
Design and Verification of the Rollback Chip using HOP: 
A Case Study of Formal Methods Applied to Hardware Design 1

GANESH GOPALAKRISHNAN2 
RICHARD FUJIMOTO3

UUCS-91-015

Ganesh Gopalakrishnan 
Department of Computer Science 

University of Utah 
Salt Lake City, UT 84112, USA

Richard Fujimoto 
College of Computing 

Georgia Institute of Technology 
Atlanta, GA 30332

September 5, 1991

Abstract
The use o f formal methods in hardware design improves the quality o f designs in many ways: it pro

motes better understanding o f the design; it permits systematic design refinement through the discovery of 
invariants; and it allows design verification (informal or formal). In this paper we illustrate the use o f formal 
methods in the design o f a custom hardware system called the ‘Rollback Chip ’ (RBC), conducted using a 
simple hardware design specification language called ‘H O P’. An informal description o f the requirements of 
the R B C  is first given, followed by a behavioral description o f RBC stating its desired behavior. The behav

ioral description is refined into progressively more efficient designs, terminating in a structural description. 

Key refinement steps are based on system invariants that are discovered during the design, and proved cor

rect during design verification. The first step in design verification is to apply a program called PARCOM P  
to derive a behavioral description from the structural description o f the RBC. The derived behavior is then 
compared against the desired behavior using equational verification techniques. This work demonstrates that 
formal methods can be fruitfully applied to a non-trivial hardware design. It also illustrates the particular 
advantages o f our approach based on HOP and PARCOMP. Last, but not the least, it formally verifies the 
R B C  mechanism itself.

1 Keywords: Custom Hardware Design, Formal Specification, Verification, Process Composition, Parallel 
Discrete Event Simulation, Tim e Warp

2Supported in part by NSF Award M IP-8902558
3Supported in part by NSF Awards D C R -850-4826 and C C R -8902362

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction
As custom architectures become more and more complex, the time required to functionally validate 
them is becoming prohibitive. Today, most custom architectures are validated through functional 
simulation. Even very small systems cannot be exhaustively tested. Although it may be possible to 
judiciously pick (based on experience) a set of simulation vectors which can validate small systems 
to a high level of confidence, this is extremely difficult, if not impossible to do, for large custom 
hardware designs.

In order to validate systems systematically with a measurable degree of confidence, formal 
verification has been widely advocated. An ideal design approach would consist of top-down design 
starting from a formal specification, where each design refinement step has been pre-validated 
through formal means. In practice, designs are seldom carried out strictly top-down; computer 
architects rely heavily on their experience and complete large portions of their designs in a seemingly 
unstructured way. In this approach also, it is possible for the architect to engage in his/her “leaps

1



of inspiration” , but very soon thereafter capture the results of such “creative thinking” in a formal 
notation. A drawback of this approach is that it requires the designers to be experts in both 
architecture and formal verification methods. Another extreme approach would be to let the 
architect to complete the design and then hand-over the verification task to a team well versed 
in formal verification. A disadvantage of this task is that the formal verification team often finds 
it very difficult to unearth, and formally specify most of the semantics preserving transformations 
done by the architect. Also, the proof cannot be well-structured and made readable—an important 
requirement if the proof is to be believed, and if something is to be learned from the proof.

A good compromise is to employ team effort in which architects work closely with the formal 
specification writers. In this approach the specification and the design evolve together, and are 
maintained to ensure consistency. By the time the design is finished, the specification writer is 
well aware of the architectural design steps, and the architect is well aware of the specification 
techniques used. The final design representation (in whatever form it is—e.g. HDL, netlist, VLSI 
mask) can then be verified against an abstract specification of the system.

