THE KEY NODE METHOD:

1
A HIGHLY-PARALLEL ALPHA-BETA ALGORITHM

by
Gary Lindstrom
Uucs 83-101

March 1983

Department of Computer Science
University of Utah
Salt Lake City, Utah 84112

AESTRACT

& new parallel formulation of the alpha-beta algorithm for
minimax game tree searching 1s presented. Its chief
characteristic is incremental information sharing among
subsearch processes in the form of ‘"provisional" node value
communication. Such "eager" communication can offer the double
benefit of faster search focusing and enhanced parallelism.
This effect is particularly advantageous in the prevalent case
when static value correlation exists among adjacent nodes. A
message-passing formulation of this idea, termed the "Key Node
Method", 1is outlined. Preliminary experimental results for
this method are reported, supporting its validity and potential
for increased speedup.

1

This work was supported in part by the National Science Foundation
under grant MCS 78-03832.

1. The alpha-beta algorithm

1.1. Review

The alpha-beta strategy is a familiar method for economizing on the
cost of minimax searching on game trees. Under this strategy, move
generation at a node is "cut-off" or abandoned whenever it is
determined from nearby node values that the node's ultimate wvalue
cannot possibly rise to the root of the ¢tree. Such cuts may be
"shallow" (due to a superior sibling), or "deep" (due to a superior
ancestor sibling). Although the alpha-beta strategy has at times been

called a bheuristic, it 1is rather an optimization =admitting no

possibility of error in top-level minimex move selection.

A number of studies have estimated the savings obtained by the
alpha-beta strategy under verious conditions (e.g. ([13]). In sum,
these findings 1indicate that the =alpha-beta strategy significantly
slows (but does not eliminate) the exponential cost of searching to
increasing game tree depths. In view of its ease of implementztion in
ordinary (i.e. recursive) depth-first searching, the nmethod has seen

wide application.

1.2. Interest here

With the prospect that large-scale physical parallelism will beconme
increasingly common in computer systems of the future, considerable
attention 1is being devoted to the rroblem of adapting seguential
algorithms to multi-processor form. The alpha-beta method has served

as a challenging case study in this regard, for a number of reasons:

- Parallel algorithms:

*¥ In sequential form, the method exploits a powerful
optimization effect that 1s equally desirable in
parallel versions. However, this effect does not
directly generalize to parallel form, since it generally
assumes a sequential left-to-right bottom-up node
evaluation order.

¥ A satisfactory parallel version must strike z balance
between computatiocnal aggressiveness and caution, so
that available physical parazllelism is utilized, but in
a "focused" manner (i.e. so that tasks likelv to sharpen
the search are favored to run early).

* The azlpha-beta method is broadly representative of an

important <class of problems in operations research,
namely branch and bound problems.

-~ Parallel computer architectures:

* An effective parzllel version of the =algorithm would
necesserily exploit asynchronous information sharing
among processes. This is the sine gua non of
distributed contrel, captured in an extremely simple
applicetion setting.

¥ This informztion sharing would involve unprecictzable
patterns of communication traffic, but within a known
generzl process structure, i.e. a logical ‘tree. This
provides a concrete yet nontrivial framework for
investigations of communication throughput on particular
network topologies. :

* The alpha-betaz method is computaticnall intensive and
easily scelable to create any desired load for testing
purposes. :

2. Existing parallel approaches
Efforts to generalize the classical depth-first formulation of the

alpha-beta method generally fall into two classes: logically perallel

(i.e. coroutine oriented), and concurrent (i.e. exploiting true

multi-processing).

2.1. Logically parallel approaches ';“i = "*“};-f.“ *f7"

This class may be viewed as a bridge between recursive and concurrent
fornulations, in that depth-first visitetion order 1is broken through
the use of "retentive" (i.e. non stack-based) sequentiazl contrel. Two

basic approaches of this kind are generelly known:

1. The SSS* method of Stockmen, which naps the zlpha-beta
method onto a state spece seerch problem. A naturel
"best-first" node expansicn order results [14]. The
motivation 1is simply minipization of visited node count;
however, the gueranteed attzinment of this goal has recently
been challenged [11].

