
TECHNICAL REPORT UUCS-99-013, DEPARTMENT OK COMPUTER SCIENCE, UNIVERSITY OF UTAH 1

D e s i g n a n d V a l i d a t i o n o f a S i m u l t a n e o u s

M u l t i - T h r e a d e d D L X P r o c e s s o r

Hans Jacobson

A b s t r a c t — M o d e r n d a y c o m p u te r s y s te m s r e ly o n tw o
fo rm s o f p a r a l le l is m t o a c h ie v e h ig h p e r f o r m a n c e , p a r a l le l is m
b e tw e e n in d iv id u a l in s t r u c t io n s o f a p r o g r a m (IL P) a n d p a r
a lle l is m b e tw e e n in d iv id u a l t h r e a d s (T L P) . S u p e r s c a la r p r o
c e s s o r s e x p lo i t I L P b y is s u in g s e v e ra l in s t r u c t io n s p e r c lo c k ,
a n d m u lt ip r o c e s s o r s (M P) e x p lo i t T L P b y r u n n in g d i f f e re n t
t h r e a d s in p a r a l le l o n d if f e r e n t p r o c e s s o r s .

A f u n d a m e n ta l l im i ta t io n o f t h e s e a p p r o a c h e s t o e x p lo i t
p a r a l le l is m is t h a t p r o c e s s o r r e s o u r c e s a r e s t a t i c a l ly p a r t i
t io n e d . I f T L P is lo w , p r o c e s s o r s in a M P s y s te m w ill b e id le ,
a n d i f IL P is lo w , is su e s lo ts in a s u p e r s c a l a r p r o c e s s o r w ill
b e w a s te d . A s a c o n s e q u e n c e , t h e h a r d w a r e c a n n o t a d a p t
t o c h a n g in g lev e ls o f IL P a n d T L P a n d r e s o u r c e u t i l i z a t io n
t e n d t o b e low .

S in c e r e s o u r c e u t i l i z a t io n is low t h e r e is p o t e n t i a l t o
a c h ie v e h ig h e r p e r f o r m a n c e i f s o m e h o w u se fu l in s t r u c t io n s
c o u ld b e fo u n d t o fill u p t h e w a s te d is su e s lo ts . T h is p a
p e r e x p lo r e s a m e th o d c a l le d s im u l ta n e o u s m u l t i th r e a d in g
(S M T) t h a t a d d r e s s e s t h e u t i l i z a t io n p r o b le m b y l e t t in g
m u lt ip le t h r e a d s c o m p e te fo r t h e r e s o u r c e s o f a s in g le p r o
c e s s o r e a c h c lo c k c y c le t h u s in c r e a s in g t h e p o t e n t i a l IL P
a v a i la b le .

I . I n t r o d u c t i o n

To achieve high performance, modern day computer sys
tems rely on two forms of parallelism in program execution.
Wide issue superscalar processors try to exploit instruction
level parallelism (ILP) that exists within a single program
and issue multiple instructions per cycle. However, even
aggressive superscalar implementations that use dynamic
hardware scheduling to extract parallelism cannot take full
advantage of the resources of a wide issue processor due to
inherent control and data dependencies between instruc
tions of a single program. Since the resources in the su
perscalar case are statically allocated to a single program,
resources (issue slots) are wasted when there is not suffi
cient ILP available in that program. Figure 1 (a) illustrates
the vertical and horizontal issue slot waste that can take
place in a superscalar processor. Horizontal waste occurs
when the scheduling logic cannot find enough instructions
to issue to fill up all issue slots this cycle, i.e. there is a lack
of ILP available. Vertical waste may occur when a cache
miss or data dependencies hinders the scheduling logic to
issue any instruction this cycle.

Multiprocessors (MP) try to exploit thread level par
allelism (TLP) that exists either between parallel threads
derived from a single program, or between completely inde
pendently executing programs. The individual processors
in the MP system can suffer from vertical and horizontal
issue waste as in the superscalar case. In addition, an MP
system can suffer from thread shortage which leaves some
processors without a program to execute. Resources in

The au th o r is w ith th e D ep artm en t o f C om puter Science, U niversity
o f U tah , Salt Lake City, U .S.A . E -m ail: hans@ cs.utah.edu

these idle processors are thus wasted due to lack of TLP as
shown in Figure 1(b). A typical example of thread shortage
is when a program that has been parallelized into multiple
threads has to go through a sequential section of code.

Multithreaded (MT) processors [1] allow several thread
contexts to be active. Each cycle, one context is selected
and instructions from that thread are issued. MT pro
cessors can thus address the problem of vertical issue slot
waste. Whenever a certain thread cannot issue any instruc
tions this cycle, another thread that can issue is selected as
illustrated in Figure 1(c). While MT addresses the verti
cal waste problem, the limitation that only one thread can
issue per cycle still leaves the problem of horizontal waste.

Simultaneously multithreaded (SMT) processors also al
low several thread contexts to be active. Each cycle, in
structions can be issued from multiple threads. SMT pro
cessors thus address both vertical and horizontal waste.
Whenever a thread cannot issue any instructions during a
cycle, all other threads can still issue so vertical waste is
reduced. Whenever a thread cannot fill all issue slots dur
ing a cycle, instructions from other threads can compete
for and fill up these slots thus reducing horizontal waste.
These situations are illustrated in Figure 1 (d).

