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A b s t r a c t

Method of Manufactured solutions is a well-known method used to verify numerical 
algorithms. It is used to estimate convergence and order of accuracy of the algorithms. 
The method involves design of analytical solutions to the set of equations solved by the 
algorithm and generation of the forcing function, which becomes the input to the solver. 
The disadvantage of this method is that the solutions it investigates may not reflect 
physical solutions. Method of Generated Solutions was designed to overcome this 
limitation. Method of Generated Solutions interpolates or approximates experimental data 
or data from a solver in order to design analytical solution. These solutions closely 
resemble physical solutions, which leads to a more accurate baseline for testing and 
verification of a numerical solver. The method was used to verify ICE (Implicit, 
Continuous fluid, Eulerian), a semi-implicit finite volume solver, that simulates fluid 
phenomena. This paper describes the results of numerical experiments, which 
demonstrate the effectiveness of the method.



1. Introduction

Num erical algorithm s are w idely used in various fields for different puiposes including 
developm ent and testing o f the m odels resem bling behavior o f real life system s. Code 
verification and validation are m ethods used to assess accuracy and build confidence in 
the algorithm s, [1]

There are m any definitions o f the terms verification and validation, Charles Hirsch 
defines them as:

Verification is “the process o f determining that a model implementation 
accurately represents the underlying mathematical model and its solutions. ”

Validation is “the process o f determining the degree to which a model is an 
accurate representation o f the real world from the perspective o f the intended 
uses o f the model. ” [2]

In other words, validation and verification are two different steps in code developm ent 
and assessm ent. Validation is used to determ ine how close the num erical model 
represents a real life phenom enon; while verification ensures that the model is w orking 
within the allow ed error limits,

Roache defines code verification as:

“The [code] author defines precisely what continuum partial differential 
equations and continuum boundaiy conditions are being solved, and convincingly 
demonstrates that they are solved correctly, i.e. usually with some order o f 
accuracy, and always consistently, so that as some measure o f discretization (e.g. 
mesh increments) A —>0, the code produces a solution to the continuum 
equations” [3]

Thus, code verification is used to verify that the code solves num erical model or set of 
equations consistently and follows the established theoretical order of accuracy of the 
discretization m ethod. Verification is based on com paring the num erical results with 
analytical, exact solutions.

Various m ethods are used for verification o f different system s and solvers including 
M ethod of Exact Solutions and M ethod of M anufactured Solutions, This paper focuses 
on the M ethod of G enerated Solutions (M GS) [81 and its application for verification of 
the ICE (Im plicit, Continuous fluid, Eulerian), a sem i-im plicit finite volum e solver, that 
sim ulates fluid phenom ena. In this paper, we analyze order o f accuracy, consistency of 
the discretization errors for various 2D problem s. W e also analyze factors which can 
influence the accuracy o f the solver.



2. Previous Work

Suppose one needs to solve partial differential equation of the form

on some domain Q  with boundary I . D  is the differential operator, g is the source term 
and u is the exact solution that is sought.

2.1 Method of Exact Solutions

In the widely used verification Method of Exact Solutions one first derives exact 
solutions to the set of equations solved by the code. Exact solution is a mathematical 
expression that gives solutions at all locations in space and time. They can be derived 
using mathematical methods such as the separation of variables, integral transforms 
(Laplace transforms, Green functions, etc.), etc. Then the code is run with corresponding 
inputs and a numerical (discrete) solution is generated. This generated numerical solution 
is compared against exact solution. [3, 7]

One of the major disadvantages of the Method of Exact Solutions is that it is not always 
possible or often very difficult to find exact solution to the equation or set of equations 
(e.g. in case when D is non-linear). Also, certain exact solutions (e.g., which use Laplace 
transforms, infinite sums, etc.) are difficult to implement, which is required for 
computing their values at a number of points in space and time in order to compare exact 
and code-generated solutions.

2.2 Method of Manufactured Solutions

Another widely used technique for verifying numerical solvers is the Method of 
Manufactured solutions [4, 5, 6, 7]. In order to verify that code solves equation (/) 
correctly one has to, first, manufacture a solution u (e.g. using an arbitrary mathematical 
function), and then apply operator D  and compute the source terms g, which become the 
input to the solver. [3, 4]

Method of Manufactured Solutions is much simpler than the Method of Exact solutions 
because it does not require user to solve equations (i.e., invert the differentiation operator 
D).  However, this method has certain limitations. One of them is that the solutions 
chosen by the Method of Manufactured solutions are arbitrary and may not reflect the 
true nature of a real life system and the physical solution that is being simulated. For 
instance, in order to avoid unnatural oscillations (due to discontinuities, sharp changes in 
the solution, etc.), which can occur at high resolutions, solvers use special techniques



such as gradient, slope lim iters, etc. As a result, in this case the M ethod of M anufactured 
Solutions m ay not be an appropriate code verification technique,

3. Method of Generated Solutions

To overcom e lim itations o f the M ethods o f Exact Solutions and M anufactured Solutions, 
we propose a new verification m ethod -  M ethod of G enerated Solutions (M GS) [8], The 
m ethod is designed to verify com putational perform ance o f differential and/or integral 
solvers on exact (analytic) solutions which resem ble physical solutions. Physical 
phenom ena such as fluid flow are sim ulated num erically by solving a system  o f partial 
differential equations using som e discrete approxim ation m ethod. M ethod o f G enerated 
Solutions is the technique proposed in [8] to verify  such num erical solvers.