2. The eveclving tree search (ets) method of this author, which
~is & framework for exploiting cutting opportunities while
doing node expansion in an arbitrery (e.g. heuristically-
driven) corder [9]. In particular, nove generation from
noces can electively be suspended and resumed, with full
maintenance of node cutting relationships (including move
generaticn restarting when cutting values are weakened).

2.2. Concurrent approaches
Within the true multi-processing realm, three approaches have been

2
proposed, each providing some measure of computational speedup:

1. The earliest approach to zlpha-beta concurrency appears to

2
Mono-processing run time divided by culti-processing run time.

be the parallel aspiration search of Baudet [2]. In this
nmethod, the range of possible root node values is
partitioned into "windows", which are assigned to individual
processors as fictitious 1initial alpha-beta values. The
processors then concurrently search the entire game tree by
the c¢lassical recursive algorithm, but with the attention of
each somewhat individually directed by its assigned
"window," '

By the nature of the alpha-beta method, each processor can
independently report whether the root value falls within its
window (or to which side of it). Selection of processor
windows then becomes an adaptive search problem in 1its own
right. After considerazble aznalysis, Baudet concludes that
this method offers speedup limited by a small constant (e.g.
5 or 6), independent of the degree of available physical
concurrency.

2. The tree splitting approach of Finkel and Fishburn [3, 5]
maps the game tree homomorphically onto & physical tree of
processors. Leaf processors search by the classicel
algorithm. Asynchronous remote procedure calls are used to
post updates of narrowing alpha-beta bounds as sibling
values are reported. Deep cut-offs can occur. An earlier
pseudo-functionel formulaztion of this asynchronocus window
narrowing technique may be found in [7].

Speedup on the crder of at least the square root of the
nunber of processors 1s claimed.

3. In the mandatory work first (Qgﬁ) approach of Akl, Barnard
and Doran [1, 4., the game tree is initially hypothesized to
be perfectly best-first ordered. The subset of the gane
tree which would be visited in this case under the classical
nethod is then concurrently searched. If the best-first
hypothesis is confirmed, the algorithm terminates.
Otherwise, search 1iIs resumed (agein using mwf) at those
incompletely evaluated nodes whose initial results
contradict their subordinate ranking. Deep cut-offs are
unexplcited in this method, but- are known to be
statistically insignificant in generzl.

Although the simulation results presented in [1] seem to
suggest that speedup levels off at a relatively low number
of processors, subseguent aznalytical study in [4] indicates
a much greater gotential speedup.

A recent article by Marsland and Campbell [10] surveys these

approaches and others in the slightly more general setting of "strongly

ordered game trees."

3. The Key Node Method
We now present our new parallel alpha-beta method. As will become

clear, it combines

- the focusing effect of mwf, wWith

- the node restarting capability of ets.

3.1. Overall strategy
The Key Node Method employs a very simple global strategy. The
ingredients of this strategy are:
1. A notion of Kkey node, i.e. those nodes which must obtain
provably correct lower bounds on node strength.

2. A policy of eager value reporting from key nodes as their
provisional minimax values changes, and

3. A message passing control regime to ccmmunicate such value
changes, as well as to propagate changes in key node status.

P ad

The result is a dynamically shifting mwf tree, as shaped by the
accumulation of partial results froz ongoing subsearches. Thus
eagerness in the form of provisional velue communication is exploited

to channel the concurrent search to peralilel paths in a changing, but

eventually stabilizing, mwf tree.

3.2. Details

Given 'this search strategy, the details of the method are rather
straightforward, involving a precise definition of key node, the
contents of messages, the 1local data associated with each nodé, and

algorithms for up and down message processing.

3.2.1. Key nodes
A Key Node is defined as follows:
1. The root of a minimax game tree is a key node, and 1is

considered to be & first descendant of a fictitious
superroot node.

2. All descendants of a first descendant key node are key
nodes.

3. Only the first descendant of a nonfirst descendant key node
is a key node.

In terminology of [4],

1. key nodes are the union of type 1 and type 2 nodes, with

2. type 1 nodes being first descendant key nodes.

