x)=f(m)+(x-m)(f(m+1)-f(m)) 

where m<x<m+1 [9]. Bilinear interpolation interpolates 

f(x,y) by performing the following linear interpolations as 

shown in Figure 5:

1. Linearly interpolate f(x,n) where n<y<n+1 and m<x<m+1

2. Linearly interpolate f(x,n+1) •

3. Linearly interpolate f(x,y) from f(x,n) and f(x,n+1) 

Although this interpolant can be easily computed, the 

artifacts introduced by this scheme are not always 

acceptable [8]. In order to determine the effect of these 

artifacts, a better interpolant is used for comparison.
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Figure 5. Bilinear interpolation.

Windowed Sin(x)/x

Ideally interpolation should be done using the sin(x)/x 

kernel, but the infinite extent of this kernel precludes 

this in practice. Truncating the sin(x)/x function produces 

a finite approximatio n that can be acceptable if the length 

of the truncation window is sufficient [9] .  The same 

accuracy can be achieved with a shorter, but more 

sophisticated w i nd ow [10]. For large windows the windowed 

sin(x)/x interpolant approaches the ideal sin(x)/x 

i n t e r p o l a n t .

The o ne-dime nsional interpolation formula for windowed 

sin(x)/x is



b 
f(x)= I f(kX)sinc(x-kX)W(x-kX) 

k=a

W(x) is the window function of length N, 

a is the smallest integer >x-N/2, 

b is the greatest integer <x+N/2 '

and X is the sampling interval.

In two-dimensions the interpolation formula is:

b d

f(x,y)= I I f ( k X , j Y )s inc(x-kX)si nc(y-jY)W(x -kX,y-jY)
k=a j=c

where

W(x,y) is the window function of sized N by M, 

a is the smallest integer >x-N/2,

b is the greatest integer <x+N/2,

c is the smallest integer >y-M/2,

d is the greatest integer <y+M/2,

and X and Y are the sampling intervals.

The windows used in this work were a one-dimensional 

Hanning window and a two-dimensional separable Hanning 

window. They are given by

W ( x ) = l [ 1 - c o s ( ^ ( ^ N / 2 ) ) ]

in one dimension, where N is the window length, and in two 

dimensions

w h er e



W ( x , y ) 4 [ 1 - < = o s ( ^ j j : ^ 2 ) ) ] [ l - COs ( ^ ; M Z l l ) ]

where the window size is N by M. There are many other 

windows which may be used in place of the Hanning window 

with differing effects upon the accuracy.

Computational Methods 

There are two items that need to be mentioned in 

regards to the computations. The first is the selection of 

the sampling frequency when converting to exponential-polar 

coordinates. The second is the technique used to compute 

c r o s s - c o r r e l a t i o n .

Sampling in Exponential-Po lar Coordinates

When converting from one coordinate system to another 

it is important that the errors introduced be minimized. 

One aspect of this min imization is insuring that the 

sampling frequency is chosen in such a way as to avoid 

aliasing. The way to avoid aliasing is to insure that when 

the samples for the exponential-pol ar coordinate system are 

placed in the rectangular grid they are never farther apart 

than the samples of the rectangular function. In terms of 

Figure 6 this means that the distance between any two 

adjacent radial lines,b, is never greater than the original 

sample spacing a. Also the distance between two adjacent 

samples on a radial line c, must not be greater than the 

original sample spacing a.
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Figure 6. Exponential-polar 
coordinates on a rectangular grid.

The number of samples M, in the exponential domain, 

needed to avoid aliasing for a one-dimensional signal f(x), 

where f(x) is defined for 0<x<N. must be chosen such that

gMAW_e ( M-1)Aw_i 

Maw n
and e '

where Aw is the exponential sampling interval. It can be 

shown that this gives M = N In N [11]. For two-dimensional 

signals, the above is the appropriate sampling frequency 

radially, however the angular sampling frequency must still

be determined. The angular samples are farthest apart at 

the maximum radius R. The number of angles at which samples 

must be taken, k is given by



There is no problem introduced in the changing of coordinate 

systems as long as the resam pling rates are greater than or 

equal to the ones given above.

