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ABSTRACT

This research is principally concerned with the
digitaT reconstruction of star images observed with large
ground-based telescopes, although the techniques developed
here will have application to a broad <class of
reconstruction problems. Since the work of Labeyrie, the
difficulty in producing accura£e and detailed
reconstructions of stars has stemmed oprimarily from the
extreme degradation of the +phase spectrum caused by the
atmospheric turbulence, and secondarily from the 1low-pass
filter <characteristic of the telescope itself. In this
research, we describe solutions to both problems. OQur
phase estimator 1is based on the Knox-Thompson phase
difference estimator, which we have extended and modified
to produce more accurate estimates. The performance of
this estimator is evaluated by simulation at various
signal-to-noise ratios. We also describe a new non-linear
super-resolution algorithm which appears to exhibit the
best accuracy and convergence characteristics of any such
algorithm proposed to date. It is also evaluated
empirically.

These two techniques were then used to restore 1images
of the stars Betelgeuse and Capella. In the 1latter

restoration resolution 1is realized well beyond the



diffraction-1imit of the telescope. Both reconstructions
are consistent with known astrophysical facts, and both

appear to be of high quality.
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CHAPTER 1
INTRODUCTION

I.1 Problem Description

The vrestoration of astronomical images to permit
greater resolution is a problem of long-standing interest.
Image resolution is 1imited both by atmospheric turbulence
and by the diffraction effects caused by imaging with a
finite aperture, although the former is more serious for
ground-based telescopes.

Atmospheric turbulence can be thought of as causing a
random perturbation of the refractive index of air in the
optical path. This perturbation varies in both time and
space, and causes the phase of an incident 1ight wavefront
to be distorted. These distorted waves are not brought
into sharp focus by a conventional imaging system, but are
instead spread over a large area in the image plane. For
the 200 inch Hale telescope, the diameter of the
diffraction-1imited Airy disk in visible 1ight is about .05
arc-seconds. However, for observations made through the
atmosphere the minimum signal diameter in the image plane
is about 2 arc-seconds, which corresponds to a 40-fold
decrease in resolution.

For many years this 1lost resolution was considered
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irrecoverable. However, in the.ear1y 1970s Labeyrie showed
that diffraction-limited information could be obtained by
ground-based telescopes. His approach was to take a series
‘of very short exposufe photographs, each of which
essentially 'freezes' the motion of the atmosphere.
Because of the random constructive and destructive
interference of the distorted l1ight waves, the resulting
photographs have a speckled appearance. If the Fourier
transform of each photograph is taken, the phase spectrum
is seen to vary randomly from photograph to photograph.
When these short-exposure photographs are averaged directly
(which is equivalent to long-exposure imaging), the random
phase spectrum variations cause cancellation of the high
spatial frequencies. The result is a low-resolution image
typical of convgntiona1 astronomy. vfo avoid this result,
Labeyrie ignored the phase component and averaged only the
squared modulus of the Fourier transforms. The resulting
estimate is a diffraction-limited estimate of the power
spectral density of the image, or equivalently the image
autocorrelation. Because no estimate of the phase spectrum
is obtained, however, an image of an arbitrarily shaped
object cannot be formed.

To supply the phase spectrum estimate, Knox and
Thompson proposed a new technique for processing the same
speckle photographs. They multiply the Fourier transform

of each photograph by a shifted copy of itself and average
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this product over the series of photographs. This averaged
product estimates phase differences between points in the
spatial frequency domain, which can then be integrated to
~form a phase estimate. Knox indicates that the estimator
is very sensitive to sensor noise in the observations.
Although encouraging resul ts have been obtained in
simulations, no successful reconstructions of real
astronomica] objects have been obtained to date.

As mentioned, diffraction effects also 1imit the
possible image resolution by imposing an absolute spatial
frequency cutoff on the signal spectrum, <called the
diffraction 1imit. This 1imit is a function of the
wavelength of the observed 1ight and the diameter of the
telescope aperture. In the absence of telescope
aberrations the optical transfer fuhction (0TF3 of the
telescope is essentially a triangular function that
low-pass filters an input signal. A number of techniques
have been proposed to extrapolate the measured spatial
frequency spectrum, the most successful being the iterative
algorithm of Gerchberg. This algorithm alternatively
imposes constraints in both +the spatial and frequency
domains to perform the extrapolation. As Gerchberg himself
pointed out, the algorithm tends to corrupt the
extrapolated spectrum at each iteration by adding to the
- extrapolated spectrum a portion of the distortion energy in

the measured spectrum. Thus, extrapolations of noisy data
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obtained by this algorithm may be suspect. Despite this
caveat, the algorithm has recently been used to aid in a
digital reconstruction of Betelgeuse.

These two problems, that is, accurately estimating
phase spectra and extrapolating low-frequency spectra, are
common to a great many deconvolution problems. There is to
date no entirely satisfactory solution to this
deconvolution problem in the general case. The fundamental
difficulties are those of inversion theory; namely, the
truncation of infinite impulse responses, smoothing, and
noise amplification. In the blind deconvolution problem, a
spectral estimation problem must also be solved. Phase
estimation has traditionally been more difficult than
magnitude estimation, so much so that researchers often
ignore it when dealing with speech and music signals, where
it is often not perceptually significant. However, for
images, such a «cavalier approach lTeads to poor results.
Thus the astronomical imaging problem presents an important
special case of the deconvolution problem because of the

poor SNR and the severity of the phase distortion.

1.2 Contribution of this Research

This research describes our efforts to improve the
resolution of astronomical images, first by modifying the
Knox-Thompson estimator to provide an adequate phase
spectrum estimate out to the telescope diffraction-limit,

and second by estimating the spatial frequency spectrum
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beyond the diffraction-limit. The techniques described
here have been strikingly successful, and we anticipate
that they will be applied to a variety of deconvolution
problems.

Our most important contribution to phase estimation is
the application of a fast direct algorithm to perform a
least-squares integration of the estimated phase
differences. The algorithm is stable, accurate,
memory-efficient, and about an order of magnitude faster
than the best iterative schemes. The resulting estimates
are more accurate than those obtained by dintegrating the
phase differences along several different paths of
integration and then averaging these discrete line
integrals. We show empirically that even better estimates
can be obtained by refining the least-squares phase with a
Gerchberg-Saxton algorithm. The practical necessity of
windowing the speckle images is also demonstrated.

The other principal contribution is the development of
a new super-resolution algorithm, based on a non-linear
modification of the Gerchberg algorithm. This new approach
is more accurate in the presence of noise and demonstrates
superior convergence properties when compared to the
original algorithm.

These techniques have been used to restore images of
the red super-giant star Betelgeuse and the binary star

Capella. These are the first successful reconstructions to



6
explicitly estimate the object phase spectrum. The
reconstructions are consistent with known astrophysical
data and appear to be of high quality.

This dissertation 1is arranged as follows. The
previous research on the problems of speckle imaging, phase
estimation, and super-resolution are reviewed 1in chapter
IT. Chapter 1III describes 1in detail the least-squares
phase integration algorithm, and compares it to the 1ine
integral estimator via simulations for various SNR. The
use of various modifications, including phase refinement,
is also explored. Chapter IV is a similar treatment of the
new super-resolution algorithm. Chapter V describes the
experimental technique and the results obtained using real
images. A brief summary of the results 1is reviewed 1in

chapter VI, including some remaining areas of research.



CHAPTER 11
LITERATURE REVIEW

I1.1 Speckle Interferometry and Some Extensions

The difficulty 1in 1imaging through the turbulent
atmosphere has T1ong been recognized, and astronomers have
resorted to the use of interferometers to obtain accurate
quantitative data on the angular dimensions and separations
of stellar objects. The classical astronomical
interferometers, the Michelson stellar interferometer and
the intensity interferometer, invented by Hanbury Brown and
Twiss, are inherently one-dimensional devices, however.
They are therefore most useful when a one-dimensional scan
sufficiently characterizes the object of interest. For
extended objects pictorial information 1is often desired,
and one-dimensional techniques do not suffice.

The development of speckle interferometry by Labeyrie
[1] and his successful use of the procedure [2] to measure
object autocorrelations and hence to infer angular
dimensicons represent a step towards achieving full aperture
reconstructions. The method, which averages only the
squared modulus of the Fourier transform of the image, is
successful precisely because it ignores the phase. This

prevents the <cancellation of the high spatial frequency



energy, but it also precludes the reconstruction of an
image. As such it represents only a partial solution to
the problem of diffraction-limited imaging.

Since the publication of Labeyrie's work a number of
researchers have proposed extensions to the technique to
permit true imaging. Most of these proposals avoid the
problem of phase estimation by working directly with either
the speckles themselves or the estimated object
autocorrelation. The earliest suggestions (those of Bates,
Gough and Napier [3] and Liu and Lohmann [4]) required the
use of an unresolvable point star somewhere in the same
isoplanatic patch. (Isoplanicity is synonymous with
shift-invariance). This is a rather unsatisfactory
criterion, since it is often not possible in practice.
Weigelt [5] simuTated a variation bf the Liu and Lohmann
technique, wherein he varied the brightness of the
reference star to determine which of the apparent stars in
the image autocorrelation were genuine and which were
artifacts. The artifacts were then removed
photographically during the final copying process. The
relative brightness of the reference star was varied by the
use of a neutral density filter placed in front of -each
speckle 1image. In fact, the filter was used to darken the
speckles which are not produced by the reference star.
Weigelt reported good results in his simulation, even when

the object field was so large that it no Tlonger Tlay



entirely within an isoplanatic patch.

More recently, some interesting results have been
obtained from real speckle images by an entirely different
approach. Lynds, Worden and Harvey [6] describe a
technique in which it 1is assumed that the speckles are
formed by the convolution of the +true image with a
point-spread function consisting of an array of Dirac delta
functions, each of which is located at the center of mass
of a speckle. The problem is then one of deconvolution.
An editing procedure selects the brightest and clearest
speckles so as to most accurately estimate the location of
the delta functions. The deconvolved result dis then
averaged over a number of images to improve the SNR. They
carried out a demonstration of this procedure on speckle
photographs of the red supergfant Alpha Orionis
(Betelgeuse), and indeed found some evidence of fine
surface structure. There were internal evidences that the
technique did not achieve Tull diffraction-limited
resolution, however, despite the increased image detail.

To improve the resolution of the Lynds et al. result,
a further refinement was implemented by McDonnell and Bates
[7]. They accept the result as a preliminary estimate, but
assume that an array of simple delta functions is an
oversimplification, and that the resulting image is still
blurred, although to a lesser extent, by a residual

point-spread function (PSF). The estimation of this
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residual PSF is rather involved. The Lynds et al. result
is assumed to have as the zeros of its Fourier transform
the wunion of the zeros of the Fourier transforms of the
object and the residual PSF. To separately identify these
zeros an intensity model for the object is assumed, that of
a simple first order limb-darkened star. The identity of
the image zeros is determined by comparison with reasonable
values predicted by the model. The zeros of the residual
PSF are thus identified, and the image is Weiner filtered
by the inverse residual PSF. The result is an image whose
size 1is very near the telescope diffraction 1imit, and
certain astrophysical features are visible.