Figure 3-1 depicts this definition. The reader should bear in mind,
however, that descendant ordering 1is dynamic best-first ordering,
rather than static move generation order.

I; is easy to prove that nonkey node wvalues can be 1ignored in
minimaxing without loss of root value correctness. Moreover, all first
descendant key nodes have correct values, and the values at nonfirst

descendant key nodes are valid lower bounds on their correct strength.

; \ \

/0 \ \
are key=T are key=T are_key=F
are first=T are firstzF (don't care)
/\ /\ /\
/ N\ /\ /\
VAR /oo \ /oo \
/ \ / \ / \
/ \ / \ / \
/ \ / \ / \

are_key=T are key:=T are_key=T are key-F are_key=F are key=F
are_first=T are first=zF are first=T are first=F

Figure 3-1: Definiticn of "key node."

3.2.2. Node contents

The local data associated with each game tree node is defined as a

Pascal record type in figure 3-2.

node =
RECORD pos: position; {game position}
parent: "“node; {parent node in tree}
nrdesc: descnr; {number of descendants;
0 if terminal}
desc: ARRAY [1..desclim] OF {desc. node records}
RECORD dname: {desc. nane}
“node;
dvalue: {value last reported}
nodevel
END;
amkey, {is this node currently key?}
amfirst, {n " " " - a first desc.?}
visited: {has " " been visited yet?}
Boolean;
END;
) Figure 3-2: Game tree node data record.

For simplicity, we assume here that the entire game tree pre-exists in
"latent" form, with value 1initializations for pos, onmove, parent,
nrdesc, desc (dvalues = "worst" value reportable), and visited (false).

In a nore realistic formulation, of course, the node reccrds wculd be

created upon demand during tree search.

3.2.3. Hessage_formats
As suggested in section 3.1, two types of messages are exchanged
among our search processes. Messages flowing downward in the game tree
convey node status changes, while messages flowing upward report new
(possibly provisional) values. Figure 3-3 captures these requirements,
again as a Pascal type definition.
msg = ' RECORD dest: “node;

CASE msg_type:
(down, up) OF

down: (are key,
are first: Boolean);
up: (sender: “node;
val: nodeval);
‘END;
Figure 3-3: Message formats.

3.2.4. Message processing logic

Operations for processing down and up messages are specified in
figures 3-4 and 3-5, respectively. Note that search at a node is
initiated by receipt of its first dcwn message (which will necessarily
convey are key=T). While these operations assume FIFO message arrival
crder, this requirement 1is not essential, and will be addressed in

section 5.2.

{install updates, temporarily saving old values}

amkey current := amkey; amkey := are key;
amfirst current :z amfirst; amfirst := are first;
IF nrdesc = 0

THEN {terminal node case}

BEGIN IF {first down message to node}

NOT visited
THEN BEGIN visited := true;
send _up_msg(
{dest =} parent,
{sender =} dest, {i.e. me}

{val -} statval(pos));
END
ELSE {ignore subsequent down messages}
END
ELSE {nonterminal node case}
BEGIN IF {change in key status for 1st desc}
amkey current <> are key
THEN notify descs(1, 1);
IF {change in key status for other descs}
(amkey current AND amfirst current) <>
(are_key AND are first)
THEN notify descs(2, nrdesc);
END;

- e = = -

PROCEDURE notify descs(low, high: descnr);

BEGIN (* inform desc[low ... high) of new status ¥)
FOR i ::= low TO high DO
send down_msg(

{dest =}
desc{i].dname,
{are key =}

amkey AND (amfirst OR (i=1)),
{are_first =}
i=1)
END; (* notify descs *)

Message contents: are_first, are key, dest;

Node attributes: amfirst, amkey, desc, nrdesc, parent,
pos, visited;

Temporary variables: amkey current, amfirst _current, 1.

Figure 3-4: Down message processing logic.

