
University of Utah� Department of Computer Science� Technical Report UUCS�������

Khazana�An Infrastructure for Building Distributed Servicesy

John Carter Anand Ranganathan Sai Susarla

Department of Computer Science

University of Utah

Salt Lake City� UT �����

Abstract

Essentially all distributed systems� applications� and

services at some level boil down to the problem of man�

aging distributed shared state� Unfortunately� while the

problem of managing distributed shared state is shared

by many applications� there is no common means of

managing the data � every application devises its own

solution� We have developed Khazana� a distributed

service exporting the abstraction of a distributed per�

sistent globally shared store that applications can use

to store their shared state� Khazana is responsible for

performing many of the common operations needed by

distributed applications� including replication� consis�

tency management� fault recovery� access control� and

location management� Using Khazana as a form of

middleware� distributed applications can be quickly de�

veloped from corresponding uniprocessor applications

through the insertion of Khazana data access and syn�

chronization operations�

� Introduction

Essentially all distributed systems applications at
some level boil down to the problem of managing dis�
tributed shared state� Consider the following applica�
tion areas�

� Distributed �le systems �AFS� NFS� NTFS� Web�
NFS� CIFS� ����

� Clustered �le systems �DEC� Microsoft� ����

�Khazana �k�a�z�a�n�a� �Hindi�� Treasury� repository� cache�
yCopyright ���	 IEEE� Published in the Proceedings of

ICDCS
�	� May ���	 Amsterdam� The Netherlands� Personal
use of this material is permitted� However� permission to
reprint�republish this material for advertising or promotional
purposes or for creating new collective works for resale or redis�
tribution to servers or lists� or to reuse any copyrighted com�
ponent of this work in other works� must be obtained from the
IEEE� Contact� Manager� Copyrights and Permissions� IEEE

Service Center� ��� Hoes Lane � P�O� Box ����� Piscataway�

NJ �		�������� USA�

� Distributed directory services �Novell�s NDS� Mi�
crosoft�s Active Directory� ����

� Distributed databases �Oracle� SQL Server� ����

� Distributed object systems �DCOM� CORBA� ����

� Collaborative groupware �Lotus Notes� Microsoft
Exchange� ����

All of these services� and many more� perform essen�
tially the same function� albeit in very di�erent set�
tings� That function is managing distributed shared
state and providing a convenient way for users and
other applications to access� update� and delete the
information being managed� Unfortunately� while the
problem of managing distributed shared state is shared
by all of the above applications� there is no common in�
frastructure for managing shared data� so every system
implements its own solution� The thesis of this paper
is that it should be possible for distributed clients and
servers to share state without each instance of sharing
requiring specially written code� Just as TCP	IP hides
many complex issues from programmers �e�g�� handling
link failures� routing� and congestion�� there should be
support for distributed state sharing that lets most ap�
plications remain oblivious to the many problems asso�
ciated with managing shared state �e�g�� heterogeneity�
security� high availability� caching strategies� and co�
herence management�� We are developing Khazana� a
distributed service to provide this support�

Figure 
 illustrates a typical Khazana�based dis�
tributed system consisting of �ve nodes� Applications
such as those described above can use Khazana to store
shared data that can be accessed from any node con�
nected to Khazana� The Khazana design assumes that
some or all of the nodes may be connected via slow or
intermittent WAN links� Khazana will use local stor�
age� both volatile �RAM� and persistent �disk�� on its
constituent nodes to store data� In the example illus�
trated in Figure 
� the square represents a single piece

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Khazana

Node 1

Node 5

Node 4

Node 3

Node 2

Local

Storage

Figure 
� Typical Distributed Systems Based on Kha�
zana

of shared data that is physically replicated on Nodes �
and � �represented by the fact that the square is solid
in the local Khazana storage on those nodes�� When
Node 
 accesses the data� Khazana is responsible for
locating a copy of the data and providing it to the
requester on Node 
� The details of how Khazana op�
erates will be discussed in depth in Sections 
 and ��

We envision Khazana as middleware on top of which
a variety of distributed applications� servers� and run�
time environments will be built� Most distributed ap�
plications have common needs �e�g�� location trans�
parency� high availability� and scalability�� and it is
Khazana�s job to satisfy these needs� Although there
are standard techniques available to achieve each of
the above properties �e�g�� naming� replication� and
caching�� the logic to deal with distribution usually
is hardcoded into each application individually� This
approach to building distributed applications and ser�
vices� although capable of providing high performance�
is suboptimal in several ways� including�

Complexity� The same technique may not perform
well in all situations� so applications will either
need to adapt their behavior or perform poorly
in some environments� For example� a caching
technique that performs well on fast LANs may
not perform well on slow WANs�

Correctness� Programs that deal with networking
and distribution explicitly tend to be complex and
prone to errors� Requiring each application to
�roll its own� support for distribution increases
the amount of e�ort required to develop or mod�
ify a distributed application�

Interoperability� Independently developed services
and applications cannot easily interoperate� be�
cause the way that they manage data di�ers� This
has caused serious problems for developers trying

to create uni�ed directory and	or database ser�
vices� for example�

Khazana is designed to solve these problems� Kha�
zana does not interpret the shared data � some clients
may store structured data �e�g�� CORBA objects� while
others may simply use Khazana for distribution of raw
data �e�g�� �les�� To improve performance� Khazana
is responsive to guidance from its clients� Applications
that use Khazana can specify their desired consistency�
fault tolerance� security� and other requirements for in�
dividual blocks of data� and Khazana adapts the way
that it manages the speci�ed data� For example� a
clustered �le server that uses Khazana to store its �le
contents can specify that Khazana maintain at least N
copies of each �le block to ensure N�
 redundancy in
the face of failures� and further specify that its data
be kept strongly consistent� A clustered web server�
on the other hand� would likely require fewer copies be
maintained and allow a weaker �and thus higher per�
formance� consistency protocol� A distributed object
system built on top of Khazana might allow individ�
ual programmers to specify the sharing and replication
semantics they desire for each of their objects� It also
could use location information exported from Khazana
to decide if it is more e�cient to load a local copy of
the object or perform a remote invocation of the object
on a node where it is already physically instantiated�

Our work on Khazana is in its early phases� Our
current focus is identifying the set of services that Kha�
zana should support� the amount of �exibility that it
must export� the extent to which it can support a wide
variety of consumers� and the algorithms needed so it
can scale e�ciently� In particular� we are exploring the
following questions�

� What interface should Khazana export to appli�
cations�

� What are the requirements of various classes
of Khazana clients �e�g�� �le systems� directory
servers� databases� object systems� etc���

� Can applications that use Khazana achieve high
�scalable� performance�

� How much will existing distributed applications
need to be changed to bene�t from Khazana� Is
the change worthwhile�

We discuss our current answers to these questions�
and the resulting Khazana system design� in the re�
mainder of this paper� which is organized as follows�
In Section 
� we discuss the basic design philosophy
of Khazana� and describe at a high level how a set of



Khazana nodes cooperate to provide the abstraction of
persistent� globally accessible� secure shared state� In
Section �� we present the major data structures and
inter�node protocols used by Khazana� Section � de�
scribes two sample uses of Khazana for di�erent kinds
of distributed applications� Section � describes the cur�
rent implementation status of Khazana� We discuss
the value of a Khazana�like middleware layer for dis�
tributed services in Section �� Section � compares this
work to related e�orts� Finally� we draw conclusions
in Section ��

� Approach

As described above� the basic abstraction exported
by Khazana is that of shared state� Speci�cally� it
exports the abstraction of a �at distributed persis�
tent globally shared storage space called global mem�

ory� Applications allocate space in the global mem�
ory in much the same way that they allocate normal
memory� except that Khazana regions are �addressed�
using 

��bit identi�ers� and there is no direct corre�
spondence between Khazana addresses and an applica�
tion�s virtual addresses� Applications can access global
memory either via explicit read�� and write�� calls
that specify global addresses �similar to �le reads and
writes�� or by mapping parts of global memory to their
virtual memory space and reading and writing to this
mapped section �akin to a memory�mapped �le�� In ef�
fect� Khazana can be thought of as a globally accessible
disk against which distributed applications read and
write data� similar to Petal�
��� Unlike Petal� however�
Khazana explicitly supports consistency management
and is designed as a middleware layer for arbitrary dis�
tributed applications�

Referring back to Figure 
� the Khazana service is
implemented by a dynamically changing set of coop�
erating daemon processes running on some �not nec�
essarily all� machines of a potentially wide�area net�
work� Note that there is no notion of a �server� in a
Khazana system � all Khazana nodes are peers that
cooperate to provide the illusion of a uni�ed resource�
Typically an application process �client� interacts with
Khazana through library routines� The basic set of
operations exported by Khazana allows clients to re�
serve� allocate� and access regions� To Khazana� a
region is simply a block of client data with common
application�level characteristics accessed via contigu�
ous Khazana addresses� Khazana also has the notion
of a page� which is the minimum amount of data that
Khazana independently manages� By default� regions
are made up of ��kilobyte pages to match the most
common machine virtual memory page size� Related
to regions� Khazana provides operations to�

� reserve and unreserve a contiguous range of global
address space �region�� A region cannot be ac�
cessed until physical storage is explicitly allocated
to it� At the time of reservation� clients can spec�
ify that a region be managed in pages larger than
��kilobytes �e�g�� 
� kilobytes� �� kilobytes� �����

� allocate and free underlying physical storage for a
given region of reserved global address space�

� lock and unlock parts of regions in a speci�ed mode
�e�g�� read�only� read�write etc�� The lock opera�
tion returns a lock context� which must be used
during subsequent read and write operations to
the region� Lock operations indicate the caller�s
intention to access a portion of a region� These
operations do not themselves enforce any concur�
rency control policy on the Khazana region� The
consistency protocol ultimately decides the con�
currency control policy based on these stated in�
tentions to provide the required consistency se�
mantics�

� read and write subparts of a region by presenting
its lock context�

� get and set attributes of a region� Currently� a
region�s attributes include�

� desired consistency level

� consistency protocol

� access control information

� minimum number of replicas

As can be seen from the list of operations above�
Khazana provides basic data access operations� but
does not provide or enforce any particular program�
ming model� In particular� Khazana itself does not
provide a notion of objects� transactions� streams� or
other higher semantic level operations often found in
distributed object systems or object databases��� �� ��

�� 

�� We believe that these features of a global
storage system are useful to many applications� but
are heavyweight and unnecessary for many others� In
contrast� Khazana concentrates only on storing and
accessing data e�ciently and robustly in a large dis�
tributed environment� and leaves higher level seman�
tics to other middleware layers� Khazana has been
designed to export a �exible set of operations and con�
trols to support just this kind of layered use with other
middleware layers�

One way to implement distributed application ob�
jects using Khazana is as follows� All object state is
kept in global memory� A clustered application can



start multiple instances of itself� each of which can ac�
cess and modify the same object�s� by mapping� lock�
ing� accessing� and unlocking the object�s constituent
region�s�� Unlike conventional distributed systems� in�
stances of a clustered application do not need to in�
teract directly with one another to keep their shared
state consistent� In fact� unless the application ex�
plicitly queries Khazana� it will be unaware that there
are other applications accessing and caching the shared
state� The application can specify the object�s consis�
tency requirements���� Currently� Khazana can sup�
port strictly consistent objects�
��� The application
can also specify that a minimum number of replicas be
maintained for fault�tolerance� Currently all instances
of an object must be accessed using the same consis�
tency mechanisms� but we are exploring ways to relax
this requirement so that each client can specify its spe�
ci�c requirements for each object that it maps�

Khazana is free to distribute object state across the
network in any way it sees �t� subject to resource lim�
itations� perceived demand� and the speci�ed replica�
tion and consistency policies for the object� In Figure

� the square object has been physically replicated on
two nodes �Node � and Node ��� presumably because
these nodes are accessing the object most frequently�
are the most stable� and	or had the most available re�
sources when the object was last replicated� A major
goal of this research is to develop caching policies that
balance the needs for load balancing� low latency access
to data� availability behavior� and resource constraints�

In summary� the main design goals of Khazana are�

Location transparency� Any client should be able
access any region regardless of its current loca�
tion�s� or degree of replication� subject to network
connectivity and security restrictions�

High availability� If a node storing a copy of a re�
gion of global memory is accessible from a client�
then the data itself must be available to the client�
This requires that the internal state that Khazana
needs to access or manage a region� so calledmeta�

data� must be available if the region is available�

Scalability� Performance should scale as nodes are
added if the new nodes do not contend for access
to the same regions as existing nodes� Data should
be cached near where it is used� and the operations
used to locate and access data must not be heav�
ily dependent on the number or con�guration of
nodes in the system�

Flexibility� Khazana must provide �hooks� so that a
wide variety of applications and higher�level mid�

dleware layers can use its data management facil�
ities without undue loss of performance�

Robustness� The system should recover gracefully
from node or network failures�

� Design of Khazana
Global memory and the Khazana metadata used to

locate and manage it are distributed among participat�
ing nodes� Machines can dynamically enter and leave
Khazana and contribute	reclaim local resources �e�g��
RAM or disk space� to	from Khazana� In this section
we discuss Khazana�s solution to the following prob�
lems�

� Global address space and storage management

� Locating global memory data and metadata

� Keeping shared data and metadata consistent

� Local storage management

� Handling failures gracefully

There are� of course� other issues such as authen�
tication� node membership management� handling ap�
plication failures� and backup	restore� but space pre�
cludes a detailed discussion of Khazana�s solution to
these problems�

��� Global Address Space and Storage
Management

Each Khazana node attempts to cache copies of
frequently accessed regions and the associated meta�
data nearby� preferably locally� Khazana maintains
a global region descriptor associated with each region
that stores various region attributes such as its security
attributes� page size� and desired consistency protocol�
In addition� each region has a home node that main�
tains a copy of the region�s descriptor and keeps track
of all the nodes maintaining copies of the region�s data�

In addition to the per�region data structures� Kha�
zana maintains a globally distributed data structure
called the address map that maintains global informa�
tion about the state of regions� The address map is
used to keep track of reserved and free regions within
the global address space� It is also used to locate the
home nodes of regions in much the same way that di�
rectories are used to track copies of pages in software
DSM systems �

�� The address map is implemented
as a distributed tree where each subtree describes a
range of global address space in �ner detail� Each tree
node is of �xed size and contains a set of entries de�
scribing disjoint global memory regions� each of which
contains either a non�exhaustive list of home nodes for
a reserved region or points to the root node of a subtree



describing the region in �ner detail� The address map
itself resides in Khazana� A well�known region begin�
ning at address � stores the root node of the address
map tree� The address map is replicated and kept con�
sistent using a relaxed consistency protocol� as it is not
imperative that its contents be completely accurate� If
the set of nodes speci�ed in a given region�s address
map entry is stale� the region can still be located using
a cluster�walk algorithm described below�

For scalability� the design of Khazana organizes
nodes into groups of closely�connected nodes called
clusters� A large�scale version of Khazana would in�
volve multiple clusters� organized into a hierarchy� al�
though the current prototype supports only a single
cluster� Each cluster has one or more designated clus�

ter managers� nodes responsible for being aware of
other cluster locations� caching hint information about
regions stored in the local cluster� and representing
the local cluster during inter�cluster communication �if
there are multiple clusters�� Given the current lack of
support for multiple clusters� we concentrate on the
single�cluster design in this paper�

Khazana daemon processes maintain a pool of lo�
cally reserved� but unused� address space� In response
to a client request to reserve a new region of memory�
the contacted Khazana daemon �rst attempts to �nd
enough space in unreserved regions that it is manag�
ing locally� If it has insu�cient local unreserved space�
the node contacts its local cluster manager� requesting
a large �e�g�� one gigabyte� region of unreserved space
that it will then locally manage� Each cluster manager
maintains hints of the sizes of free address space �total
size� maximum free region size� etc� managed by other
nodes in its cluster� Once space is located to satisfy the
reserve request� reserving a region amounts to modify�
ing address map tree nodes so that they re�ect that the
region is allocated and where� Unreserving a region in�
volves reclaiming any storage allocated for that region�
For simplicity� we do not defragment �i�e�� coalesce ad�
jacent free� ranges of global address space managed
by di�erent Khazana nodes� We do not expect this
to cause address space fragmentation problems� as we
have a huge �

��bit� address space at our disposal�

��� Locating Khazana Regions

To initiate most operations� Khazana must obtain
a copy of the region descriptor for the region enclosing
the requested global range� The region descriptor is
used to identify the region�s home node�s�� To avoid
expensive remote lookups� Khazana maintains a cache
of recently used region descriptors called the region di�

rectory� The region directory is not kept globally con�
sistent� and thus may contain stale data� but this is not
a problem� Regions do not migrate home nodes often�

so the cached value is most likely accurate� but even
if the home node information is out of date� the use
of a stale home pointer will simply result in a message
being sent to a node that no longer is home to the ob�
ject� If the region directory does not contain an entry
for the desired region or the home node contacted as a
result of the cache lookup is no longer a home node for
the region� a node next queries its local cluster man�
ager to determine if the region is cached in a nearby
node� Only if this search fails does it search the address
map tree� starting at the root tree node and recursively
loading pages in the tree until it locates the up to date
region descriptor� If the region descriptor cannot be
located� the region is deemed inaccessible and the op�
eration fails back to the client� Otherwise Khazana
checks the region�s access permissions and �optionally�
obtains copies of the relevant region pages� The loca�
tion of data pages can be obtained by querying one of
the region�s home nodes�

��� Consistency management

Replicating global data and metadata introduces
the problem of keeping the replicas consistent� Kha�
zana maintains consistency as follows� Each Khazana
node can independently choose to create a local replica
of a data item based on its resource constraints� Pro�
gram modules called Consistency Managers �CMs� run
at each of the replica sites and cooperate to implement
the required level of consistency among the replicas as
is done by Brun�Cottan���� A Khazana node treats lock
requests on an object as indications of intent to access
the object in the speci�ed mode �read�only� read�write�
write�shared� etc��� It obtains the local consistency
manager�s permission before granting such requests�
The CM� in response to such requests� checks if they
con�ict with ongoing operations� If necessary� it delays
granting the locks until the con�ict is resolved�

Once a lock is granted� Khazana performs the sub�
sequent permitted operations �e�g�� reads and writes�
on the local replica itself� notifying the CM of any
changes� The CM then performs consistency�protocol�
speci�c communication with CMs at other replica sites
to inform them of the changes� Eventually� the other
CMs notify their Khazana daemon of the change� caus�
ing it to update its replica� Given this consistency
management framework� a variety of consistency pro�
tocols can be implemented for use by the Khazana to
suit various application needs� For example� for the
address map tree nodes� we use a release consistent
protocol�
��� We plan to experiment with even more
relaxed models for applications such as web caches and
some database query engines for which release consis�
tency is overkill� Such applications typically can tol�
erate data that is temporarily out�of�date �i�e�� one or



two versions old� as long as they get fast response�

��� Local storage management

Node�local storage is treated as a cache of global
data indexed by global addresses� The local storage
subsystem on each node maintains a page directory�
indexed by global addresses� that contains information
about individual pages of global regions including the
list of nodes sharing this page� If a region�s pages are
locally cached� the page directory lists the local node
as a sharer� The page directory maintains persistent
information about pages homed locally� and for perfor�
mance reasons it also maintains a cache of information
about pages with remote homes� Like the region direc�
tory� the page directory is node�speci�c and not stored
in global shared memory�

The local storage system provides raw storage for
pages without knowledge of global memory region
boundaries or their semantics� There may be di�er�
ent kinds of local storage � main memory� disk� local
�lesystem� tape� etc�� organized into a storage hierar�
chy based on access speed� as in xFS�
���

The local storage system handles access to global
pages stored locally� In response to allocation requests�
the local storage system will attempt to locate avail�
able storage for the speci�ed range of addresses� If
available� it will simply allocate available local stor�
age� If local storage is full� it can choose to victim�
ize unlocked pages� In the prototype implementation�
there are two levels of local storage� main memory and
on�disk� When memory is full� the local storage system
can victimize pages from RAM to disk� When the disk
cache wants to victimize a page� it must invoke the
consistency protocol associated with the page to up�
date the list of sharers� push any dirty data to remote
nodes� etc�

In response to data access requests� the local stor�
age system simply loads or stores the requested data
from or to its local store �either RAM or disk�� It
is the responsibility of the aforementioned consistency
management routines to ensure that all of the locally
cached copies of a region are kept globally consistent�
The local storage subsystem simply provides backing
store for Khazana�

��� Failure handling

Khazana is designed to cope with node and network
failures� Khazana operations are repeatedly tried on all
known Khazana nodes until they succeed or timeout�
All errors encountered while acquiring resources �e�g��
reserve� allocate� lock� read� write� are re�ected back
to the original client� while errors encountered while
releasing resources �unreserve� deallocate� unlock� are
not� Instead� the Khazana system keeps trying the
operation in the background until it succeeds�

8

map

Address

Page
directory

CM

map

Address

CMPage
directory

(page, mode)

lock and fetch

ownership_granted

get_ownership

6

Local storage

Cache
Memory

Disk Disk

Local storage

Cache
Memory

lookup

lookup_reply

lookup

lock
lock

grant

page contentsreturn_page

grant_lock

send_copy

Node A Node B

Region

directory
Region

directory
1

2

3

4

5 7

9

10
11

13

13

12get_page send_copy

Figure 
� Sequence of actions on a lock and fetch re�
quest

Since the �rst step of many Khazana operations is
address lookup� the success of many operations de�
pends on the availability of the relevant address map
tree nodes� To make Khazana less sensitive to the
loss of address map nodes� the local region directory is
searched �rst and then the cluster manager is queried�
before an address map tree search is started� That way�
if a lookup for a nearby address has recently been per�
formed by another node in the same cluster� the tree
search is avoided� If a tree search is unavoidable� a
region�s availability depends on the availability of the
address map tree nodes in the path of the tree search�
Such availability is also required to reserve and unre�
serve regions�

Finally� Khazana allows clients to specify a mini�
mum number of primary replicas that should be main�
tained for each page in a Khazana region� This func�
tionality further enhances availability� at a cost of re�
source consumption�

��� Example Operation

Figure 
 shows the steps involved in servicing a sim�
ple �lock� fetch� request pair for a page p at Node
A� when Node B owns the page�

Step � Node A obtains the region descriptor for p�s
enclosing region�

Steps �� � �Optional� Obtaining the region descrip�
tor might involve an address map lookup�

Step � After sanity checks� p is looked up in the page
directory� The page directory entry holds location
and consistency information for that page�

Step 	 The Consistency Manager �CM� is invoked to
grant the lock on p in speci�ed mode�

Step 
 The CM requests its peer on Node B for cre�
dentials to grant the lock in the speci�ed mode�



Steps �� �� 
 Node B�s CM directs the local daemon
to supply a copy of p to Node A� which caches it
in its local storage�

Step �� The CM grants ownership of p to Node A�

Step �� The CM on node A then grants the lock�

Steps ��� �� Node A supplies a copy of p locked in
the requested mode to the requestor out of its local
storage�

� Example Uses of Khazana
In this section� we discuss two example applications

that have been designed to run using Khazana� The
�rst is a wide area distributed �lesystem and the sec�
ond a distributed object system� The discussion fo�
cuses on both the implementation issues involved and
on how Khazana enables each application to be un�
aware of the fact that it is distributed�

��� Wide Area Distributed Filesystem

Recently the notion of Internet�wide �le systems has
become popular��� 

�� Some of the desirable charac�
teristics of such a �lesystem are simplicity� support for
e�cient handling of �les with diverse access patterns
�e�g�� temporary �les� system �les� program develop�
ment �les�� scalability� availability� and easy load bal�
ancing� Ideally� the amount of e�ort required to modify
a single�node �lserver to make it a clustered �le server
should be small� In addition� it should be possible to
alleviate server load by starting up additional instances
of the server and transparently redirecting some of the
load to these new instances� Using Khazana� we have
designed a �lesystem that takes a �rst step towards
achieving these goals� A brief description follows�

The �lesystem treats the entire Khazana space as
a single disk� limited in size only by the size of the
Khazana address space� At the time of �le system cre�
ation� the creator allocates a superblock and an inode
for the root of the �lesystem� Mounting this �lesystem
only requires the Khazana address of the superblock�
Creating a �le involves the creation of an inode and di�
rectory entry for the �le� Each inode is allocated as a
region of its own� Parameters speci�ed at �le creation
time may be used to specify the number of replicas
required� consistency level required� access modes per�
mitted� and so forth� In the current implementation�
each block of the �lesystem is allocated into a sepa�
rate ��kilobyte region� An alternative would be for the
�lesystem to allocate each �le into a single contiguous
region� which would require the �lesystem to resize the
region whenever the �le size changes�

Opening a �le is as simple as �nding the inode ad�
dress for the �le by a recursive descent of the �lesystem

directory tree from the root and caching that address�
Reads and writes to a �le involve �nding the Khazana
address for the page to be read or written� locking the
page in the appropriate mode� mapping it into local
memory� and executing the actual operation� Closing
a �le releases the region containing the corresponding
inode� To truncate a �le� the system deallocates re�
gions no longer needed�

This approach to designing a clustered �le system
satis�es all the criteria outlined above� with the pos�
sible exception of scalable performance� The same
�lesystem can be run on a stand�alone machine or in
a distributed environment without the system being
aware of the change in environment� Khazana takes
care of the consistency� replication� and location of the
individual regions� Specifying appropriate attributes
at creation time allows the system to e�ciently support
di�erent types of �les� The default handling for each
type of �le can be changed if access patterns dictate a
change in predicted behavior� Khazana provides high
availability guarantees� The failure of one �lesystem
instance will not cause the entire �lesystem to become
unavailable� as is the case in a conventional distributed
�le system when the �le server crashes� The �lesystem
maintainer can specify the desired degree of fault toler�
ance� New instances of the �lesystem can be initiated
without changes to existing instances of the �lesystem�
which enables external load balancing when the system
becomes loaded� The initial prototype of Khazana per�
forms poorly� but we have not yet spent enough time
tuning performance to make a judgement about the in�
herent cost of building distributed systems on top of a
Khazana�like middleware layer�

��� Distributed Objects

Another of the motivating applications for Khazana
is an e�cient implementation of a distributed objects
runtime layer �e�g�� CORBA�
�� or DCOM�
���� To
build a distributed object runtime system on top of
Khazana� we plan to use Khazana as the repository
for object data and for maintaining location informa�
tion related to each object� The object runtime layer
is responsible for determining the degree of consistency
needed for each object� ensuring that the appropri�
ate locking and data access operations are inserted
�transparently� into the object code� and determin�
ing when to create a local replica of an object rather
than using RPC to invoke a remote instance of the
object� The Khazana�based distributed object system
abstracts away many implementation issues that would
arise� such as the need to keep replicated object con�
tents consistent and ensuring availability in the face of
failures� The object veneer would implement the more
powerful semantics expected by users of distributed ob�



ject systems� such as reference counting �or garbage
collection� and transactional behavior� Khazana pro�
vides the hooks needed to support these higher level
semantics� but does not implement them directly� since
we anticipate that many users of Khazana will not re�
quire this level of support or be willing to pay the per�
formance or resource overhead they will entail�

Depending on the size of the object� it might be al�
located as a whole region or as part of a larger region�
Khazana provides location transparency for the object
by associating with each object a unique identifying
Khazana address� All methods associated with the ob�
ject need to be translated to the Khazana interface of
reads and writes to the data contained within the ob�
ject� Methods are invoked by downloading the code
to be executed along with the object instance� and in�
voking the code locally� Khazana is useful in that it
maintains consistency across all copies and replicas of
the same object and provides caching to speed access�
Currently� Khazana does not recognize object bound�
aries within a page� As a result� consistency manage�
ment on �ne�grain objects �small enough that many of
them �t on a single region�page� is likely to incur a sub�
stantial overhead if false sharing is not addressed� al�
though there are known techniques for addressing this
problem��� ��� Khazana�s CM interface adopts the ap�
proach of Brun�Cottan and Makpangou��� to enable
better application�speci�c con�ict detection to address
false sharing�

� Implementation Status
We currently have a working� single�cluster proto�

type of Khazana ready� Cluster hierarchies are yet to
be implemented� We have been able to test the al�
gorithms and infrastructure� We are currently port�
ing the BSD Fast File System available as part of the
OSKit�
�� to use Khazana� Concurrently� a simpli�ed
distributed object system is being implemented using
Khazana�

The only consistency model we currently sup�
port is a Concurrent Read Exclusive Write �CREW�
protocol�
��� However� the system was designed so that
plugging in new protocols or consistency managers is
only a matter of registering them with Khazana� pro�
vided they export the required functionality�

While the current implementation runs in a Unix
environment� only the messaging layer is system de�
pendent� Therefore� we expect that Khazana system
can be ported to other platforms with little e�ort� but
no ports are currently underway�

� Discussion
One major concern that developers of distributed

services have is that infrastructures that hide the dis�

tribution of data remove a lot of useful system�level
information needed to e�ciently control distribution�
This is a valid concern� although we believe the trade�
o�s to be reasonable� similar to the way in which high
level languages and communication protocols are the
norm� Even though services written on top of our in�
frastructure may not perform as well as the hand�coded
versions� we believe that Khazana�s �exible interface
allows a lot of room for application�speci�c optimiza�
tions for performance� in addition to considerably sim�
plifying their development� The extent of performance
degradation compared to the hand�coded version de�
pends on how well distributed services can translate
their optimizations to shared state access optimiza�
tions� The widespread use of high level languages rep�
resents the tradeo� that developers are willing to make
for rapid development and hiding of complexity� We
are currently experimenting with various classes of ap�
plications using Khazana to validate this belief�

� Related Work
Building distributed applications and services on

top of Khazana is analogous to building shared memory
parallel applications on top of a software distributed
shared memory system �DSM� �
� �� 
�� 

�� Just as
parallelizing compute�intensive scienti�c programs us�
ing DSM simpli�es the task of building and maintain�
ing the parallel program� building distributed applica�
tions and services on top of Khazana will make them
easier to build and maintain� Conventional DSM sys�
tems� however� lack several key features required to
support distributed applications and services� In par�
ticular� conventional DSM systems are built for a sin�
gle application� where all shared data persists only as
long as the program is running� all data is mapped at
the same address in every process accessing the data�
failures generally lead to total system failure� and het�
erogeneity is not handled� Khazana addresses these
limitations of conventional DSM systems�

Distributed object systems such as CORBA�
�� and
DCOM�
�� provide uniform location�transparent nam�
ing and access to heterogeneous networked objects� Al�
though these systems provide a convenient way for ap�
plications to access information in well�de�ned ways�
they do not by themselves provide the basic function�
ality of managing shared state� In contrast� Khazana
provides a more basic infrastructure of distributed stor�
age on top of which distributed object systems and
other less structured applications can be built� One
drawback of the object abstraction is that it is dif�
�cult to provide e�cient replication� fault�tolerance�
caching� and consistency management for arbitrary ap�
plication objects in an application�independent man�
ner� The notion of state is hidden within the objects



and cannot be made visible to the lower layer except
by explicit object serialization� which can be costly and
cumbersome in many applications� This argument ap�
plies equally to object systems that provide replication
management��� 
��� but some of the techniques devel�
oped for explicitly managing replication and caching of
individual objects would work well in a Khazana�like
environment� For example� Brun�Cottan�s approach to
separating application�speci�c con�ict�detection from
generic consistency management��� is used in Khazana
as a modular consistency management framework� Ob�
ject databases��� �� �� 
�� 

� provide the necessary
distributed storage abstraction� but most are imple�
mented in a client�server environment and the systems
we know of were not implemented with wide�area net�
works and high scalability in mind� Therefore� they do
not have the degree of aggressive caching and replica�
tion provided by Khazana�

There are many projects that closely resemble Kha�
zana� Globe�
�� provides functionality similar to Kha�
zana but uses distributed shared objects as its base
abstraction� We did not choose the same abstrac�
tion for the reasons outlined above� WebFS�
�� is a
global cache coherent �le system to provide a common
substrate for developing �distributed� Internet appli�
cations� Its goals are similar to those of Khazana�
but it exports a �le system as its base abstraction�
It uses URLs for naming� and supports application�
speci�c coherency protocols� In contrast� Khazana ex�
ports a shared global cache coherent shared storage
abstraction� For many distributed services with �ne�
grained objects like object systems� a �le abstraction
may be too heavyweight� Petal�
�� exports the no�
tion of a distributed virtual disk� It has been used
to implement Frangipani�
�� which is similar to the
�lesystem we envisage in Section ��
� Petal works at
a lower level than Khazana� in particular it provides
no means of consistency management� Petal was con�
ceived as a globally accessible� distributed storage sys�
tem� On the other hand� Khazana attempts to provide
infrastructure for the development and deployment of
distributed services� However� it is conceivable that
Khazana could use Petal for storage management �
in such a scenario� Khazana would be the middleware
between Petal and the distributed service� GMS�
�� al�
lows the operating system to utilize cluster�wide main
memory to avoid disk accesses� which could support
similar single�cluster applications as Khazana� How�
ever� GMS was not designed with scalability� persis�
tence� security� high availability� or interoperability in
mind� which will limit its applicability�

Bayou�

� is a system designed to support data shar�
ing among mobile users� Bayou focuses on providing

a platform to build collaborative applications for users
who are likely to be disconnected more often than not�
It is most useful for disconnected operations and uses a
very specialized weak consistency protocol� In the cur�
rent implementation� Khazana does not support dis�
connected operations or such a protocol� although we
are considering adding a coherence protocol similar to
Bayou�s for mobile data�

Serverless �le systems�
� utilize workstations on a
closely coupled network� cooperating as peers to pro�
vide �lesystem services� Like Khazana� serverless �le
systems reject the use of servers and instead use a col�
lection of peer processes to support a distributed sys�
tem service� xFS�
�� is a wide area mass storage �lesys�
tem with similar scalability goals as Khazana� Both
systems are designed to meet the restricted goals of a
�lesystem� and as such are inappropriate for support�
ing general system services and applications�

� Conclusions
In this paper� we have motivated the need for devel�

oping a common infrastructure for building distributed
applications and services� Most distributed applica�
tions require some form of distributed shared state
management� but currently applications tend to spin
their own mechanisms� We have developed Khazana�
a distributed service that allows uniprocessor applica�
tions and services to be made into distributed appli�
cations and services in a straightforward fashion� We
believe that this will greatly increase the number of
distributed programs that are generated � Khazana
handles many of the hardest problems associated with
distribution� leaving application developers to concen�
trate on their real application needs�

Khazana exports the abstraction of 

��bit�
addressable persistent shared storage that transpar�
ently spans all nodes in the system� It handles repli�
cation� consistency management� fault recovery� ac�
cess control� and location management of shared state
stored in it� It does so through a collection of cooperat�
ing Khazana nodes that use local storage� both volatile
�RAM� and persistent �disk�� on its constituent nodes
to store data near where it is accessed� Our initial ex�
perience with Khazana indicates that it can support a
variety of distributed services e�ectively� We will con�
tinue to re�ne Khazana and extend its API as we gain
experience building applications and services based on
the globally shared storage paradigm�

The work discussed herein represents only the be�
ginning of this line of research� Among the topics
we plan to explore are scalability to multiple clus�
ters� resource� and load�aware migration and replica�
tion policies� more e�cient region location algorithms�
more sophisticated fault tolerance schemes� �exible se�



curity and authentication mechanisms� and a number
of possible performance optimizations�

Acknowledgements
We would like to thank those individuals who helped

improve the quality of this paper� and in particular
the anonymous reviewers and members of the Com�
puter Systems Laboratory seminar at the University
of Utah�

References
��� C� Amza� A�L� Cox� S� Dwarkadas� P� Keleher� H� Lu�

R� Rajamony� W� Yu� and W� Zwaenepoel� Tread�
marks	 Shared memory computing on networks of
workstations� In IEEE Computer� January ���
�

��� T�E� Anderson� M�D� Dahlin� J�M� Neefe� D�A� Patter�
son� D�S� Roselli� and R�Y� Wang� Serverless network
�le systems� In Proceedings of the ��th Symposium on
Operating Systems Principles� December ���
�

��� J�K� Bennett� J�B� Carter� and W� Zwaenepoel� Adap�
tive software cache management for distributed shared
memory architectures� In Proceedings of the ��th An�
nual International Symposium on Computer Architec�
ture� May �����

��� G� Brun�Cottan and M� Makpangou� Adaptable
replicated objects in distributed environments� �nd
BROADCAST Open Workshop� June ���
�

�
� B� Callaghan� WebNFS	 The �lesystem for the Inter�
net� http	��sun�com�webnfs�wp�webnfs�� �����

�
� M� Carey� D� Dewitt� D� Frank� G� Graefe� J� Richards�
E� Shekita� and M� Muralikrishna� The architecture
of the EXODUS extensible DBMS� In Proceedings
of the �st International Workshop on Object�Oriented
Database Systems� September ���
�

��� M� Carey� D� Dewitt� D� Naughton� J� Solomon� et al�
Shoring up persistent applications� In Proceedings� of
the ���� ACM SIGMOD Conf� May �����

��� J�B� Carter� J�K� Bennett� and W� Zwaenepoel� Tech�
niques for reducing consistency�related communica�
tion in distributed shared memory systems� ACM
Transactions on Computer Systems� August ���
�

��� M� Castro� A� Adya� B� Liskov� and A�C� Myers� HAC	
Hybrid adaptive caching for distributed storage sys�
tems� In Proceedings of the ��th ACM Symposium on
Operating Systems Principles� October �����

���� Microsoft Corp� DCOM technical overview�
http	��microsoft�com�ntserver�library�dcomtec�exe�

���� Microsoft Corp� Common Internet File System
�CIFS�� http	��microsoft�com�intdev�cifs� �����

���� A� Demers� K� Petersen� M� Spreitzer� D� Terry�
M� Theimer� and B� Welch� The Bayou architecture	
Support for data sharing among mobile users� In Pro�
ceedings of the Workshop on Mobile Computing Sys�
tems and Applications� December �����

���� M�J� Feeley� W�E� Morgan� F�H� Pighin� A�R� Karlin�
H�M� Levy� and C�A� Thekkath� Implementing global
memory management in a workstation cluster� In Pro�
ceedings of the ��th ACM Symposium on Operating
Systems Principles� December ���
�

���� B� Ford� G� Back� G� Benson� J� Lepreau� A� Lin� and
O� Shivers� The Flux OSKit	 A substrate for OS and
language research� In Proceedings of the ��th ACM
Symposium on Operating Systems Principles� Decem�
ber ���
�

��
� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons�
A� Gupta� and J� Hennessy� Memory consistency and
event ordering in scalable shared�memory multiproces�
sors� In Proceedings of the ��th Annual International
Symposium on Computer Architecture� May �����

��
� Object Management Group� The Common Object Re�
quest Broker	 Architecture and Speci�cation� ���
�

���� K�L� Johnson� M�F� Kaashoek� and D�A� Wal�
lach� CRL	 High performance all�software distributed
shared memory� In Proceedings of the ��th ACM Sym�
posium on Operating Systems Principles� ���
�

���� C� Lamb� G� Landis� J� Orenstein� and D� Weinreb�
The Objectstore database system� Communications
of the ACM� October �����

���� L� Lamport� How to make a multiprocessor com�
puter that correctly executes multiprocess programs�
IEEE Transactions on Computers� C������	
���
���
September �����

���� E�K� Lee and C�A� Thekkath� Petal	 Distributed vir�
tual disks� In Proceedings �th International Conf	 on
Architectural Support for Programming Languages and
Operating Systems� October ���
�

���� K� Li and P� Hudak� Memory coherence in shared
virtual memory systems� ACM Transactions on Com�
puter Systems� November �����

���� B� Liskov� A� Adya� M� Castro� M� Day� S� Ghemawat�
R� Gruber� U� Maheshwari� A� C� Myers� and L� Shrira�
Safe and e�cient sharing of persistent objects in Thor�
In Proceedings of SIGMOD 
��� June ���
�

���� M� Makpangou� Y� Gourhant� J�L� Narzul� and
M� Shapiro� Fragmented Objects for Distributed Ab�
stractions� IEEE Computer Society Press� �����

���� C�A� Thekkath� T� Mann� and E�K� Lee� Frangi�
pani	 A scalable distributed �le system� In Proceedings
��th ACM Symposium on Operating Systems� October
�����

��
� A� Vahdat� P� Eastham� and T� Anderson�
WebFS	 A global cache coherent �lesystem�
http	��www�cs�berkeley�edu��vahdat�webfs�webfs�html�
���
�

��
� M� van Steen� P� Homburg� and A�S� Tanenbaum� Ar�
chitectural design of globe	 A wide�area distributed
system� Technical Report IR����� Vrije Universiteit�
Department of Mathematics and Computer Science�
March �����

���� R�Y� Wang and T�E� Anderson� xFS	 A wide area mass
storage �le system� In �th Workshop on Workstation
Operating Systems� October �����


