
DESIGN AND EVALUATION OF THE
ROLLBACK CHIP: SPECIAL PURPOSE

HARDWARE FOR TIME WARP
Richard M. Fujimoto, Jya-Jang Tsai,

and Ganesh C. Gopalakrishnan

July, 1988

Tech. Report. UUCS-88-011

DESIGN AND EVALUATION OF THE ROLLBACK CHIP:
SPECIAL PURPOSE HARDWARE FOR TIME W ARP1

Richard M. Fujimoto, Jya-Jang Tsai, and Ganesh C. Gopalakrishnan

Abstract — The Time Warp mechanism offers an elegant approach to attacking difficult clock

synchronization problems that arise in applications such as parallel discrete event simulation. How

ever, because Time Warp relies on a lookahead and rollback mechanism to achieve widespread ex

ploitation o f parallelism, the state of each process must periodically be saved. Existing approaches

to implementing state saving and rollback are not appropriate for large Time Warp programs. We

propose a component called the rollback chip (RBC) to efficiently implement these functions. Such

a component could be used in a programmable, special purpose parallel discrete event simulation

engine based on Time Warp. The algorithms implemented by the rollback chip are described, as

well as mechanisms that allow efficient implementation. Results of simulation studies are presented

that show that the rollback chip can virtually eliminate the state saving and rollback overheads

that plague current software implementations of Time Warp.

Index terms — state saving, rollback, Time Warp, parallel discrete event simulation, VLSI

component, special purpose computers.

I. In t r o d u c t i o n

Computer simulation of large, complex systems remains a major stumbling block in many re

search and development efforts today. Computation requirements continue to grow and far exceed

the capabilities of general purpose computing hardware. While special purpose hardware has been

successfully employed in continuous (e.g., fluid flow models) and synchronous, time-stepped (e.g.,

gate level logic circuits [l]) simulation, no such support exists in the more general realm of asyn

chronous, discrete event simulation. The enormous amounts of computing time required to simulate

large communication networks, parallel computer architectures, and battlefield scenarios (to name

1 An earlier version of this paper appeared in the Conference Proceedings of the 15th Annual International Sym
posium on Computer Architecture, June 1988.
The authors are with the Computer Science Department, University of Utah, Salt Lake City, UT 84112.
This work was supported by ONR Contract Number 00014-87-K-0184, NSF Grant Number MIP-8710874, and a
University of Utah Development Grant.

1

a few) thwart advances in system design and development. In many cases, complex simulations

cannot be performed because the computation costs are prohibitive.

Although powerful general purpose multiple processor computers are now available, considerable

doubt exists as to whether these machines can achieve significant speed ups for many large simulation

problems. As researchers and scientists are now discovering, speedup is elusive for asynchronous

simulation because expensive clock synchronization algorithms are required. These algorithms

introduce substantial overheads that often completely negate the benefits o f parallel execution (for

example, see [2,3]). All existing parallel simulation algorithms and speedup techniques have serious

limitations, and none are appropriate for many large-scale asynchronous simulation applications.

Among the clock synchronization protocols that have been developed, optimistic methods such

as the Time Warp mechanism [4] offer the most widespread exploitation of parallelism. Significant

speedups have been reported for at least one implementation o f Time Warp [5].2 Alternative clock

synchronization protocols (called conservative or pessimistic protocols) have been developed, but

existing approaches have serious limitations (notably, objects and their intercommunication pattern

must be statically defined) and yield poor performance for many workloads containing high amounts

o f parallelism [3,6].

However, Time Warp is not without its difficulties. In particular, Time Warp relies on a rollback

mechanism to undo the effect of clock synchronization errors. To implement rollback, the state of

each process must periodically be saved. Unless efficient mechanisms can be developed, state

saving and rollback overheads will cripple Time Warp programs containing large amounts of state.

Efficient implementation o f state saving and rollback is the subject of this paper.

In order to attack the state saving and rollback problem, we define a component called the

rollback chip? (RBC). Rather than copying data into “ protected” memory areas, the rollback chip

manipulates addresses generated by the CPU in order to avoid overwriting data that may later be

required after a future rollback operation. The RBC can be viewed as a special type o f memory

management unit and data cache combined into a single component.

2For example, a speedup of 10.66 using 24 processors was reported for a military application; similar speedups for
a simulation of colliding pool balls have also been reported. We note, however, that these applications contain only
a modest amount of state (e.g., a few thousand bytes in each process).

3The name “rollback chip” is actually somewhat of a misnomer because current circuit densities preclude a
single chip implementation. Nevertheless, we will continue to use this terminology because we expect a single chip
implementation will be feasible in a few years.

2

A second problem that can degrade performance o f Time Warp programs arises when rollbacks

occur too frequently. A form of thrashing will result whereby processes are forced to undo most of

the computation they perform. Avoidance o f rollback thrashing is a topic o f current research, and

is not discussed further here. We note, however, that conservative algorithms will fare no better if

rollback thrashing prevails because rollback would be replaced by excessive waiting.

The envisioned system is a message-based multicomputer, e.g., a hypercube machine similar

to the Intel iPSC ^* or N Cube/Ten™ [7], with a rollback chip embedded in each computation

node to implement state saving and rollback for that node. Such a machine would be programmed

using conventional object-oriented or process oriented (CSP-like) paradigms. Each node could be

implemented as a single board microcomputer containing the RBC, a conventional microprocessor,

interprocessor communication circuitry, and memory components. Such a board is currently under

development. Alternatively, the RBC and conventional memory components could be used to

implement a special memory board with state saving and rollback capabilities. Such a board could

be plugged into an existing multicomputer system, subject, o f course, to physical constraints.

Although parallel discrete event simulation is the principal application area currently envisioned

for the rollback chip, use o f the chip is not restricted to simulation. Time Warp may also be applied

to applications such as distributed database concurrency control [8] and parallel execution of prolog

programs [9]. The rollback chip may be directly applied to these applications. Further, the ideas

used in the RBC design (if not the chip itself) are applicable to virtually any system that requires

efficient state saving and rollback capabilities.

The remainder o f this paper is organized as follows. The next section discusses alternative

approaches to attacking the state saving / rollback problem. We argue that existing approaches to

state saving and rollback are not appropriate for Time Warp programs. Section III describes the

interface provided by the rollback chip. The algorithm implemented by the RBC is described in

section IV. Special mechanisms are proposed in section V which efficiently implement the proposed

algorithm. Finally, results o f performance evaluation studies are presented in section VI.

II. A l t e r n a t i v e A p p r o a c h e s t o S t a t e S a v in g a n d R o l l b a c k

The anticipated application domain necessitates use of unconventional methods for attacking

the state saving / rollback problem. We will first enumerate properties of Time Warp programs

3

that are relevant to this problem, and then discuss deficiencies that arise in existing approaches

when they are used in the context of Time Warp programs.

In a typical Time Warp based simulation program:

• The amount o f state in each process can be quite large, and the portion that is modified by a

single simulation event may be highly variable. Simulation programs are notorious “memory

hogs.” For example, it has been reported that military simulations require terrain data objects

containing over a megabyte o f state [10]. While some events modify only a small portion of

the state, e.g., a road washed out by a rain storm, other more catastrophic events may

require substantial state changes. Similarly, continuous simulations embedded in Time Warp

programs may modify substantial amounts of state at each “time-step” o f the continuous

simulation, while discrete events modify only a few state variables.

