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Abstract

Formal dynamic verification can complement MPI program testing by detecting hard-to- 
find concurrency bugs. In previous work, we described our dynamic verifier called ISP 
that can parsimoniously search the execution space of an MPI program while detecting im
portant classes of bugs. One major limitation of ISP, when used by itself, is the lack of a 
powerful and widely usable graphical front-end. We present a new tool called Graphical 
Explorer of Message Passing (GEM) that overcomes this limitation. GEM is a plug-in ar
chitecture that greatly enhances the usability of ISP, and may help bring ISP within reach 
of a wide array of programmers, given its imminent release as part of the Eclipse Foun
dation Parallel Tools Platform (PTP) Version 3.0. This paper describes GEM’s features, 
its architecture, and usage experience summary of the ISP/GEM combination. Recently, 
we applied this combination on a widely used parallel hypergraph partitioner. Even with 
modest amounts of computational resources, the ISP/GEM combination finished quickly, 
and intuitively displayed a previously unknown resource leak in this code-base.
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Over the past two decades, high performance computing 
(HPC) has evolved from the domain of the expert program
mer to become an everyday approach used by engineers and 
researchers. A majority of these parallel programs employ 
the message passing interface (MPI [1]) library for inter
process communications and for invoking collective oper
ations such as barriers and reductions. MPI continues to 
enjoy a dominant position in HPC, and has been ported 
to run on virtually every parallel machine available today. 
Given the extensive presence of MPI, it is imperative that 
highly effective debugging tools be created for MPI pro
grams. Today, there are an impressive array of tools avail
able for debugging MPI programs. These tools tend to pro
vide extensive facilities for stepping through process execu
tions and graphically visualizing executions. Unfortunately, 
these tools only provide ad hoc techniques for process in
terleaving (schedule) generation, and as a result, many in
terleavings are not considered. In practice, these omitted 
interleavings are known to harbor bugs [2]. Considering all 
interleavings is not an option because there are an astronom
ical number of them (e.g., over 10 billion for a five-process 
MPI program where each process performs merely five MPI 
calls).

Formal verification methods can help parsimoniously 
search the execution space of an MPI program while detect
ing important classes of errors. It is essential that a practical 
formal verification tool for MPI programs directly accept 
user source codes, and not rely upon hand-built models of 
the code, as needed by all other formal tools (e.g., [3]). Ob
taining such models is next to impossible in practice, con
sidering the difficulty of modeling the C/MPI semantics and 
the rapidity with which programs are changed during opti
mization cycles. Our tool ISP [4, 5, 6, 7] (summarized in 
§ 1.1) is currently the only such tool.

Previously, the usage of ISP was hindered by the ab
sence of a widely usable and intuitive graphical user in
terface. This paper describes our contribution in this re
gard of a tool called Graph ical Explorer o f Message pass
ing (GEM). GEM borrows many ideas from our own past 
work in this area, namely the integration of ISP within Vi
sual Studio [8]. However, our past work was insufficiently 
general. Besides, Visual Studio runs on proprietary Win
dows platforms, whereas the HPC community often prefers 
working with non-commercial software. Most relevant to 
this paper is the fact that GEM is designed to serve as an 
Eclipse plugin alongside the Parallel Tools Platform (PTP) 
(PTP [9]), a rapidly evolving tool integration framework for 
parallel program analysis. In fact, GEM is being released 
along with PTP Version 3.0 -  the latest PTP release that is 
imminent. Given the growing use of PTP all over the world, 
we believe that ISP and GEM will help bring dynamic for

1 Introduction mal verification for MPI to every designer.
The rest of this section presents sufficient research back

ground to appreciate our contributions. § 2 describes GEM 
in detail. § 3 provides details of how GEM handles a real- 
world verification task. § 4 describes our conclusions and 
our future plans.

1.1 Background on ISP

Figure 1. Overview of ISP

There are many excellent MPI program debuggers, for 
instance TotalView [10], Umpire [11], Marmot [12], and 
Jitterbug [13]. Two unique features set ISP apart from all 
these tools: the ability to determining relevant interleav
ings, and the abilitity to enforce interleavings. For an illus
tration of these concepts, consider the example in Figure 2 
(for brevity, we do not show the Wait calls associated with 
the non-blocking Isend and Irecv calls). Considering the 
overall magnitude of the verification problem, we believe 
that a verification tool must not spend effort varying the or
der in which the constituent Barrier calls of a matching set 
of MPI barriers are issued to the MPI runtime. Likewise, 
unless the MPI library itself is in error, there is nothing 
much to be gained by posting deterministic sends and re
ceives in different orders (there are millions of such calls 
issued in an MPI program). As far as we know, none of the 
alternative tools exploit these options. ISP’s focus is away 
from such permutations of deterministic matches, and to
ward discovering the maximal degree of non-determinism 
(i.e., discovering relevant interleavings).