C omputation of Cross-Corr elation

Using direct summation the cross-correlation of two 

discrete functions of length N can be computed directly by a 

summation in a time proportional to N 2 . Using Fourier 

T ransforms to compute the correlation (as discussed in 

Chapter II) the time required becomes proportional to N In N 

provided the transforms are implemented along the lines of 

the Cool ey-Tukey algorithm [12]. Computing

c r o s s-correlati ons by direct summation of N by M images is 

proportional to N M , while using Fourier Transforms the 

p roportiona lity is MN In MN. To compute cro ss-correlations 

of sampled data this way requires using the Discrete Fourier 

T ransform (DFT), which n e c e ssitates some precautions.

The cross-c orrelation c(x) of two functions f(x) and 

g(x) using Fourier Transforms is

c ( x ) = ^ _ 1 (F(u)G (u )) 

where F(w) and G( oj ) are the Fourier Transforms of f(x) and 

g(x) respectively, and ^  1 denotes the inverse Fourier 

Transform. When f and g are sampled functions, the discrete 

Fourier Transform (DFT) must be used. If interpreted 

correctly, this does not change the above technique for 

computing the cross-correlation. The DFT treats all signals
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as the principal period of a periodic function. The 

c r o ss-corr elation computed with the DFT is therefore a 

circular cross-correlation. Linear cross-correlation can be 

computed by doubling the length of f and g, by padding with 

zeros. This will allow the cross-correlation to avoid the 

periodic nature of the DFT. Implementing the DFT with a 

fast transform technique makes this method of computing the 

c r o s s - c o rrelation faster than direct summation.

The i mplementation of the algorithms for computing 

general ized correlation uses Fourier Transforms to compute 

cross-correlat ion. When correlating to find the 

translations in a two-dimensional image of size N by M, 

enough zeros must be added to make the DFT size 2N by 2M to 

insure the result is the linear cross-correlation. The 

c ross- c o r r e l a t i o n  in the e x ponential-p olar coordinate space 

needs to be handled differently. In Chapter II it was 

explain ed how a rotation in rectangular coordinates map into 

a circular shift in exponential coordinates. Consequently, 

a circula r correlation is needed along the angle axis. 

Linear correlation, however, is still needed radially. As a 

result, to cross- correlate two functions f(r,6) and g(r,6) 

of size N by M, zeros must be added to make the size 2N by M 

for the proper combination of linear and circular

correlation. It is interesting to note that by using the 

Fourier Tran sform to compute correlation, the conversion 

from rectangular to exponenti al-polar coordinates and
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correlating using the Fourier Transform is equivalent to 

converting from rectangular to the usual polar coordinates 

and correlating using Mellin Transforms radially [11].

Summary

This chapter has dealt with a series of implementation 

considerations. The first section considered the issue of 

sampling the image correctly. The infinite extent of 

e x p onentia l-polar coordinate conversion forces truncation. 

It was shown that the error introduced can be made 

arbitrarily small. Since the coordinate conversion forces 

resampling, the issues involving interpolation were 

analyzed. The last section discussed sampling frequency in 

the exponen tial-polar coordinate system and computation of 

cross-correla tion using Discrete Fourier Transform (DFT).
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C H A P T E R  VII

RESULTS

This chapter describes some results of pattern matching 

dene by using the generalized correlation algorithms 

presented. Results were obtained in both one and two 

dimensions. The first section discusses an example of 

ore-dimensional generalized correlation. The second section 

presents examples of pattern matching in two-dimensions.

One-Dimension

Figure 7 is a sequence showing the image function and 

the template function and their correlations at various 

steps in computation of generalized correlation. The 

computation was done by the mag nitude method as described in 

Chapter IV (and outlined in Figure 2). The image in this 

eiample is one half the size of the template. Part (a) of 

Figure 7 is the image while part (b) is the template. The 

f;rst step in computing the generalized correlation is to 

take the magnitude of the Fourier Transform of the image and 

the template. These m agnitudes are shown in parts (c) and

(d). The functions are then put into the exponential 

coordinate domain with the result shown in parts (e) and 

(:'). Notice that the two functions do in fact appear to 

differ only by a translation. These two functions were then
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M a g n i t u d e  method.



