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D e s i g n  a n d  V a l i d a t i o n  o f  a  S i m u l t a n e o u s  

M u l t i - T h r e a d e d  D L X  P r o c e s s o r

Hans Jacobson

A b s t r a c t —  M o d e r n  d a y  c o m p u te r  s y s te m s  r e ly  o n  tw o  
fo rm s  o f  p a r a l le l is m  t o  a c h ie v e  h ig h  p e r f o r m a n c e ,  p a r a l le l is m  
b e tw e e n  in d iv id u a l  in s t r u c t io n s  o f  a  p r o g r a m  ( IL P )  a n d  p a r 
a lle l is m  b e tw e e n  in d iv id u a l  t h r e a d s  ( T L P ) .  S u p e r s c a la r  p r o 
c e s s o r s  e x p lo i t  I L P  b y  is s u in g  s e v e ra l  in s t r u c t io n s  p e r  c lo c k , 
a n d  m u lt ip r o c e s s o r s  ( M P )  e x p lo i t  T L P  b y  r u n n in g  d i f f e re n t  
t h r e a d s  in  p a r a l le l  o n  d if f e r e n t  p r o c e s s o r s .

A  f u n d a m e n ta l  l im i ta t io n  o f  t h e s e  a p p r o a c h e s  t o  e x p lo i t  
p a r a l le l is m  is t h a t  p r o c e s s o r  r e s o u r c e s  a r e  s t a t i c a l ly  p a r t i 
t io n e d .  I f  T L P  is lo w , p r o c e s s o r s  in  a  M P  s y s te m  w ill b e  id le , 
a n d  i f  IL P  is lo w , is su e  s lo ts  in  a  s u p e r s c a l a r  p r o c e s s o r  w ill 
b e  w a s te d .  A s  a  c o n s e q u e n c e ,  t h e  h a r d w a r e  c a n n o t  a d a p t  
t o  c h a n g in g  lev e ls  o f  IL P  a n d  T L P  a n d  r e s o u r c e  u t i l i z a t io n  
t e n d  t o  b e  low .

S in c e  r e s o u r c e  u t i l i z a t io n  is low  t h e r e  is p o t e n t i a l  t o  
a c h ie v e  h ig h e r  p e r f o r m a n c e  i f  s o m e h o w  u se fu l  in s t r u c t io n s  
c o u ld  b e  fo u n d  t o  fill u p  t h e  w a s te d  is su e  s lo ts .  T h is  p a 
p e r  e x p lo r e s  a  m e th o d  c a l le d  s im u l ta n e o u s  m u l t i th r e a d in g  
(S M T )  t h a t  a d d r e s s e s  t h e  u t i l i z a t io n  p r o b le m  b y  l e t t in g  
m u lt ip le  t h r e a d s  c o m p e te  fo r  t h e  r e s o u r c e s  o f  a  s in g le  p r o 
c e s s o r  e a c h  c lo c k  c y c le  t h u s  in c r e a s in g  t h e  p o t e n t i a l  IL P  
a v a i la b le .

I .  I n t r o d u c t i o n

To achieve high performance, modern day computer sys
tems rely on two forms of parallelism in program execution. 
Wide issue superscalar processors try to exploit instruction 
level parallelism (ILP) that exists within a single program 
and issue multiple instructions per cycle. However, even 
aggressive superscalar implementations that use dynamic 
hardware scheduling to extract parallelism cannot take full 
advantage of the resources of a wide issue processor due to  
inherent control and data dependencies between instruc
tions of a single program. Since the resources in the su
perscalar case are statically allocated to a single program, 
resources (issue slots) are wasted when there is not suffi
cient ILP available in that program. Figure 1 (a) illustrates 
the vertical and horizontal issue slot waste that can take 
place in a superscalar processor. Horizontal waste occurs 
when the scheduling logic cannot find enough instructions 
to issue to fill up all issue slots this cycle, i.e. there is a lack 
of ILP available. Vertical waste may occur when a cache 
miss or data dependencies hinders the scheduling logic to 
issue any instruction this cycle.

Multiprocessors (MP) try to exploit thread level par
allelism (TLP) that exists either between parallel threads 
derived from a single program, or between completely inde
pendently executing programs. The individual processors 
in the MP system can suffer from vertical and horizontal 
issue waste as in the superscalar case. In addition, an MP 
system can suffer from thread shortage which leaves some 
processors without a program to execute. Resources in
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these idle processors are thus wasted due to lack of TLP as 
shown in Figure 1(b). A typical example of thread shortage 
is when a program that has been parallelized into multiple 
threads has to go through a sequential section of code.

Multithreaded (MT) processors [1] allow several thread 
contexts to  be active. Each cycle, one context is selected 
and instructions from that thread are issued. MT pro
cessors can thus address the problem of vertical issue slot 
waste. Whenever a certain thread cannot issue any instruc
tions this cycle, another thread that can issue is selected as 
illustrated in Figure 1(c). While MT addresses the verti
cal waste problem, the limitation that only one thread can 
issue per cycle still leaves the problem of horizontal waste.