Statically partitioning processor resources puts a limita
tion to how much parallelism can be exploited. The super
scalar and MP processors statically partition the individual
processor resources to be used by only allowing one thread
to execute at a time. MT processors improve upon this
concept by allowing multiple threads to be on standby but
still only allow one thread to use the processor resources
per cycle. An SMT processor on the other hand has the
ability to dynamically adapt to varying levels of TLP and
ILP since each cycle multiple threads compete for avail
able issue slots. By allowing multiple threads to issue in
structions each cycle, TLP is effectively transformed into
ILP since there is no control or data dependency between
instructions belonging to different threads. Subsequently,
given the same amount of resources, SMT has the potential
to do more useful work compared to the other approaches.
This has also been indicated by a comparative study of
SMT and MP architectures [2],

Project goals

The focus of this project has been the development, im
plementation, validation, and evaluation of a simultaneous
multithreaded microprocessor architecture running DLX
native code. In this paper we will focus on the architecture
implementation and performance analyses of the processor.
We are mainly interested in finding out how simultaneous
multithreading can help improve instruction throughput on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hans@cs.utah.edu

2 TECHNICAL REPORT UUCS-99-013, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF UTAH

issue slots issue slois

0 ■ ■ — 0 ■ ■
o 1 >•>u 1 Ifc 1 If

2 2 'MV.mULU I m
a) Superscalar

issue slots

c) Multithreaded

issue slots

■ ■
■

■ ■ 1
p i P2

■ ■ i
m m
■ m ill

b) Multiprocessor

Thread 1

d) Simultaneous
multithreaded

Thread 2 Thread 3

Fig. 1. H orizontal and vertical issue slot w aste in different processor
arch itectures

an architecture with the same amount of resources that can
be found in todays single-threaded superscalar processors.
Details of the techniques used to validate correct processor
functionality through simulation, self-checkers, and hard
ware emulation are also discussed.

Section II presents a baseline SMT architecture based
on the Tomasulo approach. In Section III we will discuss
shortcomings of this baseline architecture and how it can be
improved upon. This section will also examine cache miss
tolerance of the SMT architecture. Section IV will examine
the possibilities of exploiting multithreadings latency hid
ing ability to avoid expensive hardware speculation, and
identify where SMT and non-speculative SMT processors
could be useful. Sections V and VI presents techniques
used to validate the correct operation of the processor.

II. A BASELINE SM T ARCH ITECTURE

Since an SMT processor is basically a superscalar pro
cessor extended to handle multiple threads this section will
first present a superscalar Tomasulo architecture that will
form the base of our integer SMT architecture.

A. An SM T Tomasulo architecture

The Tomasulo approach to dynamic hardware specula
tion use three special stages to handle out of order and
speculative execution. The issue stage illustrated in Fig
ure 2 checks for and resolves control and data dependencies
between instructions before issuing them to the reservation
station stage. As they are issued, each instruction is given
a unique reorder buffer entry into which its result should
be written. A register data structure in the issue stage
keeps track of which reserved reorder buffer entry holds
or will hold the latest updated value of a register operand.

The destination register and source operands of an instruc
tion are thus renamed to these corresponding entries in the
reorder buffer to avoid RAW, WAR, and WAW hazards.
After the instructions are issued, the reservation station
stage holds each instruction until it has received all needed
operands, either from the register file, reorder buffer, or
as a fed back result on the common databus. Once all
operands have been received the instruction is forwarded
to its respective function unit. The reorder buffer collects
the results from the functional units and stores them tem
porarily until the instructions can be committed at which
time the processor state is changed by writing the results
to the registers or memory. By issuing instructions and
reserving their reorder buffer entries in order, the instruc
tions can also be committed in order by treating the reorder
buffer as a circular FIFO queue. Loads and stores in our
architecture are handled at commit time by the reorder
buffer. Loads are blocking while stores are non-blocking.
Similarly, program counter addresses for branch mispredic
tions are updated at commit time by the reorder buffer1.

The presented superscalar Tomasulo architecture al
ready have all basic features needed for a superscalar SMT
architecture. The only additions needed to support multi
ple threads are:

• multiple program counters and a method to select one
to fetch from each cycle

• per thread instruction flush and trap mechanisms
• a larger register file to handle all threads.

The only significant impact on cycle time expected from
such moderate extensions to the baseline superscalar pro
cessor is the larger register file which may have to be
pipelined and take multiple cycles to access. However, nei
ther register file, instruction issue, execution, or commit is
significantly more complex than that of the baseline super
scalar processor.

B. Processor resources

We decide to keep as many resources as possible shared.
Thus the instruction queue, reservation queues, function
units, reorder queue, and caches are all shared between
threads. This way nearly all hardware resources are avail
able even when only one thread is running. This is an
important feature in order to support high performance
under varying levels of TLP and ILP.

Instruction issue queue size is practically limited by the
number of operand comparisons that need to be done to
detect data dependencies which is a function of n2, where
n is the number of entries of the issue window. Having an
instruction queue larger than the window size only serves
as buffering and is only really useful to provide instructions
during a cache miss. Since the probability that the instruc
tions at the end of the queue are actually useful (correctly
speculated) decreases rapidly with the queue size due to
increasing number of branch predictions made earlier in
the queue, large queues are not very helpful. We decide

'M o re efficient approaches can certa in ly be im plem ented in which
th e functional u n its handle lo ad /s to re s and program counter updates
bu t is ou t of scope for th is p ro ject

Register file Reorder Dcache

HANS JACOBSON: DESIGN AND VALIDATION OF A SIMULTANEOUS MULTITHREADED DLX PROCESSOR 3

RQ

□
□
□

Icache

Common data bus

Fig. 2. An SMT Tomasulo superscalar processor architecture

to implement a rather normal instruction queue size of 32,
which is not significantly larger than the 28 entry queue
used in for example the HP PA-8000.

