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ABSTRACT 

A new parallel formulation of the alpha-beta algorithm for 
minimax game tree searching is presented. Its chief 
characteristic is incremental information sharing among 
subsearch processes in the form of "provisional" node value 
communica tion. Such "eager" communication can offer the double 
benefit of faster search focusing and enhanced parallelism. 
This effect is particularly advantageous in the prevalent case 
when static value correlation exists among adjacent nodes. A 
message-passing formulation of this idea, termed the "Key Node 
Method", is outlined. Preliminary exper imental resul ts for 
this method are reported, supporting its validity and potential 
for increased speedup. 
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1. The alpha-beta algorithm 

1.1. Review 

The alpha-beta strategy is a familiar method for economizing on the 

cost of minimax searching on game trees. Under this strategy, move 

generation at a node is "cut-off" or abandoned whenever it is 

determined from nearby node values that the node's ultimate value 

cannot possibly rise to the root of the tree. Such cuts may be 

"shallow" (due to a superior sibling), or "deep" (due to a superior 

ancestor sibling). Although the alpha-beta strategy has at times been 

called a heuristic, it is rather an optimization admitting no 

possibility of error in top-level minimax move selection. 

A number of studies have estimated the savings obtained by the 

alpha-beta strategy under vc.rious conditions (e.g. [13J). In sum, 

these findings indicate that the alpha-beta strategy significantly 

slows (but does not eliminate) the exponential cost of searching to 

increasing game tree depths. In view of its ease of implementation in 

ordinary (i.e. recursive) depth-first searching, the method has seen 

wide application. 

1.2. Interest here 

With the prospect that large-scale physical parallelism will become 

increasingly commori in computer systems of the future, considerable 

attention is being devoted to the probleD of adapting sequential 

algorithms to multi-processor form. The alpha-beta method has served 

as a challenging case study in this regard, for a number of reasons: 
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- Parallel algorithms: 

* In sequential form, 
optimization effect 
parallel versions. 
directly generalize to 
assumes a sequential 
evaluation order. 

the method exploits a powerful 
that is equally desirable in 
However, this effect does not 
parallel form, since it generally 
left-to-right bottom-up node 

* A satisfactory parallel version must str a balance 
between computational aggressiveness and caution, so 
that avai physical parallelism is utilized, but in 
a "focLlsed" manner (Le. so that tasks likely to sharpen 
the search are favored to run early). 

* The alpha-be method is broadly representative of an 
important class of problems in tions research, 
namely branch and bound problems. 

- Parallel architectures: 

* An effective parallel version of 
necessarily exploit asynchronous 
among processes. This is the 
distributed control, captured in 
application setting. 

the algorithm would 
inforDation sharing 
sine gua non of 
an extremely simple 

* This ir,forcation sharing would involve unpredictable 
patterns of communication traffic, but within a known 
general process structure, i.e. a logical tree. This 
provides a concrete yet nontrivial framework for 
investi tions of communication throughp~t on particular 
network topologies. 

* The alpha-beta method is computationally intensive and 
easily scalable to create any desired load for testing 
purposes. 
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2. Existing parallel approaches 

Efforts to· generalize the classical depth-first formulation of the 

alpha-beta method generally fall into two classes: logically parallel 

( i.e. coroutine oriented), and concurrent (i.e. exploiting true 

multi-processing). 

2.1. Logically parallel approaches 

This class may be viewed as a bridge between recursive and concurrent 

forwulations, in that depth-first visitation order is broken through 

the use of "retentive" (i.e. non stack-based) sequential control. Two 

basic approaches of this kind are generally known: 

1- The SSS* method of Stockman, .,'hich waps the alpha-beta 
method onto a state space search problem. A natural 
"best-first" node expansion orc:er results [ 14 J. The 
motivation is simply minimiza ti on of visited node count; 
however, the guaranteed attainDent of this goal has recently 
been challenged [ 11 ). 

2. The evolving tree search (ets) oethod of this author, which 
is a framework for exploiting cutting opportunities while 
doing node expansion in an arbitrary (e.g. heuristically
driven) order [9J. In partic~lar, move generation from 
nodes can electively be sus~,€nded and resumed, wi th full 
maintenance of node cutting relationships (including move 
generation restarting when cutting values are weakened). 