Simultaneously multithreaded (SMT) processors also al
low several thread contexts to be active. Each cycle, in
structions can be issued from multiple threads. SMT pro
cessors thus address both vertical and horizontal waste. 
Whenever a thread cannot issue any instructions during a 
cycle, all other threads can still issue so vertical waste is 
reduced. Whenever a thread cannot fill all issue slots dur
ing a cycle, instructions from other threads can compete 
for and fill up these slots thus reducing horizontal waste. 
These situations are illustrated in Figure 1 (d).

Statically partitioning processor resources puts a limita
tion to  how much parallelism can be exploited. The super
scalar and MP processors statically partition the individual 
processor resources to be used by only allowing one thread 
to execute at a time. MT processors improve upon this 
concept by allowing multiple threads to be on standby but 
still only allow one thread to use the processor resources 
per cycle. An SMT processor on the other hand has the 
ability to dynamically adapt to varying levels of TLP and 
ILP since each cycle multiple threads compete for avail
able issue slots. By allowing multiple threads to issue in
structions each cycle, TLP is effectively transformed into 
ILP since there is no control or data dependency between 
instructions belonging to different threads. Subsequently, 
given the same amount of resources, SMT has the potential 
to do more useful work compared to the other approaches. 
This has also been indicated by a comparative study of 
SMT and MP architectures [2],

Project goals

The focus of this project has been the development, im
plementation, validation, and evaluation of a simultaneous 
multithreaded microprocessor architecture running DLX 
native code. In this paper we will focus on the architecture 
implementation and performance analyses of the processor. 
We are mainly interested in finding out how simultaneous 
multithreading can help improve instruction throughput on
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Fig. 1. H orizontal and vertical issue slot w aste in different processor 
arch itectures

an architecture with the same amount of resources that can 
be found in todays single-threaded superscalar processors. 
Details of the techniques used to validate correct processor 
functionality through simulation, self-checkers, and hard
ware emulation are also discussed.

Section II presents a baseline SMT architecture based 
on the Tomasulo approach. In Section III we will discuss 
shortcomings of this baseline architecture and how it can be 
improved upon. This section will also examine cache miss 
tolerance of the SMT architecture. Section IV will examine 
the possibilities of exploiting multithreadings latency hid
ing ability to avoid expensive hardware speculation, and 
identify where SMT and non-speculative SMT processors 
could be useful. Sections V and VI presents techniques 
used to validate the correct operation of the processor.

II. A BASELINE SM T ARCH ITECTURE

Since an SMT processor is basically a superscalar pro
cessor extended to  handle multiple threads this section will 
first present a superscalar Tomasulo architecture that will 
form the base of our integer SMT architecture.

A. An SM T Tomasulo architecture

The Tomasulo approach to  dynamic hardware specula
tion use three special stages to handle out of order and 
speculative execution. The issue stage illustrated in Fig
ure 2 checks for and resolves control and data dependencies 
between instructions before issuing them to the reservation 
station stage. As they are issued, each instruction is given 
a unique reorder buffer entry into which its result should 
be written. A register data structure in the issue stage 
keeps track of which reserved reorder buffer entry holds 
or will hold the latest updated value of a register operand.

The destination register and source operands of an instruc
tion are thus renamed to these corresponding entries in the 
reorder buffer to avoid RAW, WAR, and WAW hazards. 
After the instructions are issued, the reservation station 
stage holds each instruction until it has received all needed 
operands, either from the register file, reorder buffer, or 
as a fed back result on the common databus. Once all 
operands have been received the instruction is forwarded 
to its respective function unit. The reorder buffer collects 
the results from the functional units and stores them tem
porarily until the instructions can be committed at which 
time the processor state is changed by writing the results 
to  the registers or memory. By issuing instructions and 
reserving their reorder buffer entries in order, the instruc
tions can also be committed in order by treating the reorder 
buffer as a circular FIFO queue. Loads and stores in our 
architecture are handled at commit time by the reorder 
buffer. Loads are blocking while stores are non-blocking. 
Similarly, program counter addresses for branch mispredic
tions are updated at commit time by the reorder buffer1.

The presented superscalar Tomasulo architecture al
ready have all basic features needed for a superscalar SMT 
architecture. The only additions needed to support multi
ple threads are:

• multiple program counters and a method to  select one 
to fetch from each cycle

• per thread instruction flush and trap mechanisms
• a larger register file to handle all threads.

The only significant impact on cycle time expected from 
such moderate extensions to  the baseline superscalar pro
cessor is the larger register file which may have to be 
pipelined and take multiple cycles to access. However, nei
ther register file, instruction issue, execution, or commit is 
significantly more complex than that of the baseline super
scalar processor.

B. Processor resources

We decide to keep as many resources as possible shared. 
Thus the instruction queue, reservation queues, function 
units, reorder queue, and caches are all shared between 
threads. This way nearly all hardware resources are avail
able even when only one thread is running. This is an 
important feature in order to support high performance 
under varying levels of TLP and ILP.

