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1 I n t r o d u c t io n

An essential aspect o f map-based navigation is the determination of an agent’s current location 

based on sensed data from the environment. Formally, this amounts to specifying the current view

point in some world model coordinate system. This localization process has two distinct compo

nents: one involving the establishment of correspondences between aspects of the sensed data and 

the map or model, and the other involving derivation of constraints on the viewpoint based on the 

correspondences that have been determined.

Correspondences can be established at the signal or feature level. Signal-level matching cor

relates sensed data with predictions of how the sensed data should appear. It works best when the 

uncertainty in the viewpoint is small and when it is relatively easy to accurately generate expected 

sensor data. For example, in the TERCOM and SITAN cruise missile guidance systems, a digital 

elevation model is matched against a downward looking, radar sensed elevation profile [1, 2],

Several researchers have addressed the more difficult problem of signal-based localization at 

or near ground level using horizontally oriented imaging systems and passive sensing. In [3], de

viations between expected and observed views are determined using curve matching algorithms. 

[4] and [5] determine viewpoint under the assumption that viewpoint elevation is known with high 

precision in the reference frame of the map, a situation which dramatically reduces complexity but 

is unfortunately not likely to hold in practice. [6] proposed an alternate method for determining 

viewpoint based on the observed horizon line which is similar to the characteristic view approach 

in object recognition. In all of these methods, actual viewpoint determination is done using the 

same types of methods involved in photogrammetry (which solves the same problem) [7, 8] or in 

alignment approaches to object recognition [9, 10],

Vision-based navigation in unstructured terrain can violate many of the assumptions used in the 

approaches described above. Often there is limited a priori knowledge about the viewpoint due to
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Figure 1: Symbolic matching of landmark features extracted from map and view.

travel through indistinct terrain, temporary occlusion of landmark features, or errors in position up

dating processes. The view of the world at or near ground level is difficult to generate from map 

data with sufficient fidelity to allow signal-level matching. Sensed data can contain substantial ge

ometric aberrations not easily described using simple error models. Finally, available digital carto

graphic data sets contain inaccuracies that can cause serious problems for correlation-based analy

sis. For example, in one o f the USGS DEMs that make up our test data, the location of the high point 

of a significant peak is off by over 200m. It is not surprising that most of the published work on 

vision-based localization from a ground-level perspective has been demonstrated only on synthetic 

data, where these problems do not occur.

Feature-based approaches hold the potential for avoiding many of these problems. As shown 

in Figure 1, features are extracted independently from sensed data (view features) and maps (map 

features) and then matched symbolically if they are likely to correspond to the same physical land

marks (terrain features). As a result, there is no longer a need to be able to synthesize an accurate 

rendition of expected sensed data. The symbolic nature of matching and viewpoint inference al

lows the introduction of sophisticated problem solving methods which are able to deal with issues 

such as ambiguity and complex error models.

In the remainder of this paper, we describe one possible approach to feature-based localization 

in unstructured, outdoor terrain. Our emphasis is on matching strategies that can accommodate am

biguity due to correspondence errors and on qualitative geometric reasoning procedures for deter

mining viewpoint while maintaining an explicit representation of the uncertainty associated with 

that determination. The approach is demonstrated on a real example involving imagery obtained 

with a video camera and map data provided by the USGS.
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2 Geometric Inference About Viewpoint

In photogrammetry and pose estimation, a set of view/model correspondence is used to solve for 

the relative orientation between viewpoint and model. A follow-up confirmation step is then often 

performed to verify that additional model features appear where expected in the view. Some meth

ods also yield a simple statistical measure of error. The difficulty of uniquely identifying landmarks 

in outdoor terrain makes this sort of approach problematic for navigation due to the combinatorics 

of possible correspondences. In addition, the nature of positional uncertainty can’t effectively be 

represented using low order models of statistical deviation [11],

The methods of photogrammetry and pose estimation work by finding a view transformation 

that optimally accounts for a set of view/model correspondences. In landmark-based navigation, 

the high likelihood of error in at least some of the presumed correspondences plus the complex na

ture of the errors associated with those correspondences which are in fact correct argues for a sepa

rate analysis of small sets of correspondences, rather than a single batch solution to the localization 

problem. This allows a separation between viewpoint inference based on selected landmarks and 

the combining of information about viewpoint based on an analysis of many landmarks.