We chose the maximum fetch bandwidth to be 8 instruc
tions per cycles as our experiments have shown that less
would limit the throughput when more than one thread
is running, but more than that does not significantly im
prove performance even with multiple threads running due
to increased cache miss rates and practical limitations on
instruction issue queue size.

As loads in our architecture are handled at instruction
commit time by the reorder buffer, load latency may be
high. We therefore need fairly large reservation station
queues in order for them to not get filled up with instruc
tions awaiting results from loads, thus blocking other in
structions from being issued. We choose to use 8 entry
reservation queues as the expected load latency when data
dependencies during address calculation are accounted for
is about 7-8 cycles.

As illustrated in Figure 3 4 arithm etic/logic, 2 load/store
(address calculation), and 1 branch unit seem to be the
right choice when work load ranges from 1 to 8 threads. A
shared 512 entry 2-bit branch prediction buffer is used to
predict branches.

As a consequence of the reservation station queue size
and number of functional units which together potentially
allow 77 instructions to be in-flight at the same time, the
reorder buffer is chosen to be 64 entries large as we do not
expect the reservation stations and function pipelines to
ever be 100% full. In order to not make the reorder buffer
throughput-limiting we allow as many instructions to be
committed per cycle as we fetch, namely 8.

While a cache subsystem is not directly implemented in

Fig. 3. Instruction throughput dependence on number of function
units

the proposed architecture, effects of cache misses are sim
ulated using data provided in [3], The cache subsystem
consists of three levels of caches. Level 1 instruction and
data caches are directmapped and of 32KB size each with
a latency of 6 cycles to the L2 cache. The level 2 cache
is a shared 256KB 4-way associative cache with a latency
of 12 cycles to the L3 cache. The level 3 cache is a 2MB
shared cache with a 4 cycle access time and a latency of
62 cycles to main memory. The LI cache miss percentage
under a fetch policy of 8 instructions per cycle is given in
Figure 4. We simulate cache misses using the average cache
miss penalty which ranges from 15 to 12 cycles depending
on how many threads are running due to number-of-thread

4 TECHNICAL REPORT UUCS-99-013, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF UTAH

Icache miss %

a) Instruction cache miss rate

Dcache miss %

b) Data cache miss rate

Fig. 4. Simulated cache miss rate at different number of threads

dependent differences in miss rates in the L2 and L3 caches.

C. Simulation methodology

The SMT processor presented in this paper was imple
mented as a behavioral model but in a synthesizable sub
set of Verilog. The infrastructure used for behavioral and
gate-level netlist simulation was Verilog-XL from Cadence.
For hardware emulation GVL from IKOS was used. The
processor implementation runs unmodified DLX native op
codes. The dlxcc compiler and the dlxasm assembler were
used to compile C-programs into native DLX instruction
opcodes. Due to the slow simulation of a design as large
as an SMT processor in Verilog-XL, simulation runs were
restricted to small programs such as bubble sort, selection
sort, Fibonacci etc. with each run comprising a few thou
sand instructions. It should be noted that the amount of
ILP available in such small programs is rather limited, and
since dlxcc is targeted for a single issue pipeline, no static
instruction scheduling is performed by the compiler fur
ther reducing available ILP. To not give undue advantage
to the SMT methodology in terms of speedup due to in
creased ILP when instructions from independent threads
are introduced, the assembly code generated by dlxcc was
slightly hand-optimized to yield a final single threaded IPC
approximately double that of the original code.

The small programs and short program runs undoubt
edly introduce a certain margin of error in our measured re

sults. However, observations of major trends in instruction
throughput should still be valid. We speculate and issue
wrong path instructions to get an accurate representation
of resource interference between correctly and incorrectly
(mispredicted) issued instructions. All IPC performance
numbers presented of course only represent correctly issued
(committed) instructions. We define resource utilization as
the number of cycles a function unit had useful work to
perform.

III. SM T ARCHITECTURE ENHANCEMENTS

As illustrated in Figure 5(a,b), the baseline SMT archi
tecture presented so far increase the useful IPC by about
80% at 8 threads and resource utilization by 50%. While it
is encouraging to see that even with the minimum required
set of SMT extensions to the superscalar architecture that
has been introduced so far do result in a visible speedup,
with a resource utilization of only 32% it should be possible
to achieve a higher throughput. To achieve higher resource
utilization we need to identify the limiting factors in the
architecture.

A. Reorder buffer enhancements

One fairly obvious limitation can be found in the re
order buffer. While the reorder buffer is not throughput
limiting for single threaded execution due to the balanced
fetch/com m it bandwidth, the situation changes when mul
tiple threads are involved. The problem lies in the sin
gle commit (front) pointer in the circular reorder queue.
If the instruction in the entry pointed to by the commit
pointer has not yet received its result or is experiencing a
load cache miss it will block other instructions from com
mitting. It will thus hinder instructions belonging to other
threads that have received their results from committing al
though there is no order-dependence between instructions
from different threads. A straight forward solution to this
thread block problem is to keep a set of thread specific
front pointers in the reorder buffer. Each thread can then
commit its own instructions independent of the status of
instructions belonging to other threads. Using multiple
commit pointers results in reorder buffer entries becoming
available more quickly allowing additional instructions to
issue, and that potentially a higher average of committed
instructions per second can be reached. Figure 5(a,b) illus
trates the improved performance obtained by the multiple
commit versus single commit pointer approaches. With
multiple commit pointers the IPC and utilization increase
at 8 threads compared to 1 thread are effectively doubled
compared to the single commit pointer approach. Using a
single commit pointer was clearly a limiting factor in both
throughput and utilization. The hardware structure re
quired to support multiple commit pointers should not be
significantly more complex than that of a single pointer.