1 - 0  2 . 9  3 . 0  4 . 61.000C+0 4.09OC+3

(e) Image magnitude in
exponential coordinates

j
1

-1. 5S9C-S ' '

l.aeet+e 1 .024E+3*

(g) Scale factor correlation

(f) Template magnitude in 
exponential coordinates

(h) T r a n s l a t i o n  c o r r e l a t i o n

Figure 7. (conti nue d)



53

cross-correlated giving the correlation function shown in 

part (g). The peak in the correlation function gives the 

translation in exponential coordinates which corresponds to 

the scale factor. A scaled template was then created and 

cross-correlated with the original image to get the 

translation, as shown in part (h). In this correlation the 

peak gives the relative translation between the image and 

the template. Table 1 summarizes the results of this 

experiment. The computed scale factor of .499 is as close 

the the actual value as can be done without careful 

interpolation of the correlation function. This is because 

the correlation is a discrete function.

In the above example, all interpolations were done 

using linear interpolation. The same algorithm and 

functions were tried using a windowed sin(x)/x interpolant. 

The results were identical, indicating that the error 

introduced by the linear interpolant was small with respect 

to the other sources. In conclusion, the above results

strongly support the validity of the techniques developed.

TABLE 1

RESULTS OF ONE-DIMENSIONAL GENERALIZED CORRELATION

Actual
Value

Computed
Value

Correlati on 
Coeffi ci ent

Seal e .5 .499 . 9995

Translati on 218 218 .9998
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T w o - D i m e n s i o n s

Two methods of computing generalized correlation in 

two-dimensions were discussed in Chapter III. Both are 

illustrated here with the same image and template in order 

to demonstrate the differences. The magnitude method is 

shown first, followed by the centroid method example.

Three examples are shown using both the magnitude and 

the centroid methods. The first example is referred to as 

"Patch" since it is composed of bicubic patches. The second 

example is the same as the first with a different scale 

factor and rotation. Since the angle of rotation is 90 

degrees it will be referred to as "Ninety". In the third 

example the object is cross shaped hence its name is 

"Cross". Table 2 summarizes the relationships between each 

image and its corre sponding template. When reading these 

results, it is important to remember the images and the

TABLE 2

SCALE AND ROTATIONAL RELATIONSHIPS BETWEEN IMAGES 
AND TEMPLATES IN TWO-DIMENSIONAL 
GENERALIZED CORRELATION EXAMPLES

Name of 
Image

Scale Rotation
Factor in Radians

Patch .25 2.5

Ni nety .5 1 .57

Cross 1 .28 1 .57



templates are described on a 64 by 64 point grid. This 

relatively coarse grid causes a large amount of information 

to be l o s t .

Magnitude Method

Figures 8, 9, and 10 illustrate several of the steps in 

computing the generalized correlation by the magnitude 

method for the Patch, Ninety and Cross images respectively. 

The image and the template are shown in parts a and b. The 

first step of the algorithm is take the Fourier Transform of 

the image and the template. The magnitudes are pictured in 

parts c and d. The functions which result from the 

conversion to exponential-polar  coordinates constitute parts 

e and f. The cross correlation to determine the scale 

factor and the rotation is shown in part g.

Table 3 summarizes the results of the experiments. The 

translations have been omitted from the table for clarity 

and since the emphasis of this work is on correlation for 

scale and rotation.

The Patch proved to be a very difficult example for two 

reasons. First, the scale factor of .25 on a 64 by 64 grid 

generates an extremely small image. The amount of 

information available about the image is therefore quite 

small. The second difficulty is that the magnitude of the 

Fourier Transform is close to being circularly symmetric for 

the lower frequencies. Most of the information which 

indicates that the function is not circularly symmetric is
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(a ) I in a g e (b) Template

(c) Magnitude of image (d) Magnitude of template

(e) Image magnitude in 
exponenti al-polar 
coordinates

(f) Template magnitude in 
exponential-polar - 
coordinates

(g) Scale and rotation 
correlation

Fig u re  8. G e n e r a l i z e d  c o r r e l a t i o n  in t w o - d i m e n s i o n s .
M a g n i t u d e  m e t h o d  for Patch image.