10
{save current rank 1 descendant name & value}
v := desc[1].dvalue; dfirst := desc[1].dname;

{find current rank of descendant now reporting}
k := find_desc(sender);

{install new value reported and re-sort descendants}
desc(k].dvalue := val; sort desc;

IF {rank 1 descendant has changed and node is key}
(desc[1).dname <> dfirst) AND amkey

THEN BEGIN {inform two descendants involved of new ranking}

send_down_msg({dest =} desc[1]”.dname,
{are key =] amkey,
{ere first =} true);

send_down msg({dest =} dfirst,
{are key =} amkey AND anmfirst,
{are_first =} false);

END;

IF {rank 1 value has changed}
desc[1]).dvalue<>v
THEN send_up_msg({dest =} parent,
{sender =} dest,
{val =1} desc[1].dvalue);

Messzge contents: dest, sender, val;
Node ettributes: amfirst, amkey, desc;
Temporary variables: dfirst, k, v.

Figure 3-5: Up message processing logic.

11
L, Performance assessnent o R T

4.1. Correctness and general observations
Given this sketch of the Key Node Method, we make the following

general observations:

1. No matter how the mwf tree shifts, there 1is complete
information transfer upward in the tree, and descendant
value information 1is never discarded until superceded.
Hence an intuitive termination argument can be made, based

on monotonicity of information gathering.

2. Since the mwf is continually shifted as new values zare
reported upward, when the method terminates the correct root
value must be indicated.

3. The time to process each message is at worst proportional to
d, the number of descendants of & node. This is obwious for
down messzges; it is also true for up messages, despite the
apparent log d additionazl factor implied by descendant

re-ordering. In fact perfect re-ordering is not necessary;
instead, only the new rank 1 and 2 descendants nust be found
when new values are installed. These can easily be

determined in the same linear sweep used to zssociatively
retrieve the reporting descendant's current rank.

Y. For perfectly orderec trees, the Key Node Method visits
exactly the same nodes as does the original mwf method.
Like the mwf method, it fails to exploit deep cut-off
opportunities.
4.2. Empirical studies ' -
-One may fairly guestion whether the Key Node Method simply exchanges
node expansion costs for message processing costs. Toe address this

issue, the method wzs implemented in a simulated multi-processing

setting, and preliminary performance measurements were gathered.

12 -

4.2.1. Static value correlation

It is common practice for game playing programs to do move
preordering, i.e. commencing node expansion by ranking all possible
moves In terms of the static values associated with their immediately
resulting game positions. The rationale for this practice 1is an
implicit assumption of correlation between the static value zt a node
and its ultimate minimax value, nowever deep the search invelved in
that wultimate value's -calculation. A more explicit reliance on this

assumption is evident in iterative deepening [6]. Under this

‘technique, a game tree is repeatedly searched to increasing ply depths,
with the results at each cycle being used to length the "horizon" for
move preordering at the next cycle. Interestingly enough, this
phenomenon has largely been ignored 1in most analyticél studies of
alpha-beta performance, and may be responsible <for recently argued

fundamental flaws in the minimax approach as a whole [12].

In our Jjudgment, this static value correlaticn effect 1is both
prevalent and economically exploitable. In particular, this effect
adds considerable credence to the wutility of provisional wvalue
reporting as dcne in the Key Node Method. Indeed, the method might be
viewed as a concurrent variation of iterative deepening (more on this

in section 5.3).

On this belief, our empirical studies were conducted on a class of
“artificially generated game trees in which static values at each node

were obtained by adding a uniformly drawn random number to the static

13

value of itslpa%ent nQde (the root having a static value of zero). We
defend this choice by observing that while catastrophic static wvalue
changes can occur (e.g. loss of a queen in chess), these are infrequent
in comparison to small changes reflecting ninor variation in ;tatic
value components (e.g. relative board control and material balance).
Horeover, wWe conjecture that this effect is particularly evident in

actual play by skillful competitors (i.e. "principal variations").