This restoration technique has the advantage that no
observation of a reference star is required. The Lynds et
al. assumption only holds for small bounded objects whose
angular size is about the same as the telescope diffraction
limit, which restricts the wusefulness of the technique
somewhat. The McDonnell and Bates refinement would be
difficult to extend to objects with non-simple intensity
distributions, because a more complex set of zeros might
defy an easy segregation of PSF and object transform zeros
into separate sets. In addition, the need to assume an
intensity distribution model begs the question since the
intensity distribution is precisely what we are trying to
Find.

A related processing technique which seeks to remove
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the necessity of point star observation is suggested by
Welter and Worden [8]. They show that the difference
between the average autocorrelation of instantaneous
speckle images and the crosscorrelation of the same images
is proportional to the ﬁmage autocorrelation undegraded by
atmospheric turbulence. The approximation is most accurate
if the observed object is small compared to the seeing
spot. How this technique may apply to speckle imaging s
not yet known.

Sherman [9] describes a technique whose application is
unhindered by restrictions on the location of a point star
reference or the object size, so long as the image 1lies
within an dsoplanatic patch. He proposes the calculation
of the entire four-dimensional covariance function of the
Fourier transform of the image-. The object transform is
then estimated as the complex eigenmatrix associated with
the largest eigenvalue of the covariance. He obtains very
good results in a one-dimensional simulation, and the
technique 1is claimed to be much more immune to measurement
noise than the Knox-Thompson method discussed in the next
section. The amount of computation needed to implement
completely this technique would make it jmpractical for all
but the most powerful computing facilities. ~—In [10]
Sherman describes a modification which greatly reduces
computation. At the present time, his method appears to be

the most practical alternative to explicit phase estimation
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for a general image.

I1.2 Explicit Phase Estimation

Phase estimation has remained an extraordinarily
difficult problem 1in 1image restoration. Recent work by
Cole [11] demonstrates the rather poor quality restorations
which result when real world blurs are assumed to have zero
phase. Cannon [12] showed some improvement by the simple
expedient of considering the phase to be either 0 or pi,
that is, phase reversals. However, the first attempt to
actually estimate the image phase appears to have been done
by McGlamery [13]. He averaged separately the magnitude
and phase spectra of each of the speckle images. He
concluded that as the variance of the phase estimate
approaches pi/3, the phase information provided by this
estimator becomes vanishingly small.

The technique of central concern to this research is
that of Knox and Thompson [14]. They proposed estimating
the image phase by computing the one-shift term of the
autocorrelation of the Fourier transform of each speckle
image. This term preserves the phase information 1in the
form of phase differences in the x- and y-directions
between points in the Fourier transform. These phase
differences must then be integrated to form a phase
estimate. In his Ph.D. dissertation Knox [15] further
showed by both analytical means and simulations the

relative insensitivity of the technique to fixed telescope
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aberrations. This is fortunate, since it may permit the
use of this technique in conjunction with Tlarge multiple
mirror telescopes, which often have substantial optical
aberrations. A similar extension of speckle interferometry
has already been worked out by Roddier [16]. Knox also
found that, due to the narrowness of the random
instantaneous optical transfer function (0OTF), the
normalized SNR of the terms in the autocorrelation
decreases rapidly as the shifted distance increases, so
that at best only the first few terms contribute
significant phase information. Knox suggested that the
phase be estimated by averaging the phase estimates derived
from summing the phase differences over two independent
paths. His one-dimensional simulations showed that very
good results could be obtained. They also showed that the
final reconstructions were quite sensitive to errors in the
phase spectrum estimate.

At Itek Corporation a two-dimensional simulation of
the Knox-Thompson (K-T) technique was performed by Nisenson
et al. T[17]. They confirm the potential of the method,
and indicate that improved phase estimates can be derived
from averaging a multiplicity of integrated paths, although
they do not state which paths were used, nor how many were
averaged. R.Y. Stacknik et al. [18], another group
working at 1Itek then applied the K-T technique to the

reconstruction of solar surface features from speckle
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photographs, a test case providing a very high SNR. Their
results showed near diffraction-lTimited resolution on data
obtained from the 24 inch solar vacuum telescope at Kitt
Peak, AZ. Both of these papers mention the development of
an optical processor to speed the computation of the
autocorrelation of the Fourier transforms, although the

processing actually implemented was entirely digital.

I1.3 Estimating Phase from Phase Differences

We have already noted that the phase estimation scheme
proposed by Knox makes only limited use of the available
phase information, and that a substantial improvement has
been reported by averaging over many paths. Attempting a
direct extension to average over all possible 1ine
integrals 1leads to an unwieldy combinatorial problem whose
solution would be prohibitively expensive for the 1large
data arrays (256x256) being considered here. This same
problem of optimum phase estimation from measured phase
differences also arises in the design of active optical
devices, and is in fact a problem in numerical integration.

One of the first applications of least-squares
estimation to this phase integration problem was made by
Rimmer [19] in evaluating the performance of a Tlateral
shearing interferometer. Shortly thereafter, his approach
was applied to the design of an active optical system
intended to compensate for atmospheric turbulence. In this

system, an dinterferometer 1is wused to measure phase
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differences across an aperture. These differences are then
integrated to form a phase estimate, whose effects are
removed by a deformable lens or mirror in real time. Fried
[20] and Hudgin [21] derived the same equations again
almost simul taneously. Hudgin assumed that the solution
was periodic, as when using the Discrete Fourier transform
(DFT), while Fried did not. Both researchers derived an
iterative solution scheme, and demonstrated that for the
small array sizes common in active optics the rms error in
the final phase estimate was smaller than the rms error in
the measured phase differences. They also showed that the
rms phase reconstruction error is only Tlogarithmically
dependent on the array size, indicating that it might be
applicable to the large arrays of speckle imaging. Fried
further reported that to assure convergence of his
iterative solutions, he increased the number of iterations
almost linearly with array size. Based on Hudgin's work, a
group at Itek headed by Hardy [22] built an analog computer
and applied it to a small (about 5x4 array) prototype
active optical system, with good results.

In a recent paper Hunt [23] derives the matrix form of
these equations and points out that the iterative solution
scheme of both Fried and Hudgin corresponds to Jacobi
iteration, the numerical iteration scheme with the slowest
known rate of convergence. He suggests the use of faster

iterative schemes, such as Gauss-Seidel or successive
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over-relaxation (SOR). He also derives an analytical
expression for the rms phase reconstruction error based on
a periodic structure which slightly underbounds the results
of simulations obtained by both Fried and Hudgin. Hunt's
result shows the same nearly 1logarithmic growth of rms
phase error with array size.

Hunt's suggestion of a faster iterative scheme 1leads
one to speculate on the possible use of a direct algorithm
for solving the problem. As will be shown in chapter 1III,
the least-squares equations have a highly regular structure
of the same form as the 5-point discrete approximation to
the Poisson equation. This is fortunate, since numerical
analysts have in the last decade devised some surprisingly
fast algorithms for the solution of Poisson's equation.
There are three distinct classes of algorithms, all of
which will be discussed below.

The first is the method of Cyclic Reduction (CR)
devised by Buneman [24]. He noted that the even-numbered
equations could be combined to form an equation for every
fourth 1ine, which could in turn be reduced to an equation
for every eighth 1ine, etc. There 1is finally only one
equation remaining, which is easily solved. The solution
on the odd-numbered 1ines 1is obtained from the reduced
equations corresponding to the successive levels of
reduction. The method is particularly easy to code, and is

numerically stable. It is not the fastest method, however.
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The second class of algorithms are based on Fourier
analysis (FA) or transformation of +the data so as to
diagonalize the matrix equations. When these methods have
dimensions appropriate to the wuse of a Fast Fourier
Transform (FFT) algorithm, they are faster than cyclic
reduction, as well as being memory-efficient and
numerically stable.

The third type of algorithm is that of Giwa [25], and
is an adaptation of an analytical variation-of-parameter
method for solving second-order partial differential
equations. It is very general, highly stable, and does not
restrict the dimensionality of the problem, as do the
Fourier methods. It is less memory-efficient and slower
than the other methods, however.

The fastest known algorithm is that of Hockney [26],
which combines both FA and CR. It is the most difficult to
code, and must be carefully used to avoid overflow
problems. In his excellent review paper, Hockney [27]
compares his own algorithm with CR and the best iterative
schemes, dincluding SOR. He indicates that his FACR is the
fastest, that FA is about 50% slower, and CR is 100%
slower. He also shows that to guarantee a maximum error of
one part in 10E6, about 432 iterations are required of SOR
on an array of 128x128. Since the direct methods achieve
the same accuracy in a time equal to that required by about

six SOR iJterations, there seems to be no reason to use an
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jterative method.

II.4 Implicit Phase Estimation

Implicit phase estimation is the name I have given to
the technique of estimating the phase spectrum based on a
priori knowledge of the signal properties and the magnitude
spectrum alone, rather than on direct measurements of the
phase spectrum or its derivative. The approach has appeal
because it 1is wusually much easier to measure accurately
magnitude spectra, as in the case of electron microscopy,
x-ray crystallography, and image restoration [30]. It has
been explored by many authors over the past two decades
[31-36], and remains an area of active interest.

For one-dimensional signals, the problem may be easily
understood in the framework of linear system theory. If
the duration of such a signal is finite, then its Fourier
transform is an analytic function. Thus, the real and
imaginary parts of the transform are vrelated by the
Cauchy-Riemann equations. Other analytic spectra may be
formed however by reflecting any transform zero to its
conjugate reciprocal location. This will modify the phase
spectrum while leaving the magnitude spectrum unchanged.
Wolf [33] derived the allowable forms of the resulting
phase spectra assuming the object to be real, thus
demonstrating that the object reconstruction is not unique.
However, in two dimensions the situation is not as easy to

describe. This 1is because analysis in terms of transform
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poles and zeroes is not generally possible. The lack of a
fundamental theorem of algebra for functions of two
independent variables makes spectral factorization
techniques inapplicable.

Nevertheless a number of schemes for implicit phase
estimation have been proposed. Kohler and Mandel [32]
compare two methods on one dimensional spectral data. The
first dinvolves the wuse of a reference point source, the
second a numerical integration of a Hilbert transform
relationship when the zero 1locations in the z plane are
approximately known. They indicate that the second method
requires very accurate knowledge of the magnitude spectrum,
and their method does not seem to have been applied to real
astronomical data.