(a) Image (b) Template

(c) Magnitude of image (d) Magnitude of template

(e) Image magnitude in 
exponential-polar 
coordi nates

(f) Template magnitude in 
exponential-polar 
coordinates

(g) Scale and rotation 
correlati on

Fig ur e 9. G e n e r a l i z e d  c o r r e l a t i o n
M a g n i t u d e  m e t h o d  for Ni ne t y image.

in t w o - d i m e n s i o n s



(c) Magnitude of image (d) Magnitude of template

(e) Image magnitude in 
exponenti al-polar 
coordinates

(f) Template magnitude in 
exponenti al-polar 
coord inates

(g) Scale and rotation 
correlation

Fi gu re 10. G e n e r a l i z e d  c o r r e l a t i o n  in t w o - d i m e n s i o n s
M a g n i t u d e  m et h o d  for Cross image. '



RESULTS OF TWO-DI MENSIONAL GENERALIZED CORRELATION

T A BL E 3

Actual
Computed by 

Magnitude Method
Computed by 

Centroid Method

Name of 
Image

Scale
Factor

Rotation 
i n

Rad i ans
Sea 1 e 
Factor

Rotation 
i n

Radi ans

C o r r e 
lation
Coeff.

Scale
Factor

Rotati on 
i n

Rad i ans

Co rre - 
1 a t i o n 
Coeff.

Pate h .25 2.5 .293 1 .76 .951 . 275 2.38 .966

N i nety . 5 1 .57 .778 3.09 .951 . 500 1 .57 .994

Cross 1 . 28 1 . 57 1 .24 1 . 57 . 966 1 . 28 1 . 57 . 997
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in the phase which is not used in this method. Since the 

image is so small, the lower frequencies affect the 

correlation more than the higher frequencies, where the 

effects of the rotation are more pronounced.

The Ninety example uses the same object as the Patch 

with a different scale factor and rotation. In this case 

the difficulty is again the almost circularly symmetric 

nature of the magnitude of the function. The Cross is an 

example where the magnitude method works well. In this 

example there is little circular symmetry in the magnitude. 

This is largely due to the discontinuities or sharp edges in 

the original function.

The above discussion is primarily concerned with the 

difficulties presented by each example. However, there are 

two ways major ways in which significant errors are 

introduced into the calculations. One source of error, 

which mainly affects the scale factor, is the truncation of 

the function in exponential -polar coordinates. This is very 

apparent in the Patch example and probably contributed to 

the poor results. The functions were truncated too close to 

the origin as indicated by the large value of the function 

where it was truncated.

The second source of error is the interpolation scheme

used. A bilinear interpolant was used and its effect can be 

seen in in parts (e) and (f) of all three examples. The 

artifacts introduced by this interpolant contribute to the



Door determination  of the angle of rotation. In the Cross 

sxample, the scale factor was close to 1, and with the 

notation being 90 degrees, the interpolant treated the image 

and the template almost the same.

Centroid Method

The sequence of tw o-dimensional functions in Figures

11, 12, and 13 illustrate steps in computing generalized 

correlation using the centroid method for the Patch, Ninety 

and Cross images. The image is shown in part (a) with the 

template in part (b). After the location of the centroid of 

the image was determined, the image was shifted so the 

centroid was at the origin as shown in part (c). This was 

done with the assumption the centroid of the template was at 

the origin. It should be noted that this assumption need 

not be made since the template can also be shifted to bring 

its centroid to the origin. Both the image and the template 

were then converted to e x p onential-p olar coordinates as 

shown in parts (d) and (e). Lastly, these two functions 

were cross-co rrelated to determine the scale factor and 

rotation, giving part (f).