B. Distributing instruction fetch bandwidth

Although we fetch 8 instructions from 1 thread (8:1) each
cycle, the average number of instructions that are usefully

HANS JACOBSON: DESIGN AND VALIDATION OF A SIMULTANEOUS MULTITHREADED DLX PROCESSOR 5

Resource

Fig. 5. Instruction throughput and resource utilization when using single vs. multiple commit pointers

fetched per cycle (due to cache misses and misfetched in
structions caused by branches) lie in the range of 3.8 in
structions per cycle. To reduce this fetch block fragmenta
tion the fetch bandwidth could be distributed over several
threads per cycle. Figure 6 illustrates how fetching differ
ent number of instructions from different number of threads
per cycle affects instruction throughput. Fetching of 1 or 2
instructions per thread suffers from thread shortage when
few threads are running explaining the low IPC in these
cases. The best overall fetching scheme seem to be fetch
ing 4 instructions from 2 threads (4:2) each cycle. The 4:2
scheme increases the usefully fetched instructions by 20%
from 4.7 to 5.9 per cycle on the average for 4 and 8 threads.
However, for 1 and 2 threads the usefully fetched instruc
tions per cycle decrease by almost 10% from 2.9 to 2.7. We
believe this decrease is an artifact of the higher sensitivity
to cache misses at low thread counts. As a whole, we in
crease the useful fetch bandwidth by about 10% from 3.8
to 4.3 instructions per cycle by using the 4:2 fetch scheme
rather than the original 8:1 scheme. The reason the use
ful fetch bandwidth increase (decrease) does not result in
a higher (lower) IPC than it does is most likely a result
of the limited ILP available due to poor static instruction
scheduling of the compiler. In each case, the actual fetch
bandwidth is higher than the actual issue bandwidth, so the
processor is issue limited rather than fetch limited which
explains the little effect a higher (lower) fetch bandwidth
has on IPC. W ith a compiler targeted for a superscalar ar
chitecture the IPC improvements due to improved useful
fetch bandwidth should be more pronounced.

C. Reducing instruction queue clog

A problem that is not present in a single threaded super
scalar architecture is that of instruction queue (IQ) clog.
When several threads share the same instruction queue

IPC

3 _

2 _

□ 1 instr/thread
□ 2 instr/thread
B 4 instr/thread
E3 8 instr/thread

J
1

1
f

-

|

I!
i|

if

1 1

| = |
E jj

Threads

Fig. 6. Instruction throughput as a function of different instruction
fetching schemes

however, in the worst case, a single slow-running thread
may end up filling up all instruction queue entries thus
drastically reducing available TLP. This situation occurs
when the input (fetch) bandwidth of a certain thread is
higher than the output (issue) bandwidth in the instruc
tion queue, and can easily occur in sections of code where
there are tight control and data dependencies. The solution
to this problem is providing feedback of the current instruc
tion queue status to the fetch stage so that the threads run
ning most efficiently can be selected to fetch new instruc
tions this cycle. A good approximation of what threads are
running most efficiently is to measure how many instruc
tions a thread has present in the decode and instruction

6 TECHNICAL REPORT UUCS-99-013, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF UTAH

Fig. 7. Instruction throughput at different instruction cache miss
rates

queue stages. We should then fetch instructions from the
threads with least number of instructions in these stages
which should then represent threads with a high output
bandwidth from the issue stage. While our benchmark
programs are too small and the runs too short to be able
to confirm these observations, we still believe it is a valid
and necessary technique to improve performance. Other
schemes for increasing instruction throughput and reduce
IQ clog problems have also been presented [3].

D. Cache miss tolerance

As discussed earlier, cache miss frequencies increase with
number of simultaneously running threads. Clearly, good
cache miss tolerance is thus an important feature to achieve
high performance in an SMT architecture. Figure 7 il
lustrates the performance degradation due to instruction
cache miss rates for different number of threads (data cache
miss rates are modeled at 0% in this comparison). The fig
ure clearly illustrates that even with a 20% cache miss rate
at 8 threads, throughput is still 97% of that achieved at a
0% cache miss rate. Thanks to the latency hiding potential
of multithreaded architectures the higher cache miss rates
at multiple threads do not have a major performance im
pact. Ordinary cache sizes for superscalar processors thus
do not need to be made significantly larger to handle a
workload of 8 threads efficiently.

IV . M u l t i t h r e a d i n g a n d s p e c u l a t i v e e x e c u t i o n

While speculation is an important property to achieve
high performance in single threaded superscalar processors,
this might not be true of multithreaded architectures. As
discussed earlier, multithreading provides multiple threads
that can be chosen to issue instructions from each cycle.
As illustrated in Section III an SMT architecture is very
tolerant towards high cache miss frequencies and the same
is also true for high cache miss latencies. This latency tol-

IPC

Fig. 8. Instruction throughput and resource utilization when using
speculation vs. when not using speculation

erant quality could also potentially be used to avoid spec
ulation. As long as enough threads are available to contin
uously provide instructions to the pipeline, fetching from
a thread could be suspended upon encountering a branch
and be reactivated only when the branch has been resolved.
This way, the resource interference between correctly and
incorrectly issued instructions would also be eliminated.