Instruction issue queue size is practically limited by the 
number of operand comparisons that need to be done to  
detect data dependencies which is a function of n2, where 
n  is the number of entries of the issue window. Having an 
instruction queue larger than the window size only serves 
as buffering and is only really useful to provide instructions 
during a cache miss. Since the probability that the instruc
tions at the end of the queue are actually useful (correctly 
speculated) decreases rapidly with the queue size due to 
increasing number of branch predictions made earlier in 
the queue, large queues are not very helpful. We decide

'M o re  efficient approaches can certa in ly  be im plem ented in which 
th e  functional u n its  handle lo ad /s to re s  and program  counter updates 
bu t is ou t of scope for th is  p ro ject
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Fig. 2. An SMT Tomasulo superscalar processor architecture

to implement a rather normal instruction queue size of 32, 
which is not significantly larger than the 28 entry queue 
used in for example the HP PA-8000.

We chose the maximum fetch bandwidth to be 8 instruc
tions per cycles as our experiments have shown that less 
would limit the throughput when more than one thread 
is running, but more than that does not significantly im
prove performance even with multiple threads running due 
to increased cache miss rates and practical limitations on 
instruction issue queue size.

As loads in our architecture are handled at instruction 
commit time by the reorder buffer, load latency may be 
high. We therefore need fairly large reservation station 
queues in order for them to  not get filled up with instruc
tions awaiting results from loads, thus blocking other in
structions from being issued. We choose to use 8 entry 
reservation queues as the expected load latency when data 
dependencies during address calculation are accounted for 
is about 7-8 cycles.

As illustrated in Figure 3 4 arithm etic/logic, 2 load/store  
(address calculation), and 1 branch unit seem to be the 
right choice when work load ranges from 1 to 8 threads. A 
shared 512 entry 2-bit branch prediction buffer is used to 
predict branches.

As a consequence of the reservation station queue size 
and number of functional units which together potentially 
allow 77 instructions to be in-flight at the same time, the 
reorder buffer is chosen to be 64 entries large as we do not 
expect the reservation stations and function pipelines to 
ever be 100% full. In order to not make the reorder buffer 
throughput-limiting we allow as many instructions to be 
committed per cycle as we fetch, namely 8.

While a cache subsystem is not directly implemented in

Fig. 3. Instruction throughput dependence on number of function 
units

the proposed architecture, effects of cache misses are sim
ulated using data provided in [3], The cache subsystem  
consists of three levels of caches. Level 1 instruction and 
data caches are directmapped and of 32KB size each with 
a latency of 6 cycles to  the L2 cache. The level 2 cache 
is a shared 256KB 4-way associative cache with a latency 
of 12 cycles to the L3 cache. The level 3 cache is a 2MB 
shared cache with a 4 cycle access time and a latency of 
62 cycles to main memory. The LI cache miss percentage 
under a fetch policy of 8 instructions per cycle is given in 
Figure 4. We simulate cache misses using the average cache 
miss penalty which ranges from 15 to 12 cycles depending 
on how many threads are running due to number-of-thread
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Fig. 4. Simulated cache miss rate at different number of threads

dependent differences in miss rates in the L2 and L3 caches.

C. Simulation methodology

The SMT processor presented in this paper was imple
mented as a behavioral model but in a synthesizable sub
set of Verilog. The infrastructure used for behavioral and 
gate-level netlist simulation was Verilog-XL from Cadence. 
For hardware emulation GVL from IKOS was used. The 
processor implementation runs unmodified DLX native op
codes. The dlxcc compiler and the dlxasm assembler were 
used to compile C-programs into native DLX instruction 
opcodes. Due to the slow simulation of a design as large 
as an SMT processor in Verilog-XL, simulation runs were 
restricted to small programs such as bubble sort, selection 
sort, Fibonacci etc. with each run comprising a few thou
sand instructions. It should be noted that the amount of 
ILP available in such small programs is rather limited, and 
since dlxcc is targeted for a single issue pipeline, no static 
instruction scheduling is performed by the compiler fur
ther reducing available ILP. To not give undue advantage 
to the SMT methodology in terms of speedup due to in
creased ILP when instructions from independent threads 
are introduced, the assembly code generated by dlxcc was 
slightly hand-optimized to yield a final single threaded IPC 
approximately double that of the original code.

The small programs and short program runs undoubt
edly introduce a certain margin of error in our measured re

sults. However, observations of major trends in instruction 
throughput should still be valid. We speculate and issue 
wrong path instructions to get an accurate representation 
of resource interference between correctly and incorrectly 
(mispredicted) issued instructions. All IPC performance 
numbers presented of course only represent correctly issued 
(committed) instructions. We define resource utilization as 
the number of cycles a function unit had useful work to  
perform.

III. SM T ARCHITECTURE ENHANCEMENTS

As illustrated in Figure 5(a,b), the baseline SMT archi
tecture presented so far increase the useful IPC by about 
80% at 8 threads and resource utilization by 50%. While it 
is encouraging to see that even with the minimum required 
set of SMT extensions to the superscalar architecture that 
has been introduced so far do result in a visible speedup, 
with a resource utilization of only 32% it should be possible 
to achieve a higher throughput. To achieve higher resource 
utilization we need to identify the limiting factors in the 
architecture.