For further illustration of these ideas, consider Figure 2 
again. As shown, matching P2 S Isend with P i’s Irecv leads 
to a bug; but can this match occur? The answer is yes: 
first, let Po’s Isend and P i’s Irecv be issued; then the ex
ecution is allowed to cross the Barrier calls; after that, P2 S 
Isend can be issued. At this point, the MPI runtime faces 
a non-deterministic choice of matching either Isend. No
tice that this particular execution sequence can be obtained 
only if the Barrier calls are allowed to match before the 
Irecv matches. Existing MPI testing tools cannot exert such 
fine control over MPI executions. Thanks to the theory of



_Po_____________ Pi______________ Pi__________
lsend(to : 1,22); lrecv(frorn : *,x) Barrier;
Barrier; Barrier; lsend(to: 1,33);

//(:x == 33)bug;

Figure 2. MPI Example

matches before that we introduced in [4], ISP can exert this 
fine degree of execution control. In more detail, by inter
posing a scheduler (Figure 1), ISP is able to safely reorder, 
at runtime, MPI calls issued by the program. In our present 
example, ISP's scheduler (i) intercepts all MPI calls com
ing to it in program order, (ii) dynamically reorders the calls 
going into the MPI runtime (ISP's scheduler sends Barriers 
first; this is correct according to the MPI semantics), and 
(iii) at that point discovers the non-determinism.

Once ISP determines that two matches must be consid
ered, it re-executes (replays from the beginning) the pro
gram in Figure 2 twice over: once where Pq's Jsend is con
sidered, and the second time where P2-s Jsend is considered. 
But in order to ensure that these matches do occur, ISP must 
dynamically rewrite Jrecv(frotn : *) into Jrecv(frotn : 0) 
and Jrecv(from : 2) in these replays. If we did not so de- 
terminize the Irecvs, but instead issued Jrecv(from : *) into 
the MPI runtime, such a call may match Jsend from another 
process, say P3. In summary, (i) ISP achieves discovers the 
maximal extent of non-determinism through dynamic MPI 
call reordering, (ii) it achieves scheduling control of rele
vant interleavings by dynamic instruction rewriting. While 
pursuing relevant interleavings, ISP detects the following 
error conditions: (i) deadlocks, (ii) resource leaks (e.g., MPI 
object leaks), and (iii) violations of C assertions placed in 
the code. ISP re-111ns the code through all the relevant in
terleavings. For the given MPI program operating under the 
given input data set, ISP guarantees to find all deadlocks, 
resource leaks, and violations of local assertions (e.g., C 
assert calls placed in the code).

It is important to emphasize that while the internal is
sue order computed by ISP appeal's to be an extremely 
skewed schedule, it can actually occur on an MPI platform. 
Even though ISP executes the given MPI program on a spe
cific machine using a specific MPI library, it forces this 
skewed schedule to occur by delaying non-deterministic 
non-blocking operations. For example, by delaying Jrecv, 
ISP is able to discover the match with respect to the Jsend 
of P2. The possibility’ o f considering Po’s Jsend is not lost 
by so delaying. In this way, ISP can verify a program for 
portability even though it is running the program on a spe
cific platform where the natural schedule would perhaps al
ways prefer Pq's Jsend. ISP's ability to maximize the latent 
non-determinism at run time and then verifying over all the 
possibilities gives it the ability to issue verification guaran
tees.
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Figure 3. CDT Make Targets View

2 Highlights of GEM

We begin with the design philosophies of GEM followed 
by a description of its views. GEM is designed to accom
modate MPI programmers with different levels of training. 
As one example, even though ISP internally carries out dy
namic reordering and instruction rewriting, GEM has the 
ability to present verification results as if the matches hap
pened according to program order. This view is ideally 
suited for new MPI programmers. However, most expert 
MPI programmers wish to see what a tool does internally 
(to debug inexplicable behaviors). We therefore also pro
vide the ability to view instructions in the internal execu
tion order. Figure 5 clearly shows this ability. GEM also 
strongly adheres to many of the conventions set forth by the 
Eclipse foundation. This will help GEM serve as a cockpit 
from which a designer can seamlessly invoke performance 
measurement tools (that are being integrated into PTP) and 
correctness tools (ISP being our focus). We also provide 
the flexibility of using either CDT (Eclipse C/C++ Develop
ment Tools) Managed Build or Makefile projects as shown 
in Figure 3.

Finally, we provide an extensive help contribution with 
GEM. We now describe the external view of GEM (§ 2.1) 
and its internal architecture (§ 2.2).