• State save operations must be performed relatively frequently. This is because:

— The most natural point at which to perform a state save operation is after processing

each simulation event. Many discrete event simulation programs execute on the order of

1,000 events per second on a 1 MIP (million instructions per second) processor, implying

a state save occurs every millisecond.4 Further, modern microprocessors such as the

INMOS Transputer that are designed to be embedded in parallel systems will achieve

computation rates o f 10 MIPs or more, and provide rapid interprocessor communication,

process scheduling, and context switching. Ignoring state saving overhead, one can

expect future parallel simulators to save state much more frequently, perhaps as often as

every 100 microseconds, assuming a state save is performed after each event. Although

this figure is highly application and implementation dependent, it illustrates in general

terms the frequency at which state save operations may be requested.

— Less frequent state saving leads to inefficient execution. Infrequent state saving can

severely degrade the efficiency of the Time Warp mechanism because rollback distances

are often small, e.g., only one or two events, and rollbacks can be relatively frequent (yet

not so frequent as to induce thrashing; see below) [11], If state saving were performed

4Such event processing rates have been observed for at least one parallel simulator [6]; sequential event list
simulators routinely run at faster event rates.

4

infrequently, one would often be forced to roll back the computation much further than is

strictly necessary in order to reach the last saved state. This necessitates much additional

• Rollback occurs with sufficient frequency that the overhead associated with rollback cannot be

ignored. Time Warp programs that were designed with a relatively coarse grain o f computa

tion (several milliseconds per event) have been observed to roll back several times per second

within each processor, and still exhibit good speedup characteristics [5]. We expect that much

higher rollback rates, e.g., tens or hundreds o f rollbacks per second in each processor, will be

considered acceptable for other programs using finer grains o f computation. Therefore, mech

anisms that reduce the cost o f state saving at the expense o f an expensive rollback operation

(e.g., requiring extensive copying to restore the state) are not appropriate.

Existing software-based approaches to state saving and rollback were not developed in the con

text o f Time Warp programs, and incur unacceptable overheads when used under conditions such

as those described above. Current implementations o f Time Warp, using general purpose hardware,

copy the entire state o f a process on each state save operation; this is clearly out of the question

when dealing with large amounts o f state and frequent state saving. Incremental copying based

on compile time flow analysis has difficulty dealing with arrays and dynamic storage, and incurs

a substantial compile-time overhead [10,12]. Incremental copying based on an extensive runtime

system, e.g., using dirty bits on conventional paging hardware to locate modified pages, requires

extensive page table searches; copying also becomes a substantial overhead if much o f the state is

modified between state saves.5 Finally, performing runtime checks on each memory write incurs

both a substantial overhead on each write operation, and expensive rollbacks. Although variations

o f this latter approach are possible, such techniques essentially degenerate to using software to

simulate the actions o f the rollback chip, and incur unacceptable overheads.

State saving and rollback mechanisms have been used extensively in the context o f fault tolerant

computation to allow recovery from transient and/or permanent failures. The recovery caches

described by Lee, Ghani, and Heron for the PDP-11 [13] and by Feridun, Lee, and Shin for a

5We recently learned that techniques using dirty bits have been developed independently by (1) Linton, and (2)
Feldman in the context of debugging parallel programs; there, the overheads may be manageable because state saving

fault-tolerant multiprocessor [14,15] have goals that are similar to the rollback chip. However, the

approaches that they use reduce the cost of state saving overhead at the expense o f the rollback

operation — extensive copying may be required on each rollback. While this is reasonable in

the realm of fault tolerant computation where errors (and therefore rollback) can be assumed to

occur infrequently, it is not an appropriate strategy here. Further, these schemes introduce certain

additional overheads; in [13] a memory read must precede each write, and in [14,15] extensive

copying (for state saving, in addition to that required for rollback) would be required for many

Time Warp programs, and excessive amounts o f memory are needed.

Time Warp programs require efficient mechanisms that allow state saving and rollback opera

tions to be performed rapidly, ideally in constant time, independent o f the size o f the process state

or the amount o f state that is modified between state save operations. It should also be relatively

efficient in memory usage. The central contribution of this paper is to propose such a hardware

mechanism, and to evaluate its performance.

III. T h e R o l l B a c k C h ip I n t e r f a c e

The rollback chip implements state saving and rollback functions for a single processor in

the multicomputer system. It provides each Time Warp process with a data segment known as

version controlled memory (VCM). Version controlled memory has identical semantics as ordinary

read/write memory, except the process may, at any time, “ mark” the state o f the memory as

one that it may later want to restore via a ROLLBACK operation. In a parallel simulation, the

processor will normally issue a MARK operation whenever it finishes processing a simulation event.

All variables that are subject to state saving and rollback must be stored in version controlled

memory.

The RBC only acts on memory references to version controlled memory. Memory references

for instruction fetches and local variables that do not have to be restored on rollback (for example,

in parallel simulation, local variables typically do not persist from one event to the next) bypass

the RBC. In our current design, each version controlled memory data segment may contain up to

4 megabytes o f storage, and a single processor may contain up to 64 independent VCMs. This

design statically maps VCMs into the processor’s address space; for a 32 bit address space, the

mapping for 64 data segments uses only 256 megabytes o f the address space, leaving 3.75 gigabytes

6

for conventional memory and memory mapped I/O devices. Throughout the remainder o f this

paper, we will assume that each process is allocated at most one VCM.

The rollback chip supports six operations: RESET, memory READ, memory W RITE, MARK,

ROLLBACK, and ADVANCE. Each operation is assumed to operate on the VCM of the currently

executing process. The semantics of these six operations are described below:

R E S E T . Initialize the rollback chip prior to the execution o f a Time Warp program. Certain

initialization parameters are also required, however, this is beyond the scope o f the present

discussion.

M A R K . Mark (preserve) the current state o f version controlled memory.

W R I T E (A ,D) . Write data D into memory address A.

R E A D (A):D . Read the most recently written version o f data associated with address A (excluding

rolled back write operations) and return this data D to the CPU.

R O L L B A C K (k). Restore the version controlled memory to the kth previously marked state

(k > 0).

A D V A N C E (k). The k oldest marked states are no longer required, and can be fossil collected.

During fossil collection, resources that are no longer needed are reclaimed, and irrevocable

operations (e.g., I /O) are performed. Determination o f which saved stated may be safely fossil

collected is made by computing a bound on the longest possible rollback. Computation of this

bound (called Global Virtual Time or GVT) is beyond the scope o f the current discussion,

but is described elsewhere [4].

The RESET, M ARK, ROLLBACK, and ADVANCE operations may be invoked by the CPU

by writing into the R BC ’s control registers which are memory mapped into the processor’s address

space. The READ and W RITE operations represent references to program variables that are

generated by the CPU during the normal course o f its operation. The CPU also has access to

other registers within the rollback chip (described later) to implement context switches between

processes.

7

f

Mark Frame Stack

AFRAME

Fig. 1: Data structures used by the RBC algorithm.

IV. T he R o l l b a c k C h ip A l g o r it h m

The discussion that follows will focus on the operation of a single VCM. The rollback chip

must maintain different versions of each state variable to enable a previous version to be restored.