2.2. Concurrent approaches 

Within the true multi-processing realn, three approaches have been 
2 

proposed, each providing some measure of computational speedup: 

1. The earliest approach to alpha-b~ta concurrency appears to 

2 
Mono-processing run time dividej by c~lti-processing run time. 



be the parallel aspiration search of Baudet [2J. In this 
method, the range of possible root node values is 
partitioned into "windows", which are assigned to individual 
processors as fictitious initial alpha-beta values. The 
processois then concurrently search the entire game tree by 
the classical recursive algorithm, but with the attention of 
each somewhat individually directed by its assigned 
"window." 

By the nature of the alpha-beta method, each processor can 
independently report whether the root value falls within its 
window (or to which side of it). Selection of processor 
windows then becomes an adaptive search problem in its own 
right. After considerable analysis, Baudet concludes that 
this method offers speedup limited by a small constant (e.g. 
5 or 6), independent of the degree of available physical 
concurrency. 

2. The tree splitting approach of Finkel and Fishburn [3, 5J 
maps the game t~ee homomorphically onto a physical tree of 
processors. Leaf processors search by the classical 
algorithm. Asynchronous remote procedure calls are used to 
post updates of narrowing alpha-beta bounds as sibling 
values are reported. Deep cut-offs can occur. An earlier 
pseudo-functional formulation of this asynchronous window 
narrowing technique may be found in [7J. 

Speedup on the order of at least the square root of the 
number of processors is claimed. 

3. In the mandatory work first (mwf) approach of Akl, Barnard 
and Doran [ i, 4 j, the game tree is ini tially hypothesized to 
be perfectly best-first ordered. The subset of the game 
tree which would be visited in this case under the classical 
method is then concurrently searched. If the best-first 
hypothesis is confirmed, the algorithm terminates. 
Otherwise, search is resumed (again using mwf) at those 
incompletely evaluated nodes whose initial results 
contradict their subordinate ranking. Deep cut-offs are 
unexploited in this method, but are known to be 
statistically insignificant in general. 

Although the simulation results presented in [1) seem to 
suggest that speedup levels off at a relatively low number 
of processors, subsequent analytical study in [4J indicates 
a much greater ~vter.tial speedup. 

A recent article by Harsland and Campbell [10J surveys these 

approaches and others in tne slightly more general setting of "strongly 
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ordered game trees." 

3. The Key Node Method 

We now present our new parallel alpha-beta method. As will become 

clear, it combines 

- the focusing effect of mwf, with 

- the node restarting capability of ets. 

3.1. Overall strategy 

The Key Node Method employs a very simple global strategy. The 

ingredients of this strategy are: 

1. A notion of key node, i. e. th:Jse nodes which must obtain 
provably correct lower bounds on node strength. 

2. A policy of eager value reporting froQ key nodes as their 
provisional minimax values change, and 

3. A message passing control regiwE to communicate such value 
changes, as well as to propagate changes in key node status. 

The result is a dynamically shifting m~f tree, as shaped by the 

accumulation of partial results fro~ ongoing subsearches. Thus 

eagerness in the form of provisional value co~~unication is exploited 

to channel the concurrent search to pcrallel paths in a changing, but 

eventually stabilizing, mwf tree. 
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3.2. Details 

Given 'this search strategy, the details of the method are rather 

straightforward, involving a precise definition of key node, the 

contents of messages, the local data associated with each node, and 

algorithms for ~ and down message processing. 

3.2.1. Key nodes 

A Key Node is defined as follows: 

1. The root of a minimax game tree is a ~ 
considered to be c first descendant of 
superroot node. 

2. All descendants of a first descendant key 
nodes. 

node, and is 
a ficti tious 

node are key 
--"-

3. Only the first descendant of a nonfirst descendant key node 
--"-

is a key node. 

In terminology of [4J, 

1. key nodes are the union of type 1 and type 2 nodes, with 

2~ type 1 nodes being first descendant key nodes. 

Figure 3-1 depicts this definition. The reader should bear in mind, 

however, that descendant ordering is dynamic best-first ordering, 

rather than static move generation order. 