In order to verify that equation (1) is solved correctly one has to:

1, Obtain an approxim ate solution u by a com putational algorithm  or by experim ent,

2, A pproxim ate or interpolate the data from  u using an appropriate technique (e.g., 
spline interpolation or least-squares approxim ation). These results, iij, in the 
analytical form  provide the values at all locations in space and time,

3, A pply the differential operator D (exact analytical differentiation) to the functions 
resulting in step 2, This yields new function gj and new problem

D u \  =  g x (2)

where exact solution iij and source terms gj are known,

4, Solve new problem  (2) using the num erical solver; forcing functions gj generated 
in step 3 are used as the source terms. As a result, new solution 112 is generated,

5, Com pare solution 112 generated in step 4 against exact solution iij (from step 2) 
and com pute the errors introduced by the solver.

Diagram  in figure 1 shows the verification process described above,

4. Discretization errors, consistency and order of accuracy

As a result o f  the experim ents, we try to quantify the discretization error, its consistency 
and order o f accuracy o f the A dvect and A dvance in T im e (AAT) m odule o f the ICE 
algorithm  developed by the C -SA FE (Center for Sim ulations o f Accidental Fires and 
Explosions) research group at the U niversity o f Utah,



D iscretization o f the governing equations subdivides the dom ain o f the problem  into 
finite num ber o f cells. The approxim ate solution, which satisfies these discretized 
equations, is not the sam e as the exact solution, which satisfies the m athem atical 
continuum  equations. Discretization error is the difference betw een the two, [3] W e use 
norm alized L 2 and L , norms o f the difference between exact solution, generated by M GS 
m ethod, and approxim ated solution, com puted using ICE, to evaluate the discretization 
errors.

Since in the verification we are using uniform  grid N xN , we com pute norm alized L2 norm 
using the follow ing form ula:

(J )

W e com pute La, norm using the follow ing form ula: 

where,
u„ -  Exact solution evaluated at x,„ y,„ z„
U„ -  A pproxim ate solution o f the discretized equation

(4)

Figure 1. V erifica tion  p rocess using  M G S  m ethod



D iscretization m ethods are consistent if the error goes to zero as the cell size decreases to 
zero, [31 In order to evaluate consistency o f the discretization error, we run experim ents 
for the various cell sizes and com pute ratios o f L 2 and L , norms.

Order o f accuracy is the rate at which the error decreases to zero. W e use the follow ing 
form ula to com pute the order o f accuracy, p\

5. Experiments

As already m entioned before, we decided to verify the perform ance o f the ICE algorithm  
developed by the C -SA FE (http://w w w .c safe.u tah .edu) research group at the U niversity 
o f Utah, ICE algorithm  is utilized to sim ulate explosions, fires and other fluid phenom ena, 
ICE is a cell-centered, finite volum e version o f an algorithm  developed and described by 
Kashiw a, et, al, [91. ICE uses gradient lim iter to suppress unnatural oscillations 
introduced by the h igher-order num erical m ethods. The effect o f the gradient lim iter on 
the order o f accuracy will be discussed in this paper as well,

ICE algorithm  has several m odules which solve various problem s. As part o f the research, 
we decided to focus on the Advect and Advance in T im e (AAT) m odule. This m odule 
was chosen for verification for the follow ing reasons:

1, The advecdon operator is an im portant part o f ICE algorithm s -  it’s invoked 
m ultiple times during full-scale fluid sim ulations. Therefore, its accuracy is 
crucial,

2, The advecdon operator involves only one governing equation; therefore, it is 
relatively sim ple to verify, [101

In order to isolate the Advect and Advence in Tim e m odule, the advecdon of a passive 
scalar is em ployed as a verification experim ent. The profiles o f the passive scalar are 
defined using bell-shaped exponential and squared-exponential functions. The 2D 
governing equation for the experim ent is as follows:

where,
log (V)

and are global errors for gridj and grid-; 

r  is the refinement ratio

(5)

d  

d t d x d v
j/

http://www.c


w h e r e

PS(x, v, t) -  Passive scalar
Ux, UY -  Constant velocity in x and y directions correspondingly 
g(x, v, t) -  Source terms

( 6 )

As already m entioned above, M GS m ethod can use an approxim ate solution from a 
num erical solver or m easurem ents from a physical experim ent. Since physical 
experim ental data is not available, we decided to use approxim ate solution generated by 
ICE to build  our analytical solution. This com pletes step 1 o f the verification process.