We have completed such a design exercise on a real hardware design called the Roll Back Chip 
[1, 2]. The Roll Back Chip (RBC) is a custom architecture that helps speed up the state-saving 
and roll-back portions of parallel discrete event simulations using Time Warp [3]. The design 
of the RBC evolved side by side with a specification for it. Specifications were written in our 
hardware description language HOP. Top-down design was followed to some extent, but many 
of the crucial refinement steps were simply based on the experience of one of the authors as an 
architect, and captured after the fact by the other author whose primary role has been that of 
formal specification. The final version of the RBC that was implemented (see [2]) is essentially the 
final design specification in HOP that is verified in this paper.

Our Design M ethodology

Our design methodology is one of performance directed design refinement with validation based on 
formal verification. Large application specific hardware systems have, in addition to their functional 
correctness requirements, many demanding performance requirements. Unless both performance 
and functional correctness can be guaranteed, the final design is considered to be useless. Per
formance is, unfortunately, an empirical quantity that is usually measured in practice through 
simulation studies. Satisfactory analytical models of performance are often difficult to obtain.

In a typical design cycle as employed today, an architect begins with an informal (e.g. English 
+ block diagrams) description of the system to be designed. He/she then picks one promising 
architecture and describes this architecture in a typical simulation (e.g. Simscript) or programming 
(e.g. C) language, and runs simulations. If the results look promising, and if the simulation reveals 
no functional errors, the design is further refined. Otherwise, the architect backs up one or more 
levels in the refinement process and examines another architecture.

Typical optimization techniques employed by architects are:
• lazy updates of data structures,

• pipelining, and

• making more frequently operations cheaper at the expense of less frequently used ones.
In this process, it is easy to come up with many performance optimization techniques that appear 
correct, and may even be found correct by a large number (e.g. millions) of simulation vectors. 
However, it is precisely such optimization techniques that introduce many subtle bugs that are 
often never revealed, or are revealed at awkward moments during the system’s operation! For 
custom hardware systems deployed in the real-world—especially safety-critical—applications, such 
mistakes in validation can be extremely costly, and cannot be tolerated.

2



Although we are not offering a complete solution to the above problem, in this paper we are 
proposing a design methodology wherein each design refinement is formally described, so that the 
correctness of the refined behavioral description can be established formally against the highest 
level behavioral description. The initial design specification describes an abstract data type that 
supports several operations. At the highest level, only the functional correctness of these operations 
(and not performance) is of importance. Each refinement step adds detail to the state represen
tation used, by augmenting the underlying data structures with new ones, or even replacing the 
data structures completely. The correctness of these transformations usually relies on system in
variants (examples: “no duplicates in an associative memory” ; “a state changing operation need 
not finish until some other operation that utilizes the state as well as produces an external output 
is triggered” ). Although computer architects are typically well-aware of these kinds of invariants, 
in current design approaches, they seldom write them down because they consider the digression 
to be wasted effort, that benefits no one.

In our approach, such invariants are noted and later used in the formal proof of the system. The 
RBC system has been refined through many levels of refinement, and each refinement decision, taken 
based on performance considerations, has been shown to be correct during our proof. Demonstration 
of this methodology in a specific hardware design is perhaps the single most important contribution 
of our paper.

Our design methodology is outlined in figure 1. We express the initial specification of the system 
as a data type [4] supporting a collection of operations. This data type is then refined into a concrete 
representation, where the representation is chosen based on performance considerations. Simulation 
experiments are run to gain some confidence in the functional correctness of the refinement, and 
also to check that adequate performance can be obtained. This process is repeated through many 
levels, until the final architecture is clearly identifiable. After each refinement step, the design (or 
certain aspects—e.g. invariants) of it are formally described in our HDL, ‘HOP’.

Once the final structural description is obtained, the actual hardware system can be constructed. 
We then apply an algorithm called PARCOMP to the structural specification. PARCOMP, which is 
part of the HOP system, infers a behavioral specification corresponding to the structural specifica
tion. In other words, PARCOMP simulates all possible interactions amongst the submodules, and 
captures these interactions in the form of a behavioral description. This behavioral description is 
indistinguishable from the external (i.e. behavioral) view of the structural description from which 
it was derived. The inferred behavioral description produced by PARCOMP is then compared 
against the initial specification using equational verification techniques. The proof of correctness 
can in principle, be automated using systems such as the Boyer-Moore prover [5], HOL prover [6], 
or the CLIO prover [7]. At present, however, only a manual proof has been completed.