It is easy to prove that nonkey node values can be ignored in 

minimaxing without loss of root value correctness. Moreover, all first 

descendant key nodes have correct values, and the values at nonfirst 

descendant key nodes are valid lower bounds on their correct strength. 
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Figure 3-1: DefinitiGn of "key node." 

3.2.2. Node contents 

The local data associated with each game tree node is defined as a 

Pascal record type in figure 3-2. 

node = 
RECORD pos: 

parent: 
nrdesc: 

END; 

desc: 

amkey, 
amfirst, 
visited: 

posi tion; 
·~node ; 
descnr; 

[game position} 
{parent node in tree} 
{number of descendants; 

o if terminal } 
ARRAY [1 .. desclimJ OF {desc. node records} 

RECORD dn~me: {desc. name} 

Boolean; 

END; 
{is this 
{ tI " 

{has " 

~node ; 
dvalue: {value last reported} 

nodev~l 

node currently key?} 
It " a first desc.?} 
.1 been visited yet?} 

Figure 3-2: Game tree node data record. 

For simpliCity, we assume here that the entire game tree pre-exists in 

"latent" form, with value initializations for pos, OnIilOVe, parent, 

nrdesc, desc (dvalues = ";./orst tt value reportable), and visited (false). 

In a more realistic formulation, of course, the node records would be 
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created upon demand during tree search. 

3.2.3. Message formats 

As suggested in section 3.1, two types of messages are exchanged 

among our search processes. Messages flowing downward in the game tree 

convey node status changes, while messages flowing uDward ......... report new 

(possibly provisional) values. Figure 3-3 captures these requirements, 

again as a Pascal type definition. 

msg = RECORD 

END; 

des t: ~node ; 
CASE msg type: 

(do\-.rn, 
down: 

up: 

up) OF 
(are_key, 
are first: 

(sender: 
val: 

Figure 3-3: Message formats. 

3.2.~. Hessage processing logic 

Boolean) i 
~node ; 
nodeval) j 

Operations for processing down and ~ messages are specified in 

figures 3-~ and 3-5, respectively. Note that search at a node is 

initia tej by receipt of its first do'i-lTl message (which will necessar ily 

convey ore key=T). While these operations assume FIFO message arrival 

order, this requirement is not essential, and will be addressed in 

section 5.2. 
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{install llpdates, temporarily saving old values} 
amkey current := amkey; arnkey := are key; 
arnfirst_current := amfirstj amfirst := are_first; 

IF 

ELSE 

nrdesc 
THEN 
BEGIN 

= 0 
{terminal node case} 
IF {first down message to node} 

NOT visited 
THEN BEGIN visited:= true; 

END 

send up msg( 
Tdest =} 
{sender =} 
{val =} 

parent, 
dest, {Le. me} 
statval(pos» ; 

ELSE {ignore subsequent down messages} 
END 
{nonterminal 
BEGIN IF 

node case} 
{change in key status for 1st desc} 
amkey current <> are key 

END; 

THEN 
IF 

THEN 

notify descs( 1, i); -
{change in key status for other descs} 
(amkey current AND amfirst current) <> 

- (are key AND are fIrst) 
notify_descs(2,' nrdesc);-

PROCEDURE notify_descs(low, high: descnr); 

BEGIN 

END; 

(* inform desc[low ... high] of new status *) 
FOR i := low TO high DO 

send down msg( 
Tdest-=} 

desc[i].dname, 
{are key =} 

amkey AND (arnfirst OR (i=1», 
{are first =} 

I=1) 
(* notify_descs *) 

Hessage contents: are first, are key, dest; 
Node attributes: arnfirst, amkey,-desc, nrdesc, parent, 

pos, visited; 
Temporary variables: amkey_current, amfirst_current, i. 