W e decided to use natural cubic splines to approxim ate the data extracted from ICE to 
build up the exact solution. Since the differential operator D from equation (1) 
corresponding to equation (6), defined as

(7)

is a degree one function, the analytical solution resulting from  approxim ation or 
interpolation o f the approxim ate solution u has to be at least C 1 continuous. Since natural 
cubic spline interpolation produces C “ continuous functions, which fits the requirem ent, it 
was chosen as an interpolation technique for com puting exact solution and gradients at 
the specified points o f tim e and space. These gradients are then used  to com pute source 
terms gj(x,y,t) on the right-hand side o f the equation (6).

Using these new source term s, we use ICE to solve the new problem  given by equation 
(2), and generate the solution 112.

Finally, we com pare the generated solution i<2 w ith the original solution iij and com pute 
L 2 and L,X; error, error consistency and order o f accuracy.

Summary
1. For our verification experim ents we decided to choose profile o f the passive scalar to 

be represented by some o f the w ell-know n form s of analytical functions: a 2D bell
shaped exponential and a squared exponential;

2. W e decided to choose a l x l m 2 2D dom ain in X  and Y dim ensions (from -0.5 to 0.5 
m eters in each direction). W e also chose time step, At = 10“6, and the num ber o f tim e 
steps in experim ents equal to 20.

3. The tests are executed on the grid resolutions 100x100, 200x200, 400x400 and 
800x800, which correspond to Ax and Ay equal to 1x10““, 0 .5x10““, 0 .25x10““ and
0.125x 10“2 respectively.



4, The source terms g/(x,y,t) are com puted using the M GS m ethod from two different 
input sources:

a. Exact analytical solution;
b. Ice generated solution,

5. ICE allows specifying the desired order o f accuracy o f the solution. W e decided to 
verify its perform ance when w e select both first and second orders,

6. As already m entioned before, ICE utilizes gradient lim iter to suppress unnatural 
oscillations at places w here the gradient o f a quantity  changes rapidly. The lim iter 
im plem ented in ICE is com puted using Van Leer m ethod [9, 11]:

a j  =  min ( l, a , ^ ,  a JmJ
where,

a ,  . = m ax ( 0,
J min 1 -

^miti

mill Mv] -  U

iij -  value o f the solution at the cell center; 
uv -  value o f the solution at the cell vertices;
Umin- u,nux -  min and max values o f the  so lu tio n  at the surrounding cell centers. 

The values o f the gradient lim iters are used to bound the values o f gradients:

To evaluate the effect o f the gradient lim iter on the solution, discretization error 
consistency and order o f accuracy, we decided to verify the code with gradient lim iter 
enabled and disabled (this applies only to the second order o f accuracy tests).



6. Results of the experiments

6.1 Exponential profile

W e chose the follow ing function for describing the bell-shaped exponential profile:

where,

(8 )

x -  0.3 

0 . 6

Figure 2. 2D  exponentia l function  p rofile  at t=0

The profile o f the exponential function at time t=0 is shown in F igure 2. Figure 3 shows 
the cross-section o f the 2D exponential profile at y=0 and corresponding gradient lim iter 
values.



Figure 3.
C ross-sec tion  o f  the 2D  exponential p ro file  at tim e t = 0 and  y = 0;
C ross-sec tion  o f  th e  g rad ien t lim ite r p ro file  fo r the 2D  exponential p ro file  at t = 0  and  y = 0.

W e ran three sets o f tests on the exponential function profile:

1. Gradient lim iter is enabled in  the ICE code, and second order is the desired order 
o f accuracy o f the solution.

2. First order is the desired order o f accuracy o f the solution.
3. Gradient lim iter disabled (or, in other words, gradient lim iter values are set to 1) 

and second order is the desired order o f accuracy o f the solution.



6.1.1 Second order accuracy, gradient limiter enabled

First, w e ran m esh refinem ent experim ents (with the grid refinem ent ratio equal to two) 
on the exponential profile, gradient lim iter enabled in the solver (ICE) and desired order 
o f accuracy equal to two.

Figures 4 and 5 show results o f the experim ents -  L 2 and Lm errors and their ratios as 
functions o f tim e -  for the source terms from  analytical solution and ice-generated 
solution correspondingly. Tables 1 and 2 show the approxim ate com puted errors and 
observed order o f accuracy for analytical and ice-generated solutions correspondingly at 
the tim e step 20,

From  these results, we can conclude that the resulting discretization error is consistent 
(the L 2 -norm decreases by a factor o f approxim ately 3-3,1 and L ,-no rm  decreases by a 
factor o f 2-2,1 when we refine our grid by a factor o f two). How ever, the order o f 
accuracy doesn’t match our expectations and theoretical predictions. Instead o f order o f 
accuracy two, we got approxim ately 1,6-1.7 (for L 2 -norm ) and 1-1,1 (for Ly-nonn).