A. Reorder buffer enhancements

One fairly obvious limitation can be found in the re
order buffer. While the reorder buffer is not throughput 
limiting for single threaded execution due to the balanced 
fetch/com m it bandwidth, the situation changes when mul
tiple threads are involved. The problem lies in the sin
gle commit (front) pointer in the circular reorder queue. 
If the instruction in the entry pointed to by the commit 
pointer has not yet received its result or is experiencing a 
load cache miss it will block other instructions from com
mitting. It will thus hinder instructions belonging to  other 
threads that have received their results from committing al
though there is no order-dependence between instructions 
from different threads. A straight forward solution to this 
thread block problem is to  keep a set of thread specific 
front pointers in the reorder buffer. Each thread can then 
commit its own instructions independent of the status of 
instructions belonging to other threads. Using multiple 
commit pointers results in reorder buffer entries becoming 
available more quickly allowing additional instructions to  
issue, and that potentially a higher average of committed 
instructions per second can be reached. Figure 5(a,b) illus
trates the improved performance obtained by the multiple 
commit versus single commit pointer approaches. With 
multiple commit pointers the IPC and utilization increase 
at 8 threads compared to 1 thread are effectively doubled 
compared to the single commit pointer approach. Using a 
single commit pointer was clearly a limiting factor in both 
throughput and utilization. The hardware structure re
quired to support multiple commit pointers should not be 
significantly more complex than that of a single pointer.

B. Distributing instruction fetch bandwidth

Although we fetch 8 instructions from 1 thread (8:1) each 
cycle, the average number of instructions that are usefully
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fetched per cycle (due to cache misses and misfetched in
structions caused by branches) lie in the range of 3.8 in
structions per cycle. To reduce this fetch block fragmenta
tion the fetch bandwidth could be distributed over several 
threads per cycle. Figure 6 illustrates how fetching differ
ent number of instructions from different number of threads 
per cycle affects instruction throughput. Fetching of 1 or 2 
instructions per thread suffers from thread shortage when 
few threads are running explaining the low IPC in these 
cases. The best overall fetching scheme seem to  be fetch
ing 4 instructions from 2 threads (4:2) each cycle. The 4:2 
scheme increases the usefully fetched instructions by 20% 
from 4.7 to 5.9 per cycle on the average for 4 and 8 threads. 
However, for 1 and 2 threads the usefully fetched instruc
tions per cycle decrease by almost 10% from 2.9 to 2.7. We 
believe this decrease is an artifact of the higher sensitivity 
to cache misses at low thread counts. As a whole, we in
crease the useful fetch bandwidth by about 10% from 3.8 
to  4.3 instructions per cycle by using the 4:2 fetch scheme 
rather than the original 8:1 scheme. The reason the use
ful fetch bandwidth increase (decrease) does not result in 
a higher (lower) IPC than it does is most likely a result 
of the limited ILP available due to poor static instruction 
scheduling of the compiler. In each case, the actual fetch 
bandwidth is higher than the actual issue bandwidth, so the 
processor is issue limited rather than fetch limited which 
explains the little effect a higher (lower) fetch bandwidth 
has on IPC. W ith a compiler targeted for a superscalar ar
chitecture the IPC improvements due to improved useful 
fetch bandwidth should be more pronounced.

C. Reducing instruction queue clog

A problem that is not present in a single threaded super
scalar architecture is that of instruction queue (IQ) clog. 
When several threads share the same instruction queue

IPC
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Fig. 6. Instruction throughput as a function of different instruction 
fetching schemes

however, in the worst case, a single slow-running thread 
may end up filling up all instruction queue entries thus 
drastically reducing available TLP. This situation occurs 
when the input (fetch) bandwidth of a certain thread is 
higher than the output (issue) bandwidth in the instruc
tion queue, and can easily occur in sections of code where 
there are tight control and data dependencies. The solution 
to this problem is providing feedback of the current instruc
tion queue status to the fetch stage so that the threads run
ning most efficiently can be selected to fetch new instruc
tions this cycle. A good approximation of what threads are 
running most efficiently is to measure how many instruc
tions a thread has present in the decode and instruction
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Fig. 7. Instruction throughput at different instruction cache miss 
rates

queue stages. We should then fetch instructions from the 
threads with least number of instructions in these stages 
which should then represent threads with a high output 
bandwidth from the issue stage. While our benchmark 
programs are too small and the runs too short to be able 
to confirm these observations, we still believe it is a valid 
and necessary technique to improve performance. Other 
schemes for increasing instruction throughput and reduce 
IQ clog problems have also been presented [3].

D. Cache miss tolerance

As discussed earlier, cache miss frequencies increase with 
number of simultaneously running threads. Clearly, good 
cache miss tolerance is thus an important feature to  achieve 
high performance in an SMT architecture. Figure 7 il
lustrates the performance degradation due to instruction 
cache miss rates for different number of threads (data cache 
miss rates are modeled at 0% in this comparison). The fig
ure clearly illustrates that even with a 20% cache miss rate 
at 8 threads, throughput is still 97% of that achieved at a 
0% cache miss rate. Thanks to the latency hiding potential 
of multithreaded architectures the higher cache miss rates 
at multiple threads do not have a major performance im
pact. Ordinary cache sizes for superscalar processors thus 
do not need to be made significantly larger to handle a 
workload of 8 threads efficiently.