Figure 3-4: Down message processing logic. 
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{save current rank 1 descendant name & value} 
v := desc[1].dvaluej dfirst:= desc[1].dnamej 

{find current rank of descendant now reporting} 
k := find_desc(sender); 

{install new value reported and re-sort descendants} 
desc[k].dvalue := valj sort_descj 

IF {rank 1 descendant has changed and node is key} 
(desc[1].dname <> dfirst) AND amkey 

THEN BEGIN {inform two descendants involved of new ranking} 
send down msg({dest =} desc[1]A.dname, 

- - {are key =} amkey, 
{are-first =} true); 

send down msg({dest =} dfirst, 
- - {are key =} amkey AND amfirst, 

{are=first =} false); 
E®; 

IF {rank i value has changed} 
desc[1].dvalue<>v 

THEN send up msg({dest =} 
- - {sender =} 

[val =} 

parent, 
dest, 
desc[1].dvalue)j 

Hesscge contents: dest, sende~, val; 
Node attributes: amfirst, amkey, desc; 
Temporary variables: dfirst, k, v. 

Figure 3-5: ~ message processing logic. 
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4. Performance assessment 

4.1. Correctness and general observations 

Given this sketch of the Key Node Method, we make the following 

general observations: 

1. No matter how the mwf tree shifts, there is complete 
information transfer--Upward in the tree, and descendant 
value information is never discarded until superceded. 
Hence an intuitive termination argument can be made, based 
on monotonicity of information gathering. 

2. Since the rowf is continually shifted as new are 
reported upward, when the method terminates the correct root 
value must be indicated. 

3. The time to process each message is at worst proportional to 
d, the number of descendants of a node. This is obvious for 
dOhT. messages; it is also true for ~ messages, despite the 

~ . 

apparent d additional factor implied by descendant 
re-order In fact perfect re-ordering is not necessary; 
instead, only the new rank 1 and 2 descendants must be found 
when new values are installed. These can easily be 
determined in the same linear sweep used to associatively 
retrieve the reporting descendant's current rank. 

For perfectly ordered trees, the Key Hode Method v its 
exactly the same nodes as dces the original mwf method. 
Like the mwf method, it fails to exploit deep cut-off 
opportuni 

4.2. Empirical studies 

One may fairly question whether the Key Node Method siDply exchanges 

node expansion costs for message processing costs. To address this 

issue, the method was implemented in a simulated multi-processing 

setting, and prelim"inary performance measurements were gathered. 
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4.2.1, Static value correlation 

It is common practice for game playing programs to do move 

preordering, i.e. commencing node expansion by ranking all possible 

moves in terms of the static values associated with their immediately 

resulting game positions. The rationale for this practice is an 

implicit assumption of correlation between the static value at a node 

and its ultimate minimax value, however deep the search involved in 

that ultimate value's calculation. A more explicit reliance on this 

assumption is evident in iterative deepening [6J. Under this 

technique, a game tree is repeatedly searched to increasing ply depths, 

with the results at each cycle being used to length the "horizon" for 

move preordering at the next cycle. Interestingly enough, this 

phenomenon has largely been ignored in most analytical studies of 

alpha-beta performance, and may be responsible for recently argued 

fundamental flaws in the minimax approach as a whole [12J. 

In our judgment, this static value correlation effect is both 

prevalent and economically exploitable. In particular, this effect 

adds considerable credence to the utility of provisional value 

reporting as done in the Key Node Method. Indeed, the method might be 

viewed as a concurrent variation of iterative deepening (more on this 

in section 5.3). 

On this belief, our empirical studies were conducted on a class of 

artificially generated game trees in which static values at each node 

were obtained by adding a uniformly drawn random number to the static 
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value of its. parent node (the root having a static value of zero). We 

defend this choice by observing that while catastrophic static value 

changes can occ'ur (e. g. loss of a queen in chess), these are infrequent 

in comparison to small changes reflecting minor variation in static 

value components (e.g. relative board control and material balance). 

Horeover, we conjecture that this effect is particularly evident in 

actual play by skillful competi tors (i. e. "principal variations"). 

4.2.2. Architectural setting 

Seeking a general architectural model for our performance 

investigation, we assumed a fixed number of identical processors 

sharing a common memory and drawing messages in round robin order from 

a pooled queue. For timing, each message was assumed to be processed 

"ithin unit delay. A t the beginning of each time unit, a "ply" of k 

oessages is removed from the front of the message queue and processed, 

~here k equals the minimum of the number of messages waiting and the 

total number of processors. 

