
THE KEY NODE METHOD:
1

A HIGHLY-PARALLEL ALPHA-BETA ALGORITHM

by

Gary Lindstrom

UUCS 83-101

Harch 1983

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112

ABSTRACT

A new parallel formulation of the alpha-beta algorithm for
minimax game tree searching is presented. Its chief
characteristic is incremental information sharing among
subsearch processes in the form of "provisional" node value
communica tion. Such "eager" communication can offer the double
benefit of faster search focusing and enhanced parallelism.
This effect is particularly advantageous in the prevalent case
when static value correlation exists among adjacent nodes. A
message-passing formulation of this idea, termed the "Key Node
Method", is outlined. Preliminary exper imental resul ts for
this method are reported, supporting its validity and potential
for increased speedup.

This work has supported in part by the National Science Foundation
under grant HCS 78-03832.

1. The alpha-beta algorithm

1.1. Review

The alpha-beta strategy is a familiar method for economizing on the

cost of minimax searching on game trees. Under this strategy, move

generation at a node is "cut-off" or abandoned whenever it is

determined from nearby node values that the node's ultimate value

cannot possibly rise to the root of the tree. Such cuts may be

"shallow" (due to a superior sibling), or "deep" (due to a superior

ancestor sibling). Although the alpha-beta strategy has at times been

called a heuristic, it is rather an optimization admitting no

possibility of error in top-level minimax move selection.

A number of studies have estimated the savings obtained by the

alpha-beta strategy under vc.rious conditions (e.g. [13J). In sum,

these findings indicate that the alpha-beta strategy significantly

slows (but does not eliminate) the exponential cost of searching to

increasing game tree depths. In view of its ease of implementation in

ordinary (i.e. recursive) depth-first searching, the method has seen

wide application.

1.2. Interest here

With the prospect that large-scale physical parallelism will become

increasingly commori in computer systems of the future, considerable

attention is being devoted to the probleD of adapting sequential

algorithms to multi-processor form. The alpha-beta method has served

as a challenging case study in this regard, for a number of reasons:

2

- Parallel algorithms:

* In sequential form,
optimization effect
parallel versions.
directly generalize to
assumes a sequential
evaluation order.

the method exploits a powerful
that is equally desirable in
However, this effect does not
parallel form, since it generally
left-to-right bottom-up node

* A satisfactory parallel version must str a balance
between computational aggressiveness and caution, so
that avai physical parallelism is utilized, but in
a "focLlsed" manner (Le. so that tasks likely to sharpen
the search are favored to run early).

* The alpha-be method is broadly representative of an
important class of problems in tions research,
namely branch and bound problems.

- Parallel architectures:

* An effective parallel version of
necessarily exploit asynchronous
among processes. This is the
distributed control, captured in
application setting.

the algorithm would
inforDation sharing
sine gua non of
an extremely simple

* This ir,forcation sharing would involve unpredictable
patterns of communication traffic, but within a known
general process structure, i.e. a logical tree. This
provides a concrete yet nontrivial framework for
investi tions of communication throughp~t on particular
network topologies.

* The alpha-beta method is computationally intensive and
easily scalable to create any desired load for testing
purposes.

3

2. Existing parallel approaches

Efforts to· generalize the classical depth-first formulation of the

alpha-beta method generally fall into two classes: logically parallel

(i.e. coroutine oriented), and concurrent (i.e. exploiting true

multi-processing).

2.1. Logically parallel approaches

This class may be viewed as a bridge between recursive and concurrent

forwulations, in that depth-first visitation order is broken through

the use of "retentive" (i.e. non stack-based) sequential control. Two

basic approaches of this kind are generally known:

1- The SSS* method of Stockman, .,'hich waps the alpha-beta
method onto a state space search problem. A natural
"best-first" node expansion orc:er results [14 J. The
motivation is simply minimiza ti on of visited node count;
however, the guaranteed attainDent of this goal has recently
been challenged [11).