2.1 Inference methods

In outdoor, unstructured terrain, accurate measurements of the range to distant landmarks are sel

dom possible. As a result, we limit our analysis to inference methods that depend primarily or ex

clusively on bearing and visual angle in the view. We have identified four classes of geometric 

inference relevant to vision-based navigation using bearing or visual angle. A fifth inference class 

that does not necessarily require visual processing also appears to be quite important and will be 

briefly discussed in section 3.1.

• Absolute bearing: This is the standard way to solve localization problems. The viewpoint is 

on a line from the landmark along a reciprocal bearing to that of the viewed landmark [12]. 

To use this inference method, an accurate compass registered to the map coordinate system 

is required.

• Ordinal view: Levitt and Lawton show how ordinal position of two features (e.g., “A is left- 

o f B”) can be used to constrain the viewpoint to lie on one side of a line through the positions 

of A and B [ 13]. (See Figure 2.)

• Relative bearing: Relative bearings between three or more image features with known map 

positions lead to a classical pose estimation problem. Well established numerical techniques 

exist for solving such problems. Levitt and Lawton describe an alternate method in which 

only two features are considered at a time [13], The visual angle between the two features 

with known map positions constrains the viewpoint to lie on a particular circle on the map 

(See Figure 3).
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Figure 2: Viewpoint is in shaded area if landmark A is seen to the left of landmark B.

Figure 3: Relative bearing to two landmarks constrains viewpoint to a circle.
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Figure 4: Absolute bearing to three landmarks results in an over constrained system for determining 

viewpoint.

• Alignment: If two features line up along a line of sight, then the viewpoint is constrained to 

lie on a line connecting the two features. In almost all circumstances encountered in outdoor 

navigation, it is possible to determine which of the two features is more distant and as a result 

the viewpoint can be constrained to a half-line. This inference method appears to be critical 

when human map users are solving difficult localization problems [14],

2.2 Combining uncertain constraints on viewpoint

Three of the four inference methods above can be used to constrain the viewpoint to a line or arc on 

the map. Two non-degenerate line or arc constraints can be used to uniquely determine the view

point, although the arcs resulting from the relative bearing methods may yield multiple solutions 

which require additional constraints in order to select the true location. Uncertainty in bearing es

timates and map locations makes it desirable to use additional constraints and employ some sort of 

optimization technique to analyze the resulting over constrained system.

Figure 4 illustrates the common situation in which the absolute bearing to more than two land

marks is measured. The classical approach to determining a viewpoint estimate in this situation 

would be to use a linear least-squares method to find a viewpoint location “close” to all of the con

straint lines. For some configurations of landmarks, this is in fact a reasonable thing to do. For other 

configurations, however, the use of least squares methods to find a single estimate masks important 

aspects of the uncertainty in the estimates. This becomes even more important with the non-linear 

cases resulting from the use of relative bearing [11].

Two very different sorts of errors affect viewpoint estimates in feature-based localization. Fea

tures are seldom sufficiently distinctive to be uniquely identifiable in either the view or map. As a 

result, correspondence errors are frequent. The effect is to associate a view feature with an incorrect 

map location. Our approach to dealing with correspondence errors is discussed in section 4. Even 

when correspondences are correctly determined, there will be uncertainty in the estimated posi-
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Figure 5: View localization uncertainty modeled as map uncertainty.

tions of features in the map and view. These feature localization errors, which can cause significant 

uncertainty in viewpoint determinations, can be classified as either sensing errors or position spec

ification errors.

Most of the research on uncertainty in localization has been limited to indoor applications for 

which 3-D sensors with well described error models are used (e.g., [15, 16]). The nature of lo

calization uncertainty in large-scale outdoor environments is much different. As previously men

tioned, accurate range to distant landmarks is seldom available. Measurements of bearing or rel

ative visual angle suffer from sensing errors due to distortion, calibration inaccuracies, and sam

pling errors which can often be severe, particularly over larger viewing angles. In addition, there 

is uncertainty in the exact location of landmark features in both view and map, since the features 

used as landmarks in outdoor, unstructured terrain have substantial but ill-defined physical extent. 