Care was taken, however, to ensure that potential memory contention 

cmong the processors was accounted for at least crudely. This was 

accomplished by a simulated "locking" effect, whereby at most one 

oessage is processed at each distinct node within a message ply. Tne 

second and later messages destined for the same node within a ply are 

deferred to the next ply (with one or more processors consequently left 

idle for the current time unit). 



4.2.3. Simulation results 

The findings of our preliminary simUlation studies are given in 

Tables 4-1 and 4-2. In each case, the columns report game tree degree 

(f), game tree depth (q), total node count, total terminal node count, 

number of nodes visited by the classical alpha-beta algorithm, number 

of terminal nodes visited by the classical alpha-beta algorithm, time 

required by a monoprocessor version of the Key Node Method (i.e. number 

of messages generated), number of nodes visited by the Key Node Method, 

number of terminal nodes visited by the Key Node Method, number of 

processors simulated, and observed speedup factor. 

f q nodes terms nodes 
total total class. 

terms mono. 
class. time 

3 5 364 243 101.50 52.40 

3 6 1093 729 175.20 80.50 881.60 

4 4 3111 256 74.90 39.50 214.80 

4 5 1365 10211 194.90 110.10 711.10 

nodes 
KNM 

124.60 
126.60 
124.60 
124.60 

272.40 
272.40 
271.00 
277.00 

87.80 
87.80 
89.60 
89.60 

256.50 
256.50 
256.50 
258.60 

terms nr. speed 
KNM procs. up 

67.60 2 
68.60 5 
67.60 10 
67.60 20 

146.20 2 
1.46.20 5 
148.60 10 
148.80 20 

52.00 2 
52.00 5 
53.20 10 
53.20 20 

153.10 2 
153·10 5 
153.10 10 
154.60 20 

1.83 
1I.06 
7. 11 

10.65 

1.84 
1I.22 
7.61 

13·06 

1.67 
3.66 
6.25 
9.42 

1. 73 
3.93 
7 . 11 

12.57 

Table 4-1: Ex rimental measurements: ~ith move preordering. 

In each case ten trials were averaged to smooth the numbers obtained. 

Random static value increments for each descendant (see section 1I.2.1) 
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f q nodes terms nodes terms mono. nodes terms nr. speed 
total total class. class. time KNM KNM procs. up 

3 5 364 243 152.20 86.00 1284.90 227.00 137.60 2 1.88 
227.00 137.40 5 14036 
223.80 136.20 10 8.17 
222.00 134.60 20 14.66 

3 6 1093 729 358.50 196.40 3989.10 615.40 369.80 2 1.90 
612.40 368.00 5 4.47 
611.00 366.80 10 8.51 
609.00 365.60 20 16.04 

4 4 341 256 140.60 88.60 106l.l.80 209.60 142.90 2 1.83 
210.20 1li3·20 5 4.19 
208.10 141.70 10 7.76 
200.60 136.60 20 13.29 

4 5 1365 1024 384.10 247·30 !l072.60 695.70 lI70.80 2 1.85 
701.70 474.10 5 !I.33 
699.00 471. 70 10 8. 16 
701.10 473.50 20 15.45 

Table 4-2: Experimental measurenents: without move preordering. 

were integers drawn from [-1000, 999) . All final root node values were 

checked for minimax correctness. 

We wake the following observations on the results obtained. 

1. Significant speedup is obtained, despite the simulated 
memory contention and the generous number of processors (20) 
in the t case tested. 

2. Speedup increases appear co~par2bl€ for both increased tree 
breadth (f) and increased tree depth (q). 

3. Finally, the apparently greeter sp~edup of the method on the 
non move preordering caSE is interesting but must be 
discounted as being unrealistic. For example, in the 4 
q=5 case, the 20-processor ave~age run time is 4072.6/15.45 
= 263.6, under nonpreord€ri~g, while the corresponding 
average run time under prEorcering is 711.10/12.57 = 56.6. 
Given the low cost of move preccdering, the creater speedup 
in the former case must therefc;e be considered illusory. 
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5. Optimizations and extensions 

Clearly, further testing of this method on minimax trees from "real" 

game players must be made before any firm conclusions on its merit can 

be made. Beyond this, several other areas of continued development are 

suggested by the results obtained thus far. 