Different versions of the same variable are stored in separate storage areas called mark frames (see

figure 1). Each mark frame is the same size as version controlled memory, and is divided into some

number of fixed length lines. An RBC line is similar to a line in a conventional cache memory

system; it is transparent to the processor and serves as the quantum of data accessed on each

reference to physical memory.

Mark frames are organized as a stack. The stack is implemented as a circular buffer, but to

simplify the present discussion, we will assume the stack is unbounded in length. The current mark

frame or CMF refers to the frame at the top of the stack. The CMF register in the rollback chip

contains a pointer to this frame. Also, the oldest mark frame or OMF refers to the frame at the

bottom of the stack. Frames older (deeper in the stack) than the OMF are no longer needed so

their storage may be reclaimed.

The RBC operations defined earlier can be easily explained in terms o f this stack-based im-

8

plementation. The RESET operation resets the CMF and OMF registers to 0. Each MARK

operation pushes a new frame onto the stack by incrementing the CMF register. No data is copied

on M ARK operations. Memory writes access the CMF.6 The memory write is accomplished (in

part) by concatenating the CMF register with the address generated by the CPU to create a new

memory address for the write operation. Because the MARK operation does not copy data into the

newly acquired frame, mark frames usually contain “holes” where no valid data has been written.

Therefore, read operations must search through the stack starting at the CMF to locate the most

recent version of the data. The RBC caches recently used “ most recent version” data to reduce

the amount of searching that is actually required. Finally, ROLLBACK(k) pops k frames from

the stack by decrementing the CMF register, and ADVANCE(k) removes the k oldest frames by

advancing the OMF register.

Two additional aspects o f the RBC must be described. First, because each mark frame will

usually contain holes, flag bits are required to indicate which lines contain valid data. Second,

the ADVANCE operation, as described above, may accidentally discard needed data, so additional

precautions are required. These two aspect of the RBC algorithm are described next.

A. Written Bits

A written bit (W B) is associated with each line of each mark frame, and is set if that line

contains valid data. These bits are logically organized as a two dimensional array (see figure 1):

W B [l , f] corresponds to line I of mark frame / . The most recent version of line I is found by

searching row I of the written bit array starting at WB[/,CMF] until a set bit is found.

B. The Seldom Written Data Problem

The ADVANCE operation must do more than simply increment the OMF register. If a variable

is written infrequently, its most recent version may be buried far into the mark frame stack. If

an ADVANCE operation causes the OMF to overtake this frame, precautions must be taken to

ensure that this valid data are not discarded. In general, because the OMF provides a bound on

6 Actually, writes are more complicated because writes only modify a portion of each line; we defer discussion of
this until later.

9

the deepest possible rollback, the most recent version o f the data that is at least as old as the OMF

must always be preserved to ensure correct operation o f the algorithm.

A special mark frame is defined called the archive frame (AFRAM E) which holds the most recent

version of the line that is older than the OMF. The ADVANCE operation copies the most recent

version of each line among the frames it is fossil collecting to the archive frame before reclaiming

storage used by these frames. Also, if the READ operation does not find any set written bits in its

search for the meet recent version of a line, it assumes the data is stored in the archive frame.

C. Logical Description o f RBC Operation

Based on the data structures shown in figure 1, the algorithm implemented by the RBC is

depicted in figure 2. MRV denotes the frame number holding the most recent version of the

line in question, and may refer to the archive frame. The description of specific operations is

straightforward. One point worth noting is that the W RITE operation must first copy the MRV

line to the CMF if the CMF written bit is not set. This is necessary because, as alluded to earlier,

W RITE operations do not modify the entire line.

The observant reader will notice that there are several operations that initially appear to be

very expensive. Special mechanism must be defined to efficiently implement the RBC algorithm.

These will be described next.

V . R o l l b a c k C h ip M e c h a n is m s

We will now focus attention on the implementation o f the algorithm described in the previous

section. Implementation is a challenging problem because several aspects will be unacceptably slow,

inefficient, and/or inflexible if implemented in the obvious way. In particular, the major trouble

spots (and proposed solutions) are:

S low access to M R V data. The most recent version of recently used lines are cached in the

rollback chip, allowing READ and W RITE “hits” to be performed at conventional cache

memory speeds. Additional optimizations are introduced to reduce the search time required

for RB cache “misses.”

S low R O L L B A C K op era tion . Many written bits must be reset on each rollback. An efficient

10

INITO
CMF:=0; 0MF:=0;
WB[In,fr]:=0; for all In and fr;

end INIT;

WRITE(A, D)

/* A.Line is the line number field of the address */
/* A.Word is the word/byte/longword address */

/* Stack[x,fr] refers to line/word x of stack frame fr */

if (WB[A.Line,CMF] = 0) then
Stack[A.Line,CMF] := Stack[A.Line,MRV];
end-if

Stack[A.Word,CMF] := D;
WB[A.Line,CMF] := 1;

end WRITE;

READ(A): D
return (Stack[A.Word,MRV]);

end READ;

MARK()

CMF := CMF +1;
end MARK;

ROLLBACK(k)

WB[ln,fr]:=0 for all In, CMF-k < fr < CMF;
CMF := CMF - k;

end ROLLBACK;

ADVANCE(k)
for each line In do

/* OMRV is MRV frame older than OMF+k */
if (OMRV frame exists) then

AFrame[ln] := Stack[In,OMRV];

end-if
end-for

OMF :■ OMF + k;
end ADVANCE;

Fig. 2: The rollback chip algorithm. The stack is assumed to be unbounded.

mechanism called the rollback history has been devised to avoid updating written bits when

a rollback occurs. Instead, a lazy approach is used whereby the bits are cleared “on the fly”

S low A D V A N C E op era tion . The rollback chip processes this operation in parallel with the

CPU. The processor need not wait for the ADVANCE operation to complete unless it runs

out of memory. An additional optimization is introduced to reduce the amount o f data that

P o o r m em ory utilization . If few state variables are modified between MARK operations, most

o f the memory in the mark frame stack is wasted. A dynamic memory allocation scheme

based on paging is used to only allocate physical memory when it is needed.

M u ltip le processes p er processor. The rollback chip mechanisms easily accommodate multiple

processes per processor. Techniques similar to those used in translation lookaside buffers in

memory management units can be used to enhance performance.

Each o f these aspects o f the RBC will be discussed in turn, after we introduce the notion o f working

The mark frame stack is statically partitioned into blocks of mark frames, each o f which is

referred to as a working area. Each working area contains a fixed number o f contiguous frames.

Our current design of the RBC supports 16 working areas, each containing 16 mark frames, for a

The number of the working area in which a particular mark frame is contained is simply the

high order bits o f the frame number. The CWA and OWA refer to the working areas containing

the CMF and OMF respectively, and are obtained by extracting the high order bits of the CMF

and OMF registers. For example, in our current design, the frame number is 8 bits with the upper

nibble indicating the working area, and the lower nibble the frame within the working area.

Using working areas, it is possible to devise a scheme to allow the mark frame stack to dynam

ically expand beyond the size initially allocated to the circular buffer. One could define a set of

working area registers in the rollback chip, each pointing to a single working area of the mark frame

stack. Like the mark frame stack, the working area registers would be organized as a circular queue.