In electron microscopy a slight1y different situation
obtains in that the magnitude spectrum is known in both the
image and diffraction planes of an imaging system while the
phase 1is not known in either plane. It is well known that
the signals in these two planes are Fourier transform
pairs. Gerchberg and Saxton [37] propose an iterative
algorithm for determining the phase in both planes. The
algorithm assumes an initial random phase distribution in
one of the domains. The Fourier transform 1is taken, and
the resulting magnitude spectrum is corrected to agree with
the measured magnitude spectrum in that domain. The

inverse transform is then taken and its magnitude spectrum
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is similarly corrected. The entire process iterates until
convergence, which may be quite slow. The uniqueness of
the resulting solution has been examined in [38], where the
authors conclude that the reconstructed phase is unique
provided that the magnitude spectrum does not have even
symmetry and is non-zero, and that the resulting frequency
spectrum is analytic. If the magnitude spectrum s even,
there may exist at most one other analytic function
satisfying the constraints. Methods to speed the algorithm
convergence have been described by both Gassman [39] and
Feinup [40]. The latter has also experimented with this
algorithm when only the magnitude spectrum is known in the
frequency domain, and only the region of support is known
in the signal domain. While solution non-uniqueness is a
serious problem for one dimensional -signals, he obtains
unique solutions on simulations wusing complicated two
dimensional images. It is not presently known why the
two-dimensional results seem to be unique. It is known
[41] that an initial (even highly inaccurate) phase
estimate can often be wused to distinguish the true
solution, as well as to greatly speed convergence of the
algorithm. Feinup proposes the use of this method to solve

the phase problem of speckle interferometry.

IT.5 Super-resolution
The extrapolation of +the frequency spectrum of a

lowpass filtered signal is called super-resolution, because
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jts effect is to increase the apparent detail or resolution
of the reconstructed signal. A number of techniques have
been proposed to extrapolate the low-frequency spectrum.
Harris [42] proposed approximating the true spectrum by
forming a weighted sum of sinc functions, where the weights
are the coefficients of the discrete Fourier series of the
signal. The extended spectrum appears to be sensitive to
noise 1in the data, however. Barnes [43] expands the given
portion of the spectrum in terms of prolate spheroidal wave
functions [44]. It is shown by Rushforth and Harris [45]
that this method is also highly sensitive to measurement
error, and that achieving resolution much beyond the
diffraction 1imit with data of realistic accuracy 1is
doubtful. Frieden [46] describes the 'maximum entropy'’
approach, which 1is probabilistic in nature. Al though
substantial computation is required, good results have been
obtained. Gerchberg [47] describes an iterative scheme
which he «calls error-energy reduction. He shows that the
algorithm is linear and that given noise-free data the
solution converges to the true spectrum. Convergence can
be quite slow. Gerchberg notes that error in the
extrapolated portion of the spectrum due to measurement
noise is increased at every iteration, thereby 1imiting the
accuracy of reconstruction possible on real data. An
analysis of the algorithm by Youla [48] casts the problem

in the form of alternating orthogonal projections on linear
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subspaces of a parent Hilbert space. His analysis also
shows the il1l-conditioned nature of the algorithm. In
particular he notes that there 1is an optimal number of
iterations after which the error in the continued spectrum
increases rather than decreases, and that this number
cannot in general be known a priori. Still, this technique
seems to be the most successful to date, and an essentially
identical algorithm has been wused by Papoulis [49] to
extrapolate a truncated band-Timited time waveform.
However, a new algorithm based on Youla's work has recently
been described by Cadzow [50], and it may prove superior

although it has not yet been tested on noisy data.



CHAPTER II1

LEAST SQUARES PHASE ESTIMATION

IIT.1 Introduction

In this chapter I describe a method of estimating the
phase spectrum of an object whose image is both blurred and
noisy. The method 1is very similar to power spectral
density (PSD) estimation, and should have application in
the same situations. The basis of the method is the use of
the Knox-Thompson estimate of phase differences. Section
III1.2 contains a brief explanation of the fundamentals of
speckle interferometry and the Knox-Thompson estimator.
However, for detailed analysis, the work of Knox [15]
should be consulted. In section III.3 the least-square
phase estimate is derived, as well as a fast direct Fast
Fourier Transform (FFT) based algorithm to solve the
resulting equations. Section 1I1.4 will discuss the
algorithm performance in terms of speed and integration
error, and section III.5 will <compare the 1least-square
phase estimate with a two-path 1ine integral phase estimate
for various SNR on simulated data. The effects of spatial
windows on the estimates will also be noted, as will the
use of phase difference information derived from the second

shift term of the transform autocorrelation. Further
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refinement of the phase estimates with a Gerchberg-Saxton
algorithm is demonstrated in section 6. This section also
contains a proof of the convergence of the algorithm in
this application, and a proof of the possible
non-convergence of a similar refinement operation on the

magnitude spectrum.

I111.2 Review of Speckle Imaging

As mentioned in the introduction, atmospheric
turbulence causes a variation in the refractive index of
the optical path. This 1is modeled by a point spread
function (PSF) which varies in both the time and spatial
coordinates of the imaging system. The resulting blurring
process must be modeled as a complicated superposition
integral. However, if the 1imaging is restricted to
sufficiently small solid angles, the PSF 1is  nearly
spatially shift-invariant. Furthermore, for short-exposure
images, Labeyrie showed that the physical process is
approximately convolutional. The exposure times, typically
5 to 10 milliseconds, are so short that the atmosphere can
be regarded as a fixed optical medium, whose index of
refraction remains spatially random. The primary effect of
the atmosphere on each short-exposure photograph is to
introduce a random phase component to the spectrum, causing
constructive and destructive 1interference of the 1ight
waves to occur randomly in the image plane. As a result,

the photographs are composed of many small patches of
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1ight, or speckles, hence the name speckle imaging.
Consider an incoherent imaging system with intensity
distribution i(;), where x 1is a 2-dimensional position
vector describing a location in the focal plane of the
system. Over a shift-invariant (isoplanatic) region i(x)
is related to the object intensity distribution 10(;) by
convolution, as
i(£)=f10(&)s(§+fa/z)du, (1)
where s(a) represents the instantaneous point-spread
function (PSF) of the atmosphere-telescope combination, f
is the effective focal length of the telescope, and z 1is
the distance between the object and telescope. The Fourier
transformation of this equation is
I(E)=I;(fﬁ/z)5(ﬁ), (2)
where capital letters denote the Fourier transform of the
lower-case quantity. Because <convolution 1is a Tlinear
operation, a Tlong-exposure 1image can be equivalently
represented by the average of the Fourier transforms of
many short-exposure images in the Fourier domain, as
<L(@)>=1, (fi/2)<S(d)>, (3)
where the angle brackets denote averaging. It has been
shown both theoretically and experimentally that <I(u)> is
a narrow function, i.e. has a low cutoff frequency. The
heart of Labeyrie's technique is the fact that under the

conditions required to produce speckle images the

-2
mean-square OTF (<[S(u)|™>) has non-zero magnitude out to
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the diffraction-1imit of the telescope. The phase of the
image transforms has suffered a random phase perturbation,
however, If one attempts to averages directly many
short-exposure images or their transforms the random phase,
which is most pronounced at the higher frequencies, causes
a cancellation of the high spatial frequency energy. This
cancellation can be avoided if one averages 1instead the
squared modulus of the transforms, as first shown in this
context by Labeyrie [1]. This averaging essentially
ignores the phase contribution, whatever it may be. Thus,
one forms

<LOEVT(@)>=1, (£3/2)1_(fi/2)<S(D)S" (a)> (4)
or equivalently

iy | 5=l (firz) | 2< s | B (5)
The squared modulus of the OTF 1is then approximated by
observations of an unresolvable point star, and the PSD of

the object is calculated by simple inverse filtering, as
|1, 063/2) [ 2=<| 1(@) | B> /<] s(D) | > (5)
It is well known that <inverse filtering is often
inadequate since it tends to amplify noise at those
frequencies where there is 1ittle or no 2nergy in the OTF.
It has not been found necessary in our work to use other
filtering strategies, however, for the following reasons.
First, because it hes essentially a triangular or Bartlett
frequency response, the PSD of the OTF has appreciable

energy 1in all spatial frequencies out to the absolute
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frequency cutoff imposed by the diffraction-1imit of the
telescope. Second, there is non-negligible noise energy in
our measurements, and averaging together many noisy
observations tends to put some noise energy in all the
frequencies. If enough images are averaged, the inverse
filtering operation is stable.

PSD estimation 1is presently a well-established
technique in many fields, and is described in a number of
texts [56-58]. By the Weiner-Khintcine theorem the PSD and
the autocorrelation of a given function are a Fourier
transform pair. Therefore the Labeyrie estimate is
equivalently represented as ﬁhe object autocorrelation.
This 1is sufficient for <characterizing centrosymmetric
objects and for measuring interstar distances for binary
stars. However, without knowledge of the object phase, no
object reconstruction can be made in the general case.

The PSD can also be described as the =zero-shift term
in the autocorrelation of the Fourier transform. The
Knox-Thompson estimator is similar to that of Labeyrie in
that it wuses terms (other than the zero-shift term) from
the statistical autocorrelation of the 1image transform,
this time to estimate phase differences. Form the product

LD T (Tp)>=1,(Fiq/2) 1o (Fi,/2)<S(0)S (By)>.  (7)
T Io(ﬁ) is represented in polar form
I,(fi/2)=11_(fi/z)[explje(fi/z)} (8)

then it is easy to see that the phase differences can be
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recovergd from the exgression
<I(i]1l (ﬁz)>]<5(u1)5 (u2)>[
[<1(E])1*(G

2)>|<S(GIIS*{52)> =exp{je(fﬁzlz)—je(fE]/z)}° (9)
The limitations of this approach are derived theoretically
by Knox in his thesis, assuming that the effects of
atmospheric turbulence are adequately approximated by a
random phase model with large variance, i.e. greater than
one wavelength. (While it s known that some random
amplitude variations are also introduced by the atmosphere,
it is generally agreed that the phase variations have a
much greater effect on image formation). Large-scale phase
variations are removed by recentering the speckle images
about their centroids, so that the remaining phase
variation is V(x)=exp{i¢(x)}, where ¢(x) 1is a stationary
Gaussian random process. Knox shows that the mean OTF can
be written as a product of functions describing separately
the effects of the atmosphere and the telescope, and that
the atmospheric 'seeing' defines the cutoff frequency of
the mean UIE « His asymptotic evaluation of the
autocorrelation of the OTF indicates the presence of a bias
term with non-zero value out to the diffraction-limit if
both ﬁ] and 02 are zero, or if they are both 1large and
their difference is small. The presence of this bias term
for 51 and 62 small is assumed on physical grounds, since
it 1is present in the 1imit whether 61 and ﬁz grow large or

approach zero. (This intuition seems to be justified based

on the results of simulations). Knox also shows that the
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technique is quite insensitive to telescope aberrations.
He notes that it is sensitive to noise and that for best

results the distance between wuj; and up should be kept

small, so as to maximize the SNR.