2. The evolving tree search (ets) oethod of this author, which
is a framework for exploiting cutting opportunities while
doing node expansion in an arbitrary (e.g. heuristically
driven) order [9J. In partic~lar, move generation from
nodes can electively be sus~,€nded and resumed, wi th full
maintenance of node cutting relationships (including move
generation restarting when cutting values are weakened).

2.2. Concurrent approaches

Within the true multi-processing realn, three approaches have been
2

proposed, each providing some measure of computational speedup:

1. The earliest approach to alpha-b~ta concurrency appears to

2
Mono-processing run time dividej by c~lti-processing run time.

be the parallel aspiration search of Baudet [2J. In this
method, the range of possible root node values is
partitioned into "windows", which are assigned to individual
processors as fictitious initial alpha-beta values. The
processois then concurrently search the entire game tree by
the classical recursive algorithm, but with the attention of
each somewhat individually directed by its assigned
"window."

By the nature of the alpha-beta method, each processor can
independently report whether the root value falls within its
window (or to which side of it). Selection of processor
windows then becomes an adaptive search problem in its own
right. After considerable analysis, Baudet concludes that
this method offers speedup limited by a small constant (e.g.
5 or 6), independent of the degree of available physical
concurrency.

2. The tree splitting approach of Finkel and Fishburn [3, 5J
maps the game t~ee homomorphically onto a physical tree of
processors. Leaf processors search by the classical
algorithm. Asynchronous remote procedure calls are used to
post updates of narrowing alpha-beta bounds as sibling
values are reported. Deep cut-offs can occur. An earlier
pseudo-functional formulation of this asynchronous window
narrowing technique may be found in [7J.

Speedup on the order of at least the square root of the
number of processors is claimed.

3. In the mandatory work first (mwf) approach of Akl, Barnard
and Doran [i, 4 j, the game tree is ini tially hypothesized to
be perfectly best-first ordered. The subset of the game
tree which would be visited in this case under the classical
method is then concurrently searched. If the best-first
hypothesis is confirmed, the algorithm terminates.
Otherwise, search is resumed (again using mwf) at those
incompletely evaluated nodes whose initial results
contradict their subordinate ranking. Deep cut-offs are
unexploited in this method, but are known to be
statistically insignificant in general.

Although the simulation results presented in [1) seem to
suggest that speedup levels off at a relatively low number
of processors, subsequent analytical study in [4J indicates
a much greater ~vter.tial speedup.

A recent article by Harsland and Campbell [10J surveys these

approaches and others in tne slightly more general setting of "strongly

5

ordered game trees."

3. The Key Node Method

We now present our new parallel alpha-beta method. As will become

clear, it combines

- the focusing effect of mwf, with

- the node restarting capability of ets.

3.1. Overall strategy

The Key Node Method employs a very simple global strategy. The

ingredients of this strategy are:

1. A notion of key node, i. e. th:Jse nodes which must obtain
provably correct lower bounds on node strength.

2. A policy of eager value reporting froQ key nodes as their
provisional minimax values change, and

3. A message passing control regiwE to communicate such value
changes, as well as to propagate changes in key node status.

The result is a dynamically shifting m~f tree, as shaped by the

accumulation of partial results fro~ ongoing subsearches. Thus

eagerness in the form of provisional value co~~unication is exploited

to channel the concurrent search to pcrallel paths in a changing, but

eventually stabilizing, mwf tree.

6

3.2. Details

Given 'this search strategy, the details of the method are rather

straightforward, involving a precise definition of key node, the

contents of messages, the local data associated with each node, and

algorithms for ~ and down message processing.

3.2.1. Key nodes

A Key Node is defined as follows:

1. The root of a minimax game tree is a ~
considered to be c first descendant of
superroot node.

2. All descendants of a first descendant key
nodes.

node, and is
a ficti tious

node are key
--"-

3. Only the first descendant of a nonfirst descendant key node
--"-

is a key node.

In terminology of [4J,

1. key nodes are the union of type 1 and type 2 nodes, with

2~ type 1 nodes being first descendant key nodes.