These position specification errors are compounded by viewpoint dependencies. For example, ex

cept when the line of sight is horizontal, the apparent high point of a peak in the view will usually 

not correspond to the actual high point.

It is important to distinguish between sensing and position specification error when implement

ing algorithms for geometric inferences about viewpoint and correspondences. Sensing errors man

ifest themselves as uncertainties in either relative or absolute visual angle. The actual error model 

needed is a function of the sensors involved. Our geometric inference techniques presume the avail

ability of a bound on maximum angular error. While a statistical evaluation of possible viewpoints 

is feasible, assuming a uniform distribution of sensor error across an interval is likely to be more 

believable than those probabilistic models which require unrealistic assumptions about the distri

bution of error.

Position specification errors for map features can easily be modeled by introducing a region of 

uncertainty around the presumed map location of the feature. View position specification errors 

would appear to be more difficult to deal with, since they are viewpoint dependent: the larger the 

spatial extent of the feature in the view the larger the uncertainty in feature location is likely to be. It 

turns out to be possible to transfer this uncertainty to the map and treat it in the same manner as for
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map features. Figure 5 shows the reasoning. The uncertainty in locating a view feature is a function 

of the extent of the feature in the view. This in turn is directly related to the physical extent of the 

feature in the world and the viewing distance. Thus, position specification errors can be accounted 

for by assuming that there is an uncertainty in the location of map features sufficient to account for 

errors in extracting both map and view feature locations.

Figure 6: The viewpoint is constrained to the 

gray area when there is uncertainty in absolute 

bearing.

Figure 7: Intersecting multiple uncertain ab

solute bearing constraints. The viewpoint is 

constrained to the dark gray region.

Figure 8: Intersecting absolute bearing constraints with both sensing and position specification er

rors. The viewpoint lies in the dark gray region

We have found it useful to employ interval models of uncertainty in sensor values and map 

accuracy, and use these to determine feasible viewpoint regions. These regions are chosen to be 

compatible with the expected variability of measured bearings. Multiple constraints are evaluated 

using intersection to determine the region or regions compatible with each of the constraints indi

vidually. (A discussion of one way to do a probabilistic analysis of this problem can be found in

[17]). Figure 6 shows the possible viewpoint region associated with a single absolute bearing con

straint, when there is uncertainty in the bearing. Figure 7 shows the resulting viewpoint region in
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Figure 12: Viewpoint constraint based on fea- Figure 13: Viewpoint constraint based on or-

ture alignment with sensing errors. dinal position with sensing errors.

a larger area in which the viewpoint might be located. Unlike in the method of absolute bearing, 

the size of this area is not only a function of the bound on sensing error and the radii of the circles 

of uncertainty surrounding the landmark points, but also of the true visual angle measure. For any 

given bounds on sensing and position specification errors, the area will increase in size as the visual 

angle decreases or, equivalently, as the viewpoint moves further from the landmark pair.

Figure 12 shows the effect of sensing errors on viewpoint localization using feature alignment. 

Rather clearly, it is important that the distance from the actual viewpoint to the nearer feature not be 

too much larger than the distance between the features. A similar effect occurs with ordinal position, 

as shown in Figure 13. This serves to limit the usefulness of the ordinal position inference methods, 

except for widely spaced landmarks.

3 Constraint-Based Analysis

Ambiguity in landmark recognition and matching is a central problem in outdoor navigation. Land

marks are seldom so distinctive that they can be unambiguously recognized as unique entities. Dead 

reckoning errors and errors in prior localization determinations hamper methods based solely on 

predict-verify operations. These problems are particularly troublesome in outdoor, unstructured 

environments with few cultural features.