4,2.2. Architectural setting

Seeking a general architectural model for our performance
investigation, we assumed a fixed number of identical processors
sharing a common menory and drawing messages in round robin order from
a2 pooled queue. For timing, each message was assumed to be processed
within unit delay. At the beginning of each time unit, a "ply" of k
nessages 1is removed from the front of the message queue a2nd processed,
where k equals the minimum of the number of messages waiting and the

total number of processors.

Care was taken, however, to ensure that potential memory contention
emong the processors was accounted for at least crudély. This was
aécomplished by a simulated ™"locking" effect, whereby at most one
nessage is processed at each distinct node within a message ply. The
second and later messages destined for the sazme node within a ply are
deferred to the next ply (with one or mecre processors consequently left

idle for the current time unit).

1L

4,2.3. Simulation results

The findings of our preliminary simulation studies are given in
Tables 4-1 and 4-2. In each case, the columns report game tree degree
(f), game tree depth (q), total node count, total terminal node count,
number of nodes visited by the classical alpha-beta algorithm, number .
of terminal nodes visited by the classical alpha-betz algorithm, time
required by a monoprocessor version of the Key Node Method (i.e. number
of messages generated), number of nodes visited by the Key Node Method,
number of terminal nodes visited by the Key Node Method, number of
processors simulated, and observed speedup factor.

f g nodes terms nodes terms monec. nodes terms nr. speed
total total class. class. time KNM KNM procs. up

3 5 364 243 101.50 52.40 347.70 124.60 67.60 2 1.83
126.60 68.60 5 4.06
124.60 67.60 10 7.11
124.60 67.60 20 10.65

3 6 1093 722 175.20 80.50 881.60 272.40 146.20 2 1.84
272.40 146.20 5 4.22
277.00 148.60 10 7.61
277.00 148.80 20 13.06

4 4 34 256 TH.90 39.50 214.80 87.80 52.00 2 1.67
87.80 52.00 5 3.66
89.60 53.20 10 6.25
88.60 53.20 20 g.42

4 5 1365 1024 1Q4.90 110.10 711.10 256.50 153.10 2 W13
' ' 256.50 153.10 5

1

3.
256.50 153.10 10 7.1
258.60 154.60 20 12.57

Table 4-1: Experimentzal measurements: with move preordering.

~In each case ten trials were averaged to smooth the numbers obtained.

Random static value increments for each descendant (see section 4.2.1)

15

f q nodes terms nodes terms mono. nodes terms nr. speed
total total class. class. time KNM KNM procs. up

3 5 364 243 152.20 86.00 1284.90 227.00 137.60 2 1.88
: 227.00 137.40 5 §.36
223.80 136.20 10 8.17

222.00 134.60 20 14.66

3 6 1093 729 358.50 196.40 3989.10 615.40 369.80 2 90

1.

b12.40 368.00 5 y.n7

611.00 366.80 10 8.51

| 609.00 365.60 20 16.04

4 4 341 256 140.60 88.60 1054.80 209.60 1£2.90 2 1.83
210.20 143.20 5 4.19

208.10 141.70 10 7.76

200.60 136.60 20 13.29

4 5 1365 1024 38L.10 247.30 4072.60 695.70 470.80 2 1.85
701.70 474.10 5 4.33
699.00 471.70 10 8.16
701.10 473.50 20 15.45

Table 4-2: Experimental measurements: without move preordering.

were integers drawn from [-1000, 999). &1l final root node values were

checked for minimax correctness.

We make the following observations on the results obtzined.

1. Significant speedup 1is obtained, despite the simulated
memory contention and the genercus number of processors (20)
in the largest case tested.

2. Speedup increases appear conparzble for both increased tree
breadth (f) and increased tree depth (q).

3. Finally, the apparently greeter speedup of the method on the
non move preordering c¢asse is interesting but must be
discounted as being unrealistic. For example, in the f=4
g=5 case, the 20-processor average run time is 4072.6/15.45
= 263.6, under nonpreorderirg, while the corresponding
average run time under preorcesring is 711.10/12.57 = 56.6.
Given the low cost of move grecrdering, the crealter speedup
in the former case must therefcre be considered illusory.