The results of these three experiments are also 

summarized in Table 3- In the Patch example, the centroid 

method, like the magnitude method, suffered from the large 

scale factor on a small grid. Other than this one problem, 

the centroid method did extremely well, finding the correct 

scale and rotation in both the Ninety and the Cross
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(a) Image

(c) Image with centroid at 
o r i g i n

(b) Template

(d) Image in exponential 
polar coordinates

(e) Template in exponential- 
polar coordinates

(f ) Scale and rotation 
correlation

Figure 11. Generalized correlation in t w o - d i m e n s i o n s . 
Centroid method for Patch image.



(a) Image (b) Template

(c) Image with centroid at 
o r i g i n

(d) Image in exponential 
polar coordinates

(e) Template in exponential 
polar coordinates

(f) Scale and rotation 
correlation

Fig ur e 12. G e n e r a l i z e d  c o r r e l a t i o n  in
C e n t r o i d  m e t h o d  for Ninety image.

t w o - d i m e n s i o n s



(a) Image

(c) Image with centroid at 
o r i g i n

(b) Template

(d) Image in exponential 
polar coordinates

(e) Template in exponential- 
polar coordinates

(f) Scale and rotation 
correlation

Figure 13. Generalized correlation in two-dimensions 
Centroid method for Cross image.



examples. In the Cross example, notice the four peaks in 

the correlation (part f ), two of which are higher than the 

other two. The two higher peaks correspond to the two 

possible rotations of the symmetric object. Again, there 

were errors introduced from the truncation in 

ex p o n e n t ial-polar coordinates and from interpolation errors. 

An examination of the functions in exponential-pol ar 

coordinates indicates that only the image in the Patch 

example has very noticeable interpolation and truncation 

errors. .

Comparison of Magnitude and Centroid Methods

Looking at Table 3 it is obvious that the centroid 

method is more reliable than the magnitude method. This, 

combined with the greater ease of computation, makes the 

centroid method more attractive than the magnitude method. 

Unfortunately, the centroid method is probably more 

sensitive to noise and the presence of unwanted texture. 

The reliability of the magnitude method can be increased by 

increasing the number of samples in the image.

Summary

This chapter has presented results demonstrating the 

techniques developed in this work. Both the one-dimensional

example and the two-dimensional centroid examples work as 

expected and determine correctly the relationship between 

the image and the t e m p l a t e . The two-dimensional magnitude



method works acceptably in only some cases because a large 

amount of information is lost in removing the phase.



C H A P T E R  VIII

CONCLUSIONS

The use of generalized correlation in the area of 

pattern matching was investigated. Two techniques were 

developed assuming the images were of a single object on a 

black background. These techniques were demonstrated to 

work well in the above case. The possibilities of extending 

these techniques to images that are more complex than a 

single object on a black background were also discussed.

Pattern matching is becoming more widely used and 

needed in a variety of fields. Some of these include 

monitoring systems, identification systems, inspection of 

objects (for quality control) to name but a few. Because of 

the prospective growth of pattern matching, it is desirable 

to have basic pattern matching algorithms on which to build.

Experimentation is needed to determine to what degree 

the methods presented for computing generalized correlation 

can be extended for images that are not of a single object 

on a black background. Experiments with higher resolution 

images may indicate that the techniques developed can be of 

greater value than indicated by the results of the limited 

experi mentation presented here. Several other types of 

images were examined theoretically, namely a single object
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background, but these types of images need to be further 

examined experimentally. Other types of images, such as 

multiple objects on a textured background need to be 

considered both theoretically and experimentally.

The magnitude method suffers because all phase 

information is removed. If only the linear phase components 

could be removed then the algorithms could be simplified and 

made more reliable. This involves the familiar problem of 

phase unwrapping, hence it may not be co mputationally 

reasonable.

The slowest step in the algorithms presented is the 

conversion from rectangular coordinates to exponential-polar 

coordinates. If some way could be found to determine the 

same information without the extensive resampling currently 

required, the process could be significantly accelerated.

While the previous two suggestions would help make 

these algorithms more practical, the limitations imposed by 

the techniques used to separate the generalized correlation 

remain the biggest problem. New techniques for separating 

the generalized correlation which do not depend on the image 

to be of a single object on a black background need to be 

developed. Research in this area may provide the algorithms 

to make generalized correlation a powerful and useful tool 

in pattern matching.
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