Since hardware based speculation is very expensive in
terms of combinational logic latency, a multithreaded ar
chitecture might be better off without using speculation
and aiming for a higher clock rate instead. Several simpli
fications can be made to a superscalar architecture if specu
lation is not used. Most significantly, the reorder buffer can
be removed completely, and the issue stage does not need
to check for control dependencies reducing the amount of
comparisons needed to issue an instruction. Furthermore
there is no longer a need for instruction flush mechanisms
or branch prediction logic. It should be noted that all SMT
characteristics are still preserved in the non-speculative ar
chitecture. The architecture still addresses both horizontal
and vertical issue slot waste since it can still issue multiple
instructions from multiple threads per cycle.

The important question that need to be answered is how

HANS JACOBSON: DESIGN AND VALIDA TION OK A SIMULTANEOUS MULTITHREADED DLX PROCESSOR 7

many threads would be needed to even out the through
put loss caused by not using speculation. Figure 8(a,b)
illustrates the effects removing speculation from the SMT
architecture has on throughput and resource utilization. At
around 8 threads the difference in throughput is only 20%
and this could probably be made up for in a higher clock
frequency for the non-speculative architecture. From the
results it would thus seem that the benefits from specula
tion have more or less disappeared due to multithreadings
latency hiding potential when running more than 8 threads.
It should be noted however, that non-speculative execution
is only really a high performance alternative to speculation
when we can sustain a minimum of 8 simultaneously run
ning threads over time. In situations of varying TLP this
might not be the case, and under such circumstances a
speculative SMT is still preferable.

A speculative SMT processor with its ability to handle
varying levels of TLP and ILP and potential to exploit in
dividual thread throughput based on thread priority seem
well suited for high-performance desktop environments
where tasks range from low-latency single threaded inter
active programs to high-latency, high-throughput, multi
threaded simulation runs.

A non-speculative processor could probably be useful
for high-performance server applications where many tasks
are available and high instruction throughput is desirable.
The ability to handle a large workload efficiently even at
a somewhat lower throughput per individual thread seem
well suited for a server environment which usually do not
run interactive low-latency demanding tasks.

V . B e h a v i o r a l V a l i d a t i o n

Due to the increased concurrency and more complex
interaction between operations in a simultaneous multi
threaded architecture, ensuring a correct behavior is a a
key objective during design. In this section we will focus
on techniques that have been applied in order to gain a high
confidence level on the correct operation of the SMT micro
processor. We describe techniques used to gain confidence
of the correct behavior of the processor through simulation
at the behavioral level, simulation at the synthesized gate
netlist level, as well as hardware emulation of a subset of
the processor pipeline stages.

Behavioral simulation was mainly used to ensure the cor
rect operation of the microprocessor at a functional level.
Simulation of gate level netlists of the processor were per
formed mainly to ensure that the synthesized gate-level ar
chitecture netlist was equivalent to the intended behavior
of the behavioral specification. Hardware emulation was
used mainly to further gain confidence in that the synthe
sized gate-netlists would behave as intended when running
as real hardware. The following sections will describe these
steps in detail.

Formally verifying a design as large as an SMT micro
processor in detail was not feasible both due to lack of ap
propriate tools and a tight time budget. Other techniques
for most efficiently discovering and locating the source of
errors in such a design therefore had to be developed.

A. Validation techniques

While observing input (instructions) and output (regis
ters and memory) behavior often can give the designer an
indication that something has gone wrong during the pro
gram run, it is often very hard to locate the source of the
problem. Program runs also often tend to deadlock be
fore any results have been produced, especially in the early
stages of implementation, making it impossible to learn
what went wrong by simply observing the input-output be
havior. Quite frequently it was discovered, program runs
completed correctly in terms of output behavior, but still
had subtle internal errors not visible in the produced out
put. Clearly we need some means to efficiently observe the
internal state of the processor during execution. There are
two parts to this problem, detecting that an error has taken
place, and locating the source of the error.

A .l Locating an error

To make the internal state visible to the designer, sim
ulation traces were written out to a file during a program
run. The simulation trace contains cycle by cycle informa
tion and content of internal datastructures of each pipeline
stage as well as the communication between them. The
simulation trace can be restricted to display information
only of desired pipeline stages. To facilitate the track
ing of individual instructions through the pipeline, each
instruction is assigned a unique id tag when it is fetched
from the instruction memory. Each entry in the internal
datastructures are then displayed with both thread and
instruction id’s as well as their data fields to easily iden
tify where instructions are and what their current status
is. Figure 9 illustrates the contents of a reservation sta
tion queue. Each entry in the queue is clearly marked as
valid or invalid, the instruction id is clearly displayed as
well as the thread it belongs to. The current status of the
instruction can also be observed. In this case, instruction
38i that belongs to thread 3 has received one of its source
operands (srcl marked as done) while it is still waiting for
the other operand (src2). We can also see what type of
instruction this is, what reorder buffer entries it expect its
source operands to come from (q20 and q l8), as well as
what reorder buffer entry the result should be written to
(q29). During this cycle instructions 36i and 35i are both
ready to be forwarded to the function unit associated with
the reservation station as they have both finished reading
their respective source operands.

A .2 Detecting an error

W hile the simulation traces discussed above are useful to
detect errors for very short program runs, it becomes a te
dious and time consuming task to detect errors for program
runs consisting of thousands of clock cycles with trace files
over 70 MB in size.