When the stack overflows, registers corresponding to working areas at the bottom of the stack could

be saved in memory, allowing these registers to be used to accommodate the expanding stack. The

saved registers would eventually be garbage collected by successive ADVANCE operations. In the

event of a very long rollback, it might also be necessary to load this saved information back into

the working area registers.

Though feasible, supporting dynamically expanding stacks adds a nontrivial amount of com

plexity to the rollback chip design. Also, the use of working area registers adds a significant amount

of process-specific state, increasing the cost of context switches, or forcing one to support multiple

sets of working area registers. Further, even if dynamic stacks are not supported, overflow can

be easily handled by blocking the offending process until global virtual time advances sufficiently

to allow old frames to be garbage collected and reused. It is improbable that such blocking will

diminish performance because processes running out of stack space are far ahead of others, making

it unlikely that they are on the critical path of the computation. In practice, we expect that 256

frames is far more than will be required in practice (this intuition is shared by Jefferson, and is

supported by empirical data [11]; our initial simulations of Time Warp simulators of communication

networks indicate that typical programs only require at most 10 or 20 frames). Our current design

of the rollback chip does not use working area registers, and assumes a fixed sized mark frame

stack.

B. The Rollback Cache

The READ operation must return the most recent version of the data that is being referenced.

Searching through a row of the written bit matrix on every READ operation is too expensive, so

recently used MRV data is cached. One design of the rollback cache (or RB cache) using a copy

back protocol is described in [16]. A simpler design using a write-through protocol is described

next.

The fields of each entry in the RB cache are:

V alid is a single bit that is ‘ 1’ if the cache entry contains valid data, and ‘O’ otherwise.

13

Line indicates the line number to which the remaining fields correspond. Associative searches are

performed on this field.

D ata contains the data corresponding to the most recent version of the cached line.

M R V is the frame number where the most recent version resides (both the working area and frame

within working area fields).

P ID is an identifier indicating the process owning the cached data. This is similar to the address

space tag sometimes used in conventional memory management units.7

The first three fields (and to a certain extent, the PID field) are identical to those found in conven

tional caches. The MRV and PID fields are used to selectively invalidate certain cache entries when

rollback occurs. A simpler, but less efficient, design is to eliminate the MRV field and invalidate

the entire cache on each rollback. Although the selective invalidation operation can be easily im

plemented using a custom integrated circuit, efficient implementation using only off-the-shelf parts

would require an excessive number o f components, so this latter invalidation procedure may be

more appropriate in certain designs.

The operation of the cache will be described next in terms of the READ, W RITE, and ROLL

BACK operations. The cache is not affected by the M ARK, and only slightly affected by the

ADVANCE operation. The latter will be discussed later.

To simplify the discussion, we will assume a fully associative cache is used. The mechanisms are

easily adapted to direct addressed and set associative caches. Descriptions of the cache operations

are shown in figure 3.

READ and WRITE Operations: The initial address translation for READ and W RITE oper

ations is identical to that o f a conventional cache — the line number field is extracted from the

address, and is used with the PID field to associatively search the cache (this is not shown in

figure 3). If the line was found in the cache, a hit occurs. Otherwise, a miss results.

The operation o f the RB cache for READ hits is identical to that of conventional caches. The

data is read from the cache and the requested word (or byte or longword) is extracted and returned

7Actually, if one assumes different version controlled memories are mapped to different areas of the address space,
the PID field is simply the high order bits of the Line field. Here, we identify PID as a separate field to simplify the
presentation.

14

Read_Hit (cache entry e, line In):

Return (Cache[e].Data);
/* Actually, only requested byte/word/longword is returned */

end Read_Hit;

Read_Miss (line In):
Search for MRV frame;
Cache[lru].Line := In; Cache[lru].Valid := 1;

Cache[lru].Data := Stack[ln,MRV];
Cache[lru].MRV := MRV; Cache[lru].PID := PID;
/* only requested byte/word/longword is returned */

Return (Cache[e].Data);
end Read_Miss;

Write_Hit (cache entry e, line In, data D):
Cache[e].Data := D; /* only modify part of line */
Cache[e].MRV := CMF;

Stack[In,CMF] := Cache[e].Data;
WB[In,CMF] := 1;

end Write_Hit;

Write_Miss (line In, data D):

Search for MRV frame;

Cache[lru].Line := In; Cache[lru].Valid := 1;
Cache[lru].Data := Stack[In,MRV];
Cache[lru].MRV := CMF; Cache[lru].PID := PID;
Cache[lru].Data := D; /* only modify part of line */
Stack[ln,CMF] := Cache[lru] .Data;
WB[ln,CMF] := 1;

end Write_Miss;

Rollback (to frame dst):
for each cache entry e do

if (Cache[e].PID=PID and Cache[e].MRV > dst) then

Cache[e].Valid := 0;
end-if

end-for

end Rollback;

Fig. 3: RB Cache operations.

15

to the CPU. Access times comparable to those obtained by conventional cache memories can be

expected.

For READ misses, the replacement algorithm (e.g., LRU) selects an entry to be deleted from

the cache, or an invalid entry is selected if there is one available. The frame containing the most

recent version o f the line must now be determined by searching through the appropriate row o f the

written bit matrix. The information associated with the line is then loaded into the cache, and the

requested data is returned to the CPU.

W RITE operations always modify data in the current mark frame (CM F). W RITE hits must

(1) write the data into the cache entry, (2) write the CMF register into the MRV field of the cache

entry, and (3) write the line to the CMF in memory (recall a write through protocol is used). In

addition, the corresponding written bit must be set. Memory write requests can be buffered, so

the CPU may be allowed to continue pending their completion.

A write miss operation is essentially a read miss that is immediately followed by a write hit.

The MRV frame is found; the requested line is then read from memory, modified, and written into

both the cache and the CMF in memory.

Optimizing M RV Searches: Cache misses require a search for the most recent version of the

line that has been referenced. Even though cache misses are infrequently (assuming the program

exhibits reasonable locality), overall performance may be significantly degraded if misses are very

expensive. Fortunately, several techniques are available to reduce the time of MRV searches:

1. The written bit memory is organized so that sixteen written bits (a single working area) for a

single line are read on each memory reference, allowing the hardware to scan 16 mark frames

on each iteration. If the size of the mark frame stack is at most 17 frames, the MRV frame

will always be found after only one or two references to the written bit memory.

2. The written bits may be stored in high speed (relative to main memory) static RAM.

3. The search procedure may be pipelined. The scan of the first 16 written bits can be overlapped

with scans o f subsequent blocks of 16 bits, allowing the results of successive scans to be

available on subsequent clock cycles.

4. A simple optimization (described below) is available to significantly shorten the search time

16

for very large mark frame stacks.

Optimization (4) uses the following rules: write the MRV field for each line to a special location

in memory for that line whenever the line is deleted from the cache; when the line is next referenced

(causing a cache miss), start the search from this previously saved MRV frame rather than the CMF.

The saved MRV information will usually point to the most recent version of the line. It will not if

the saved MRV information was invalidated by a rollback operation after the line was deleted from

the cache, but before it was referenced again.8 The ADVANCE operation should also update this

information if it fossil collects the MRV data.