5.1. Buffered nonkey node values 
.. '. 

A minor optimization can be obtained ,by suppressing ~ messages from 
3 

nonkey nodes. Such messages occur when a node has been downgraded to 

nonkey status, but the downgrading of nodes in its descendant tree has 

not yet occurred due to message latency. This optimization gives a 

simple priority effect to are_key=F messages, without assuming direct 

architectural support for message priority. 

5.2. Removal of message FIFO assumption 

In general, FIFO message processing is physically difficult to 

achieve in real nulti-processing architectures without serious 

concurrency obstructio~. Hence we ultimately wish to remove this 

assumption from the Key Node Method. 

Fortunately, non-FIFO message order can easily be accommodated; 

indeed, in a certain sense, the phenomenon can be salutary. The 

problem is of course one of message overtaking, whereby "old" messages 

are received after "new" ones. Due to the eager information premise of 

3 
The simulation results summarized in tables 4-1 and 4-2 in fact 

reflect this optimization. 
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the Key Nod~ Method, receiving "ne-,.," messages "early" is generally 

beneficial, as long as "old" 'messages 2.I'e recognized as such and are 

ignored. This discrimination is easily achieved through the following 

simple device. Each node marks all sent messages with a "time" stamp 

(a local serial number suffices), and records the latest time stamp of 

messages received from its parent and ~ch of its descendants. Out of 

order messages are then easily detected and ignored. 

5.3. Iterative deepening 

As mentioned in section 4.2.1, the Key Node Hethod can be viewed as a 

concurrent variation of the iterati1e deepening strategy used in 

sequential game players. This effect can be amplified through the 

augmentation of messages to convey se~ch depth information. That is, 

dOl·m messages could specify a "search te" depth, and !:!.E messages could 

specify a "valid to" depth. 

The key node logic can easily be eX:ended to accommodate this extra 

information as follows. 

- Do ... 'T1 messages wi th "search to" GE:?th greater E:-:an are 
propagated with depth decrementaticn. 

- ~ messages are genera ted in the fcllcwing manner. 

* Upon receipt of a "search to 1" down message, a node 
behaves as a terminal node, rE:spending with its static 
value "valid to 1." 

* When an !:!.E message is sent freD a nonterminal node n, 
the "valid to" level is cor.,puted in a manner 
generalizing the value rep:~ting logic of fig. 3-5. 
That is, we extend the desc e:ement records of the node 
datatype (see fig. 3-2) tc include a field validto, 
recording the "valid to" leve: lest reported by that 
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descendant (ini tially 0, reflecting no validity). The 
~ message sent by n is marked II valid tol! a level 
computed by the following case analysis: 

1. n.amfirst=F: 

- 0, if n.desc[1].validto=Oj 

- k+1, if n.desc[1].validto=k>0. 

2. n.amfirst=T: 

0, if the minimum of n.desc[i].validto is 0, 
for j<=i<=n.nrdescj 

k+ 1 ) if the minimum of n.desc[i].validto is 
k>O, for j<=i<=n.nrdesc. 

In addition to providing the customary benefits of ite~ative 

deepening (better time management in tournament situations, and fewer 

node expansions, due to the "high terli,inal II effec t discussed in [9]), 

two other advantages accrue here: 

- A simple local test for root value finality is obtained, and 

- Redundant dOh'llward messages (to nodes already "valid to" the 
desired depth) can be suppressed. 

5.~. Distributed implementations 

Given its message-passing basis, the Key Node Method is naturally 

well-suited to distributed computing systems. However, as discussed in 

section 4.2.2 the simulation results reported in Tables ~~1 and 

4-2 were obtained for a centralized memory model, in which each 

processor has equal access to the data representing each node. 
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In a truely distributed architecture, the memory (and node records) 

would be partitioned among the processors, forming processing element 

(PE) pairs. Two possibilities would then exist for PE message 

processing: 

1. Messages could be routed to the 
destination node record, or 

PE containing the 

2. Messages could be processed by any PE, at the cost of extra 
message traffic (node attribute read/writes) to and from the 
PE possessing the node record. 

The first method resecbles distributed database systems, while the 

latter resembles applicative multi-processing architectures such as 

AMPS [8J. Further study of the Key Node Method and related approaches 

under both these regines is clearly warranted. 
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