IV . M u l t i t h r e a d i n g  a n d  s p e c u l a t i v e  e x e c u t i o n

While speculation is an important property to achieve 
high performance in single threaded superscalar processors, 
this might not be true of multithreaded architectures. As 
discussed earlier, multithreading provides multiple threads 
that can be chosen to  issue instructions from each cycle. 
As illustrated in Section III an SMT architecture is very 
tolerant towards high cache miss frequencies and the same 
is also true for high cache miss latencies. This latency tol-

IPC

Fig. 8. Instruction throughput and resource utilization when using 
speculation vs. when not using speculation

erant quality could also potentially be used to  avoid spec
ulation. As long as enough threads are available to contin
uously provide instructions to the pipeline, fetching from 
a thread could be suspended upon encountering a branch 
and be reactivated only when the branch has been resolved. 
This way, the resource interference between correctly and 
incorrectly issued instructions would also be eliminated.

Since hardware based speculation is very expensive in 
terms of combinational logic latency, a multithreaded ar
chitecture might be better off without using speculation 
and aiming for a higher clock rate instead. Several simpli
fications can be made to a superscalar architecture if specu
lation is not used. Most significantly, the reorder buffer can 
be removed completely, and the issue stage does not need 
to check for control dependencies reducing the amount of 
comparisons needed to issue an instruction. Furthermore 
there is no longer a need for instruction flush mechanisms 
or branch prediction logic. It should be noted that all SMT 
characteristics are still preserved in the non-speculative ar
chitecture. The architecture still addresses both horizontal 
and vertical issue slot waste since it can still issue multiple 
instructions from multiple threads per cycle.

The important question that need to be answered is how
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many threads would be needed to even out the through
put loss caused by not using speculation. Figure 8(a,b) 
illustrates the effects removing speculation from the SMT 
architecture has on throughput and resource utilization. At 
around 8 threads the difference in throughput is only 20% 
and this could probably be made up for in a higher clock 
frequency for the non-speculative architecture. From the 
results it would thus seem that the benefits from specula
tion have more or less disappeared due to multithreadings 
latency hiding potential when running more than 8 threads. 
It should be noted however, that non-speculative execution 
is only really a high performance alternative to speculation 
when we can sustain a minimum of 8 simultaneously run
ning threads over time. In situations of varying TLP this 
might not be the case, and under such circumstances a 
speculative SMT is still preferable.

A speculative SMT processor with its ability to handle 
varying levels of TLP and ILP and potential to exploit in
dividual thread throughput based on thread priority seem 
well suited for high-performance desktop environments 
where tasks range from low-latency single threaded inter
active programs to high-latency, high-throughput, multi
threaded simulation runs.

A non-speculative processor could probably be useful 
for high-performance server applications where many tasks 
are available and high instruction throughput is desirable. 
The ability to handle a large workload efficiently even at 
a somewhat lower throughput per individual thread seem  
well suited for a server environment which usually do not 
run interactive low-latency demanding tasks.

V . B e h a v i o r a l  V a l i d a t i o n

Due to the increased concurrency and more complex 
interaction between operations in a simultaneous multi
threaded architecture, ensuring a correct behavior is a a 
key objective during design. In this section we will focus 
on techniques that have been applied in order to gain a high 
confidence level on the correct operation of the SMT micro
processor. We describe techniques used to gain confidence 
of the correct behavior of the processor through simulation 
at the behavioral level, simulation at the synthesized gate 
netlist level, as well as hardware emulation of a subset of 
the processor pipeline stages.

Behavioral simulation was mainly used to  ensure the cor
rect operation of the microprocessor at a functional level. 
Simulation of gate level netlists of the processor were per
formed mainly to  ensure that the synthesized gate-level ar
chitecture netlist was equivalent to the intended behavior 
of the behavioral specification. Hardware emulation was 
used mainly to further gain confidence in that the synthe
sized gate-netlists would behave as intended when running 
as real hardware. The following sections will describe these 
steps in detail.

Formally verifying a design as large as an SMT micro
processor in detail was not feasible both due to lack of ap
propriate tools and a tight time budget. Other techniques 
for most efficiently discovering and locating the source of 
errors in such a design therefore had to be developed.

A. Validation techniques

While observing input (instructions) and output (regis
ters and memory) behavior often can give the designer an 
indication that something has gone wrong during the pro
gram run, it is often very hard to locate the source of the 
problem. Program runs also often tend to  deadlock be
fore any results have been produced, especially in the early 
stages of implementation, making it impossible to learn 
what went wrong by simply observing the input-output be
havior. Quite frequently it was discovered, program runs 
completed correctly in terms of output behavior, but still 
had subtle internal errors not visible in the produced out
put. Clearly we need some means to efficiently observe the 
internal state of the processor during execution. There are 
two parts to this problem, detecting that an error has taken 
place, and locating the source of the error.