II1.3 Derivation of the Least-Squares Phase Integrator
Since phase estimation appears to be the primary
difficulty in imaging through the atmosphere, one would
like it to be robust, make maximum use of the data (in some
sense), and be cheap computationally. Phase estimation by
averaging a few line integrals 1is easy to compute, but
obviously makes only 1imited use of the phase difference
data, and as a result produces phase estimates of greater
variance than might be desired. It also requires the use
of arithmetic performed modulo 2n (in order that the
averaging of different paths be consistent), and delivers
the principal value of the phase, rather than the phase
itself. A least-squares approach has the well-known
advantage of satisfying a tractable objective function. In
addition, it does use the data in a more 'general' way, and
in practice leads to a robust estimator 1in noise whose
statistics approximate (sometimes quite Tloosely) the
Gaussian. It requires only conventional arithmetic (with
the proviso that the Fourier transform be sampled closely
enough so that the phase differences are themselves 1less
than 27), and it returns an 'unwrapped', or non-principal

value phase estimate. The difficulty to date has been the
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huge dimensionality of the problem. As in many other image
processing problems, an image represented by an array of
256 by 256 discrete points expands to a 1inear system of
equations having 65536 equations 1in as many unknowns.
Iterative numerical schemes have previously been proposed
to solve the problem [20-23]. However, wequally accurate
and much faster direct algorithms are available, as noted
in Chapter II.3.

We have chosen an FA algorithm for the following
reasons. First, since we are restricted to digital
processing of the speckle 1images, our use of +the FFT
already requires the appropriate dimensioning of image
arrays, and no further restriction is encountered. Second,
the algorithm 1is nearly as fast as FACR, but is much less
difficult to code. Third, it has a neat modular structure
that allows its wuse on minicomputers with very small
core-memory stores. In the following we will present the
derivation of the least-squares equations and two solution
algorithms. The first assumes non-periodic boundary
conditions, and so is an approximation. It might prove
useful should optical Fourier transform techniques be used
in data processing. For our work the periodicity of the
discrete Fourier transform (DFT) implies periodic boundary
conditions, howe§er, and in this case the second algorithm

is exact.
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111.3.1 The Normal equations
Consider a rectangular sampled 1image transform of
dimension M*N, and denote the phase associated with point
(i,3) by ¢ij' We define noisy phase differences in the two

directions by

= = s e
1370 57%-1,57
and
= -¢. . aFn;.
e ey ™y 3T )
where ¢ and n,. represent deviations from the true phase

L 13

differences associated with the object. Our objective is
to obtain estimates $1j at- each point in the 1image
transform by integrating the noisy phase differences. The
problem is over-determined, and we wuse a least-squares
approach to phase estimation.

We assume that the noise statistics are

shift-invariant and define the sum of squared errors by

vy : 1 (10)
= " 5 i gl o TP s
) 121 j£1[(r1j Pig*i-1,5) Hle i e 5
initially assuming that ¢1j is zero outside the image
array. Differentiating (10) with respect to b3 and

equating the result to zero 1leads to the following

equations:
- o = -d. L, ,4=r..-T. G =B
494579921, 1, 3709, 510,04 T 1 T e, 5 BTN LI
2<i<M-1, 2<j<N-] £11)

3¢13579257%1,5-17%1,5+1° 51371, 541772,

i=1, 2<j<N-1 (12)
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(15)
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Equation (11) is valid at an interior point of the 1image
transform array, (12)-(15) at the edges, and (16)-(19) at
the corners. However, if the phase array is assumed to be
periodic, as it 1is in our work with the speckle images
because of the periodicity of the DFT, then (11) s wvalid
for all points 1<i<M, 1<j<n, provided i-1 and j-1 are taken
modulo M and N.

The equations and the algorithms for solving them in
the periodic and aperiodic cases differ slightly, and the
algorithms will be described separately. In both cases,
the equations to be solved are analogous to those which
arise in solving Poisson's equation on =& vrectangle wusing
the standard five-point finite difference approximation
[24-28]. In particular, we discuss two variants of an

FFT-based algorithm described in [28].

111.3.2 The Aperiodic case

We first define
. . 4C..=-C. . 20
VisTTi 41,510 157C, 54 (20)
where rij and cjjare noisy phase differences. We then

consider the v to be arranged in a block column vector,

1]
viith Vij being the jth element of the ith block. The phase
elements ¢ij are ordered in an identical manner. For large
M and N (the usual case in image processing), (11)-(19) can
be approximated by the system of matrix equations

Ap = v (21)

where the coefficient matrix A has the block form
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A= - " (22)

with

A = . . (23)

A is block tri-diagonal of block dimensien M*N, I is the
N*N jdentity matrix, and Ao is an N*N tri-diagonal matrix.

The block matrix can be written 1in the alternative

form
A0¢1—¢2=v] [ 25 (24)
0, 1*A0, =00 417Y, 2<2<M-1, (25)

and
IR AL LN L=M. (26)

Since AO is symmetric, there exists an orthogonal matrix Q
with Q'Q=1, where the prime denotes matrix transpose, and
. . )
Q'A Q=D - (27)
As is well known, the matrix Q has as its columns the

normalized eigenvectors of AD, S0

e 2 s T2 s o yTiw . sl
qij_(HIT) S1n(ﬁ%T) i,i=1,2,...N (28)



Note that for this case Q=Q'. Dp is a diagonal
whose diagonal elements are the eigenvalues of Ag:
_ i
D, =4-2 COS(NIT)

TA

Using (27), we can write (24)-(26) in the form

D¢ 1-¢5%Y4
“0g 1 0ot 1=V,
and
“Op-1* 0oV
where
N e 1
and
- - ]
v1—0 v_i
Alternatively,
= ) B 5
0
-1 D0 -1
I 6=v
-1 DG -1
-1 D
o}

Permuting the rows and columns of this coefficient
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matrix

(29)

(30)
(31)

(32)

(33)

(34)

(35)

matrix

by grouping the 1th equation in each block together results

in the alternative coefficient matrix

— -

v, O
A

2

LOp*

(36)
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where

In other words, the original block tri-diagonal system can
be decomposed 1into M decoupled tri-diagonal systems, each
of which can be quickly so1ve& using Gauss elimination.
Having solved these decoupled systems, we then undo the
permutation described above and premultiply the result by Q
to obtain the solution to the original system.

We see from (28) the the diagonalization process
essentially amounts to calculating a DFT. If N+1 and M+l
are highly composite, in particular if they are powers of
2, this computation can be performed rapidly using the fast
Fourier transform {FFT) algorithm. To accomplish this, we

first define for each k

0 =0
Re{t2}= sz 2=-’)2,000N (38)
0 2=N+1,...2(N+1)-1

and

Im{t2}=0 £=0,1,...2(N+1)-1 (39)
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Then

142 :
. Im{DFT(tR)} 2=1,2,...N (4C)

-~

. £
ke ‘N+1

where the DFT is defined by
2(N+1)-1 ;
B ke2m
DFT(tE)— E‘zo tieXp[%—(WT] (4])
Storage requirements and computation time can be
further reduced by taking advantage of the even and odd
symmetry properties of the DFT. Because they are well

known, we do not discuss them here, although our programs

do incorporate them.

I11.3.3 The Periodic case
The strategy in the periodic case is similar to that
outlined above. In this case, the coefficient matrix is

the block circulant matrix

CD -I 0 ) -I
-I C -I a0 0
0
|
.-I O ¢ oml CO
= —4
where
0 4 -1 0 " “1

E = . (43)
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For this case, Q=Q'. Q has as two of its columns
VLR 20, Ly vwesd® mg GLNIVR b din oo i s Wb
corresponding simple eigenvalues 2 and 6, respectively. In

addition, there are (N-2/2) double eigenvalues

v,=4-2 cos(2nz/N) 2=1,...(N-2)/2 (44)
each associated with a pair of eigenvectors
1/2
L 2 :
e£ )=(ﬁ) s1n(5%§1) (45)
and
1/2
2 2 2
né ]=(W) cos (X ﬁ“) (46)

Diagonalization is again carried out using the FFT.
In this case, we require N to be highly composite,
preferably a power of two. After diagonalization and
permutation as 1in the aperiodic algorithm, the decoupled

block coefficient matrices become

[y, -1 0 e 5
"1 TR '] O “ e e 0
r,=| 0 =] . =1 B ass D (47)
-"-'l 0 -1 Yy |
where
7£=4—2 cos(2me/N), £=0,1,...N/2 (48)

As described above for the aperiodic case, these decouplied

systems can now be solved separately. The permutation and
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diagonalization operations are then reversed to obtain the
solution to the original system of equations.

There are some important differences between the

periodic and aperiodic cases. First, Fs is singular,
reflecting the singularity of C. If the first row and
column of Fo are deleted, a solution is obtained which

satisfies the original equations and which differs from any
other solution by an additive constant. This ambiguity can
be resolved in our case by noting that the phase at the
origin must be zero.

Second, the remaining blocks of coefficients are not
tri-diagonal since they have non-zero corner elements.
This situation can be dealt with using the Sherman-Morrison
formula [28], which states that if A=B + uv', where u and v
are column vectors, then

A'1=B'1+B-1u(1 + v'B-}U)-]V'B—]
If v contains only one nonzero element, the correction is
quickly obtained. Since most of the eigenvalues are of
order two, two blocks can wusually be solved at once,
thereby compensating somewhat for the additional
computation involved in the Sherman-Morrison formula, A

further saving is realized from the increased efficiency of

the FFT in diagonalizing the periodic structure.

II11.4 Algorithm performance
A number of tests were run with both the periodic and

aperiodic integration algorithms to determine their
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accuracy. The first tests related to the propagation of
numerical errors irrespective of any measurement errors in
the data. The other tests examined the propagation of
measurement error in the integrated solution.

The first tests were as follows. An appropriately
dimensioned file was filled with Gaussian distributed
random noise of standard deviation 1. The discrete Poisson
differential operator produced another file, which upon
integration was compared to the first. Typical results for
the algorithms are summarized in Tables 1 and 2.

Integration time for the 255%255 aperiodic array was
about 200 seconds on our single user PDP-10 computer. (It
has floating point add and multiply times of about 5 us and
11 us, respectively). Approximately 175 seconds were spent
on the FFT computations. Because the periodic algorithm is
better suited to an FFT implementation, the 256*256 problem
required only 135 seconds, of which approximately 100
seconds were spent on the FFT. Corrections by the
Sherman-Morrison formula required only about 10 seconds.

Previous researchers have indicated the stability of
the growth of the mean squared error (MSE) 1in the
integrated solution due to errors in estimating the phase
differences when the least-squares approach is used. Both
Fried and Hudgin estimated the growth as logarithmic with
increasing array size. Based on simulations with small

arrays, Fried found that a good fit to the mean square
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Table 1. Error in the estimated phase due to numerical
errors when using the aperiodic integrated
algorithm.