3.1 Interacting constraints

One way to reduce the impact of these effects is to use a constraint-based approach which inter

leaves the establishment of correspondences with the estimation of viewpoint: Easily determined 

correspondences are used to obtain an initial estimate of viewpoint location which facilitates es

tablishment of additional correspondence. This in turn allows the estimated viewpoint location to
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be further refined. Uncertainty is represented explicitly by allowing for alternate hypotheses about 

possible landmark correspondences, with each hypothesis specifying the resulting regions within 

which the viewpoint must lie if the hypothesis is correct. Constraint satisfaction is used to discard 

hypothesized correspondences that lead to implausible predictions and to refine the possible view

point regions associated with the remaining hypothesized correspondences.

The geometric inference methods described in section 2.1 are most commonly used to gener

ate viewpoint constraints specifying where the viewpoint must lie to be consistent with a particular 

set of corresponding map and view features. The validation of viewpoint hypotheses involves the 

generation of distant constraints which specify additional correspondences for landmarks distant 

from the proposed viewpoint that should hold if the hypothesis is valid. These constraints can in

volve correspondences between map and view features as well as relationships between features in 

either the map or view. Information about the nature of the terrain in the immediate vicinity of the 

viewpoint leads to local constraints which limit the viewpoint to compatible terrain features on the 

map. (E.g., “I ’m standing on a hill. Therefore, the viewpoint must be located at one of the hills 

found represented on the map.”) These appear to be quite important for expert human map users

[14].

Three types of geometric inference between these constraint types are possible (Figure 14):

•  Distant constraints => constraints on viewpoint: Map/view feature correspondences for sets 

of distant features can be used to determine constraints on the viewpoint using various forms 

of trigonometric analysis.

• Constraints on viewpoint => expectations about distant constraints; Hypotheses about view

point can be evaluated by examining distant features. A possible viewpoint, together with 

one or more view features, can be used to predict the location of the corresponding map fea

ture^). Likewise, a map feature can be used to predict the nature and location of view fea

tures. If  these expectations fail to be met, the hypothesized viewpoint is likely in error.

• Local constraints => constraints on viewpoint: Local constraints allow for the enumeration 

of possible viewpoints. Such an enumeration can be intersected with the constraint regions 

that usually arise from consideration of distant features.

3.2 Evaluating viewpoint hypotheses

In addition to generating new hypotheses about the viewpoint, the inference methods described in 

section 2.1 can be used to to evaluate existing viewpoint hypotheses as well. Two sorts of evalua

tion can occur. Features in the view not used in forming the original viewpoint hypothesis can be 

used to generate expectations about compatible terrain features that should appear within particu

lar regions of the map if the hypothesis is correct. Likewise, features on the map can be used to 

generate expectations about features that should appear in the view.
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Figure 14: Reasoning about viewpoint involves interacting constraints.

Unstructured, outdoor terrain contains many similar appearing landmark features. As a result, 

the discovery of a particular landmark where one is expected is only weak evidence confirming a 

viewpoint hypothesis. On the other hand, the failure to find a feature where one is expected is strong 

evidence that the hypothesis on which the expectation is based is incorrect. This disconfirmation 

strategy plays an important role in human map usage [18].

3.2.1 Confirming view expectations on the map

Given an hypothesized viewpoint on the map, the absolute bearing to view features can easily be 

used to specify a map region where the corresponding map feature should appear. This map region 

is then searched for viable matches to the view feature. This process is very important since it either 

generates new feature correspondences, or, when no matching map features are found in the region, 

provides sufficient disconfirming evidence to reject the hypothesis.

Since hypothesized viewpoints typically specify regions on the map and not just a single loca

tion, the area in which the feature is expected to lie is also a region, not just a line specified by the 

bearing. The region is found by taking the union of the half lines specified by the measured bearing 

from all points within the supposed viewpoint region. Uncertainty due to sensing errors can be ac

counted for by recognizing that a viewpoint location plus a bearing specify a wedge within which 

the feature should lie. Figure 15 illustrates the method. The shaded area indicates a search region 

on the map in which a feature appearing in the view at a particular bearing is expected to be. This 

search region includes both the dark gray viewpoint region itself and the light gray wedge emanat

ing from it. As before, feature position specification errors can be modeled by adding a circle of 

uncertainty around map features. The expectation generated from the view is confirmed on the map 

if the search region includes any part of the uncertainty circle from a compatible map feature. Note 

that the search region can be constructed based only on an analysis of the external contour of the
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Figure 15: Possible map locations for a fea

ture, given an absolute bearing in the view, in

clude the dark gray viewpoint region and the 

light gray wedge emanating from it.