Figure 3-1 depicts this definition. The reader should bear in mind,

however, that descendant ordering is dynamic best-first ordering,

rather than static move generation order.

It is easy to prove that nonkey node values can be ignored in

minimaxing without loss of root value correctness. Moreover, all first

descendant key nodes have correct values, and the values at nonfirst

descendant key nodes are valid lower bounds on their correct strength.

/
/

are key=!
are first=T

- /\
/ \

/ \
/ \

/ \
/ \

are key=T are key=T
are first=T are first=F

\
\

1

are key=T
are first=F

-/\
/ \

/ \
/ \

/ \
/ \

are key=T are_key=F
are first=T are first=F

\
\

are key=F
(don • t care)

/\
/ \

/ \
/ \

/ \
/ \

are_key=F are_key=F

Figure 3-1: DefinitiGn of "key node."

3.2.2. Node contents

The local data associated with each game tree node is defined as a

Pascal record type in figure 3-2.

node =
RECORD pos:

parent:
nrdesc:

END;

desc:

amkey,
amfirst,
visited:

posi tion;
·~node ;
descnr;

[game position}
{parent node in tree}
{number of descendants;

o if terminal }
ARRAY [1 .. desclimJ OF {desc. node records}

RECORD dn~me: {desc. name}

Boolean;

END;
{is this
{ tI "

{has "

~node ;
dvalue: {value last reported}

nodev~l

node currently key?}
It " a first desc.?}
.1 been visited yet?}

Figure 3-2: Game tree node data record.

For simpliCity, we assume here that the entire game tree pre-exists in

"latent" form, with value initializations for pos, OnIilOVe, parent,

nrdesc, desc (dvalues = ";./orst tt value reportable), and visited (false).

In a more realistic formulation, of course, the node records would be

8

created upon demand during tree search.

3.2.3. Message formats

As suggested in section 3.1, two types of messages are exchanged

among our search processes. Messages flowing downward in the game tree

convey node status changes, while messages flowing uDward report new

(possibly provisional) values. Figure 3-3 captures these requirements,

again as a Pascal type definition.

msg = RECORD

END;

des t: ~node ;
CASE msg type:

(do\-.rn,
down:

up:

up) OF
(are_key,
are first:

(sender:
val:

Figure 3-3: Message formats.

3.2.~. Hessage processing logic

Boolean) i
~node ;
nodeval) j

Operations for processing down and ~ messages are specified in

figures 3-~ and 3-5, respectively. Note that search at a node is

initia tej by receipt of its first do'i-lTl message (which will necessar ily

convey ore key=T). While these operations assume FIFO message arrival

order, this requirement is not essential, and will be addressed in

section 5.2.

9

{install llpdates, temporarily saving old values}
amkey current := amkey; arnkey := are key;
arnfirst_current := amfirstj amfirst := are_first;

IF

ELSE

nrdesc
THEN
BEGIN

= 0
{terminal node case}
IF {first down message to node}

NOT visited
THEN BEGIN visited:= true;

END

send up msg(
Tdest =}
{sender =}
{val =}

parent,
dest, {Le. me}
statval(pos» ;

ELSE {ignore subsequent down messages}
END
{nonterminal
BEGIN IF

node case}
{change in key status for 1st desc}
amkey current <> are key

END;

THEN
IF

THEN

notify descs(1, i); -
{change in key status for other descs}
(amkey current AND amfirst current) <>

- (are key AND are fIrst)
notify_descs(2,' nrdesc);-

PROCEDURE notify_descs(low, high: descnr);

BEGIN

END;

(* inform desc[low ... high] of new status *)
FOR i := low TO high DO

send down msg(
Tdest-=}

desc[i].dname,
{are key =}

amkey AND (arnfirst OR (i=1»,
{are first =}

I=1)
(* notify_descs *)

Hessage contents: are first, are key, dest;
Node attributes: arnfirst, amkey,-desc, nrdesc, parent,

pos, visited;
Temporary variables: amkey_current, amfirst_current, i.

Figure 3-4: Down message processing logic.