2.1 G EM : E x tern a l View

Basic Operation: Given a collection of files to analyze us
ing ISP, GEM helps compile and links the files against the 
ISP profiler, and then invokes ISP's scheduler on the ex
ecutable creating a log file containing post-verification re
sults. GEM then parses the log file and organizes its con
tents. It then attempts to associate MPI calls with one an-
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Figure 5. Analyzer View on ParMETIS

other (e.g., sends need to be associated with their corre
sponding receives). Any call that fails to associate in this 
manner is flagged as a deadlock. As shown in Figure 4 
GEM includes a valuable ability to localize errors by allow
ing users to step through and display the states of processes 
involved in the error. As mentioned earlier, GEM also al
lows users to view the execution results according to the 
program order or according to ISP’s internal execution or
der. GEM displays MPI point to point operations by listing 
the send and the receive actions in separate windows. Col
lective operations such as barriers and reduction operations 
are listed showing detailed information on one of the calls 
in one window and listing the remaining calls in summary 
form in another window.

GEM Views: In addition to the usual textual console 
view, GEM also provides an analyzer view that serves 
three functions: (i) summarize verification results, (ii) link 
to the matches-before viewer, and (iii) allow the user to 
step through matching MPI calls. Figure 5 depicts the 
analyzer view obtained by running a 10-process version 
of ParMETIS through GEM, clearly showing these facts:
(i) that 221,057 MPI calls were processed, (ii) that the 
nineteenth transition is an MPT S e n d  and its matching

MPTJiecv which are shown along with information on 
which files they occur in, and most interestingly (iii) that 
a resource leak was found. At this point, a user can click 
on the button “Browse Leaks” to obtain a GUI display in
dicating which exact source line contains the leak. Notice 
also the radio buttons Step Order for MPI Calls offering two 
options: Internal Issue Order and Program Order. The No 
Ranks Locked is another option (borrowed from [8]) which 
shows whether the user is in the mode of stepping through 
one process (rank) or whether the stepping encompasses all 
processes. The analyzer view indicates whether a deadlock, 
assertion violation, or resource leak was found. The button 
Browse Leaks lists all leaks and opens an editor to help in
vestigate the leak further. Currently, ISP keeps track of MPI 
object leaks (communicators, type objects, and requests). 
Future versions of ISP/GEM will also instrument C mallocs 
and track their corresponding free  operations.

Matehes-Before Viewer: Happens-before is a distributed 
system concept introduced by Lamport in [14] to keep track 
of time in a distributed system on the basis of event causal
ities. In MPI programs, the salient ‘happenings’ are mes
sage matches; for this reason, we call this relation matches- 
before. A formal definition of the matches-before relation



Figure 6. Matches-Before Viewer of ISP

for MPI was presented for the first time in [4], The paper
[6] summarized how ISP’s ‘Java GUI’ (as it was called then) 
presented this relation. GEM incorporates this unique view 
as its happens-before viewer facility presented in Figure 6 . 
In this example, we can see that under ProcessO, we have 
an Isend followed by a Barrier MPI call. However, there is 
no arrow between this Isend and the Barrier -  thus clearly 
showing that these MPI commands may match out of pro
gram order (as was explained in § 1.1). The other details in
cluded in this view are the following: (i) which commands 
are non-deterministic (in this example, ProcessVs Irecv can 
match with both Jsends, and hence this Irecv is colored red, 
and (ii) all possible matches. In summary, the matches- 
before viewer informs MPI programmers how their code 
can execute on any platform compliant MPI runtime.

2.2 G EM : In te rn a l D etails

We now describe how GEM was architected. The first 
thing to keep in mind is that Eclipse is not a single tool with 
a few small add ons, but rather a small kernel with a collec
tion of extension points, or places to tie into and extend the 
architecture. These extension points all differ in purpose 
but all share a common interface. Described succinctly, 
Eclipse is an extensible platform essentially consisting of 
three layers, (i) Eclipse Platform which offers common 
programming-language-neutral infrastructure; (ii) Java De
velopment Tools (JDT), which adds a rich, full-featured Java 
IDE to the Eclipse Platform; and (iii) Plug-In Develop
ment Environment (PDE) which extends the JDT with plug
in development support. The Eclipse platform itself con
sists of several components separated into two primary cat
egories: (i) Core, which is a runtime component that defines 
plug-in infrastructure, and provides a workspace to manage 
projects; (ii) User Interface (Ul) that provides a Workbench



to define the Eclipse UI (e.g. editors, views, perspectives), 
the Standard Widget Toolkit (SWT) to provide the graph
ics and a set of widgets for UI design with layout strategies 
to group collections of widgets, and JFace which is a UI 
framework built on top of SWT to help manage images and 
fonts and to provide more complex viewer objects. The cre
ation of GEM and its help plug-in relies upon the following 
Eclipse extension points:

• Popup Menus: org.eclipse.ui.popupMenus

• Toolbar Buttons (menus): org.eclipse.ui.menus

• Commands: org.eclipse.ui.commands

• Handlers: org.eclipse.ui.handlers

• Key Bindings: org.eclipse.ui.bindings

• Views: org.eclipse.ui.views

• Preferences: org.eclipse.core.runlime.preferences

• Preference Pages: org.eclipse.ui.preferencePages

• Help: org.eclipse.help.toc

With an initial intention of donating GEM to the Eclipse 
Parallel Tools Platform (PTP), we used PTP-specific icons 
for our graphical resources. For the help plug-in, we used 
PTP style sheets. As GEM will now be part of the 3.0 re
lease of PTP, both plug-ins are bundled into a feature prod
uct which allows distribution with source code and license. 
All strings have been externalized for internationalization. 
Our hope in distributing our work along with source code 
under the Eclipse Public License is that the community 
would be able to contribute to and extend GEM in the fu
ture.

3 Verifying ParM ETIS using GEM

ParMETIS 3.1 [15] is a parallel graph partitioning and 
sparse matrix ordering library that finds wide use. Verify
ing ParMETIS makes for an excellent study due to the in
herent complexities involved with verifying and analyzing
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MPISsend /MPITwoDeadlocks/src/MPl JTwoDeadlocks.c Line: 30

MPI_Recv /MPI_TwoDeadlocks/src/MPI_TwoDeadlocks.c Line: 20

MPI_BatTier /MPl_TwoDeadlocks/src/MPI_TwoDeadlocks.e Line: 33

MPi_5send /MPI_TwoDeadlocks/src/MPl_TwoDeadlock5.c Line: 25

Figure 4. Deadlock Display by GEM

Error Browser

the runtime results of a project of such size. Some routines 
provided by ParMETIS have more than 12,000 lines of code 
between themselves and their helper functions, and involve 
an enormous number of MPI calls. In past tests of ISP [5] 
without GEM, the number of MPI calls recorded by the ISP 
scheduler exceeded 1.3 million.

The test machine used for this particular case study us
ing GEM was an HP Pavilion laptop running Ubuntu 8.10, 
with 4GB RAM and an Intel Core2Duo T-9300 CPU run
ning at 2.5 GHz. To get a feel for the runtime complexities 
and realistic range of use for GEM, we began verifying with 
two processes and gradually increased this number. At 10 
processes, we found GEM to take 10 minutes for a verifi
cation run. A 32 process verification of ParMETIS took 40 
minutes and generated a log file that was 512MB. We feel 
that beyond 10-12 processes, verifying a project of this size 
is perhaps best suited for a cluster.

The Makefile support provided by GEM calls for only a 
few small modifications to the ParMETIS Makefiles (Fig
ure 3). Once the ParMETIS project builds correctly and the 
ISP profiled executable is produced, we can access dynamic 
formal verification using GEM essentially the same way we 
would for any CDT Managed Build project. The only dif
ference will be that we access the executable from context 
menus via the Project Explorer View instead of the toolbar- 
bar icon.

Thanks to ISP’s scheduling algorithm, only one sched
ule was explored. All of our tests verified that the 
ParMETIS code was free from deadlocks and local asser
tion violations. However, our tests using GEM discovered 
a communicator leak in the ParMETIS code, as already dis
cussed (Figure 5). These types of results are instantly rec
ognizable within the GEM Analyzer view. This particular 
result is further proof of the effectiveness of graphical de
bugging tools for parallel application development. With 
one click in the shell window provided by GEM, the user 
can navigate to the source line where the communicator was 
allocated.

4 Conclusions and Future Plans

In this paper, we summarized how the usability of our 
dynamic verifier for MPI programs, namely ISP, has been 
vastly enhanced by the design of the Graphical Explorer of 
Message Passing (GEM). Several interactive tutorials have 
been offered using the ISP/GEM combination (the most re
cent being a 15-minute slot in the IBM PTP tutorial dur
ing Supercomputing 2009). We found that the availability 
of GEM made what was a powerful but intimidating tool 
(namely ISP) into a pleasant, intuitive, productivity enhanc
ing tool.

A number of avenues of further research remain. First, 
we are working on a number of approaches to scale up ISP’s



search algorithms. Second, we are in the process of adding 
many more default checks into ISP, and correspondingly en
hancing the error viewing facilities in GEM. Third, we plan 
to instrument the salient aspects of the C code that lie be
tween MPI calls (at present, these C codes are simply ex
ecuted without any scheduler interception). We find that 
given the importance of mixed programming, we will run 
into the problem of deterministic replay should this C space 
behavior harbor thread non-determinism and/or races. Once 
we are able to instrument and replay the thread-space be
haviors, we plan to enhance GEM’s display capabilities to 
include these behaviors as well.
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