C l

j  y

C2

Figure 16: The region in which a map feature 

is located can be determined using ordinal po

sition with respect to a second feature, F, pre

viously localized on the map.

viewpoint region. This is also true of the other inference techniques described below.

Figure 16 shows the situation when the ordinal position of two features in the view is known 

and one of those features has been localized on the map. From the same dark gray viewpoint region 

as shown in Figure 15, any feature seen to the “left” of F will be located either in region C l or in 

one of the darker gray areas shown in the figure. Any feature seen to the “right” of F will be located 

either in region C2 or in one of the darker gray areas.

I f  we have one view feature that corresponds to a map feature, and another view feature with a 

particular visual angle with respect to the first view feature, then the map region in which we expect 

to find a match for the second view feature is shown in Figure 17, with the darkly shaded region 

being the viewpoint region. Figure 18 is a special case of Figure 17 showing the possible locations 

of a second map feature that appears in the view to align with the marked feature, given a bound on 

the angular uncertainty with which the features can be localized in the view.

The geometric constructions needed to determine these regions are complex. Computational 

implementations can often benefit from simplifications. It is important, however, to use a conser

vative approach. Since constraints are intersected to find features and relationships that satisfy all 

relevant constraints, it is important that the actual search regions used cover all of the theoretically 

possible locations.

3.2.2 Confirming map expectations in the view

Given landmark locations on the map and a map region which is known to contain the viewpoint, it 

is possible to determine constraints on landmarks in the view. In general, we assume that all view 

features are present on the map, but the converse is not necessarily true. The map may well cover 

more terrain than is visible in the view. Occlusion also results in missing view features. Thus, the
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Figure 17: Possible map locations for a fea

ture, given a relative bearing to another fea

ture in the view.

Figure 18: Possible map locations for a fea

ture, given that it aligns with another feature 

in the view.

Figure 19: Using absolute bearing to deter

mine where a map feature should appear in the 

view.

Figure 20: Determining possible visual an

gles between two landmarks.
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lack of a view feature where the map suggests one is not sufficient cause to reject a hypothesis, 

making this a less useful process than the view driven searches discussed in the previous section. 

For the same reasons, human map users tend to concentrate on view features first.[ 18] That is not 

to say that this process is not useful at all. It can be used to verify an hypothesized viewpoint or 

possibly to establish additional correspondences between features in the view and map.

If map and view orientations are registered using a compass or other means, then absolute bear

ing can easily be used to determine possible viewing directions from a viewpoint region to any par

ticular map feature not in the region. (If the feature is within the region, any viewing direction is 

possible.) Figure 19 illustrates the situation. The region boundary is traversed and the range of pos

sible viewing directions is determined, as shown in the upper left of the figure. Though not indicated 

here, a search for the feature in the view should take into account any uncertainty in determining 

view bearings that might exist.

Ordinal position can be used to predict that some view feature will be found to the right of (or 

left of) some other view feature. In Figure 16, any map feature in region C l will show up in the 

view to the left of feature F from anywhere within the viewpoint region. Likewise, any map feature 

in region C2 will show up in the view to the right of F. Any feature located in the dark gray areas 

might appear to either side of F, depending on where the actual viewpoint is located. Such features 

are thus not useful for validating a viewpoint hypothesis.

Figure 18 can be used to illustrate the way in which it is possible to determine if two map features 

might appear aligned in the view. Any landmark feature located in one of the gray areas will appear 

aligned with the marked feature from at least one location within the region of possible viewpoints. 

Alignment will not in general occur at other possible viewpoints, however. As a result, this form 

of analysis is of little value in confirming a particular viewpoint hypothesis unless the viewpoint 

region is quite small.