6.1.2 First order accuracy

As a result, we decided to reduce the desired order o f accuracy to one and ran the same 
set o f tests (mesh size is 100x100, 200x200, 400x400 and 800x800) in order to see how 
the solver will perforin. The results are shown in figures 6 and 7, and tables 3 and 4,

As w e can see from  the results, discretization errors are consistent and go down by a 
factor o f two when resolution is increased by a factor o f two. The resulting order of 
accuracy is equal to the expected value - one - for both solver generated and analytical 
function generated sources,

6.1.3 Second order accuracy, gradient limiter disabled

To evaluate the effect o f the gradient lim iter on the order o f accuracy o f the solution we 
decided to run an experim ent with the desired order accuracy equal to two and gradient 
lim iter disabled. In other words, the values o f gradient lim iter are set to one. W e are 
testing the sam e m esh sizes as before -  100x100, 200x200, 400x400 and 800x800, 
Sim ilar to the first two experim ents, the results are presented in figures 8 and 9, and 
tables 5 and 6.

The results show that disabling the gradient lim iter gives us the expected order o f 
accuracy equal to two in case o f both solver-generated sources and sources generated 
from  the analytical function.



Figure 4. L 2 and  L e errors and  their ra tio s as functions o f  tim e from  second order accuracy with gradient 
lim iter enabled  test fo r exponen tia l 2D  p rofile  using  source term s from  ana ly tica l function  fo r reso lu tions:

•  100x100 (Ax = Ay = 0 .01m );
•  200x200 (Ax = Ay = 0 .005m );
•  400x400  (Ax = Ay = 0 .0025m );
•  800x800 (Ax = Ay = 0 .00125m ).

Table 1. L 2 and  L c - norm s, e rro r ra tios and  o rder o f  accuracy  fo r 2D  exponen tia l p ro file  (source  term s are 
from  analy tica l function)__________________________________________________________________________________

Grid L2-norm Ratio Observed 
order of 
accuracy

Max E rror Ratio Observed 
order of 
accuracy

1OOx100 1,41659e-08 2,33979e-07
200x200 4.6389 le-09 3.05 1.61 1.15025e-07 2.03 1.02
400x400 1,52472e-09 3.04 1.61 5,5415 le-08 2.08 1.05
800x800 4,88037e-10 3.12 1.64 2.55816e-08 2.17 1.12



Figure 5. L 2 and  L c errors and  their ra tios as functions o f  tim e from  second order accuracy with gradient 
lim iter enabled  test fo r exponen tia l 2D  pro file  using  source term s from  so lv e r 's  so lu tion  fo r reso lu tions:

•  100x100 (Ax = Ay = 0 .01m );
•  200x200 (Ax = Ay = 0 .005m );
•  400x400  (Ax = Ay = 0 .0025m );
•  800x800 (Ax = Ay = 0 .00125m ).

Table 2. L 2 and  L c - norm s, e rro r ra tios and  o rd e r o f  accuracy  fo r 2D  exponen tia l p ro file  (source  term s are 
from  IC E -genera ted  so lu tion)

Grid L2-norm Ratio Observed 
order of 
accuracy

Max E rror Ratio Observed 
order of 
accuracy

100x 100 1.38635e-08 2.26970e-07
200x200 4.43660e-09 3.12 1.64 1.08364e-07 2.09 1.07
400x400 1.39746e-09 3.17 1.67 4.94638e-08 2.19 1.13
800x800 4.18437e-10 3.34 1.74 2.09230e-08 2.36 1.24



Figure 6. L 2 and  L c errors and  their ra tios as functions o f  tim e from  first second order accuracy  test fo r 
exponen tia l 2D  pro file  using  source term s from  analy tica l function  fo r reso lu tions:

•  100x100 (Ax = Ay = 0 .01m ):
•  200x200 (Ax = Ay = 0 .005m ):
•  400x400  (Ax = Ay = 0 .0025m ):
•  800x800 (Ax = Ay = 0 .00125m ).

Table 3. L 2 and  L e - norm s, e rro r ra tios and  o rder o f  accuracy  fo r 2D  exponen tia l p ro file  (source  term s are 
from  analy tica l function)

Grid L2-norm Ratio Observed 
order of 
accuracy

Max E rror Ratio Observed 
order of 
accuracy

1OOx100 1,08795e-07 2,37928e-07
200x200 5,43964e-08 2.00 1.00 1.18995e-07 2.00 1.00
400x400 2,71525e-08 2.00 1.00 5.9400 le-08 2.00 1.00
800x800 1.35247e-08 2.01 1.01 2,95864e-08 2.01 1.01



Figure 7. L 2 and  L c errors and  their ra tios as functions o f  tim e from  first order accuracy  test fo r exponentia l 
2D  pro file  using  source term s from  so lv e r’s so lu tion  fo r reso lu tions:

•  100x100 (Ax = Ay = 0 .01m ):
•  200x200 (Ax = Ay = 0 .005m ):
•  400x400  (Ax = Ay = 0 .0025m ):
•  800x800 (Ax = Ay = 0 .00125m ).