Array Size Maximum error SSE Norm
15x15 | .33x1078 14x107 13
31x31 agx10~8 .18x10°13
63x63 .9x10°° .18x10712

-5 12
127x127 .8x10 .37x10
255x255 .23%x107° .80x10" 11

Table 2. Error in the estimated phase due to numerical
errors when using the periodic integrated
algorithm.

Array Size Maximum Error SSE Norm
16x16 .21x10°6 .73x10” 14
32x32 .66x1078 .98x10” 13

-6 -12
64x64 .98x10 .83x10
128x128 .20x107° .41x10712

5 1

256x256 .48x10° .46x10°
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reconstruction error could be made with the function
e =a§d[.3205 In(N) + .6558] (49)
where ogd is the variance of the errors made in estimating
the phase differences. Similarly, Hudgin obtained the
function
e =0§d[.103 In(N) + .561] (50)
Hunt derives an expression for the error based on periodic
boundary conditions, which he gives as
e '(cpd/N %) ¢ 2[251n(1an)/4 2cos(2mi/N)- 2cos(2w3/N )) ]
+ [251n(31dN)/@ 2cos(2mi/N)- ZCGS{ZHJ/N))j }. (51)
He shows that the mean square error in the integrated phase
estimate predicted by his trigonometric expression has the
form of the empirically derived Togarithmic expressions of
Fried and Hudgin. He also notes that upon plotting the
results there is a distinct offset between his predictions
and the results of the other two. This offset is ascribed
to the different ways in which their algorithms actually
handled the boundary conditions. A plot of these three
curves together with typical solutions from our periodic
algorithm is found in Fig. 1.

The stability of the reconstructions with increasing
array size 1is encouraging. Note also that the MSE of the
reconstructed phase estimates is actually 1less than the
variance of the phase difference measurement error for
array sizes up to 256*256. Because of the periodicity of

the DFT Hunt's assumption of periodic boundary conditions
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integrated phase estimate to the variance of the error in
measuring phase differences as a function of array size N.
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is exactly satisfiec, and our results agree quite well with

his analytically derived result.

ITT.5 Phase Estimation on Simulated Data

Simulations were used extensively to evaluate the
effectiveness of the various estimation procedures
discussed in this research. The method of generating
synthetic data is described below. MNote that the resulting
synthetic data base is common to all the simulations in
this dissertation.

A synthetic birary star was constructed of a separable
triangle of height 1 and a shifted and scaled version of
itself; it is shown in Fig. 2a. It is defined on a 64%64
array and has a region of support of 18 pixels. 1Its
associated magnitude and phase spectra are shown in
Figs. 2b and 2c, respectively. (Note  that  the
illustrations of the frequency spectrum are represented 1in
the base band with the zero frequency in the upper left
hand corner. They are also transposed vrelative to the
intensity object, to save processing time. This convention
will hold throughout the dissertation). This object s
blurred by a digital process imitating the effects of
atmospheric turbulence. We assume that the distortions can
be described by a Gaussian phase model, and that these
phase distortions are the principal cause of image
degradation. These atmospheric effects were simulated by

randomizing the phase of the pupil function of the
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Fig. 2 Synthetic Double Star Used in all Simulations



46
incoherent imaging system.

A series of arrays of Gaussian random noise variables
with wunit variance was generated from a random process
which was zero mean, unit variance, and uncorrelated.
Correlated noise was produced by filtering these arrays by
the technique described in Knox [15], with the <correlation
length corresponding to a turbulence cell size of 11 inches
across a 56-inch telescope. Fig. 3 shows one of these
random number arrays. The point-spread function of the
digital correlation filter 1is shown in Fig. 4. A
correlated noise array is illustrated in Fig. 5. Each
correlated noise array was used as the phase 98 (k) of a
complex pupil function whose magnitude equaled the aperture
function A(x) of Fig. 6. The pupil functions were inverse
Fourier transformed and the squared modulus formed yielding
a set of 45 different point-spread functions. One of these
is shown in Fig. 7,

An independent set of 45 point-spread functions was
similarly generated. These were convolved with the double
star image of Fig. 2 to yield the set of 45 blurred 1images
i (x), one of which is shown in Fig. 8. These blurred
double star images represent the short-exposure photographs
which are then input to the Knox-Thompson procedure.

To examine the sensitivity of this technique to sensor
noise, we performed a series of simulations with different

levels of sensor noise present. The sensor noise model s
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based on a semi-classical approach to photon detection. In
this model, the number of photoelectrons released from a
small region of area A centered at a point (x,y) in the
image plane is taken to be a Poisson random variable with
mean

a=[nl(x,y)/hv]taA.
In this expression, n is the quantum efficiency of the
photodetector, h 1is Planck's constant, v 1is the mean
optical frequency, t is the integration (exposure) time,
and I(x,y) is the image intensity at point (x,y).

It is well known that both the mean and the variance
of the above Poisson random variable are equal to A. Thus,
the mean photoelectron current produced by a detector at
point (x,y) is proportional to the image intensity at that
point, but so are the fluctuations in that current. If we
define the SNR of the image at point (x,y) as the ratio of
the square of the mean current to the variance of the
current, we find that this SNR is just x. We can vary i,
and therefore the SNR, by varying t (the integration time)
or AA (the area over which the image is averaged).

An additional simplification results if we assume that
the number of photoelectrons is large. 1In this case, the
photoelectric current will be approximately Gaussian with a
mean equal to its variance. We made this assumption in our
simulations. The SNR which we ascribe to a given simulated

image is simply the maximum of the point-by-point ratios of
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squared mean to variance as described above. This
definition 1is somewhat arbitrary, of course, but this is
not a serious problem since we are interested primarily in
relative performance as we vary the noise.

Results of the Knox-Thompson restoration procedure,
comparing both line integration and least-squares
integration for various SNR as defined above, are shown in
Figs. 9a through 9y. Although we would 1ike to quantify
the results in some perceptually significant manner, no
general perceptual distance metric has yet been defined for
images, much less for the way in which phase errors might
affect 1image formation. We default then to SSE measures,
and simply include illustrations of the various estimates
and associated reconstructions. The WSSE measure in the
captions of the phase estimates refers to a weighted SSE
measure where the weighting function is the magnitude of
the object Fourier transform. The phase error measurements
reflect the modulo 2w nature of the phase. For reference
the object energy is 2.929 units and the sum squared total,
or 'energy' of the phase, is 3860.642 units.

A11 the reconstructions were based on the Labeyrie
magnitude spectrum estimate. To minimize artifacts in the
reconstructed image, these magnitude estimates were
digitally 1low-pass filtered with a vradially symmetric
function which was constant to 25 cycles/picture, and then

tapered to zero at 32 cycles/picture by means of a cubic
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spline function.

At a SNR of 5 dB, neither method gives a good
indication of a second star. The least-squares method is
more localized, however, and does not show the presence of
artifacts along the 1image coordinate axes. At 10 dB the
least-squares restoration still shows only one star, while
the 1line integral restoration hints at the possibility of
two stars. At 20 dB both reconstructions indicate <clearly
the second star. The 1ine integral version has more
correctly estimated the relative amplitudes of the stars,
but also has many more artifacts. At 30 dB and 40 dB both
methods have isolated the two stars. The Tleast-squares
versions are more nearly correct in relative amplitude and
are less noisy. (The SSE measures are somewhat confusing
on the phase, where they get better as the estimate gets
worse, Note also the two SSE measures on the reconstructed
objects. The first refers to the error over the entire
field of view, the second to the error within the region of
support of the star. For the 1ine integral object
reconstructions, both measures behave erratically).

Both types of restorations have regions of negative
light intensity. These nonphysical artifacts are a result
of misestimation in the Fourier domain, and are quite
common in deconvolution problems. They are called
super-blacks in the l1iterature [55]: In every case the

peak negative 1ight intensity is greater in magnitude in
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the line integral restorations than 1in the 1least-squares
restoration, and has a magnitude of 10 to 20 percent of the
positive light-intensity peak. The restorations also tend
to be smeared, and occupy a larger arza in the field of
view than the object. Less distracting is the fact that
the restorations are complex, instead of real. However,
the magnitude of the imaginary part is gznerally about 2
orders of magnitude 1less than the real part, and is
entirely due to the phase estimate not having perfectly odd
symmetry. In an effort to further improve the
reconstructions, a number of modifications were tried.

The first modification was the dinclusion of phase
difference information derived from the second-shift term
of the ACF of the 1image transforms. The necessary
modification of the periodic Tleast-squares integration
algorithm is straightforward. We experimented with an
integrator which weighted differently the phase differences
from the one- and two- shift terms, but found that the WSSE
of the resulting estimates was a monotonically increasing
function of the weight applied to the second-shift data.
This 1is consistent with Knox's analysis and recommendation
that only one-shift data be used.

We also experimented with the use of spatial domain
windows applied to each speckle photograph. This is a
common technique in spectral estimation for segmenting long

data sequences 1into manageably short lengths. The effect
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is of course to convolve the transform of each speckle
image with the transform of the window function before the
averaging. The effects on the bias and variance of the
subsequent PSD westimates are found in Jenkins' and Watts
text [56]. We wanted to improve the effective SHNR by
restricting ourselves to the brightest part of each speckle
image. We also found in working with the real data that
the Knox-Thompson estimator seemed much less accurate than
our simulations would indicate. We hypothesized that it
might be quite sensitive to the violation of the
isoplanatic assumption, so we wanted to restrict the
field-of-view to more nearly approximate isoplanicity.
Although the effects of windowing on PSD estimates
have- been examined by many researchers, the effects on the
Knox-Thompson estimator have not been so catalogued.
Therefore, we examined the effects of spatial windowing on
the phase difference estimates by the same simulation
techniques previously described. A series of blurred stars
was created and processed with each one of three different
spatial windowing options to produce three different
reconstructions. In the first case each speckle photograph
was multiplied by a Fourier (rectangular) window of
dimension 32*32. The second reconstruction used a radially
symmetric window made by rotating a Hamming window of
radius 20 about its central axis. fhe third reconstruction

used no spatial window, and is that of Figs. 90 and 9p.



59
The example illustrated in Fig. 10 was performed with a
nominal SNR of 30 dB. In all three cases the same
magnitude spectrum estimate (that of the unwindowed
version) was wused, so as to isolate the effects on the
phase estimation. As before, the SSE measures are found in
the figure captions. Note that the use of a Fourier window
degrades the results, although the Hamming reconstruction
is actually dimproved, at least in terms of SSE. This is
not unexpected behavior. Similar behavior was observed in

all other test cases and in processing the real data.