We call this technique the LastWA optimization, because in practice, one would only store the

number of the working area containing the MRV of the line. LastWA[i\ indicates the last working

area into which valid data were written for line i. We will later present performance results that

indicate that the LastWA optimization is effective in reducing search times for large mark frame

stacks.

Among the four optimizations described above, the first two have the clearest and most direct

benefit, and should always be used. The latter two optimizations can be employed if the size of the

mark frame stack is expected to be large. Using some combination o f these four optimizations, we

expect that in practice, the penalty of cache misses can be sufficiently reduced so that misses do

not appreciably degrade performance.

ROLLBACK Operations: A ROLLBACK of k frames invalidates any information written into

the top k frames of the stack. If any of this data are buffered in the RB cache, they must be

invalidated. Also, the RB cache should avoid invalidating cache entries that are being used by

processes other than the one being rolled back.

The invalidation operation can be easily implemented using a custom memory chip with embed

ded comparison logic. The chip holds the valid bit, MRV, and PID fields. An entry is invalidated if

its PID matches that o f the process being rolled back, and if its MRV field is greater than the frame

number of the destination o f the rollback (the new CMF). Using a custom chip, the invalidation

operation can be performed in parallel across ail RB cache entries.

8One could update this saved MRV information on rollback, however, this would make the rollback operation
relatively expensive.

17

Because the mark frame stack is implemented as a circular buffer, the “greater than” operation

must be performed using modulo arithmetic. This can be implemented by providing an extra bit

o f precision with the MRV field o f the cache and using ordinary magnitude comparison logic. The

extra precision bit of the “dst” field (the destination frame for the rollback), or any data written

into the MRV field o f the cache is set if it is less than the OMF register. The extra precision bit of

each MRV field in the cache is cleared when the OMF register wraps around.

C. Rollback Histories

The RBC algorithm requires that a rollback operation clear all o f the written bits corresponding

to frames that are rolled back, i.e., popped from the stack. A brute force implementation of

this operation will be too expensive for programs containing large amounts o f state. An obvious

alternative is to clear all written bits for new frames that are pushed onto the stack. However, this

simply transfers the problem to the MARK operation, making it too expensive. The rollback history

(RBH) mechanism is designed to efficiently clear the appropriate written bits when a ROLLBACK

occurs.

The key idea used by the rollback history mechanism is that no written bits stored in memory are

cleared when a rollback occurs; instead, the written bits are cleared on the fly as they are read from

the written bit memory (e.g., following a cache miss). This dramatically improves the efficiency of

the rollback operation, at the cost of a small increase in the cache miss penalty.

Using this “ lazy” approach, the written bits in memory may not be updated until long after the

rollback occurred. Therefore, the question that must be answered is “which written bits must be

cleared when they are read from the written bit memory?” The rollback history (RBH) mechanism

provides this information.

One can rephrase to above query to ask an equivalent question: “what is the deepest rollback

that has occurred since the written bits were written into memory?” If the written bits were written

to memory at time t (meaning they were correct and up to date at time t), and the deepest rollback

that has occurred since time t was to frame / , then the correct written bits are those stored in the

memory with all bits in frames newer than / cleared. Therefore, one approach to this problem is

to:

18

1. Define an array o f values RBH[t] such that RBH[t] indicates the deepest rollback that has

occurred since time t.

2. Whenever a block o f written bits axe written to memory (normally, 16 written bits will be

written at one time), store a timestamp ts with the written bits indicating the current time.

3. Whenever the written bits are read from memory, read the timestamp ts that is stored with

them, and clear all bits corresponding to frames that are newer than (greater than) RBH[ts\.

Although this approach efficiently implements the bit clearing operation, it has a serious flaw:

the size o f the R BH array must have an infinite number o f entries because the index t is a continuous

quantity. This problem is resolved by observing that RBH[t\ (the deepest rollback since time t) is

identical to R B H [t+ At] if no rollbacks occurred between t and t + At. Therefore, the R B H entries

corresponding to times between two consecutive rollbacks can be represented by a single R B H entry.

This is equivalent to saying that “ time,” from the perspective o f RB histories, is measured by the

number of rollbacks that have occurred since the computation began. Each rollback increases R BH

time by one unit. The timestamp, described above, is simply “ the number of rollbacks that have

occurred since the computation began.” One need only maintain a counter that is incremented

each time the process is rolled back, and use this counter to generate timestamps when written bits

are written to memory.

With the above modification, the lazy approach to clearing written bits can be implemented

very efficiently. The only question that remains is maintaining the R B H array. The R B H array can

be viewed as a stack, with a new element pushed onto the stack whenever a rollback occurs. Stack

elements are never popped from the top of the stack, however, the oldest entries at the bottom of

the stack may be garbage collected. Technically, the R B H mechanism is actually a FIFO queue,

but we shall refer to it as a stack to facilitate the presentation. It is actually implemented as a

circular buffer, so all of the arithmetic described below is implicitly modulo arithmetic.

RBH[i\ indicates the destination frame number o f the “ deepest” rollback that has occurred

after the ith rollback (i + 1, i + 2, etc.), or equivalently, after the stack element was created. The

top of stack element always contains the value INFINITY because no subsequent rollbacks have yet

occurred. When a rollback occurs, one must update the R B H stack — if the destination dst o f the

19

RBH-UPDATE(dst)

i := CRBI;
while (dst < RBH[i])

RBH[i] := dst;

i := i-1;

end-vhile
end RBH-UPDATE;

Fig. 4: Update operation for RBH stack for rollback to frame dst.

current rollback is deeper than (less than) RBH[i\, then dst should be written into RBH[i\. At first

glance, this would imply the entire R B H stack must be examined on each rollback. Fortunately,

this is not the case.

It is easy to see that the condition RBH[i] < RBH[i + 1] must always be true — the deepest

rollback since time i must clearly be at least as deep as the deepest rollback since time i + l .9

Therefore, if rollback history entries are updated from the most recent to the oldest, we can stop

the updating process as soon as a rollback history entry is encountered with a rollback as deep or

deeper than the destination o f the current rollback. If the rollback is relatively short (i.e., if there

is temporal locality), very few rollback history entries will have to updated. The update procedure

for the RBH stack is shown in figure 4.

The update procedure may be efficiently implemented by buffering the top portion of the stack

in a special custom memory with embedded comparison logic to update stack entries in parallel

whenever a rollback occurs. The remainder o f the stack is stored in conventional RAM. Only long

rollbacks will require updates to the rollback history elements that are stored in RAM , so the entire

rollback history stack can usually be updated very rapidly. After performing extensive simulations

o f the rollback chip (described later), we have never observed more than ten entries of the RBH

stack updated on a single rollback — on average, only two to three entries are updated (one entry,

the top o f stack, is always updated on each rollback). Therefore, by buffering only a modest number

of RBH entries in the custom chip (say 16), one would expect that the entire stack can be updated

in a single clock cycle.

9Another way of seeing this is to observe that the set of rollbacks since i + 1 are a subset of those since i.