A .l  Locating an error

To make the internal state visible to the designer, sim
ulation traces were written out to  a file during a program 
run. The simulation trace contains cycle by cycle informa
tion and content of internal datastructures of each pipeline 
stage as well as the communication between them. The 
simulation trace can be restricted to display information 
only of desired pipeline stages. To facilitate the track
ing of individual instructions through the pipeline, each 
instruction is assigned a unique id tag when it is fetched 
from the instruction memory. Each entry in the internal 
datastructures are then displayed with both thread and 
instruction id’s as well as their data fields to easily iden
tify where instructions are and what their current status 
is. Figure 9 illustrates the contents of a reservation sta
tion queue. Each entry in the queue is clearly marked as 
valid or invalid, the instruction id is clearly displayed as 
well as the thread it belongs to. The current status of the 
instruction can also be observed. In this case, instruction 
38i that belongs to  thread 3 has received one of its source 
operands (srcl marked as done) while it is still waiting for 
the other operand (src2). We can also see what type of 
instruction this is, what reorder buffer entries it expect its 
source operands to  come from (q20 and q l8), as well as 
what reorder buffer entry the result should be written to 
(q29). During this cycle instructions 36i and 35i are both 
ready to be forwarded to the function unit associated with 
the reservation station as they have both finished reading 
their respective source operands.

A .2 Detecting an error

W hile the simulation traces discussed above are useful to  
detect errors for very short program runs, it becomes a te
dious and time consuming task to detect errors for program 
runs consisting of thousands of clock cycles with trace files 
over 70 MB in size.

An easy way to detect errors manually is to  do a sparse 
simulation run. In a sparse simulation run only the most 
important information is displayed, such as when store or 
branch instructions are issued , what their prediction status
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reservation ..queuc[0] = 
reservation  .q u cu e fl]  = 
reservation  _queue[2] = 
reservation_queue[3] =

valid id thread iristr func pred imm
0 0i 0 00 0000 0 0
I 38i 3 10 1101 0 0
1 36i 4 10 I 101 0 0
1 35i 4 10 1101 0 0

desi Rrcl (done,source, value)

qOO 0 q()0 00000000000000000000000000000000
q29 I q20  00000000000000000000000001111000
q27 I q l e  00000000000000000000000001000000
q25 I q le  00000000000000000000000001000000

src2(done,sourcc,v;iluc)

0 qOO 0000000000000000ixx)0(xx)tx)0000(xx)
0 q l8  00000000000000000(XXXXX)(XX)(XX)000
1 qOO 00000000000000(XXXXX)000000(XXXXX) 
1 qOO 0000000000000000(XXXXXXXXX)000000

Fig. 9. Reservation queue d a ta s tru c tu re

is, and when they are committed. Deadlocks and mishan
dling of branches, e.g. errors in or the branch prediction 
logic etc. that may cause the program to follow an unin
tended execution path, are easily detected with such sparse 
simulation runs. The place of the error is then in a majority 
of cases easily located through the thread and instruction 
id’s in the displayed information.

In some cases however, it is not enough to observe the 
flow of the sparse simulation traces to discover errors. In 
these situations, self-checkers [4], [5] are an important com
plement to detecting errors. Run-time self-checkers that 
continually checks that certain properties are satisfied dur
ing program runs have been especially helpful in detecting 
subtle errors. A global runtime self-checker that ensures 
correct behavior of the pipeline stages during stalls and 
flushes will be discussed shortly. When such a self-checker 
discovers a violation of some property, it displays informa
tion pointing out the pipeline stage the error was discov
ered in along with the thread and instruction id’s of the 
instruction in that stage at the time of the error. Locating 
the error in the simulation trace file then becomes a fairly 
simple task.

A.3 Detecting uncommon errors

While sparse simulation traces and runtime self-checkers 
can catch a majority of errors, some errors will only show 
up in very specific situations that occur only rarely. Usu
ally such situations can be artificially created by using 
constraint solvers [6] to find instruction combinations that 
have a high probability of exercising the conditions leading 
to the errors. Since we did not have access to such con
straint solvers we had to  find another way to increase the 
probability of such uncommon errors to occur.

The solution was found in parameterization of the pro
cessor resources. By parameterizing the sizes of instruction 
queues, reorder buffer, reservation station queues, number 
of instructions fetched per cycle, number of threads run
ning simultaneously, number of function units, number of 
committed instructions per cycle etc. we were able to ex
ercise certain behaviors of the processor more heavily by 
creating hotspots. For example, by setting the instruction 
queue to be small we exercised the behavior of the proces
sor when the issue stage was full and the fetch and decode 
stages needed to  stall. As another example, by using a 
large instruction queue and many functional units we in
stead got high coverage that instruction dependencies were 
handled correctly under high concurrency. These hotspots 
could then easily be moved around to  stress different parts 
of the processor.

B. Correctness properties requiring self-checkers

B .l  A global runtime self-checker

While many properties of local nature were easily 
checked manually by outlining “paper self-checkers” and 
comparing against the implemented code, global proper
ties were that much harder to check manually due to many 
special cases and types of interaction. Properties of a global 
nature that are crucial to the correct operation of the pro
cessor are found in the interaction between pipeline stages 
when both stall and flush conditions occur simultaneously. 
Due to  a tight time budget, the implementation of these 
functionalities were at first implemented in a very ad-hoc 
manner without any standard way of dealing with them  
first having been thought out. While the approaches to  
handle pipeline stalls and thread flushes conceptually were 
fairly straight forward it was hard to gain confidence in 
the correct operation of their implementations even locally. 
When the pipeline stages were interconnected and started 
interacting with each other, it became a hopeless task to 
manually check that pipeline stall and thread flush condi
tions were met. To make matters worse, erroneous behavior 
does not always show up in the final register and memory 
output of the test programs that are run making it hard to  
detect and locate such errors. Automated means of both 
detecting that an error has occurred as well as locating 
the offending pipeline stage and associated instruction were 
therefore needed.