II1.6 Phase Refinement

As mentioned in the literature review, the
Gerchberg-Saxton algorithm was created to solve the phase
problem of electron microscopy, where one has knowledge of
the magnitude of both a function and its Fourier transform
but no knowledge of the phase in either domain. A flow
chart of the algorithm is found in Fig. 11. The algorithm
is almost directly applicable to the problem of phase
estimatioh where one has knowledge of only the magnitude
spectrum and the region of support of a real function and
no knowledge of 1its phase spectrum, However, this
relaxation of the required a priori knowledge introduces a
serious non-uniqueness problem in the reconstructions,
which has been demonstrated empirically by Feinup [40].
(He has some experimental evidence to indicate that the

problem may not be as severe for complicated two
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dimensional 1images, however). In this work we have sought
to side-step the possible problem of non-uniqueness by the
use of the Tleast-square Knox-Thompson estimate as an
initial approximation to the correct phase spectrum. The
hope is that it is 'close enough' in some sense to the true
phase spectrum to allow the algorithm to converge to the
true phase.

The new algorithm is presented in flow chart form in
Fig. 12. The only changes are that instead of correcting
the magnitude in the spatial domain, one imposes the
conditiecns of realness, non-negativity, and a bounded
region of support on the reconstruction. To prove that the
correction energy must decrease only a slight variation
need be made to the geometric proof originally offered by
Gerchberg and Saxton. Consider the operation of the
algorithm on two discrete points, one in the spatial domain
and the other in the frequency domain, as in Fig. 13.
Define the squared error e as the sum squared difference
between the original magnitudes at each discrete frequency
and the magnitudes calculated by the algorithm at
corresponding points. When e 1is zero, the algorithm has
converged. Now, in the freguency domain, let the reference
magnitude at our arbitrary point be represented by the
measured magnitude fo. Upon inverse Fourier
transformation, a vector f1 is pfoduced at the arbitrary

point in the spatial domain. If fq is in the region of
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support and if its real part is non-negative the real part
ijs preserved. Otherwise fy 1is set to zero by the addition
of a colinear vector of equal magnitude and opposite
direction. A1l points in the spatial domain are similarly
corrected and the Fourier transform of the new object is

taken. At our arbitrary point in the frequency domain the

new vector g, is the sum of f2 and a new vector ¢, produced

2
at that frequency by the Fourier transform of the vectors

(:_I at each point in the spatial domain. If necessary the

magnitude of 92 is corrected to that of f2 by the addition

of the vector dz, which is colinear with g The algorithm

2
now iterates wuntil convergence. It is clear from

Parseval's theorem that

2_ 2 _ 1 2
e 'i)i']|c1|i'j_N2 izj|cz|1j (52)
It is also clear from examining the phasor plots of Fig. 13
that
2 2 _
with equality iff Co is colinear with f2 Thus
L TldplSysty Ilegl?ia ] le, 13 (54)

with equality iff the correction vector 1is colinear at
every frequency. To this point we have shown that the
correction energy applied in the frequency domain cannot be
larger than the correction energy applied in the spatial
domain just previously. Now , in the second iteration, we
have in the spatial domain the vector fTI’ the sum of

vectors 9, and d]. It is geometrically obvious that

2 2 i & ‘
[e.[]ijf|di|ij 71 (55)
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Thus

Llesl Tz L1 1imz ] 14155 (56)
and the correction signal energy in the spatial domain s
also 1less than or equal to the frequency domain correction
energy applied Just prior to inverse Fourier
transformation. Hence the squared error must decrease or
remain constant with each iteration. For the squared error
to be bounded away from zero, it is required that the
correction signal in the frequency domain be colinear with
the estimated frequency spectrum while being entirely
imaginary in the spatial domain. This condition cannot be
fulfilled because the algorithm forces the spatial estimate
to be real, and hence to have an even magnitude spectrum
and an odd phase spectrum. To be colinear the correction
signal must also have odd phase symmetry, and hence cannot
be imaginary in the spatial domain. (Note that this result
is stronger than that presented for the original electron
microscopy problem, where certain phase symmetries in the
spatial and frequency domains may bound the correction
energy away from zero.) This result does not necessarily
imply convergence of the correction energy to zero, nor
does it imply solution uniqueness, but in our experience
this proviso is of theoretical rather than practical
interest.

One might wonder whether, given a phase estimate, one

could effect a magnitude solution by the same algorithm.
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The answer is no, because it can be shown that the
correction signal energy cannot be guaranteed to decrease.
Imagine again the same phasor diagrams, with the same
initial signal westimates, as represented in Fig. 14. At
the first return to the frequency domain, one corrects the
magnitude of g, by adding d,. Since dp must now be
perpendicular to the perpendicular bisector OP, it is
geometrically obvious 1in this case that dp > cp . If
this condition 1is satisfied at enough points, the
correction signal energy will increase, and the algorithm
may never converge. In fact, this behavior has been
observed in empirical tests.

To test the phase refinement technique, the
least-squares phase estimates described 1in the previous
section were used as the initial approximations to the
phase spectrum. In Figs. 15a through 15j, the refined
phase estimates and the resulting reconstructions are shown
for each of the various SNR. In each case, the algorithm
was stopped when the weighted correction signal energy was
reduced to .16. Originally it was intended to have this be
.1, but the procedure was unable to reduce the correction
energy much below .16 for the two Towest SNR cases. In all
cases, the wexact extent of the object, or region of
support, was assumed known.

Phase refinement actually degraded the results for the

two poorest SNR <cases. Slight improvement for the 20 dB
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Fig. 14. A geometric proof of the nonconvergence of the
Gerchberg-Saxton algorithm when used for magnitude refinement.



T

68
case is apparent, but for the 30 dB and 40 dB <cases the
improvement 1is substantial. The refinement required 29,
29, 7, 12 and 22 iterations respectively. Note that as the
SNR gets poorer, the phase tends to be underestimated. The
obvious conclusion is that the technique is not a cure-all,
but it c¢an provide real improvement {if the magnitude
spectrum is fairly accurate. One would expect good success
if, dinstead of the entire magnitude spectrum, only the
frequencies with locally good SNR were wused to determine
the phase refinement. This 1is correct, and it forms an
important part of the super-resolution procedure that s

discussed in the next chapter.
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CHAPTER 1V
SUPER-RESOLUTION

IV.1 Introduction

One 1is often confronted in a signal processing
environment with a signal that has been lowpass filtered
with a resulting loss of information. One would like to be
able to recover this information and restore the signal.
There is a strong basis in theory to support the
plausibility of such recovery for a certain class of
signals, those which have an analytic frequency spectrum.
The difficulty 1in actually realizing such recovery in the
practical case has led at lTeast one pair of authors to
reject the concept as a 'myth' [55]. It is my opinion that
this judgement is premature and that a substantial amount
of super-reso{ution may be had even in the case of real
world blurs. This chapter discusses a new algorithm for
achieving super-resolution. It is similar to the algorithm
originally proposed by Gerchberg, but in our experience has
demonstrated better convergence properties and much better
conditioning in the presence of noise. In this chapter we
will present a review of the Gerchberg algorithm, a
heuristic analysis of the new algorithm, and the results of

some simulations which compare the algorithms on the
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synthetic blurred star data base.

IV.2 Background and Analysis of the Algorithm

The theory of analytic functions of a single complex
variable s usually invoked to justify the attempts at, as
well as understand the methods of, super-resolution. In an
astronomical context, one is at best 1limited to
diffraction-limited measurements. The OTF of a
diffraction-limited imaging system has an absolute spatial
frequency cutoff. Because a function of finite support has
an everywhere analytic (or entire) z transform [42], and
because an entire function must be infinite in extent, we
can say that diffraction-limited 1imaging always removes
spatial frequency information, even in the noiseless case.
In reality, however, the signal energy may be sufficiently
concentrated within a finite bandwidth to permit object
resolution of arbitrary accuracy with a finite spectrum
[44]7. When this is the case, the object is said to be well
resolved.

When the '10w—pass filtering operation of the OTF
removes significant energy we say the object is poorly
resolved. The classical definition of resolution specifies
the minimum angular separation of two point sources which
allows them to be seen as distinct, for a given optical
instrument of circular pupil diameter D. This minimum
separation was found to be 1.221/D, where lambda is the

wavelength of the observed 1light. Di Francia [51] pointed
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out the practical rather than theoretical nature of this
limit, however, and showed that an infinite number of
object intensity distributions could produce an identical
image. By this he demonstrated the implicit use of a
priori knowledge on the part of the observer in determining
the resolution of an optical instrument.

Harris [42] recognized that no two distinct objects of
finite angular size can produce identical images. This is
because a “"function of a complex variable 1is determined
throughout the entire 2z plane from a knowledge of its
properties within an arbitrarily small region of
analyticity" . Thus an entire function 1is everywhere
determined by its behavior over an arbitrarily small
region, so that an accurate measurement of a finite portion
of the spectrum is sufficient to wuniquely determine the
complete spectrum, and hence the object, given that it has
finite support. He concludes that "diffraction...imposes a
resolution 1imit which 1is determined by the noise of the
system, rather-than some absolute criterion.”

Khile the above reasoning no doubt gives insight into
the problem, there remain some unresolved issues when one
is constrained to computer solutions. These seem to me to
include the following questions. First, is the requirement
that complete knowledge of the function over some region of
analyticity satisfied by knowledge 6f the Fourier transform

of the function, which is at best knowledge along a 1ine or
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contour in the complex domain? Second, is the requirement
satisfied when one has only discrete samples of the Fourier
transform? Third, does the proof of the Paley-Weiner
theorem extend ;o functions of more than a single complex
variable? In spite of these questions, the
semi-quantitative analysis given here will depend on the
properties of analytic functions. An analysis along the
lines of that given by Youla [48] would be independent of
the questions Jjust raised, however, and would be highly
desirable.

Since our new algorithm is an adaptation of the one
due to Gerchberg, a review of the latter will help in
understanding our work and in placing it in proper
perspective. The Gerchberg algorithm iterates between the
spatial and frequency domains. In the spatial domain, the
reconstruction is set to zero outside the known region of
support of the object, and in the frequency domain the
newly estimated spectrum is always corrected to agree with
the known portion of the spectrum. A flow chart of the
algorithm is found in Fig. 16. The algorithm is shown to
converge uniquely for noiseless data. Gerchberg recommends
a procedure to 1imit the buildup of noise in the
reconstruction due to noise in the 'known', or measured,
portion of the spectrum. This operation 1is necessary
because correcting the known portioﬁ of the spectrum adds

back all the noise energy originally present, so that the
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error energy due to this noise must increase or remain
constant at every iteration. At some point the error due
to the increase in this noise energy becomes greater in
magnitude than the decrease in error energy resulting from
refining the extrapolated spectrum. At this point the
algorithm should be terminated. This result has been shown
[48] on theoretical grounds for the <continuous case.
Unfortunately, the optimal number of iterations can not be
known a priori.

The noise 1imiting procedure is based on the
observation that energy in the converged reconstruction
which 1ies outside the known object extent must be due to
the original distortion energy. Therefore, the object is
limited to its correct spatial extent, the transform taken,
and the new lowpass spectrum is used to start the iteration
all over again. The procedure thus eliminates that portion
of the original spectral noise energy which lies outside
the known object extent.