An easy way to detect errors manually is to do a sparse
simulation run. In a sparse simulation run only the most
important information is displayed, such as when store or
branch instructions are issued , what their prediction status

8 TECHNICAL REPORT UUCS-99-013, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF UTAH

reservation ..queuc[0] =
reservation .q u cu e fl] =
reservation _queue[2] =
reservation_queue[3] =

valid id thread iristr func pred imm
0 0i 0 00 0000 0 0
I 38i 3 10 1101 0 0
1 36i 4 10 I 101 0 0
1 35i 4 10 1101 0 0

desi Rrcl (done,source, value)

qOO 0 q()0 00000000000000000000000000000000
q29 I q20 00000000000000000000000001111000
q27 I q l e 00000000000000000000000001000000
q25 I q le 00000000000000000000000001000000

src2(done,sourcc,v;iluc)

0 qOO 0000000000000000ixx)0(xx)tx)0000(xx)
0 q l8 00000000000000000(XXXXX)(XX)(XX)000
1 qOO 00000000000000(XXXXX)000000(XXXXX)
1 qOO 0000000000000000(XXXXXXXXX)000000

Fig. 9. Reservation queue d a ta s tru c tu re

is, and when they are committed. Deadlocks and mishan
dling of branches, e.g. errors in or the branch prediction
logic etc. that may cause the program to follow an unin
tended execution path, are easily detected with such sparse
simulation runs. The place of the error is then in a majority
of cases easily located through the thread and instruction
id’s in the displayed information.

In some cases however, it is not enough to observe the
flow of the sparse simulation traces to discover errors. In
these situations, self-checkers [4], [5] are an important com
plement to detecting errors. Run-time self-checkers that
continually checks that certain properties are satisfied dur
ing program runs have been especially helpful in detecting
subtle errors. A global runtime self-checker that ensures
correct behavior of the pipeline stages during stalls and
flushes will be discussed shortly. When such a self-checker
discovers a violation of some property, it displays informa
tion pointing out the pipeline stage the error was discov
ered in along with the thread and instruction id’s of the
instruction in that stage at the time of the error. Locating
the error in the simulation trace file then becomes a fairly
simple task.

A.3 Detecting uncommon errors

While sparse simulation traces and runtime self-checkers
can catch a majority of errors, some errors will only show
up in very specific situations that occur only rarely. Usu
ally such situations can be artificially created by using
constraint solvers [6] to find instruction combinations that
have a high probability of exercising the conditions leading
to the errors. Since we did not have access to such con
straint solvers we had to find another way to increase the
probability of such uncommon errors to occur.

The solution was found in parameterization of the pro
cessor resources. By parameterizing the sizes of instruction
queues, reorder buffer, reservation station queues, number
of instructions fetched per cycle, number of threads run
ning simultaneously, number of function units, number of
committed instructions per cycle etc. we were able to ex
ercise certain behaviors of the processor more heavily by
creating hotspots. For example, by setting the instruction
queue to be small we exercised the behavior of the proces
sor when the issue stage was full and the fetch and decode
stages needed to stall. As another example, by using a
large instruction queue and many functional units we in
stead got high coverage that instruction dependencies were
handled correctly under high concurrency. These hotspots
could then easily be moved around to stress different parts
of the processor.

B. Correctness properties requiring self-checkers

B .l A global runtime self-checker

While many properties of local nature were easily
checked manually by outlining “paper self-checkers” and
comparing against the implemented code, global proper
ties were that much harder to check manually due to many
special cases and types of interaction. Properties of a global
nature that are crucial to the correct operation of the pro
cessor are found in the interaction between pipeline stages
when both stall and flush conditions occur simultaneously.
Due to a tight time budget, the implementation of these
functionalities were at first implemented in a very ad-hoc
manner without any standard way of dealing with them
first having been thought out. While the approaches to
handle pipeline stalls and thread flushes conceptually were
fairly straight forward it was hard to gain confidence in
the correct operation of their implementations even locally.
When the pipeline stages were interconnected and started
interacting with each other, it became a hopeless task to
manually check that pipeline stall and thread flush condi
tions were met. To make matters worse, erroneous behavior
does not always show up in the final register and memory
output of the test programs that are run making it hard to
detect and locate such errors. Automated means of both
detecting that an error has occurred as well as locating
the offending pipeline stage and associated instruction were
therefore needed.

A runtime self-checker illustrated in Figure 10 was there
fore implemented to assist in the checking of correct stall
and flush behavior. As a consequence of the development
of the stall and flush self-checker, the necessary proper
ties that the different pipeline stages had to satisfy became
more clearly laid out. As a result a much simplified uni
fied approach to pipeline stall and thread flush was also
developed. This unified approach in turn simplified the
self-checker which now only needed to check a few well de
fined properties. For example, the properties that must
be upheld when a reservation station becomes full are as
follows:

• All outputs belonging to a flushed thread must be
cleared regardless of pipeline stall status

• The Register file and Reorder buffer must keep their
current outputs belonging to the stalled reservation
station (so that any pending operands can be correctly
read in when the reservation station becomes non-full)

• The Register file and Reorder buffer must continue to
serve requests not associated with the stalled reserva
tion station

• The Issue stage must clear all outputs belonging to
the stalled reservation station (to avoid reading in the

HANS JACOBSON: DESIGN AND VALIDATION OF A SIMULTANEOUS MULTITHREADED DLX PROCESSOR

Common data bus

Fig. 10. The global self-checker

same instruction twice)
■ The Issue stage must continue to feed instructions to

all non-stalled reservation stations
The global self-checker also checks that the fetch and de
code stages behave correctly when the issue stage becomes
full, and also that all instructions belonging to a flushed
thread indeed are flushed and do not show up on the out
puts of the pipeline stages the following cycles. The self
checker non-intrusively performs its task by monitoring the
communication between the pipeline stages. The global
self-checker became a clear example of when thinking of a
problem from a self-checkers point of view also helped to
simplify the implementation itself, not just ensuring that
the original implementation behaved correctly.