As with absolute bearing, the range of relative visual angles between two landmarks outside of 

the possible viewpoint region can be found by traversing the region boundary, keeping track of the 

maximum and minimum angles that are found. Figure 20 show the two extrema angles, along with 

constant visual angle contours in 10° increments in order to provide a sense of scale and sensitivity.

3.3 Orienting a view.

In the discussion thus far, the use of absolute bearing has presumed that some sort of compass was 

available in order to transform viewing directions into map orientations. In fact, it is possible to 

orient the view with respect to the map in the absence of a compass once one or more of the other 

inference methods have been used to narrow down the possible viewpoint region. If, in the situation 

shown in Figure 19, we have no initial means to register map and view orientations, but have deter

mined both the view and map locations of the feature by an inference method other than absolute 

bearing, we can then determine the bearing to the view feature with respect to the map coordinate 

system. This registration of the two coordinate systems is accurate to within an uncertainty range
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that is a function of the size and shape of the viewpoint region and the distance to the feature. It 

follows that north in the view, corresponding to north on the map, can then be hypothesized. For 

a well calibrated camera system, equivalent information is then provided on all of the other view 

features as well. This is a potent tool, since it lets us bring into play absolute bearing inferences 

even if we start out not knowing the orientation of the view and have no direct way of determining 

that orientation. As demonstrated in the example in section 5, as more view features are.matched 

to features on the map, this hypothesis of view north can be refined. There is evidence that human 

map users will try to orient the view with respect to the map before generating detailed hypotheses 

about the viewpoint if they do not have a compass or other indication of direction in the world [14],

4 Matching

Although constraint-based analysis using multiple hypotheses and a disconfirmation strategy pro

vides a powerful tool for dealing with the potential of incorrect correspondences between map and 

view features, it is critical that feature matching be done in a manner that reduces as much as pos

sible the chances for false matches. It is particularly important to restrict the possible associations 

between map and view features, (i.e., the distant constraints), when initial hypotheses about the 

viewpoint are being formed. At this point in the problem solving process the distant constraints 

will have little effect in limiting matches. The likelihood that a view feature and a map feature cor

respond to the same terrain landmark can be estimated based on two aspects of the features: features 

must be of compatible types and should have compatible geometric properties.

While landmarks are seldom uniquely identifiable in unstructured, outdoor terrain, they can be 

grouped into categories based on feature type with some reliability. View features, for example, can 

be divided into the classes of gaps, ridges, saddles, valleys, inclines and peaks. Map features can be 

organized into a richer structure, since more information is available about their actual geometric 

shape. This much richer structure is due in large part to the fact that while 3-D structure is directly 

available from the map, it is quite difficult to recover from the view for both people and machines 

using passive range sensors. Figure 21 shows a taxonomy of features that has proven useful both 

to account for human performance and in computational simulations. To deal with viewpoint de

pendencies, it is possible to specify the a priori likelihood that a particular view feature type and a 

particular map feature type are compatible with a single terrain feature. Figure 22 shows a possible 

empirically determined assignment of such likelihoods. Likelihood values range from a value of 

5, indicating a strong likelihood of compatibility to a value of 0, indicating no likelihood of com

patibility between map and view features. As an example, consider the map feature “Ridges” in 

Figure 22. A ridge feature located on the map will have a strong likelihood of correspondence with 

a ridge feature located in the view, resulting in a likelihood value of 5. A map ridge may also ap

pear as simply an incline in the view, or as a peak in the view. However, since a match with either 

of these features is less significant, due to their more general nature, more frequent appearance, or 

simply the fact that they are not a ridge, these matches are graded lower on the scale. A ridge on 

the map will not appear in the view as either a gap, a saddle, or a valley. Thus, the likelihoods of
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Figure 21: Taxonomy of view and map features.

these features being compatible are 0. (See [19] for a more complete discussion of these issues.)

The geometric properties of view and map features with compatible types are important in de

termining whether they correspond to the same terrain feature. For example, the map feature corre

sponding to a sharp peak in the view should be shaped so as to appear sharp from at least one view

point. While viewpoint dependencies make it difficult to reliably determine the degree of geometric 

similarity between map and view features, a number of useful approximations can be utilized.