The new algorithm <corrects this deficiency by not
correcting the magnitude spectrum to the measured magnitude
spectrum, so that measurement error 1is not increased.
Instead the magnitude and phase spectra are alternately
extended through the frequency space. The phase spectrum
extension is allowed at each step to converge in a weighted
SSE sense, where the weighting function is the estimated

magnitude spectrum. A flowchart is illustrated in Fig. 17.
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As shown in Chap. 111.6, no magnitude Jterations are
performed since this 1is an unstable procedure. As each
frequency extension is made the total energy 1in the
spectrum below the o0ld frequency cutoff changes. If the
new magnitude spectrum is simply scaled to agree with the
0old spectrum (in whatever sense is appropriate) below the
0ld cutoff frequency, the effective <convergence of the
algorithm 1is easily determined by the amplitude of this
scaling constant. In my work, the algorithm was always
terminated when something 1in excess of 99% of the total
spectral energy was estimated. The phase estimates
exhibited erratic convergence behavior when freaguency
extrapolation was attempted much beyond that point.
Although their convergence could often be stabilized by a
smaller cutoff frequency extension, the computational time
simply became excessive.

There seem to be two sources of error in the
extrapolated spectrum produced by the new algorithm. They
are induced by-the way in which the algorithm treats the
two kinds of errors 1in the original measured spectrum.
Following Gerchberg, we call these two kinds error energy
and distortion energy.

We can consider the initial lowpass spectrum estimate
to be the sum of the correct spectrum and an error sSpectrum
which exists only beyond the iﬁitia] lowpass cutoff

frequency. The error spectrum is equal in magnitude and
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opposite in sign to the true spectrum. 1Inside the cutoff
frequency, the known spectrum is represented as the sum of
the true spectrum and a distortion spzctrum. Consider
first the case where the distortion energy is zero. Since
the error spectrum is band-limited, it follows that its
inverse Fourier transform, the error object, cannot be
spatially 1limited. Thus some error energy will be
preserved when the spatial <constraints are imposed.
Consequently the spectrum of the constrained object will
retain some portion of the original error energy, some of
which may be found even in the low frequencies below the
initial cutoff frequency. Since the low frequencies of
this new spectral estimate are retained 1in the magnitude
spectrum extension, the algorithm has introduced into the
low frequency spectrum a portion of what was originally
error energy. To minimize the growth of this error we
should minimize the number of times we extend the spectrum.
This implies either rapid spectral extrapolation or that we
confine ourselves to signals that are nearly resolved so
that few extrapolations are required. Because most images
have a general lowpass characteristic, one would expect the
error energy injected into the low frequencies to decrease
as the cutoff frequency 1is increased and the remaining
error energy is decreased.

Suppose now that distortion enérgy is present. It s

probable that the spatial constraints will also preserve
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some portion of this energy, as well. The spectrum of the
newly-constrained object may similarly have distortion
energy present in all frequencies. To the extent that
distortion energy 1is injected into the high frequencies,
Parseval's theorem indicates that the total distortion
energy must be decreased by lowpass filtering, even with a
higher cutoff frequency. To minimize the distortion energy
in the final result we want to perform many filtering
operations, which 1implies slow spectral extrapolation.
Changing the rate of extrapolation thus varies the relative
contribution of the distortion and error energies to the
final extrapolated estimate. Although it is possible that
a variable rate would improve the algorithm performance,
all the experimentation performed here had a fixed rate of
frequency cutoff increase. The optimum rate of increase or
even its existence 1in the general case, is not presently
known,

The heuristic analysis just presented is 1linear, and
in the sense- that at every step the algorithm is dealing
with disjoint regions in the frequency domain, it is a
linear algorithm. However the possible importance of the
nonlinearity introduced by the separate extension of the
magnitude and phase is not yet known. In summary, the
original Gerchberg algorithm is able in the 1imit to
decrease the error energy to zéro at the expense of

increasing the total distortion energy. The new algorithm
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sacrifices the possibility of perfect reconstructions of
noise-free data in exchange for stable behavior of the

distortion energy.

IV.3 Super-resolution of Simulated Data

I have examined by simulation the behavior of the
algorithm as the rate of increase of the cutoff frequency
is changed, although the examination was certainly not
exhaustive. The results on the 5 dB SNR case are
summarized in Table III, where it appears that the optimum
increase 1is about 5 discrete frequencies at each step, at
least for this data. This same rate of increase was used
in other simulations where the effects of SNR and initial
lowpass cutoff frequency were investigated. In all the
simulations, the 1lowpass filter 1is a radially symmetric
Fourier lowpass filter. The phase convergence criterion

was that
111 @1 s @- - an?
u

Since our heuristic analysis indicates that some error
must always remain in the solution, and may in fact
increase in the 'known' portion of the spectrum, it was
necessary to observe the seriousness of this characteristic
in a practical setting. A number of reconstructions based
on lowpass filtering the non-noisy data at various cutoff
frequencies were effected. They are shown together with

the dinitial estimates and their super-resolved spectra in



Table 3. Varijation of super-resolved image SSE in the 5-dB SNR reconrstruction
with different initial frequency cutoffs and frequency extrapolation
step sizes.

Initial Frequency

Cutoff Step Size Nunmber of Reconstructed
(Cycles/Picture) (Cycles/Picture) Iterations Image SSE
10 20 16 .484
10 5 31 22581
10 3 55 pagl
b & 26 .308
5 10 17 saeh
8 5 37 .016
10 10 30 »330

¢8



83
Figs. 18 a) through 18 t). In every case, €=.1. The
reconstructions are quite stable with decreasing initial
frequency cutoff, although it is curious to note that the
last estimate has a slightly better SSE than the third
estimate. The reconstructions required 10, 15, 18, and 22
iterations, respectively. A1l of the reconstructions have
errors less than 2.5%. It appears that the error
introduced into the ‘'known' portion of the spectrum is
relatively small and well behaved.

Figs. 19 a) through 19 y) show the super-resolution of
the Teast-squares phase Knox-Thompson reconstructions of
chapter III. It was necessary to use a Jlower and lower
initial cutoff frequency as the SNR got poorer, so as to
maintain a reasonably accurate initial estimate. Note that
even in the 5 dB SNR case an excellent reconstruction is
produced. In most cases the peak magnitudes, while about
correct relative to each other, are in error absolutely.
The information in the peaks resides almost entirely in the
highest frequencies, where 1less than one percent of the
signal energy 1is <concentrated. Misestimation 1in these
frequencies is thus easily detected in the spatial domain.
(The final estimates have been scaled to have total energy
equal %o that of the true object). None of the solutions
required more than 33 iterations.

The performance of the procedu}e seems to depend not

only on the amount of noise in the initial estimate but
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also on its structure, so that an apparent increase in
local SNR may not necessarily imply a more accurate
reconstruction. The spectral estimates are smoothed by the
procedure, as shown in the illustrations. Particularly
striking is the fact that the distortion energy in the
initial magnitude spectrum has been decreased in the
corresponding lowpass portion of the extrapolated spectrum
to between 1% and 11% of its original value. However, in
extrapolating real frequency data, situations might arise
where one would prefer to replace the final low frequency
spectrum with the measured spectrum to avoid as much as
possible this smoothing.

As an illustration of the superiority of the new
algorithm a reconstruction of the 5 dB <case wusing
Gerchberg's algorithm 1is included. The same dinitial
lowpass filter was used, and the phase was refined, so that
for both algorithms the 'known' portion of the spectrum was
identical. In Figs. 20 a-c) @a solution obtained by
allowing 150 iterations, with the noise 1imiting procedure
on the 101st jteration, is shown. This reflects the common
usage of the algorithm. In Figs. 20 d-f) the optimal
number of dJterations was allowed, that is, 29 iterations
with the noise 1imiting procedure on the 15th iteration.
(It 1is clear that this determination of the optimum number
was possible only because the answeé was already known).

In both cases very inferior reconstructions were produced.
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This disparity lessens as the quality of the idinitial data
improves, but the superior convergence properties of the
new algorithm give it the advantage in these cases as well.
As the noise 1in the data decreases, the amplification of
the noise by Gerchberg's algorithm does not become a
serious problem until the error spectrum energy is reduced
to a Tower level. Thus the optimal number of Jterations
increases. It dis not wuncommon to wuse several hundred
iterations to approximate convergence. The new algorithm
seems always to converge 1in about the same number of
iterations for a given initial cutoff frequency, nearly
independently of SNR.

To test the sensitivity of the reconstructions to
inaccuracies 1in determining the region of support a number
of mask sizes was used. The true region of support was 18
pixels. ITTustrated in Figs. 21 a) through 21 f) are
reconstructions based on initial non-noisy data using masks
of area 24 and 32 pixels, respectively, assuming an initial
cutoff frequency of 7 «cycles per picture, as in
Figs. 18 p-q). The resul ting reconstructions have
substantial error, although the binary star character of
the object 4is still <clearly visible. 0f course, the
changes in the lowpass magnitude spectrum are indicative of
the error in estimating the region of support. We have
also observed that the phase converéence can be adversely

affected if the region of support is poorly known. The
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importance of an accurate estimate of the region of support
is certainly indicated, although the degradation with
increasing mask size is graceful.

In super-resolving real data, it might be difficult to
accurately estimate the region of support based on only the
estimated autocorrelation of the object, which will itself
have been low-pass filtered. It is quite possible that a
priori knowledge may be needed to determine the object size
and shape. An alternative would be simply to iteratively
approximate the region of support until one determined
which region minimized the change in the 'known' portion of
the magnitude spectrum, subject to whatever knowledge s

available concerning the object itself.



CHAPTER V
RESTORING TURBULENCE-BLURRED STARS

V.l Description of Data Ease

The techniques described 1in the preceding chapters
have been applied to turbulence-blurred images of the stars
o-0RI (Betelgeuse) and a-AUR (Capella). The point star
reference wused to estimate to mean-square OTF was B-ORI.
Betelgeuse is a red super-giant star with the Tlargest
apparent angular diameter of any single star 1in the
heavens. Capella is a binary star whose maximum interstar
distance 1is less than .06 arc-seconds, which is comparable
to diameter of Betelgeuse. Capella is particularly
interesting in that it is unresolved in our data.

Our data base consists of 180 1images of each star.
The observations were made with the 160-inch Mayall
telescope at the Kitt Peak Observatory in Arizona, by S.P.
Worden and B.S. Baxter, on the nights of June 13 and 14,
1976. The optical interference filters had a central
wavelength of 6500 E and a bandpass of 20 1. Exposure
times were about 50 wms, with approximately one second
between exposures to allow the étmospheric point spread
functions to decorrelate temporally. The data was

originally recorded on film, grey =scale corrected,



99
processed on an image intensifier, sampled and the 1image
intensity was digitized to 12 bits on a 256*256 grid. The
scanning aperture was square with width 100 microns and the
sampling interval was 50 microns. The resulting scale is
.01 arc-seconds/grid interval, for a square field of view
2.56 arc-seconds on a side. Since at this wavelength the
absolute frequency cutoff of the telescope 1is about 27
cycles/arcsecond, or about 69 cycles/picture, the speckle

images are oversampled by a factor of about 1.85.