16

5. Cptimizaéions and extensions ,;» R

Clearly, further testing of this method on minimax trees from "real™
game players must be made before any firm conclusions on its merit can
be made. Beyond this, several other areas of continued developmeht are

suggested by the results obtained thus far.

5.1. Buffered nonkey node values

A minor optimization can be obtaihed,by supéressihg gé méséages from
nonkey nodes;3 Such messages occur when a node has been downgraded to
nenkey status, but the downgrading of nodes in its descendant tree has
vnot yet occurred due to message latency. This optimization gives a

simple priority effect to are key=F messages, without assuming direct

architectural support for message priority.

5.2. Removal o% mesSage FIFb assumption

In general, FIFO0 message processing is physically difficult to
achieve in real nulti-processing architectures without serious
concurrency obstruction. Hence we ultimately wish to remove this

assunption from the Key Node Method.

Fortunately, non-FIFO message order can easily be accommodated;
indeed, in & certain sense, the phenomenon can be salutary. The
problem 1is of course one of message overtaking, whereby "old" messages

ere received after "new" ones. Due to the eager information premise of

3

The simulation results summarized in tables U4-1 and 4-2 in fact
reflect this optimization.

17

the Key Nodé ﬁethod, receiving T"new" messages "early" is generally
beneficial, as long as "old" messages are recognized as such and are
ignored. This discrimination is easily achieved through the following
simple device. Each node marks all sent messages with a "time" hstamp
(a local serial number suffices), and records the latest time stamp of
messages received from its parent and ezch of its descendants. Out of

order messages are then easily detected and ignored.

5.3. Iterative deepening

As mentioned in section 4.2.1, the Key Node Method can be viewed as a
concurrent variation of the 1iterative deepening strategy used in
sequential game players. This effect c¢an be amplified through the
augmentation of messzges to convey sezrch depth informetion. That is,
down messages could specify a "search to" depth, and up messages could

specify a "valid to" depth.
The key node logic can easily be ex:iended to accommodate this extra
information as follows.

- Down messages with '"search to" dspth greater than 1 are
propagzted with depth decrementaticn.

- Up messages are generated in the fcllcowing manner.

¥ Upon receipt of a ‘'search to 1" down message, a node
behaves as a terminal ncde, rssponding with 1its static
value "valid to 1."

* When an up message is sent {ron a nonterminal node n,
the 'valid to" level 1is computed in a manner
generalizing the value repcrting 1logic of fig. 3-5.
That is, we extend the desc e_zment records of the node
datatype (see fig. 3-2) tc 1include 2 field validto,
recording the "valid to" level lzst reported by that

18
descendant (initially O, reflecting no validity). The

up message sent by n iIs marked "valid to" a level
computed by the following case analysis:

1. n.amfirst=F:

- 0, if n.desc[1].validto=0;

- k+1, if n.desc[1]).validto=k>0.
2. n.amfirst=T:
- 0, if the minimum of n.desc[i].validto is Q,

for i1<zi<=n.nrdesc;

- k+1, if the minimum of n.desc[i].validto is
k>0, for 1i<=zi<=n.nrdesc.

In addition to providing the customary benefits of Iiterative
deepening (better time management in tournament situations, and fewer
node expansions, due to the "high terminal" effect discussed in [9]),

two other advantages accrue here:

- A simple local test for root value finality is obtained, and
- Redundant downward messages (to nodes already '"valid to" the
desired depth) can be suppressed.
5.4. Distributed implementations
Given its message-passing basis, the Key Node Method is naturally
weli—suited to distributed computing systems. However, as discussed in
section 4.2.2 the simulation results reported in Tables 4-1 and

4-2 were obtained for a centralized memory model, in which each

processor has equal access to the data representing each node.

19

In a truely distributed architecture, the memory (and node records)
would be partitioned among the processors, forming processing element
(PE) pairs. Two possibilities would then exist for PE message
processing:

1. Messages could be routed to the PE containing the
destination node record, or
2. Messages could be processed by eny PE, at the cost of extra
message traffic (node attribute read/writes) to and from the
PE possessing the node record.
The first method resercbles distributed datzbase systems, while the
latter resembles applicative multi-processing architectures such as
EMPS [8]. Further study of the Key Node Method and related approaches

under both these regimes is clearly warranted.

(1]

[2]

3]

(4]

(5]

(6]

" [10]

20
REFERENCES L

S. G. Akl, D. T. Bernard, R. J. Doran. : i -

Slmulatlon and analysis in deriving time and storage requ1rements
for a parallel alpha-beta algorithm.

In Proc. 1980 Int'l. Conf. on Par. Proc., pages 231-234. IEEE,
August, 1980. , -

Gerard Baudet.
The design and analysis of algorithms for asynchronous
nultiprocessors. T
PhD thesis, Dept. of Computer Science, Carnegie-Mellon Univ.,
- April, 1978. : ;o
Report CMU-CS-78-116.

Raphael A. Finkel and John P. Fishburn.
Parallelism in alpha-beta search.
Artificial Intelligence 18, 1982.

Raphael A. Finkel and John P. Fishburn,
Improved speedup bounds for parallel alpha-betz search.
Uncated.

J. P. Fishburn, R. A. Finkel and Sharon A. Lawless.

Parallel zlphz-beta search on Arachne.

In Proc. Int'l. Conf. on Parallel Proc., pages 235-243. 1IEEE
Computer Society, 1980.

Jares J. Gillogly.

Perfcrmance analysis of the Technology Chess Program.

Tecnnical Report CMU-CS-78-18G, Dept. of Computer Science,
Carnegie-Mellon Univ., March, 1978.

R.M. Keller.

An epproach to oetermwna_y proofs.

Technical Report UUCS-78-102, University of Utah, Dept. of
Computer Science, March, 1978.

R.¥. Keller, G. Lindstrom, and S. Patil.
A loosely-coupled applicative multi-processing system.
In :FIPS, pages 613-622. AFIPS, June, 1979Q.

Garv Lindstrom.

Alpna-beta pruning on evolving game trees.
March, 1979.

Univ. of Utah Tech. Rpt. UUCS 7¢-101.

T. 4. Marsland and M. Campbell.
Parzllel search on strongly ordered game trees.
Computing Surveys 14(4):533-551, 1982.

21

Robert J. McGlinn.

Is SSS* better than alpha-beta?

1982. ' '

Unpublished report, Dept. of Computer Science, Southern Illinois
Univ., Carbondale.

D. S. Nau.

The last player theorem. '

Artificial Intelligence 18:53-65, 1982.

Judea Pearl.

The solution of the branching factor of the alpha-beta pruning
algorithm.
Technical Report UCLA-ENG-CSL-8019, University Of Czlifornia, Los

Angeles, Cognitive Systems Lab., April, 1980.

G. C. Stockman.
A minimax algorithm better than alpha-beta?
Artificial Intelligence 12:179-196, 1979.

3.

1.1,
1.2.

2.1,
2.2.

Table of Contents

. The alpha-beta algorithm

Review
Interest here

. Existing parallel approaches

Logically parallel approaches
Concurrent approaches

The Key Node Method

3.7.
3.2.

4.1,
L. 2.

5.1.
5.2.
5.3.
5.4,

Overall strategy

Details

3.2.1. Key nodes

3.2.2. Node contents

3.2.3. Message formats .
3.2.4. Message processing logi

. Perforoance assessment

Correctness and general observations
Empirical studies

4,2.1. Static value correlation
4.2.2. Architectural setting

4.2.3. Simulation results

. Optimizations and extensions

Buffered nonkey node values
Removel of message FIFO assumption
Iterative deepening

Distributed implementations

0000 ~1ONO"UT UMW W LW — —

N Qs NPT N Y (I G U | S 3
0O O OO =W -

ii

List of Figures

Definition of "key node."
Game ftree node data record.
Message formats.

Down message processing logic.

Up message processing logic.

OO 0013

iii

List of Tables

Table 4-1: Experimental measurements: with move preordering. 14
Table 4-2: Experimental measurements: without move preordering. 15