Table 4. L 2 and  L r, - norm s, e rro r ra tios and  o rder o f  accuracy  fo r 2D exponential p ro file  (source  term s are 
from  IC E -genera ted  so lu tion)

Grid L2-norm Ratio Observed 
order of 
accuracy

Max Error Ratio Observed 
order of 
accuracy

1OOx100 1,08779e-07 2.3790 le-07
200x200 5.4392 le-08 2.00 1.00 1.18989e-07 2.00 1.00
400x400 2,71514e-08 2.00 1.00 5.93984e-08 2.00 1.00
800x800 1.35244e-08 2.01 1.01 2.95860e-08 2.01 1.01



Figure 8. L2 and L e errors and their ratios as functions of time from second order accuracy with gradient 
limiter disabled test for exponential 2D profile using source terms from analytical function for resolutions:

• 100x100 (Ax = Ay = 0.01m);
• 200x200 (Ax = Ay = 0.005m);
• 400x400 (Ax = Ay = 0.0025m);
• 800x800 (Ax = Ay = 0.00125m).

Table 5. L2 and L c - norms, error ratios and order of accuracy for 2D exponential profile (source terms are 
from analytical function)

Grid L2-norm Ratio Observed 
order of 
accuracy

Max Error Ratio Observed 
order of 
accuracy

1OOx100 3,14777e-09 5 . 1 8447e-09
200x200 7.5543 le -10 4.17 2.06 1.21 124e-09 4.28 2 .10
400x400 1.85757e-10 4.07 2.02 2,96308e-10 4.09 2.03
800x800 4,60069e-l 1 4.04 2.01 7,41494e-l 1 4.00 2.00



Figure 9. L2 and L e errors and their ratios as functions of time from second order accuracy with gradient 
limiter disabled test for exponential 2D profile using source terms from solver's solution for resolutions:

• 100x100 (Ax = Ay = 0.01m);
• 200x200 (Ax = Ay = 0.005m);
• 400x400 (Ax = Ay = 0.0025m);
• 800x800 (Ax = Ay = 0.00125m).

Table 6. L2 and L c - norms, error ratios and order of accuracy for 2D exponential profile (source terms are 
from ICE-generated solution)

Grid L2-norm Ratio Observed 
order of 
accuracy

Max Error Ratio Observed 
order of 
accuracy

1OOx100 3,14765e-09 5.18349e-09
200x200 7,55428e-10 4.17 2.06 1.21 121e-09 4.28 2 .10
400x400 1,85758e-10 4.07 2.02 2,96308e-10 4.09 2.03
800x800 4,60085e-l 1 4.04 2.01 7,41542e-l 1 4.00 2.00



Results of the experiments show that the errors reduce consistently by a factor of two 
when the mesh size is doubled. Also, observed order of accuracy agrees with the 
theoretical predictions when the desired order of accuracy is set to one and when gradient 
limiter is disabled in the code.

Figure 10 shows where the worst errors are occurring at y=0 and time step = 1, The 
figure shows the plot of the computed solution 112 and the difference between computed 
and exact solutions O2 -  u/) when:

1 , the desired order of accuracy is one;
2 , the desired order of accuracy is two and gradient limiter values are set to 0;
3, the desired order of accuracy is two and gradient limiter values are set to 0.5;
4, the desired order of accuracy is two and gradient limiter values are set to 1 (or, in 

other words, gradient limiter is disabled);
5, the desired order of accuracy is two and gradient limiter values are set to 0.75;
6 , the desired order of accuracy is two and gradient limiter values are enabled (in 

other words set to the computed values).

As we can see from the figure when the desired order of accuracy is one, the worst errors 
occur at the peak of the bell-shaped profile (the error at the peak is on order of 10”) and 
around point -0.2 and 0.2 -  around the points where gradient changes rapidly. Setting the 
desired order of accuracy to two and gradient limiter value to zero is equivalent to the 
first order test. The figure indicates that, indeed, in this case we get the same errors as in 
case of the first order accuracy.

Setting the desired order of accuracy to two and enabling the gradient limiter (setting it to 
the computed values) reduces the error at the peak by a factor of two, and is equal to the 
error when gradient limiter is set to 0.5. The errors at the other locations where the 
gradient changes rapidly are approximately ten times smaller than in case of the first 
order of accuracy test.

Finally, we can conclude that for fixed values of the gradient limiter as their (gradient 
limiters’) values approach one the errors go to zero.