A runtime self-checker illustrated in Figure 10 was there
fore implemented to assist in the checking of correct stall 
and flush behavior. As a consequence of the development 
of the stall and flush self-checker, the necessary proper
ties that the different pipeline stages had to satisfy became 
more clearly laid out. As a result a much simplified uni
fied approach to pipeline stall and thread flush was also 
developed. This unified approach in turn simplified the 
self-checker which now only needed to check a few well de
fined properties. For example, the properties that must 
be upheld when a reservation station becomes full are as 
follows:

• All outputs belonging to  a flushed thread must be 
cleared regardless of pipeline stall status

• The Register file and Reorder buffer must keep their 
current outputs belonging to  the stalled reservation 
station (so that any pending operands can be correctly 
read in when the reservation station becomes non-full)

• The Register file and Reorder buffer must continue to 
serve requests not associated with the stalled reserva
tion station

• The Issue stage must clear all outputs belonging to 
the stalled reservation station (to avoid reading in the
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Common data bus

Fig. 10. The global self-checker

same instruction twice)
■ The Issue stage must continue to  feed instructions to  

all non-stalled reservation stations 
The global self-checker also checks that the fetch and de
code stages behave correctly when the issue stage becomes 
full, and also that all instructions belonging to a flushed 
thread indeed are flushed and do not show up on the out
puts of the pipeline stages the following cycles. The self
checker non-intrusively performs its task by monitoring the 
communication between the pipeline stages. The global 
self-checker became a clear example of when thinking of a 
problem from a self-checkers point of view also helped to 
simplify the implementation itself, not just ensuring that 
the original implementation behaved correctly.

B.2 A local runtime self-checker

Another property that is somewhat hard to check man
ually is that the thread specific commit (front) pointers 
in the reorder buffer behave correctly. While the property 
that a thread pointer only commits instructions belonging 
to its own thread can be fairly easily derived by just looking 
at the implemented code and performing a few test runs, 
it is harder to ensure that the pointers do not go “out 
of bounds” with respect to  allocated buffer entries. If a 
pointer would go out of bounds it might result in incorrect 
information about free buffer entries being communicated 
to the issue stage which has shown to cause errors that are 
hard to discover and track down.

Since it is hard to determine the correct boundaries when 
we are dealing with multiple front pointers, to aid in the 
self-checking of these pointer boundaries we added a main 
front pointer. A consequence of adding a main front pointer 
was that now calculation of free buffer entries became much

easier to  perform and check for correctness. The thread 
specific front pointers could now be initialized to  the posi
tion of the main front pointer each cycle significantly sim
plifying the code necessary to  track their individual posi
tions. The boundary correctness checks then became quite 
simple, we only needed to  check that the following condi
tions were satisfied (mfp stands for main front pointer, mrp 
for main rear pointer, and tfp for thread front pointer).

• if mfp <  mrp then tfp > =  mfp and tfp < =  mrp
• if mfp >  mrp than tfp > =  mfp or tfp < =  mrp
• always (mrp +  free entries) = =  mfp

This was another example of a situation where thinking of 
a problem from a self-checkers point of view also helped to  
simplify the implementation itself.

V I. G a t e - l e v e l  v a l i d a t i o n

This section describes the validation of the microproces
sor through simulation at the synthesized gate-level and 
subsequent emulation on real hardware.

A. Synthesis and gate-level validation

While simulation at the behavioral level gives high con
fidence that the design at least conceptually works cor
rectly, some functionalities expressed in behavioral code 
might have unintended side-effects when synthesized and 
run at the gate-level.

Indeed, some potential discrepancies between behavioral 
level code and synthesized gate behavior in the form of un
expected introduction of latches in combinational parts of 
the design were detected. These differences between in
tended and actual structural implementation were caused 
by signals that under certain circumstances in the behav
ioral code were not explicitly assigned new values during
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a dock cycle. These potential discrepancies were easily re
moved by always specifying a value (explicitly assign the 
old value to a signal if it was not supposed to change) for 
combinational signals.

Instruction fetch, queue sizes, and number of function 
units had to be reduced in order for synthesis to complete. 
In the synthesized version, instruction queue and reorder 
buffer have 4 entries each, we run 2 threads simultaneously, 
fetch 2 instructions per cycle, and have 3 functional units. 
To complete synthesis the stages had to  be synthesized sep
arately and manually interconnected. Synthesis took about 
2-3 hours each for the most complex stages (issue and re
order) on a 333MHz Ultrasparc. The reservation station  
stage did not complete synthesis within 20 hours, and the 
complete stage, ran out of memory at 700 MB. These stages 
along with the function unit stage were therefore not syn
thesized.