Related W ork

Formal verification of software and hardware systems has been proposed as an alternative to sim
ulation and testing as early as the 60s. Much work has concentrated on software system verifi
cation [8, 9]. One of the early proposals for hardware verification came in the early 70s and has 
since been followed by a large body of work [10]. There has since been an extensive growth both 
in variety of techniques, examples, and verification tools [11, 12].

In hardware verification, much work has centered around showing the functional correctness of 
proposed implementations of hardware systems against their behavioral specifications. Though in 
many cases, verification of detailed timing behavior [13] as well as circuit behavior [14] has been 
included, these efforts have been restricted to small designs.

In this paper, we address the task of showing functional correctness of designs. More specifically, 
we address the task of showing that the input output mappings of the actual implementation agree 
with that of the specification. The specification usually doesn’t provide any timing information

3



Figure 1: Our Design Methodology

4



about the design. The implementation does usually provide both functional and timing (at a cycle- 
level) information. The detailed cycle-level timing information contained in the implementation is 
simplified to an extent that only the causal orderings are retained; details of the exact number of 
cycles, etc., are ignored.

Among work that fall into this category, most examples deal with the verification of simple 
microprocessors [15, 16]. The microprocessors that were verified were not built with the design 
objective of high performance. A notable exception in this area is the work of [7] which considers 
the verification of a pipelined microprocessor. In that work, however, the pipelined design was 
not obtained through a process of top-down refinement that was geared towards obtaining a high- 
performance design.

The work presented in this paper differs from other works in the area of functional verification 
in the following important regards: .

• in hardware verification, most examples chosen for illustration have been CPUs; we verify a 
complex special-purpose memory subsystem, for a change;

• we refine the initial behavioral specification top-down through many levels, each time refining 
the internal state representation and re-defining the operations of the module to more efficient 
versions; the final version bears little resemblance to the initial specification; (Each 
of these refinements can be separately verified, using techniques presented in this paper. 
However, this is beyond the scope of the paper.)

• our refinement steps lead to a complex implementation (structural specification). From this, 
we automatically infer a behavioral description and verify this derived behavior against a 
much simpler and believable specification of the desired behavior.

Less formal (rigorous) approaches than formal verification are commonly used in the validation 
of real-world hardware systems. In [17], the ‘verification’ (through random, and non-exhaustive 
tests) of a very complex cache controller has been discussed. The highest level specification of 
the protocol was written only in English. The cache controller was exercised using test-stubs that 
randomly generated a large number of possible multiprocessor interaction sequences. Most tests 
incorporated both test stimuli and expected responses, thus allowing these tests to run without 
human intervention (except upon noticing an error) for several weeks. Although this approach offers 
important benefits, the lack of a formal high level specification (beyond an English description) 
makes it impossible to even define what verification means. Also, running random tests for 
several weeks does not cover even a fraction of the state space of large architectures; their state 
space is so large that to fully cover all possible tests, it will take several millennia.

In our work, we specify hardware systems essentially as abstract data types, as in [4]. It is well 
known that data type axioms can be very easily obtained from such specifications, and used both for 
formal verification and test vector generation. Conducting both formal verification and test vector 
generation based on the same formal specification has the dual advantages of exhaustively proving 
the design for all inputs and state (achieved by verification), and of validating the assumptions 
about the real-world employed during verification (achieved by testing). This dual approach has 
been advocated in [18].