Figure 10. Errors (i<2 - 1</) for the exponential function for time step = 1 and y=0, when:
• the desired order of accuracy to one;
• the desired order of accuracy is two and gradient limiter is set to 0;
• the desired order of accuracy is two and gradient limiter is set to 0.5;
• the desired order of accuracy is two and gradient limiter is set to 1 (in other words disabled);
• the desired order of accuracy is two and gradient limiter is set to 0.75;
• the desired order of accuracy is two and gradient limiter is enabled (in other words set to the 

computed values).



6.2 Exponential squared profile

We also chose the following squared exponential function to describe the profile of the 
passive scalar:

where,
x  — 0.3 v — 0.3T T

The profile of the exponential function at time t=0 is shown in Figure 11. Figure 12 
shows the cross-section of the squared exponential profile at y=0 and corresponding 
gradient limiter values.

x 10

Figure 11. 2D squared exponential function profile at 1=0



Figure 12.
• Cross-section of the 2D squared exponential profile at time t = 0 and y = 0;
• Cross-section of the gradient limiter profile for 2D squared exponential profile at t = 0 and y = 0.

Similarly to the bell-shaped exponential profile (section 6.1), we ran three sets of tests on 
the bell-shaped squared exponential function profile:

1. Gradient limiter is enabled in the ICE code, and second order is the desired order 
of accuracy of the solution;

2. First order is the desired order of accuracy of the solution;
3. Gradient limiter is disabled (or, in other words, gradient limiter values are set to 

one), and second order is the desired order of accuracy of the solution.



6.2.1 Second order of accuracy, gradient limiter enabled

Similarly to the exponential function experiments, first we ran mesh refinement tests 
(with the grid refinement ratio equal to two) on the squared exponential profile with 
gradient limiter enabled in the solver (ICE) and the desired order of accuracy equal to

Figures 13 and 14 show the results -  Lz and Ly errors and their ratios as functions of time 
-  for the source terms from analytical and ice-generated solutions correspondingly. 
Tables 7 and 8 show the approximate computed errors and observed order of accuracy for 
analytical and ice-generated solutions correspondingly.

We can conclude that the resulting discretization errors are consistent (the L2-norm 
decreases by a factor of approximately 3.2-3.3 and La-norm decreases by a factor of 2
2,3 when we refine our grid by a factor of two). However, the order of accuracy does not 
match our expectations and theoretical predictions. Instead of order of accuracy equal to 
two, we got approximately 1,7 (for Li-norm) and 1-1,2 (for L„-nonn),

6.2.2 First order accuracy

As a result, similarly to the case of exponential function profile, we decided to run 
experiments with the desired order of accuracy equal to one. The results of the 
experiments are shown in the figures 15 and 16, and tables 9 and 10,

As we can see from the results, when one is the desired order of accuracy discretization 
errors are also consistent. In addition, they go down by a factor of two; therefore, the 
resulting order of accuracy is equal to the expected value - one - for both solver
generated and analytical function generated sources,

6.2.3 Second order accuracy, gradient limiter disabled.

Results for the second order accuracy test with the gradient limiter disabled (in other 
words, gradient limiter values are set to one) for the squared exponential function are 
presented in figures 17, 18 and tables 11  and 1 2 ,

The results show that disabling the gradient limiter gives us the expected order of 
accuracy equal to two in case of both solver-generated sources and sources generated 
from the analytical function.



Figure 13. L2 and L,, errors and their ratios as functions of time from second order accuracy with gradient 
limiter enabled test for squared exponential 2D profile using source terms from analytical function for 
resolutions:

• 100x100 (Ax = Ay = 0.01m);
• 200x200 (Ax = Ay = 0.005m);
• 400x400 (Ax = Ay = 0.0025m);
• 800x800 (Ax = Ay = 0.00125m).

Table 7. L2 and L c - norms, error ratios and order of accuracy for 2D squared exponential profile (source 
terms are from analytical function)

Grid L2-norm Ratio Observed 
order of 
accuracy

Max Error Ratio Observed 
order of 
accuracy

100x 100 2.71748e-12 6.96352e-l 1
200x200 8.41135e-13 3.23 1.69 3.46223e-l 1 2.01 1.0 1
400x400 2.65838e-13 3.16 1.66 1.67238e-l 1 2.07 1.05
800x800 8.31542e-14 3.20 1.68 7.72489e-12 2.16 1 . 1 1



Figure 14. L2 and L,, errors and their ratios as functions of time from second order accuracy with gradient 
limiter enabled test for squared exponential 2D profile using source terms from solver’s solution for 
resolutions:

• 100x100 (Ax = Ay = 0.01m);
• 200x200 (Ax = Ay = 0.005m);
• 400x400 (Ax = Ay = 0.0025m);
• 800x800 (Ax = Ay = 0.00125m).