10

{save current rank 1 descendant name & value}
v := desc[1].dvaluej dfirst:= desc[1].dnamej

{find current rank of descendant now reporting}
k := find_desc(sender);

{install new value reported and re-sort descendants}
desc[k].dvalue := valj sort_descj

IF {rank 1 descendant has changed and node is key}
(desc[1].dname <> dfirst) AND amkey

THEN BEGIN {inform two descendants involved of new ranking}
send down msg({dest =} desc[1]A.dname,

- - {are key =} amkey,
{are-first =} true);

send down msg({dest =} dfirst,
- - {are key =} amkey AND amfirst,

{are=first =} false);
E®;

IF {rank i value has changed}
desc[1].dvalue<>v

THEN send up msg({dest =}
- - {sender =}

[val =}

parent,
dest,
desc[1].dvalue)j

Hesscge contents: dest, sende~, val;
Node attributes: amfirst, amkey, desc;
Temporary variables: dfirst, k, v.

Figure 3-5: ~ message processing logic.

11

4. Performance assessment

4.1. Correctness and general observations

Given this sketch of the Key Node Method, we make the following

general observations:

1. No matter how the mwf tree shifts, there is complete
information transfer--Upward in the tree, and descendant
value information is never discarded until superceded.
Hence an intuitive termination argument can be made, based
on monotonicity of information gathering.

2. Since the rowf is continually shifted as new are
reported upward, when the method terminates the correct root
value must be indicated.

3. The time to process each message is at worst proportional to
d, the number of descendants of a node. This is obvious for
dOhT. messages; it is also true for ~ messages, despite the

~ .

apparent d additional factor implied by descendant
re-order In fact perfect re-ordering is not necessary;
instead, only the new rank 1 and 2 descendants must be found
when new values are installed. These can easily be
determined in the same linear sweep used to associatively
retrieve the reporting descendant's current rank.

For perfectly ordered trees, the Key Hode Method v its
exactly the same nodes as dces the original mwf method.
Like the mwf method, it fails to exploit deep cut-off
opportuni

4.2. Empirical studies

One may fairly question whether the Key Node Method siDply exchanges

node expansion costs for message processing costs. To address this

issue, the method was implemented in a simulated multi-processing

setting, and prelim"inary performance measurements were gathered.

12

4.2.1, Static value correlation

It is common practice for game playing programs to do move

preordering, i.e. commencing node expansion by ranking all possible

moves in terms of the static values associated with their immediately

resulting game positions. The rationale for this practice is an

implicit assumption of correlation between the static value at a node

and its ultimate minimax value, however deep the search involved in

that ultimate value's calculation. A more explicit reliance on this

assumption is evident in iterative deepening [6J. Under this

technique, a game tree is repeatedly searched to increasing ply depths,

with the results at each cycle being used to length the "horizon" for

move preordering at the next cycle. Interestingly enough, this

phenomenon has largely been ignored in most analytical studies of

alpha-beta performance, and may be responsible for recently argued

fundamental flaws in the minimax approach as a whole [12J.

In our judgment, this static value correlation effect is both

prevalent and economically exploitable. In particular, this effect

adds considerable credence to the utility of provisional value

reporting as done in the Key Node Method. Indeed, the method might be

viewed as a concurrent variation of iterative deepening (more on this

in section 5.3).

On this belief, our empirical studies were conducted on a class of

artificially generated game trees in which static values at each node

were obtained by adding a uniformly drawn random number to the static

13

value of its. parent node (the root having a static value of zero). We

defend this choice by observing that while catastrophic static value

changes can occ'ur (e. g. loss of a queen in chess), these are infrequent

in comparison to small changes reflecting minor variation in static

value components (e.g. relative board control and material balance).

Horeover, we conjecture that this effect is particularly evident in

actual play by skillful competi tors (i. e. "principal variations").

4.2.2. Architectural setting

Seeking a general architectural model for our performance

investigation, we assumed a fixed number of identical processors

sharing a common memory and drawing messages in round robin order from

a pooled queue. For timing, each message was assumed to be processed

"ithin unit delay. A t the beginning of each time unit, a "ply" of k

oessages is removed from the front of the message queue and processed,

~here k equals the minimum of the number of messages waiting and the

total number of processors.