The stages that were successfully synthesized consists of 
the fetch, decode, issue, register file, and reorder buffer 
stages. The gate-level representations of the synthesized 
stages were interconnected and co-simulated with the be
havioral implementations of the non-synthesized stages. 
The simulation results of the behavior-only and the mixed 
gate-level and behavior systems were identical, thus in
dicating that the gate-level architecture operated as in
tended. One unexpected benefit of the mixed simulation 
system was that while compilation time increased due to  
huge gate netlists, simulation tim e actually decreased by 
almost a factor of two.

B. Hardware emulation

While we have gained confidence that the synthesized 
gate-level architecture worked as intended through simu
lation run comparisons with the original behavioral spec
ification, all validation still has been performed only via  
software simulation techniques. Any potential discrepan
cies between the software simulated gate-level architecture 
and its implementation as real hardware axe still hidden 
from us. For example, an especially important situation  
to check is the reset and initialization phase. To gain con
fidence that the synthesized architecture works correctly 
when implemented as actual hardware, we map the netlist 
to  actual emulation hardware using the GVL toolpath from 
IKOS.

For this purpose the fetch, decode, and issue stages were 
interconnected and taken through the IKOS hardware em
ulation toolpath. These stages were checked at the VSM 
and Verify levels of GVL and found to have a behavior iden
tical to the behavioral and gate-level software simulation 
models2.

The compile runtime for the three stage pipeline was 
about 15 minutes. 212 I/O  signal consisting mainly of the 
databus between the issue and reservation station pipeline 
stages were specified to be probed. The clock epochs had 
14 and 15 virtual cycles respectively. The number of VMW

2The only experienced problem with the GVL toolpath was th a t a 
dummy input had to be added in addition to reset and clock to  the 
toplevel module to make GVL generate a correct Verify model

primitive gates were 31,991. PPR  FPGA-compile had 71 
board routing tasks which were completed in just over 1 1 / 2  
hours using 7 workstations (1 Ultrasparc-10, 5 Ultrasparc- 
1 , and 1 Sparcstation-20).

The IKOS emulator was run at 20 MHz as this was re
quired to handle the 29 virtual clocks within the 500kHz 
clock period of the external clock. The microprocessor was 
tested both using the Functional test, and the Logic an
alyzer features. Both tests generated correct results on 
the first run. Functional test including setup and check 
of generated vectors took about 1 second to perform. A 
total of 48 cycles were executed which corresponds to  a to
tal of 96us spent in actual emulation with a user clock of 
500kHz. In comparison, gate-level netlist simulation time 
on an Ultrasparc-1 including compile was 19 seconds, while 
about 100ms was spent in simulation. The relative speedup 
of the hardware emulation compared to gate-level software 
simulation in this case is thus in the order of 1040 times.

Hardware emulation has so fax been used to ensure a cor
rect correspondence between behavioral level simulations 
and program runs on actual hardware. Now that we have 
shown the two design models to be equivalent, we can start 
using hardware emulation for another purpose. Since the 
software simulation of the behavioral axchitecture model is 
rather slow (2-3 committed instructions per second), only 
small program runs were possible while checking the mi
croprocessor for correctness. Since haxdware emulation is 
quite fast as demonstrated by the test run described above, 
the next logical step in the validation of the microprocessor 
would be to run larger programs using the hardware em
ulator to further test the functional aspects of the design. 
Instead of the program runs being limited to a few thou
sand cycles, we can now potentially run them for millions 
of cycles.

V II. C o n c l u s i o n s

This paper has illustrated the potential benefits in in
creased instruction throughput on a basic simultaneously 
multithreaded axchitecture derived by extending a super
scalar Tomasulo architecture with the ability to  handle 
multiple threads. We have shown that very few and sim
ple modifications are required to extend an ordinary su
perscalar architecture to  a full-fledged simultaneously mul
tithreaded processor. We have shown that even on our 
simple SMT architecture without undue resource exten
sions to handle the higher multithreaded workload, use
ful instruction throughput can be increased by 60% at 2 
threads and 160% at 8 threads. The improved through
put is mainly due to SM T’s ability to  convert TLP into 
ILP, thus dramatically increasing the amount of available 
parallelism between instructions in the issue stage. Fur
thermore we have demonstrated that the latency hiding 
potential of our SMT architecture could make expensive 
hardware speculation useless at a sustained thread count 
as low as eight.

This paper has also discussed the validation techniques 
used during the implementation of the simultaneous mul
tithreaded microprocessor. Validation of the behavioral



HANS JACOBSON: DESIGN AND VALIDATION OF’ A SIMULTANEOUS MULTITHREADED DLX PROCESSOR

specification was accomplished by a combination of simu
lation traces, runtime self-checkers, and parameterization. 
Runtime self-checkers were used to  ensure that certain 
properties hard to check manually were satisfied during 
program execution and if not, the pipeline stage causing 
the error and the associated instruction were displayed to  
the designer which could then use this information to lo
cate the error in a full simulation trace of the processors 
internal datastructures. Processor resources were param
eterized which introduced the ability to  exercise certain 
uncommon behaviors of the processor more frequently by 
creating hotspots in different parts of the processor. Parts 
of the behavioral specification were then synthesized to 
gate-level netlists and shown correct in co-simulation with 
the unsynthesized parts. The synthesized parts were also 
taken through the GVL toolpath and successfully run on 
the IKOS hardware emulator, demonstrating that the de
sign runs correctly also in hardware.
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