B.2 A local runtime self-checker

Another property that is somewhat hard to check man
ually is that the thread specific commit (front) pointers
in the reorder buffer behave correctly. While the property
that a thread pointer only commits instructions belonging
to its own thread can be fairly easily derived by just looking
at the implemented code and performing a few test runs,
it is harder to ensure that the pointers do not go “out
of bounds” with respect to allocated buffer entries. If a
pointer would go out of bounds it might result in incorrect
information about free buffer entries being communicated
to the issue stage which has shown to cause errors that are
hard to discover and track down.

Since it is hard to determine the correct boundaries when
we are dealing with multiple front pointers, to aid in the
self-checking of these pointer boundaries we added a main
front pointer. A consequence of adding a main front pointer
was that now calculation of free buffer entries became much

easier to perform and check for correctness. The thread
specific front pointers could now be initialized to the posi
tion of the main front pointer each cycle significantly sim
plifying the code necessary to track their individual posi
tions. The boundary correctness checks then became quite
simple, we only needed to check that the following condi
tions were satisfied (mfp stands for main front pointer, mrp
for main rear pointer, and tfp for thread front pointer).

• if mfp < mrp then tfp > = mfp and tfp < = mrp
• if mfp > mrp than tfp > = mfp or tfp < = mrp
• always (mrp + free entries) = = mfp

This was another example of a situation where thinking of
a problem from a self-checkers point of view also helped to
simplify the implementation itself.

V I. G a t e - l e v e l v a l i d a t i o n

This section describes the validation of the microproces
sor through simulation at the synthesized gate-level and
subsequent emulation on real hardware.

A. Synthesis and gate-level validation

While simulation at the behavioral level gives high con
fidence that the design at least conceptually works cor
rectly, some functionalities expressed in behavioral code
might have unintended side-effects when synthesized and
run at the gate-level.

Indeed, some potential discrepancies between behavioral
level code and synthesized gate behavior in the form of un
expected introduction of latches in combinational parts of
the design were detected. These differences between in
tended and actual structural implementation were caused
by signals that under certain circumstances in the behav
ioral code were not explicitly assigned new values during

10 TECHNICAL REPORT UUCS-99-013, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF UTAH

a dock cycle. These potential discrepancies were easily re
moved by always specifying a value (explicitly assign the
old value to a signal if it was not supposed to change) for
combinational signals.

Instruction fetch, queue sizes, and number of function
units had to be reduced in order for synthesis to complete.
In the synthesized version, instruction queue and reorder
buffer have 4 entries each, we run 2 threads simultaneously,
fetch 2 instructions per cycle, and have 3 functional units.
To complete synthesis the stages had to be synthesized sep
arately and manually interconnected. Synthesis took about
2-3 hours each for the most complex stages (issue and re
order) on a 333MHz Ultrasparc. The reservation station
stage did not complete synthesis within 20 hours, and the
complete stage, ran out of memory at 700 MB. These stages
along with the function unit stage were therefore not syn
thesized.

The stages that were successfully synthesized consists of
the fetch, decode, issue, register file, and reorder buffer
stages. The gate-level representations of the synthesized
stages were interconnected and co-simulated with the be
havioral implementations of the non-synthesized stages.
The simulation results of the behavior-only and the mixed
gate-level and behavior systems were identical, thus in
dicating that the gate-level architecture operated as in
tended. One unexpected benefit of the mixed simulation
system was that while compilation time increased due to
huge gate netlists, simulation tim e actually decreased by
almost a factor of two.

B. Hardware emulation

While we have gained confidence that the synthesized
gate-level architecture worked as intended through simu
lation run comparisons with the original behavioral spec
ification, all validation still has been performed only via
software simulation techniques. Any potential discrepan
cies between the software simulated gate-level architecture
and its implementation as real hardware axe still hidden
from us. For example, an especially important situation
to check is the reset and initialization phase. To gain con
fidence that the synthesized architecture works correctly
when implemented as actual hardware, we map the netlist
to actual emulation hardware using the GVL toolpath from
IKOS.

For this purpose the fetch, decode, and issue stages were
interconnected and taken through the IKOS hardware em
ulation toolpath. These stages were checked at the VSM
and Verify levels of GVL and found to have a behavior iden
tical to the behavioral and gate-level software simulation
models2.

The compile runtime for the three stage pipeline was
about 15 minutes. 212 I/O signal consisting mainly of the
databus between the issue and reservation station pipeline
stages were specified to be probed. The clock epochs had
14 and 15 virtual cycles respectively. The number of VMW

2The only experienced problem with the GVL toolpath was th a t a
dummy input had to be added in addition to reset and clock to the
toplevel module to make GVL generate a correct Verify model

primitive gates were 31,991. PPR FPGA-compile had 71
board routing tasks which were completed in just over 1 1 / 2
hours using 7 workstations (1 Ultrasparc-10, 5 Ultrasparc-
1 , and 1 Sparcstation-20).