Care was taken, however, to ensure that potential memory contention

cmong the processors was accounted for at least crudely. This was

accomplished by a simulated "locking" effect, whereby at most one

oessage is processed at each distinct node within a message ply. Tne

second and later messages destined for the same node within a ply are

deferred to the next ply (with one or more processors consequently left

idle for the current time unit).

4.2.3. Simulation results

The findings of our preliminary simUlation studies are given in

Tables 4-1 and 4-2. In each case, the columns report game tree degree

(f), game tree depth (q), total node count, total terminal node count,

number of nodes visited by the classical alpha-beta algorithm, number

of terminal nodes visited by the classical alpha-beta algorithm, time

required by a monoprocessor version of the Key Node Method (i.e. number

of messages generated), number of nodes visited by the Key Node Method,

number of terminal nodes visited by the Key Node Method, number of

processors simulated, and observed speedup factor.

f q nodes terms nodes
total total class.

terms mono.
class. time

3 5 364 243 101.50 52.40

3 6 1093 729 175.20 80.50 881.60

4 4 3111 256 74.90 39.50 214.80

4 5 1365 10211 194.90 110.10 711.10

nodes
KNM

124.60
126.60
124.60
124.60

272.40
272.40
271.00
277.00

87.80
87.80
89.60
89.60

256.50
256.50
256.50
258.60

terms nr. speed
KNM procs. up

67.60 2
68.60 5
67.60 10
67.60 20

146.20 2
1.46.20 5
148.60 10
148.80 20

52.00 2
52.00 5
53.20 10
53.20 20

153.10 2
153·10 5
153.10 10
154.60 20

1.83
1I.06
7. 11

10.65

1.84
1I.22
7.61

13·06

1.67
3.66
6.25
9.42

1. 73
3.93
7 . 11

12.57

Table 4-1: Ex rimental measurements: ~ith move preordering.

In each case ten trials were averaged to smooth the numbers obtained.

Random static value increments for each descendant (see section 1I.2.1)

15

f q nodes terms nodes terms mono. nodes terms nr. speed
total total class. class. time KNM KNM procs. up

3 5 364 243 152.20 86.00 1284.90 227.00 137.60 2 1.88
227.00 137.40 5 14036
223.80 136.20 10 8.17
222.00 134.60 20 14.66

3 6 1093 729 358.50 196.40 3989.10 615.40 369.80 2 1.90
612.40 368.00 5 4.47
611.00 366.80 10 8.51
609.00 365.60 20 16.04

4 4 341 256 140.60 88.60 106l.l.80 209.60 142.90 2 1.83
210.20 1li3·20 5 4.19
208.10 141.70 10 7.76
200.60 136.60 20 13.29

4 5 1365 1024 384.10 247·30 !l072.60 695.70 lI70.80 2 1.85
701.70 474.10 5 !I.33
699.00 471. 70 10 8. 16
701.10 473.50 20 15.45

Table 4-2: Experimental measurenents: without move preordering.

were integers drawn from [-1000, 999) . All final root node values were

checked for minimax correctness.

We wake the following observations on the results obtained.

1. Significant speedup is obtained, despite the simulated
memory contention and the generous number of processors (20)
in the t case tested.

2. Speedup increases appear co~par2bl€ for both increased tree
breadth (f) and increased tree depth (q).

3. Finally, the apparently greeter sp~edup of the method on the
non move preordering caSE is interesting but must be
discounted as being unrealistic. For example, in the 4
q=5 case, the 20-processor ave~age run time is 4072.6/15.45
= 263.6, under nonpreord€ri~g, while the corresponding
average run time under prEorcering is 711.10/12.57 = 56.6.
Given the low cost of move preccdering, the creater speedup
in the former case must therefc;e be considered illusory.