Table 8. L2 and L c - norms, error ratios and order of accuracy for 2D squared exponential profile (source 
terms are from IC.E-generated solution)

Grid L2-norm Ratio Observed 
order of 
accuracy

Max Error Ratio Observed 
order of 
accuracy

100x 100 2.66661e-12 6.77022e-l 1
200x200 8.06013e-13 3.31 1.73 3.26456e-l 1 2.07 1.05
400x400 2.44279e-13 3.30 1.72 1.49334e-l 1 2.19 1.13
800x800 7.14662e-14 3.42 1.77 6.31949e-12 2.36 1.24



Figure 15. L2 and L,, errors and their ratios as functions of time from first order accuracy test for squared 
exponential 2D profile using source terms from analytical function for resolutions:

• 100x100 (Ax = Ay = 0.01m):
• 200x200 (Ax = Ay = 0.005m):
• 400x400 (Ax = Ay = 0.0025m):
• 800x800 (Ax = Ay = 0.00125m).

Table 9. L2 and L c - norms, error ratios and order of accuracy for 2D squared exponential profile (source 
terms are from analytical function)

Grid L2-norm Ratio Observed 
order of 
accuracy

Max Error Ratio Observed 
order of 
accuracy

1OOx100 9.33918e-12 7,07463e-l 1
200x200 4,68822e-12 1.99 0.99 3,58000e-l 1 1.98 0.98
400x400 2,34264e-12 2.00 1.00 1.79217e-1 1 2.00 0.99
800x800 1.16722e-12 2.01 1.01 8,93293e-12 2.01 1.00



Figure 16. L2 and L,, errors and their ratios as functions of time from first order accuracy test for squared 
exponential 2D profile using source terms from solver’s solution for resolutions:

• 100x100 (Ax = Ay = 0.01m):
• 200x200 (Ax = Ay = 0.005m):
• 400x400 (Ax = Ay = 0.0025m):
• 800x800 (Ax = Ay = 0.00125m).

Table 10. L2 and L c - norms, error ratios and order of accuracy for 2D squared exponential profile (source 
terms are from ICE-generated solution)

Grid L2-norm Ratio Observed 
order of 
accuracy

Max Error Ratio Observed 
order of 
accuracy

1OOx100 9,33147e-12 7.0653 le-1 1
200x200 4,68628e-12 1.99 0.99 3,57758e-l 1 1.97 0.98
400x400 2.34218e-12 2.00 1.00 1.79158e-1 1 2.00 1.0
800x800 1.16712e-12 2.01 1.00 8,93147e-12 2.01 1.0



x 10
5

4

o
CT3 3 ■
E
£= 2 ■
ĈJ
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Figure 17. L2 and L e errors and their ratios as functions of time from second order accuracy with gradient 
limiter disabled test for squared exponential 2D profile using source terms from analytical function for 
resolutions:

• 100x100 (Ax = Ay = 0.01m);
• 200x200 (Ax = Ay = 0.005m);
• 400x400 (Ax = Ay = 0.0025m);
• 800x800 (Ax = Ay = 0.00125m).

Table 11. L2 and L c - norms, error ratios and order of accuracy for 2D squared exponential profile (source 
terms are from analytical function)

Grid L2-norm Ratio Observed 
order of 
accuracy

Max Error Ratio Observed 
order of 
accuracy

100x 100 6.41230e-13 4.56135e-12
200x200 1.45620e-13 4.4 2.14 9.75007e-13 4.68 2.23
400x400 3.52794e-14 4.13 2.05 2.24302e-13 4.35 2 .12
800x800 8.65682e-15 4.08 2.03 5.33483e-14 4.20 2.07



Figure 18. L2 and L,, errors and their ratios as functions of time from second order accuracy with gradient 
limiter disabled test for squared exponential 2D profile using source terms from solver's solution for 
resolutions:

• 100x100 (Ax = Ay = 0.01m);
• 200x200 (Ax = Ay = 0.005m);
• 400x400 (Ax = Ay = 0.0025m);
• 800x800 (Ax = Ay = 0.00125m).

Table 12. L2 and L c - norms, error ratios and order of accuracy for 2D squared exponential profile (source 
terms are from IC.E-generated solution)

Grid L2-norm Ratio Observed 
order of 
accuracy

Max Error Ratio Observed 
order of 
accuracy

100x 100 6.42001e-13 4.56070e-12
200x200 1.46065e-13 4.40 2.14 9.78557e-13 4.66 2,22
400x400 3.49763e-14 4.18 2.06 2.25096e-13 4.35 2 .12
800x800 7.70293e-15 4.54 2.18 5.38521e-14 4.18 2.06



Figure 19. Summary of the errors (hj -  nj) for the squared exponential function for time step = 1 and y = 0, 
when:

• desired order of accuracy is 1;
• desired order of accuracy is 2 and gradient limiter is enabled;
• desired order of accuracy is 2 and gradient limiter is disabled.

We can conclude that in all three scenarios the L2 and L, errors decrease consistently 
when the resolution is increased by a factor of two. Also, observed order of accuracy 
agrees with the theoretical predictions when the desired order of accuracy is set to one 
and when gradient limiter is disabled in the code. However, when the gradient limiter is 
enabled in the second order of accuracy tests, the order of accuracy decreases by 
approximately 0.4 in case of L2 norm and almost by one in case of L,  norm.