20

Garbage collecting the rollback history (from the bottom of the stack) is straightforward. A

variable called TAGBOUND[wa] is associated with working area wa that holds the pointer to the

top of the rollback history stack (C R B I or current roll back index) when wa was first created by

a MARK operation (i.e., recreation following subsequent rollbacks is ignored). T AG BOU N D[wa]

is a lower bound o f any tag (timestamp) written into working area wa. Consider two consecutive

working areas, wa and wa + 1, that are currently in use. Because wa + 1 must have been cre

ated after wa was created, and CRBI is always increasing in value (in the modulo sense), then

TAGBOUND[wa] < TAGBOUND[w a + 1]. It immediately follows that TAGBOUND[OWA\

is a bound on the smallest tag in use by any working area. Thus, when working area wa is fossil

collected, rollback history entries up to, but not including T AG BOU N D\wa +1] may be reclaimed.

D. The ADVANCE Operation

The ADVANCE operation is responsible for reclaiming storage that is no longer required. It

is convenient (and more efficient) to process an entire working area at a time rather than on a

frame-by-frame basis. One could, in fact, garbage collect several working areas at one time if even

greater efficiency is desired, although this will complicate the mechanism somewhat. Reclamation of

memory resources is performed in parallel with the execution of user code to enhance performance.

The ADVANCE operation has only a minor effect on the RB cache. If the ADVANCE operation

fossil collects data that is stored in some entry of the cache, the MRV field o f that cache entry will

become out o f date. However, even if this MRV information is left out of date, the cache will still

operate correctly because the MRV information is only used during the invalidation operation when

a rollback occurs; the worst that could happen is a cache entry might be accidentally invalidated by

a rollback. Accidental invalidation might degrade performance slightly, but does not compromise

correctness (recall a write-through cache is used; additional mechanisms are required if a copy-back

protocol were used). If desired, accidental invalidation could be avoided by resetting the MRV field

to a special state that cannot be invalidated by rollback whenever the MRV frame is fossil collected.

Because the ADVANCE operation proceeds in parallel with other RBC operations, some care

must be taken to avoid race conditions. In particular, the ADVANCE operation copies lines from

working areas into the archive frame concurrently with memory operations that may also access

21

the archive frame. Race conditions can be avoided by simply delaying the increment of the OMF

register until all data copying is completed. This avoids races because: if the most recent version of

the line is in the archive frame, there are no set written in the working area that is being garbage

collected, so the ADVANCE operation performs no data copying and no race condition can occur.

On the other hand, if the most recent version is not in the archive frame, READ and WRITE

operations will never access the archive because they only reference the most recent version of

data. Again, the correct MRV information will be accessed, so no race condition is possible.

Finally, a simple optimization can be used to reduce the amount of data copied to the archive

frame. If there is at least one set written bit in a frame that is newer than the working area being

garbage collected but still at least as old as the value of the OMF after the ADVANCE is complete,

then the data need not be copied to the archive frame. This requires the ADVANCE operation to

read some additional written bits to determine if it need not copy the data, however this is less

expensive than copying the line.

E. Improving Memory Utilization

The rollback chip would use an unreasonable amount of storage if physical memory were allo

cated for the entire mark frame stack of each VCM. Further, most of this memory would be wasted

if the Time Warp process modified only a small portion of its VCM between successive MARK op

erations, or if the actual stack size were much less than that allocated to the circular buffer. This

problem is addressed in the RBC by not allocating physical memory until it is actually needed.

The proposed approach is very similar to demand paging in conventional computers (no disks or

I/O are used in the scheme proposed here, though they could be easily added), so not surprisingly,

the required mechanisms are similar. Further, a similar scheme may also be used to economize on

memory used to hold the written bits.

Addresses for the mark frame stack are created by concatenating a frame number with the

address generated by the CPU. These are actually virtual addresses that are passed to a memory

management unit portion of the RBC for translation to a physical address. Each page table entry

contains a presence bit that is set if physical memory has been allocated for the page, and reset

otherwise. If the presence bit is set, the page table entry also contains a pointer to the page. A list

22

of free pages is maintained. A new page is allocated from the free list and mapped into the address

space on the first memory write into the page (a read corresponds to an access to uninitialized

data). Pages are reclaimed by the ADVANCE operation. Techniques used in virtual memory

systems (translation lookaside buffers, hierarchies o f page tables, etc.) are equally applicable here.

F. Multiple Processes per Processor

The RBC state for a single VCM that must be swapped on context switches consists of a few

miscellaneous registers (CMF, OMF, CRBI, etc.) and the top o f the RBH stack. As discussed

earlier, the latter may be reduced to only a few words of storage without significantly degrading

performance. Multiple copies o f these registers may be stored in the RBC to facilitate rapid

context switches, or they may be swapped by the CPU itself. “ Synonym” problems associated with

traditional virtual memory caches [17] are not a problem in the RBC because Time Warp excludes

shared memory between processes.

G. Implementation o f the Rollback Chip

A block diagram of one possible implementation of a multicomputer node using the rollback

chip is shown in figure 5. The CPU provides the computation power for the node and circuitry

for interprocessor communications (possibly implemented as a separate coprocessor). We assume

the CPU has a conventional cache associated with it to hold instructions and local (non-VCM)

variables. This is necessary to reduce memory contention with the RBC; the latter performs storage

reclamation activities in parallel with the CPU. Bulk memory contains conventional dynamic RAM.

The rollback chip hardware includes:

• The control unit (e.g., a microcode sequencer and ROM) to implement storage reclamation

and other miscellaneous functions.

• The RB cache, including a circuit for implementing the rollback invalidation function.

• Written bit memory, implemented with fast static RAM. The RBH stacks should also be

stored here or in a separate high speed memory.

• A memory management unit (MMU) to implement the dynamic memory allocation scheme.

23

Fig. 5: Configuration for each node o f the simulation engine.

• One or more RBHistory units, which buffer the top portion o f the the RBH stack, and provide

circuitry to allow rollback updates to be performed rapidly.

Using current technology, the RBC contains too much circuitry to be implemented as a single

chip. However, excluding the static RAM portions of the chip, it could be implemented as a chip

set o f perhaps two or three VLSI components. Assuming circuit densities continue to grow as they

have in the past, we expect that a single chip implementation o f the RBC will be feasible within a

few years.

Ideally, the rollback chip would be used with a custom processor. However, pragmatic consider

ations make it highly desirable to use off-the-shelf microprocessors. Many modern microprocessors

contain an on-chip data cache. The RBC can be used with such components if appropriate pre

cautions are taken. The most straightforward solution is to ensure that version control memory

is never cached, or to simply disable the cache completely. Alternatively, the on-chip cache would

have to be invalidated when rollback occurred. Further, if the microprocessor’s cache uses a copy-

back policy, the cache would have to be flushed before each MARK operation. Similarly, for any

processor that is used, one must be sure that internal processor registers are written to memory

before each M ARK operation if they must be restored on rollback.

Some microprocessors also contain an on-chip memory management unit. In this case, the

RBC would have to reside between the MMU and physical memory, and receive physical memory

addresses. The RBC assumes, however, that each version controlled memory occupies a contiguous

portion of the address space. Therefore, the MMU address mapping would have to be controlled

to ensure that this condition is not violated.

VI. P e r f o r m a n c e E v a l u a t io n

The overhead incurred by the rollback chip has been evaluated through extensive simulation

studies o f the RBC mechanisms. In particular, we focus attention on the performance o f the RB

cache. The M ARK and ROLLBACK operations require only a few clock cycles, assuming the RBH

stack can be updated in a single clock cycle, as was discussed earlier.