16

5. Optimizations and extensions

Clearly, further testing of this method on minimax trees from "real"

game players must be made before any firm conclusions on its merit can

be made. Beyond this, several other areas of continued development are

suggested by the results obtained thus far.

5.1. Buffered nonkey node values
.. '.

A minor optimization can be obtained ,by suppressing ~ messages from
3

nonkey nodes. Such messages occur when a node has been downgraded to

nonkey status, but the downgrading of nodes in its descendant tree has

not yet occurred due to message latency. This optimization gives a

simple priority effect to are_key=F messages, without assuming direct

architectural support for message priority.

5.2. Removal of message FIFO assumption

In general, FIFO message processing is physically difficult to

achieve in real nulti-processing architectures without serious

concurrency obstructio~. Hence we ultimately wish to remove this

assumption from the Key Node Method.

Fortunately, non-FIFO message order can easily be accommodated;

indeed, in a certain sense, the phenomenon can be salutary. The

problem is of course one of message overtaking, whereby "old" messages

are received after "new" ones. Due to the eager information premise of

3
The simulation results summarized in tables 4-1 and 4-2 in fact

reflect this optimization.

17

the Key Nod~ Method, receiving "ne-,.," messages "early" is generally

beneficial, as long as "old" 'messages 2.I'e recognized as such and are

ignored. This discrimination is easily achieved through the following

simple device. Each node marks all sent messages with a "time" stamp

(a local serial number suffices), and records the latest time stamp of

messages received from its parent and ~ch of its descendants. Out of

order messages are then easily detected and ignored.

5.3. Iterative deepening

As mentioned in section 4.2.1, the Key Node Hethod can be viewed as a

concurrent variation of the iterati1e deepening strategy used in

sequential game players. This effect can be amplified through the

augmentation of messages to convey se~ch depth information. That is,

dOl·m messages could specify a "search te" depth, and !:!.E messages could

specify a "valid to" depth.

The key node logic can easily be eX:ended to accommodate this extra

information as follows.

- Do ... 'T1 messages wi th "search to" GE:?th greater E:-:an are
propagated with depth decrementaticn.

- ~ messages are genera ted in the fcllcwing manner.

* Upon receipt of a "search to 1" down message, a node
behaves as a terminal node, rE:spending with its static
value "valid to 1."

* When an !:!.E message is sent freD a nonterminal node n,
the "valid to" level is cor.,puted in a manner
generalizing the value rep:~ting logic of fig. 3-5.
That is, we extend the desc e:ement records of the node
datatype (see fig. 3-2) tc include a field validto,
recording the "valid to" leve: lest reported by that

18

descendant (ini tially 0, reflecting no validity). The
~ message sent by n is marked II valid tol! a level
computed by the following case analysis:

1. n.amfirst=F:

- 0, if n.desc[1].validto=Oj

- k+1, if n.desc[1].validto=k>0.

2. n.amfirst=T:

0, if the minimum of n.desc[i].validto is 0,
for j<=i<=n.nrdescj

k+ 1) if the minimum of n.desc[i].validto is
k>O, for j<=i<=n.nrdesc.

In addition to providing the customary benefits of ite~ative

deepening (better time management in tournament situations, and fewer

node expansions, due to the "high terli,inal II effec t discussed in [9]),

two other advantages accrue here:

- A simple local test for root value finality is obtained, and

- Redundant dOh'llward messages (to nodes already "valid to" the
desired depth) can be suppressed.

5.~. Distributed implementations

Given its message-passing basis, the Key Node Method is naturally

well-suited to distributed computing systems. However, as discussed in

section 4.2.2 the simulation results reported in Tables ~~1 and

4-2 were obtained for a centralized memory model, in which each

processor has equal access to the data representing each node.

19

In a truely distributed architecture, the memory (and node records)

would be partitioned among the processors, forming processing element

(PE) pairs. Two possibilities would then exist for PE message

processing:

1. Messages could be routed to the
destination node record, or

PE containing the

2. Messages could be processed by any PE, at the cost of extra
message traffic (node attribute read/writes) to and from the
PE possessing the node record.