Figure 19 shows where the worst errors are occurring at y = 0 and time step = 1. The 
figure shows the plot of the computed solution u2 and the difference between computed 
and exact solutions (112 -  u 1) when:



1 , the desired order of accuracy is one;
2 , the desired order of accuracy is two and gradient limiter values are set to one (or, 

in other words, the gradient limiter is disabled);
3, the desired order of accuracy is two and gradient limiter values are enabled (in 

other words, set to the computed values).

As we can see from the figure when the desired order of accuracy is one, the worst errors 
occur at the peak of the profile (the error at the peak is on order of 10"12) and around -0.07 
and 0.07 -  the points where gradient changes rapidly. Increasing the desired order of 
accuracy from one to two (in case when gradient limiter is enabled) reduces the error at 
the peak by a factor of two. In addition, when gradient limiter is enabled in the algorithm, 
the errors increase in the areas where the limiter values are not equal to one.

7 . Analysis

The results of the experiments indicate that the order of accuracy of the Advect and 
Advance Module of the solver depends on the problem. Squared exponential function is a 
c" function and smoother than regular bell-shaped exponential. As a result, the errors are 
smaller and the order of accuracy is slightly better for the squared exponential function 
compared to regular exponential.

Also the experiments demonstrated that the L2 and LT, errors are decreasing when we are 
using higher resolution. Moreover they are decreasing consistently (by the same factor).

Also, we can see that the gradient limiter reduces order of accuracy in case of both 
functions. Although, the limiter limits the value of the gradients only in a few places 
(places where the gradient changes rapidly), overall order of accuracy decreases 
significantly. If the reduction in the order of accuracy is not as bad in case of L2 norm (it 
reduces from order two to approximately 1.7), in case of L* norm it reduces almost by 
one order (from 2 to 1.1 approximately). Disabling the gradient limiter reduces error at 
the peak to a smaller number and increases order of accuracy.

8 . Conclussion

The Method of Generated Solutions was developed to evaluate the discretization errors, 
their consistency and order of accuracy of ICE algorithm. The method designs analytical 
solution by interpolating numerical solution from physical experiments or from a solver’s 
solution. Since MGS solutions originate from the actual problems, the results are more 
representative than the ones obtained by using Method of Manufactured Solutions.



We have used MGS to verify Advect and Advance in Time module of ICE solver on a 
2D domain. In the future it is necessary to verify the solver in a 3D domain and on 
practical test problems. All other modules of the software also need to be verified. Finally, 
more research should be done in the area of the gradient limiter. Gradient limiter that is 
being used now does not preserve the order of accuracy well for the functions we used in 
the experiments (especially in case of La-norm). So, there is a need for a different 
gradient limiter that would better preserve second order of accuracy.



References

1. Dr, W, L, Oberkampf, Verification and Validation in Computational Simulations, 
Sandia National Laboratories, 2004 Transport Task Force Meeting, 2004

2. C. Hirsch, Numerical computation o f internal and external flows: Fundementals o f  
computational fluid dynamics, 2007, pp. 541, 542,

3. P. J, Roache, Verification and Validation in Computational Science and Engineering, 
Hermosa Publishers, 1998,

4. C. J. Roy, C. C. Nelson, T, M, Smith, C. C. Ober, Verification o f Euler /  Navier-Stokes 
Codes using the Method o f Manufactured Solutions, International Journal fo r  Numerical 
Methods in Fluids, Vol. 44, No. 6, 2004, pp. 599-620.

5. L. Shunn, F. Ham, Method o f Manufactured Solutions Applied to variable density flow  
solvers", Center for Turbulence Research, 2007

6 . W, L. Oberkampf and T. G. Trucano, Verification and validation in computational 
fluid dynamics, Sandia National Laboratories, 2002 (SAND2002-0529)

7. K. Salari, P. Knupp, Code Verification by the Method o f Manufactured Solutions, 
Sandia National Laboratories, 2000 (SAND2000-1444)

8 . A. Ram an u jam, P. Milyavskaya, K. Sikorski, T. Harman, Method o f Generated 
Solutions as a Verification Tool fo r  Numerical Code, Work in Progress.

9. B. A. Kashiwa, N. T. Padial, R. M. Rauenzahn, W. B. VanderHeyden, A Cell-Centered 
Ice Method For Multiphase Flow Simulation, 1994.

10. A. Ramanujam, C. Sikorski, T. Harman, The Method O f Generated Solutions fo r  
Numerical Verification o f the ICE Code, Technical Report, School of Computing, 
University of Utah, 2007 (UUCS-07-006)

11. W. B. VanderHeyden, B. A. Kashiwa, Compatible Fluxes fo r  van Leer Advection, 
Journal of Computational Physics, vol. 146, pp. 1-28, 1998