The value o f the rollback chip relative to a software based implementation o f state saving and

rollback using copying is greatest when (1) the amount of state is large (e.g., a megabyte), and/or

25

(2) the application makes checkpoints very frequently (e.g., every few hundred microseconds).

However, even for modest sized states, copying may represent a significant overhead. For example,

if the processor’s memory has a cycle time o f 200 nanoseconds and data paths are 32 bits wide,

copying 10K bytes of state, would require a minimum of 1 millisecond, assuming the memory can

be utilized 100%, and no time is required for instruction fetches. This represents a substantial

overhead unless the grain of computation is relatively large.

Rather than compare the RBC to a hopelessly inefficient software mechanism, we compare

it to a comparable conventional cache memory with no state saving overheads. This will enable

quantitative measurement o f the cost incurred by the RBC to implement state saving.

A. Simulation Methodology

A simulator has been developed for the rollback chip. Partial validation of the simulator was

obtained by comparing its operation to an independently developed simulator for a simple, brute

force implementation of the RBC algorithm. The two simulators were exercised and compared over

several million RBC operations across a wide range of parameter settings.

In the experiments reported here, address traces are generated stochastically from a normally

distributed random variable. The mean of the address trace distribution is periodically changed

to simulate phase changes in the program. Address traces from an existing Time Warp system

were not readily available. Even if such traces could be obtained, they would not provide a true

characterization o f the expected RBC workload because the frequency and distance o f rollback

operations are timing dependent, and would not reflect operation using the RBC. On the other

hand, use o f a stochastic workload generator facilitates experimentation — parameters such as

degree o f locality and the distribution o f rollbacks can be easily controlled.

As described earlier, the operation of the RB cache is such that READ and W RITE operations

that “hit” can be expected to require the same amount of time as a hit in a conventional cache.

Although a write hit in the RB cache may generate additional memory traffic (e.g., to update the

written bit memory), the CPU need not wait for these memory accesses to complete, and one or

more memory cycles will normally elapse (for instruction and local variable references) before the

next RBC operation is initiated.

Therefore, the appropriate questions to be asked are (1) can the RB cache achieve hit rates

26

comparable to conventional caches, and (2) is the miss penalty in the RB cache significantly larger?

One would expect a lower hit rate in the RB cache because portions must be invalidated on

ROLLBACK operations. The miss penalty is larger because written bits must be searched. To

allow fair comparison, a “ comparable” conventional cache is defined as one that is identical to the

RB cache and receives the same sequence of operations, but ignores all RBC operations other than

READs and WRITEs.

Extensive simulations were performed varying:

• the size of the cache,

• the cache organization (direct mapped, set associative, or fully associative),

• the write policy (copy back vs. write through),

• the size of version controlled memory,

• the locality o f the address trace,

• the number of reads and writes between MARK operations (the computation granularity),

• the frequency and distance of rollbacks,

• the frequency of W RITE operations relative to READs,

• the size o f the mark frame stack,

• use o f the LastWA optimization for cache misses, and

• the frequency at which the mean o f the address distribution changes.

Complete details o f these experiments are reported in [18]. Numerous experiments were conducted

to evaluate the effects of each of these parameters on the performance o f the RB cache relative to

a comparable conventional cache. Here, we summarize the results of these experiments.

Unless stated otherwise, the performance data discussed here assume the program selects among

4096 lines, and the cache contains 256 entries. It is assumed that there are 16 mark frames per

working area. Rollback history tags (timestamps) are 8 bits, allowing both a block o f written bits

27

and its tag to be read in a single memory reference. It is assumed there are four READs per WRITE

operation, and locality changes occur every 7.5 events, i.e., every 7.5 MARK operations. Both the

RB and the conventional cache use a two-way set associative organization, an LRU replacement

policy, and a write through strategy (described earlier for the RB cache). Performance results

using a fully associative organization and a copy back policy are similar (when compared to the

corresponding conventional cache), and are described elsewhere [16].

B. Hit Rate

Rollbacks reduce the RB cache hit rate by invalidating entries. The more frequently rollbacks

occur, the more often entries are invalidated. Long rollbacks (potentially) invalidate more entries

than short ones. However, it is not possible for rollbacks to be both frequent (relative to the

frequency of MARK operations) and long. If Fmk and F rb are the frequency of MARK and

ROLLBACK operations respectively, and RB^iat is the average rollback distance, then the quantity

F m k / (F r b * R B dist) indicates the net rate at which events are being processed (e.g., two steps

forward for every step back). This quantity is referred to as the relative event rate, and must be

greater than one or else the computation is going backwards! The latter phenomenon is provably

impossible in Time Warp [4].

Several experiments were performed using a variety o f rollback scenarios ranging from frequent,

short rollbacks, to infrequent, long ones. Rollback distances are selected from a negative exponential

distribution, truncated to exclude illegal rollbacks that would move the CMF beyond the OMF.

The frequency and distance o f ADVANCE operations were controlled to make such illegal rollbacks

improbable.

The results of experiments for relatively small grained events (an average o f 20 READ and

W RITE operations between MARK operations) are shown in figure 6. Results for somewhat larger

grained events (200 READs and WRITEs between MARKs) are shown in figure 7. In each graph,

the degradation in hit rate is plotted as a function o f the hit rate in the conventional cache, which

in turn is controlled by adjusting the variance in the probability distribution used to generate the

address trace. As can be seen, the degradation in hit rate using the RB cache varies from less than

0.05% to as much as 1.7%.

28

Degradation in Hit Rate
Small Grained Events

Degradation (Percent)
2.00-1-------------,-------------,------------

1.50

1.00

0.50

U .U U ------------------------------1-----------------------------1---------------------------- 1----------------------------
60 70 80 90 100

Hit Rate in Conventional Cache (Percent)

Fig. 6: Hit rate degradation in the RB Cache for small grained events.

The hit rate degradation tends to improve (decrease) as the absolute hit rate also improves

(increases), especially at very high hit rates. This is because as locality is improved, fewer cache

entries tend to be invalidated by rollback; for example, if all memory references were to a single

memory address, the rollback invalidation operation would only invalidate at most a single entry

o f the RB cache. This effect is less significant for lower hit rates because the size o f the cache then

becomes a significant factor; if the cache is too small, the replacement policy will tend to delete

entries before the rollback has a chance to invalidate them.

As one might expect, the degradation in hit rate improves (decreases) as the relative event rate

also improves (increases); more frequent and/or longer rollbacks cause more cache entries to be

invalidated. The situations where the RB cache experiences the most degradation corresponds to

29

• Event rate=2.91, RB distance=2.3
o Event rate=2.28, RB distance=7.7
□ Event rate=l 1.44, RB distance=2.2
x Event rate= 11.61, RB distance=7.3
V Event rate= 17.31, RB distance=2.4
* Event me=25.23, RB distance=5.0

Overheads incurred by the RB cache on a read or write miss that are not incurred in a con

ventional cache include: (1) the written bits and the associated tag must be read, (2) the RBH

stack must be read, and the appropriate written bits cleared, and (3) the page table entry must

be read to locate the line data. (1) may be incurred many times on a single miss if the RB cache

must search a long distance to locate the MRV frame, and is the principal point of concern. (2) is

also required on each iteration of the search, but it incurs a performance penalty on only the first

iteration if the hardware is pipelined. The page table reference (3) is only required once at the

end of the search. By using a translation lookaside buffer and overlapping access to it with access

to the written bit memory, one can eliminate performance degradation for address translations in

most situations.