Figure 23 provides one example of using information about topography to generate constraints 

on view features. The figure shows a sketch of a ridge viewed from slightly different directions. In 

the left view, we see the ridge in profile. In the right view, the ridge is seen more end-on and the 

faces on both sides of the ridge have become visible. I f  the topography consists of approximately 

planar faces, then a ridge can be characterized in terms of its rise angle (the angle of the ridge itself 

relative to the horizontal) and the break angles of each of the faces (the slope of the face measured 

along its fall line). For a horizontal viewing direction, the projection process is such that the angle 

of the ridge in the view is never less than the rise angle. This is apparent in Figure 23, where the 

angle of the ridge relative to the horizontal is equal to the rise angle in the view on the left and 

greater in the view on the right. It follows that the projected ridge angle in the view for ridges seen 

in profile is never more than the break angle of the hidden face. Thus, knowledge of the minimum 

rise angles and maximum break angles in a map feature constrains to an interval the projected ridge 

lines in the view. In most realistic situations, the viewing angle is sufficiently close to horizontal 

for this constraint to be useful.
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Figure 22: Compatibility of map and view features.

While the geometric properties of map and view features can help determine whether or not 

a particular feature match is valid, it is still necessary to determine which features to attempt to 

match in the first place. Again, the ambiguity of landmarks in outdoor terrain is a major source of 

difficulty. Geometric similarity can only help in matching when there are few features present with 

similar shapes. As a result, the key features to match are those with geometric properties that are 

both prominent and unusual.

In the example presented in section 5, we have implemented the selection of features in the fol

lowing way. Each feature type is characterized in terms of a set of scalar properties. Figure 24 lists 

the peak and ridge properties used in the example. In this case, the same properties are used for 

view and map features, with the values being actual on the map and apparent in the view. Due to 

viewpoint dependencies and the lack of reliable 3-D information in the view, these are not necessar

ily the same. For a given localization problem, each property value has an associated prominence 

value, ranging from 0.0 to 1.0, that indicates the conspicuousness of the feature value within the 

context of other features of the same type. Prominence alone is not a sufficient criteria on which to 

select features for matching, however, since the terrain may contain many prominent features, all
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Figure 23: Ridge line seen from different vantage points.

Peak properties.

height: average vertical distance 

from top to adjacent saddles. 

elevation: height of peak. 

sharpness, roundness: functions 

of the slope of the sides of a peak. 

flatness, steepness: opposite of 

sharpness and roundness.

Ridge properties.

flatness, steepness: functions of 

overall ridge slope. 

extent: length of ridge line. 

average elevation: mean elevation 

computed over ridge line. 

elevation variation: change in ele

vation over ridge line. 

elevation consistency: opposite of 

elevation variation. )

Figure 24: Peak and ridge feature properties.

with about the same shape. As a result, a distinctiveness value is computed for each feature type, 

which has a high value only if there are few features that are prominent with respect to the feature 

type. Finally, the saliency of each feature type for each feature is computed as the product of its 

prominence and distinctiveness. By ranking each feature in terms of the maximum saliency over 

that feature’s properties and focusing on those features with a saliency over a predefined threshold, 

attention is concentrated on features most likely to be easily matched.

5 Example of Feature-Based Localization

The geometric reasoning techniques described above have been tested on real terrain data from the 

Wasatch mountains surrounding Salt Lake City, Utah. The panoramic image shown in Figure 25 

provided the view data. The map data was USGS 30m DEM data covering approximately 21.4 by 

28 km.

The view was searched for significant features. Only one feature, the largest, highest peak, has
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Figure 25: Panoramic image of terrain

an overall saliency value, as described in section 4, above a predefined saliency threshold. Two 

proximity configurations were formed involving the selected peak and each of two nearby ridge 

lines, one immediately to the left of the peak and one immediately to the right. The physical char

acteristics of the peak and ridge line features combined are likely to produce a smaller number of 

potential matches on the map than would be produced if each feature was considered separately. 

The previously described ordinal view and relative bearing inference methods were used in the for

mation and refinement of localization hypotheses. Four of the six strategies for localization intro

duced in [ 18] were used: concentrate on the view first, organize features into configurations, pursue 

multiple hypotheses and evaluate hypotheses using a disconfirmation strategy.