V.2 Betelgeuse reconstruction

A typical speckle image, this one of Betelgeuse, s
shown in Fig. 22. The <corresponding Labeyrie magnitude
estimate is shown in Fig. 23, while the least-squares phase
estimate derived from processing 45 wunwindowed speckle
images is shown 1in Fig. 24. The corresponding spatial
image is in Fig. 25. (This latter has been interpolated by
surrounding the spectrum with data points equal to zero.
The effect is to increase the resolution of the DFT, as is
well known. In this case, the zero-padded array was 16
times larger 1in area, increasing the DFT resolution by a
factor of 4.) The failure of the technique is evident.

The reconstruction of Figs. 26 a-c) is based on the
same speckle images, this time using a spatial window. The
window was a rotated version of a Hamming window of radius
40 points. The bulk of the degradation is now removed,

although the object is insufficiently resolved. Much of



i Fig. 23 Labeyrie Estimate
i gi §2§2532u22°t°9raph of Object Autocorrelation

MiM=- 579525681 |- §79525681 !
A= E712E228) ( B7ieg2281 |
*¥GE=  15535258-1

OLDBET SUBFILE €

Fig. 24 Phase Estimated Fig. 25 Magnified Betelgeuse
from Unwindowed Photographs Reconstruction using Phase
Estimate Shown in Fig. 24



101

Hik=  X516123 1 3s27278 )
MAYX= 4315172381 ( 415756281 )
AVGE= 122425481

a) Labeyrie Magnitude
Spectrum Estimate

®iN=- 3@1Be4gs] (- 3@i74gp81 ) MIN=- 425.e7&%Z (- 41.@98582 )
Max= 3l@i@eses) 3@)7se1el ) MAL= ZS4TESTel | 2EpIgISel )
AVGE= E433423E-B AVGE= Bai41.2

b) Least-Squares Phase c) Estimated Intensity Object
Estimate

Fig. 26 Betelgeuse Reconstructions Obtained from Hamming
Windowed Speckle Photographs



102
the problem is due to the rather poor magnitude
characteristics of the final digital lowpass filter which
is applied to eliminate the noise present in frequencies
above the diffraction 1limit. To minimize the annoying
artifacts of ringing induced in the image by the filtering
operation, one 1is constrained to filters with gentle
roll-off characteristics. Hence, additional smoothing,
beyond that produced by the telescope, is present.

The results of initial phase refinement at frequencies
less than 25 cycles/arc-second, followed by
super-resolution, are shown in Figs. 27 a-d), and in
Fig. 28. The need for a final digital lowpass filter has
been eliminated, since the algorithm forces the solution to
be free of ringing. This is perhaps the primary effect of
super-resolution on this reconstruction, since estimating
the highest frequencies increased the total energy by only
about 3%. The image shows little evidence of fine surface
structure, in contrast to the result of McDonnell and Bates
Ll |

As discussed in chapter IV, there are some internal
evidences that can be examined to evaluate the accuracy of
the reconstruction. First, the sum sguared difference
between the measured spectrum and the super-resolved
spectrum is about 2.5% of the total energy of those
frequencies within the passband of the telescope. This is

consistent with the results obtained 1in the simulations
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using noise-free data. Second, © the super-reso]véd
magnitude speFtrum decays nicely with increasing frequency,
and shows no suspect structure at the high frequencies.
Third, the diameter of the reconstruction, which is
.065 + ,005 arc-seconds, agrees very well with the
autocorrelation estimate derived from the unwindowed
speckle imageg, which has a diameter of .116 arc-seconds.
The reconstruction has been examined by astronomers, who
indicate that the average radial intensity profile of
Fig. 27 d) is in excellent agreement with astrophysical
models of the star. Fourth, the peak negative light
intensity in the interpolated image is only about 1% of the
peak positive T1ight intensity. Finally, because the
spatial mask was square of width 7 pixels, it cannot be
claimed that the spatial mask produced the symmetry of the
resulting reconstruction. The fact that the reconstruction
has circular symmetry when the spatial mask approximated so
poorly the region of support is due undoubtedly to the fact
that the spectrum was very nearly resolved by the
telescope. Thus the primary effect of the processing was

to provide an accurate phase estimate.

V.3 Capella reconstruction

The reconstruction of Capella was 1less direct than
that of Betelgeuse beéaﬁse of the difficulty in determining
the size and spacing of the spatial masks. The Labeyrie

autocorrelation estimate is so severely filtered that only
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the relative orientation of the two stars and a very 1loose
bound on the area of the region of support could be
obtained from it. The sizes and spacing of the final mask
were arrived at by trial and error and represent the best
fit to the measured frequency spectrum. I used as a
goodness-of-fit criteria the following parameters: 1) the
difference in energy between the initial spectrum and the
corresponding lowpass portion of the extrapolated spectrum,
2) the location and magnitude of the first spectral peak
and valley, and 3) the negativity in the reconstructed
image after it had been interpolated by a factor of 4. It
was necessary in the processing to obtain finer resolution
of the image in order to adequately approximate the size of
the star discs. The measured frequency spectrum was low
pass filtered with a separable Fourief window with cutoff
frequency of 27 cycles/arc-second. The final spatial mask
used two radially symmetric masks of diameter 5 pixels
spaced diagonally from each other 8 pixels over and up.
This corresponds to an interstar distance of .028
arc-seconds, and a common star diameter of about .0125
arc-seconds.

The spectra illustrated in Figs. 29 a-b) were obtained
from 45 Hamming windowed speckle photographs. The profile
of the magnitude spectrum taken along the antidiagonal
makes it easier to spot the telescope cutoff frequency, at

about 69 cycles/picture (27 cycles/arc-second), as shown in
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Fig. 29 c). Note that the phase estimate has failed except
at the lowest frequencies. The Labeyrie autocorrelation
estimate is shown in Fig. 29 d). The resolution is so poor
that a meaningful image cannot be formed from this data.
The super-resolved spectrum is shown in Figs. 30 a-c). The
energy in the spectrum is now 4.18 times the originally
measured energy, and the highest extrapolated frequencies
are now at 147 cycles/arc-second (resolution equivalent to
an 800-inch telescope). The first spectral valley and peak
are in essentially the same locations, and the SSE between
the measured spectrum and the corresponding portion of the
extrapolated spectrum is 2.7%. The smoothing effects of
the algorithm are especially evident in the antidiagonal
profile of the extrapolated spectrum. The reconstructed
object, interpolated by a factor of 16, is shown as a
line-drawing in Fig. 30 d) and as an intensity object in
Fig« 31 The object had a maximum negative value 2.85% of
the peak positive intensity. The two stars have an
intensity vratio of 1:.638. This value is given in [60] as
1:.632. The reconstruction thus appears to be reasonably
accurate.

It is obvious in inspecting the reconstruction that
the spatial masks have interfered with estimating the star
discs. Although the dim star diameter 1is about correct,
the bright star diameter has definitely been

underestimated. In [61] it is reported that the bright and
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dim stars have diameters of 13 and 7 times the solar
diameter. It thus appears that even this artifact is
consistent with current astrophysical measurements.
Because the spatial mask has in this case such a strong
influence on the reconstruction, one would 1like to
exhaustively explore the effects of variations, such as
using masks of slightly different sizes for the two star
discs. It is 1ikely that better results can be obtained by
such experiments. Unfortunately, really fine spatial
resolution would require huge arrays, and 1is entirely
beyond the practical capabilities of our computing

facilities.
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Fig. 31 Super-Resolved Capella Intensity Object



" CHAPTER VI
SUMMARY AND CONCLUSIONS

As claimed in the introduction, we have presented a
method of obtaining reliable phase spectrum estimates for
objects blurred by atmospheric turbulence. The method 1is
based on the Knox-Thompson phase difference -estimator
which, without modification, seems wunreliable and overly
sensitive to noise. We have also presented a new
super-resolution algorithm which appears to have the best
stability and convergence properties of any such algorithm
proposed to date. Both methods have been applied to
simulated and real blurred stars with substantial success.
t~¢ As with most other new techniques, however, a number
of issues, both pragmatic and theoretical, need further
study. The first obvious question relates to the accuracy
of the reconstructions of Betelgeuse and Capella. There is
some recent evidence [52] which suggests that our speckle
photographs are not of the highest quality. Specifically,
one would expect better results if exposure times were
about 10 ms, rather than 50 ms. This would necessitate the
use of wider bandpass optical interference filters to
permit adequate exposure of the speckle images, say 100 R

instead of the 20 A of our data. Certainly, a study of the
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effects of the various -exposure time-filter bandwidth
tradeoffs should be made for astronomical applications.
Furthermore, solid-state <cameras are now available which
record a sampled and digitized image directly onto magnetic
tape. This promises important reductions in sensor noise
level in the data. Consequently, we feel that although our
reconstructions are probably the best to date, they cannot
be considered as the 1last word on the astrophysical
structure of these stars. Rather, they indicate the power
of these new processing techniques. A possible empirical
check on these techniques would be to reconstruct an object
for which we have a satellite photograph wuncorrupted by
atmospheric turbulence. The Galilean moons of Jupiter are
possible candidates. If our results are confirmed by
further research, an exciting astronomical application of
the new super-resolution algorithm would be to data from
the orbital telescope now under construction.

Another research area 1is the application of these
methods to spectral estimation, bandwidth compression, and
blind deconvolution problems for both one- and
two-dimensional signals. In this 1latter problem, one
requires a prototype spectrum so as to be able to estimate
the spectrum of the blur, which is then removed from the
blurred signal by some 1inverse filtering technique. We
remind the reader of the importance of an 'adequate'

initial phase spectrum estimate, which may inhibit the
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application of the super-resolution technique to certain
problems.

There is no doubt that our present theoretical
understanding of these techniques 1is incomplete. For
example, rather detailed studies of the bias and variance
characteristics, and how these are modified by analysis
windows, have been made for PSD estimators. For
completeness, similar studies should be made for the
Knox-Thompson estimator. However, I feel an even more
important development would be the creation of a general
analytical framework in which to cast the super-resolution
algorithm (which includes the phase refinement algorithm).
Youla's work [48] is probably the foundation of such a
framework. Qur algorithm appears to be a special case of
the regularizors discussed in that paper. The analysis s
complicated by the non-linearities of the algorithm,
however. Hopefully, such an analysis would provide a
quantitative description of the effects of noise and the
rate of frequency extrapolation on the final estimates. In
fact, such an analysis may indicate that the algorithm
presented here is not optimal. This would indicate the
possibility of even better results than those presented
here. As a practical matter, however, the simplicity of
the 1implementation and the rapidity of convergence of this

new algorithm may make it a processing tool of importance.
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