The first method resecbles distributed database systems, while the

latter resembles applicative multi-processing architectures such as

AMPS [8J. Further study of the Key Node Method and related approaches

under both these regines is clearly warranted.

20

REFERENCES

[1] S. G. Akl, D. T. Bernard, R. J. Doran.
Sinulation and analysis in deriving time and storage requirements

for a parallel alpha-beta algorithm.
In Proc. 1980 Inttl. Conf. on Par. Proc., pages 231-234. IEEE,

August~8O:- - -- - - --

[2] Gerard Baudet.
The design and analysis of algorithms for asynchronous

multiprocessors.
PhD thesis, Dept. of Computer Science, Carnegie-Hellon Univ.,

April, 1978.
Report CHU-CS-78-116.

[3] Raphael A. Finkel and John P. Fishburn.
Parallelism in alpha-beta search.
Artificial Intelligence 18, 1982.

[4J Raphael A. Finkel and John P. Fishburn.
Improved speedup bounds for parallel alpha-beta search.
Undated.

[5J J. P. Fishburn, R. A. Finkel and Sharon A. Lawless.
Parallel alpha-beta search on Arachne.
In Proe. Int'l. Conf. on Parallel Proc., pages 235-243. IEEE

Computer Society, 19Eo.

[6J James J. Gillogly.
Perfcrr.:ance analysis of the Technology Chess Program.
Tec~nical Report CMU-CS-7B=189 , Dept. of Computer Science,

Carnegie-Mellon Uni v., Harch, 1978.

[7j R.M. Keller.
An approach to determinacy proofs.
Technical Report UUCS-78-102, University of Utah, Dept. of

Computer Science, March, 1978.

[8J R.M. Keller, G. Lindstrom, and S. Patil.
A loosely-coupled applicative multi-processing system.
In ~FIPS, pages 613-622. AFIPS, June, 1979.

[9J Gary Lindstrom.
Alpha-beta pruning on evolving game trees.
March, 1979.
Uni·,;. of Utah Tech. Rpt. UUCS 79-101.

- [10J T . . t." Marsland and H. Campbell.
Parallel search on strongly ordered game trees.
Cocputing Surveys 14(4):533-551, 1982.

21

[11J Robert J. McGlinn.
Is SSS* 'better than alpha-beta?
1982.
Unpublished report, Dept. of Computer Science, Southern Illinois

Univ.~ Carbondale.

[12J D. S. Nau.
The last player theorem.
Artificial Intelligence 18:53-65, 1982.

[13J Judea Pearl.
The solution of the branching factor of the alpha-beta pruning

algorithm.
Technical Report UCLA-ENG-CSL-8019 , University Of California, Los

Angeles, Cognitive Systems Lab., April, 1980.

[14J G. C. Stockman.
A minimax algorithm better than alpha-beta?
Artificial Intelligence 12:179-196, 1979.

i

Table of Contents

1. The alpha-beta algorithm
1.1. Review
1.2. Interest here

2. Existing parallel approaches
2.1. Logically parallel approaches
2.2. Concurrent approaches

3. The Key Node Method
3.1. Overall strategy
3.2. Details

3.2.1. Key nodes
3.2.2. Node contents
3.2.3. Message formats
3.2.~. Message processing logic

~. Perforwance assessment
~. 1. Correctness and general observations
~.2. Empirical studies

~.2.1. Static value correlation
4.2.2. Architectural setting
4.2.3. Simulation results

5. Optimizations and extensions
5.1. Buffered nonkey node values
5.2. Removal of message FIFO assunption
5.3. Iterative deepening
5.~. Distributed implementations

1
1
1
3
3
3
5
5
6
6
7
8
8

11
11
11
12
13
1~
16
16
16
17
18

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:

ii

List of Figures

Definition of "key node."
Game tree node data record.
Message formats.
Down message processing logic.
~ message processing logic.

7
7
8
9

10

Table 4-1:
Table 4-2:

iii

List of Tables

Experimental measurements: with move preordering.
Experimental measurements: without move preordering.

14
15