With no a priori knowledge of view orientation (see section 3.3), the map was searched for 

configurations involving a peak and a nearby ridge line. Nineteen localization hypotheses were 

generated. An initial map location region was generated for each hypothesis using the map feature 

positions and the relative bearing between the view features. The view and map coordinate systems 

were then used to determine for each hypothesis an estimate of absolute bearing which will be re

ferred to as view north. The accuracy of the view north estimate determines the angular extent of 

map search and constraint regions and must be updated as new feature correspondences are formed.

After estimating view north, a search was made for map features to match other highly salient 

view features. I f  exactly one map feature was found to match the view feature, another feature cor

respondence was added to the hypothesis, used to refine view north, and then to refine the viewpoint 

region. Ambiguous features were noted, and the search for a match was repeated later when im

provements in view north and/or reductions in the size of the location region might lead to a smaller 

search region and subsequently a single match. If  no map features were found to match the view 

feature, this disconfirming evidence was sufficient to reject the hypothesis. The steps of refining 

view north, refining the map location region, and searching for ambiguous view features were re

peated until there was no longer improvement in localization.

Figure 26 demonstrates the refinement of the actual correct hypothesis. A search was made for 

a map feature to match the long view ridge that wraps from one edge of the image to the other. This 

search region is shown on the left with the current map location region also shown. One map ridge 

line meeting the description of the view ridge line was found in that region. This map feature and 

the associated view bearing were then used to refine both view north and the map location region. 

The map location region and the constraint region associated with the newly matched ridge line are 

shown on the right. Although the map location region was not reduced by this additional corre

spondence, it did significantly reduce the view north estimate, evident in the smaller angular extent 

of the constraint region as compared to that of the search region.

As a result of the newly matched ridgeline, the estimate of view north changed. This affects
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Figure 26: On the left is the search region for a map feature to match the long ridge in the view. 
On the right is the constraint region based on that match. The circular region in both figures is the 
initial map location region.

the size of both search regions and constraint regions, so the refinement based on the previously 
corresponded features is repeated in an attempt to further reduce the map location region. The peak 
and nearby ridgeline correspondences, on which the hypothesis was formed, are used in this refine
ment. The constraint regions associated with each o f these feature correspondences are shown in 
Figure 27. The reduction of 79.1% in the size of the map location region, from 1.486 km2 to 0.1405 
km2 shows the benefit of using distant features to refine view north followed by nearby features to 
refine the map location region.

Sixteen of the 18 incorrect hypotheses were rejected. One of these had the initial location region 
shown on the left o f Figure 28. After estimating view north, the search for a map ridgeline to match 
the long view ridge line was unsuccessful. No ridgeline meeting the description o f the view ridge 
was found within the search region, shown on the right of Figure 28. This disconfirming evidence 
caused the hypothesis to be rejected.

Three hypotheses, including the correct solution, were accepted. Both o f the accepted but false 
hypotheses had incorrect estimates o f view orientation. This is a common occurrence among hu
man navigators, who will often look in the wrong direction on the map for a given view feature. 
The initial and final map location regions for all three non-rejected hypotheses are shown in Fig
ure 29. The set o f regions associated with the correct hypothesis is farthest west on the map (with 
north being “up”). The two incorrect hypotheses were not rejected because an inaccurate estimate 
of view north led to plausible but incorrect feature matches. This error in estimate, caused by an 
initial mismatch of features, was very large. Due to the complete lack of a priori knowledge of view 
orientation, the northern direction was assumed to be opposite what it actually was. Indeed, when
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Figure 27: The size o f the map location region is further reduced by repeating the refinement based 
on previously corresponded features, resulting in the much smaller region on the right.

view north was pre-specified in an analysis of the same data set, only the correct hypothesis was 
accepted. One goal of future work is to refine the feature correlation process so that disconfirming 
evidence will force rejection o f such an hypothesis, or, preferably, prevent the feature mismatch in 
the first place.

A complete discussion o f this localization process can be found in [20].
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