Two search strategies were proposed in the RB cache design. The original approach always

begins the MRV search from the CMF frame. An optimization was proposed that begins searching

from the “ last written” working area (LastWA). This latter approach requires an additional memory

reference on each miss to read LastWA.

Additional simulations were performed to determine typical miss penalties and evaluate the

usefulness of the proposed optimization. Using the unoptimized search strategy, the search length

is the minimum of (1) the size of the stack and (2) the number o f MARK operations that have

occurred (but have not been rolled back) since data in the referenced line was last written. There

fore, the number o f active frames, i.e., C M F — O M F , is an important parameter. Secondly, the

event granularity will also be important; if each event modifies every line o f the state vector, it is

guaranteed that searches will only have to look back at most one frame to find the MRV. Finally,

one would expect that the rollback distribution will also impact the search length, particularly for

the optimized strategy; if no rollbacks occurred, then LastWA will always point to the working

area containing the MRV frame.

Results o f these simulations are shown in figure 8 for both the optimized and unoptimized

strategies. The search distance (number o f blocks o f written bits that must be read to locate the

working area with the MRV frame; recall that 16 written bits are read on each memory reference) is

plotted as a function of the number o f active frames (C M F — O M F) . The figures for the optimized

version include the additional memory reference to access LastWA so that fair comparison can be

31

The simulation results suggest that when compared to a conventional cache that does not

perform any state saving functions, the RB cache can be expected to suffer a small degradation

in hit rate, and require 1.5 to 3.0 additional memory accesses on READ and W RITE misses to

search through written bits. From these results, an overall estimate of the cost of state saving in

the rollback chip can be derived.

The average memory access time for a cache memory system is PhitTcache + (1.0 — Phn)Tmemory

where Phit is the probability of a cache hit, and Tcache and Tmemory are the access times to the

cache and main memory, respectively. For example, consider a design based on a 30 MHz INMOS

Transputer, e.g., the IMS-T800 [19]. Let us assume cache hits can be processed without introducing

wait states. For the transputer, this implies an access time Tcache of 100 nanoseconds. Assume

references to main memory require 200 nanoseconds (Tmemory), and misses in the RB Cache incur

an additional 200 nanosecond penalty (we assume the written bits are stored in fast static RAM).

From figure 6, it can be seen that for an event rate of 11.44, average rollback distance of 2.2, and

hit rate o f 94.5%, the degradation in hit rate is 0.31%. This yields an overall increase in the average

memory access time of 11.3%.

Further, it should be pointed out that most memory references do not reference version con

trolled memory; instruction references, accesses to local variables that do not persist from one event

to the next, and code associated with the Time Warp mechanism itself (e.g., for manipulation of

input queues; these references constitute a very significant portion of the computation for fine

grained events) bypass the rollback chip completely. When taking this into account, overall perfor

mance using the RBC will be virtually indistinguishable from that of a CPU with a conventional

cache. For instance, if 10% of the memory references access version controlled memory, then the

overall cost of state saving in the rollback chip using the parameters listed above is only a 1.1%

performance degradation.

Repeating this calculation for the remaining data points in figures 6 and 7 yields the curves

shown in figure 9. The cost of state saving and rollback using the RBC is plotted as a function of

the hit rate in the conventional cache. As before, Tcache is assumed to be 100 nanoseconds, Tmemory

is 200 nanoseconds, and the additional miss penalty in the RBC is 200 nanoseconds. The curves for

D. Overall Performance

33

Overhead Using the Rollback Chip
Overhead (Percent)

Small Grains (10% refer to VCM)
• Event raie=2.91
o Event rate=l 1.44

60 70 80 90 100
Hit Rate in Conventional Cache (Percent)

Fig. 9: Overhead for state saving and rollback using the RBC.

short rollback distances (averaging 2.3-2.5 events) are shown; those for longer distances are similar.

The curves for small grained events assume 10% of the memory references access the RBC, while

those for larger grained events assume 25% (a smaller percentage of references are due to Time

Warp overhead as the granularity increases).

RBC performance improves as the hit rate in the cache improves because performance degra

dation in the RBC only occurs on misses. Further, as noted earlier, hit rate degradation in the RB

cache is diminished as the absolute hit rate improves. Today, conventional cache memory systems

routinely achieve hit rates well above 90%. Therefore, we expect that the cost o f state saving using

the rollback chip will typically be only a few percent o f processor performance. The RBC will

further enhance system performance by performing memory reclamation in parallel with the CPU.

34

We have described a special purpose component, the rollback chip, to offload state saving and

rollback overheads to special purpose hardware. It is intended as one component o f a special

purpose, parallel machine architecture that efficiently executes programs based on the Time Warp

clock synchronization mechanism. One possible application of such a system is as a special purpose

discrete event simulation engine.

The functional operation of the rollback chip has been defined. Simulation results project that

a system using the rollback chip will only incur a few percent performance degradation for state

saving and rollback operations, even for large state vectors (several megabytes) and frequent state

saving (every 100 microseconds) and rollback (every millisecond). We anticipate the rollback chip

will allow parallel programs to exploit the advantages of Time Warp while avoiding most o f the

associated overheads.

References

[1] M. A. Franklin, D. F. Wann, and K. F. Wong. Parallel Machines and Algorithms for Discrete-event
Simulation. Proceedings o f the 1984 International Conference on Parallel Processing, 449-458, August
1984.

[2] R. M. Fujimoto. Performance Measurements o f Distributed Simulation Programs. In Distributed Sim
ulation, 1988, pages 14-20, Society for Computer Simulation, February 1988.

[3] D. A. Reed, A. D. Malony, and B. D. McCredie. Parallel Discrete Event Simulation Using Shared
Memory. IEEE Transactions on Software Engineering, 14(4):541-553, April 1988.

[4] D. R. Jefferson. Virtual Time. A C M Transactions on Programming Languages and Systems, 7(3):404-
425, July 1985.

[5] D. Jefferson et al. Distributed Simulation and the Time Warp Operating System. Technical Report,
Computer Science Dept., UCLA, August 1987.

[6] R. M. Fujimoto. Lookahead in Parallel Discrete Event Simulation. Proceedings o f the 1988 International
Conference on Parallel Processing, August 1988.

[7] D. A. Reed and R. M. Fujimoto. Multicomputer Networks: Message-Based Parallel Processing. Com
puter Science, M IT Press, 1987.

[8] D. R. Jefferson and A. Motro. The Time Warp Mechanism for Database Concurrency Control. Technical
Report U.S.C. Tech Report, Dept, o f Computer Science, University o f Southern California, Los Angeles,
California, June 1983.

[9] J. Cleary, B. Unger, and X. Li. A Distributed AND-Parallel Backtracking Algorithm Using Virtual
Time. In Distributed Simulation, 1988, pages 177-182, Society for Computer Simulation, February
1988.

VII. S u m m a r y

35