The IKOS emulator was run at 20 MHz as this was re
quired to handle the 29 virtual clocks within the 500kHz
clock period of the external clock. The microprocessor was
tested both using the Functional test, and the Logic an
alyzer features. Both tests generated correct results on
the first run. Functional test including setup and check
of generated vectors took about 1 second to perform. A
total of 48 cycles were executed which corresponds to a to
tal of 96us spent in actual emulation with a user clock of
500kHz. In comparison, gate-level netlist simulation time
on an Ultrasparc-1 including compile was 19 seconds, while
about 100ms was spent in simulation. The relative speedup
of the hardware emulation compared to gate-level software
simulation in this case is thus in the order of 1040 times.

Hardware emulation has so fax been used to ensure a cor
rect correspondence between behavioral level simulations
and program runs on actual hardware. Now that we have
shown the two design models to be equivalent, we can start
using hardware emulation for another purpose. Since the
software simulation of the behavioral axchitecture model is
rather slow (2-3 committed instructions per second), only
small program runs were possible while checking the mi
croprocessor for correctness. Since haxdware emulation is
quite fast as demonstrated by the test run described above,
the next logical step in the validation of the microprocessor
would be to run larger programs using the hardware em
ulator to further test the functional aspects of the design.
Instead of the program runs being limited to a few thou
sand cycles, we can now potentially run them for millions
of cycles.

V II. C o n c l u s i o n s

This paper has illustrated the potential benefits in in
creased instruction throughput on a basic simultaneously
multithreaded axchitecture derived by extending a super
scalar Tomasulo architecture with the ability to handle
multiple threads. We have shown that very few and sim
ple modifications are required to extend an ordinary su
perscalar architecture to a full-fledged simultaneously mul
tithreaded processor. We have shown that even on our
simple SMT architecture without undue resource exten
sions to handle the higher multithreaded workload, use
ful instruction throughput can be increased by 60% at 2
threads and 160% at 8 threads. The improved through
put is mainly due to SM T’s ability to convert TLP into
ILP, thus dramatically increasing the amount of available
parallelism between instructions in the issue stage. Fur
thermore we have demonstrated that the latency hiding
potential of our SMT architecture could make expensive
hardware speculation useless at a sustained thread count
as low as eight.

This paper has also discussed the validation techniques
used during the implementation of the simultaneous mul
tithreaded microprocessor. Validation of the behavioral

HANS JACOBSON: DESIGN AND VALIDATION OF’ A SIMULTANEOUS MULTITHREADED DLX PROCESSOR

specification was accomplished by a combination of simu
lation traces, runtime self-checkers, and parameterization.
Runtime self-checkers were used to ensure that certain
properties hard to check manually were satisfied during
program execution and if not, the pipeline stage causing
the error and the associated instruction were displayed to
the designer which could then use this information to lo
cate the error in a full simulation trace of the processors
internal datastructures. Processor resources were param
eterized which introduced the ability to exercise certain
uncommon behaviors of the processor more frequently by
creating hotspots in different parts of the processor. Parts
of the behavioral specification were then synthesized to
gate-level netlists and shown correct in co-simulation with
the unsynthesized parts. The synthesized parts were also
taken through the GVL toolpath and successfully run on
the IKOS hardware emulator, demonstrating that the de
sign runs correctly also in hardware.

R e f e r e n c e s

[1] Gail Alverson, Simon K ahan, R ichard K orry, C athy M cC ann, and
B urton Sm ith , “Scheduling on th e T e ra M T A ,” Tech. R ep., T era
C om puter Com pany, Seattle, W ashington USA.

[2] Jack Lo, Susan Eggers, Joel E iner, H enry Levy, R ebecca S tam m ,
and Dean Tullsen, “Converting thread-level parallelism to
instruction-level parallelism v ia sim ultaneous m ultith read in g ,”
A C M T r a n s a c t i o n s o n C o m p u t e r S y s t e m s , vol. 15, no. 3, pp. 322
354, 1997.

[3] D ean Tullsen, Susan Eggers, Joel E m er, H enry Levy, Jack Lo, and
Rebecca S tam m , “E xploiting choice: In stru c tio n fetch and issue
on an im plernentable sim ultaneously m ultith read in g processor,”
in P r o c e e d i n g s o f t h e 2 3 r d A n n u a l I n t e r n a t i o n a l S y m p o s i u m o n

C o m p u t e r A r c h i t e c t u r e , 1996.
[4] M ichael K antrow itz and L isa Noack, “I ’rn done sim ulating; now

w hat? verification coverage analysis and correctness checking of
th e D EC chip 21164 A lpha m icroprocessor,” in P r o c e e d i n g s o f t h e

3 3 r d D e s i g n A u t o m a t i o n C o n f e r e n c e , 1996, pp. 325-330.
[5] Jam es M onaco, David Holloway, and R ajesh R aina, “Functional

verification m ethodology for th e Pow erPC 604 m icroprocessor,”
in P r o c e e d i n g s o f t h e 3 3 r d D e s i g n A u t o m a t i o n C o n f e r e n c e , 1996,
pp. 319-324.

[6] A. C handra, V. Iyengar, D. Jam eson , R . Jaw alekar, A Nair,
B. Rosen, M. M ullen, J . Yoon, R . A rrnoni, D. G eist, and Y . Wolf-
stha l, “Avpgen - a tes t generator for a rch itec tu re verification,”
I E E E T r a n s a c t i o n s o n V e r y L a r g e S c a l e I n t e g r a t i o n S y s t e m s , vol.
3, no. 2, pp. L88-200, L995.