Organization

In section 2, we present an informal description of the RBC. We then give the initial formal 
description RM1 (section 3). We discuss the first optimization in section 4, involving the use 
of a data structure called the written-bits array. We then discuss a non-trivial optimization in 
section 5, involving the use of a second data structure called the roll back history. After presenting

5



the structural specification corresponding to the actual design of the RBC (section 6), we go on to 
apply PARCOMP to it, to obtain the inferred behavioral description, RM2 (section 7). In section 8, 
we prove that RM2 is functionally equivalent to RM1. Key results are discussed in our conclusions. 
An Appendix containing deferred details is included.

2 Informal Description of the RBC

A critical problem that parallel computers must address is synchronization between concurrent 
computations. Recently, optimistic methods of synchronization have been developed that are based 
on rollback. In optimistic synchronization, one detects synchronization errors at runtime, and 
invokes a rollback mechanism to recover. This is in contrast to more traditional conservative 
synchronization techniques that utilize blocking to avoid synchronization errors.

The Time Warp mechanism is perhaps the most well known optimistic protocol [3]. Some 
successes have been reported in using Time Warp to parallelize discrete event simulation problems, 
e.g., see [19, 20]. In Time Warp, the parallel computation consists of some number of processes 
that communicate by exchanging timestamped messages. The parallel computer is assumed to be a 
collection of processors, each with local memory, that communicate by exchanging messages. Time 
Warp provides an elegant, distributed mechanism for rolling back erroneous computations that may 
have spread across a network of processors.

Because optimistic synchronization methods rely on rollback, one must periodically save the 
state of each process. It has been observed that this is a serious overhead for processes containing 
a significant amount of state [19]. The rollback chip is a component that has been developed which 
provides hardware support for state saving.

The following capabilities are required to support state saving in Time Warp:

• It must be possible to take a snapshot of a process’s data segment at any instant of time. A 
mark operation is issued to mark the current state of the process as one that may later have 
to be restored via a rollback.

• If rollback becomes necessary, the state of the process will have to be restored to a previous 
snapshot. The operation rollback deletes the most recent snapshot. In practice, several 
rollback operations must be issued to roll back to a specific frame.

• It must be possible to read and write the data segment in essentially the same way as conven
tional memory, read(a) reads the contents of memory location a, and write(a, d) writes data 
d into location a. In the absence of rollback, read and write operations have the same se
mantics as those operations in conventional memory systems. When a rollback occurs, writes 
performed by computations that were rolled back must be erased. Here, we will assume all 
read and write operations access a single word of data.

• Storage utilized by old snapshots must be reclaimed. The operation advance discards the 
oldest snapshot. The mechanism for determining when it is safe to garbage collect snapshots 
is beyond the scope of the present discussion, but is discussed in [3].

• Finally the reset operation initializes the system.

To date, several designs of the rollback chip have been studied. Extensive simulation studies 
have been completed to provide an initial check for correct behavior, and to evaluate its performance 
[1]. A commercial version of the RBC is under development, and an initial prototype using off- 
the-shelf components has been realized [2]. VLSI layouts for portions of the RBC have also been 
developed [21]. More recently, the RBC has been specified in the language HOP. This specification 
was used both to verify that the behavior of the proposed mechanisms are correct, but also to aid 
development of new, provably correct improvements to the proposed mechanisms.

6



RM1

RM11

RM12

Figure 2: Initial Specification, RM1, and Later Refinements

3 Initial Specification, RM1

In this section, we present the specification of the desired behavior of the rollback chip. This 
system consists of the rollback chip hardware and the associated main memory (together known 
as the “rollback chip system” or the RBC). The CPU views this system as a black-box supporting 
the operations reset, read, write, mark, rollback, and advance (figure 2). The desired behavior 
of the RBC is specified using a model called RM1, illustrated in figure 2. This specification is not 
an efficient realization of the RBC operations; its purpose is only to specify their semantics. In 
particular, a new snapshot is created by copying the entire state vector into a new area of memory, 
which would not be done in an efficient implementation.

In RM1, the various snapshots are stored in a circular buffer. This is done to capture the finite 
memory capacity of any realization. Each element of the buffer, referred to as a frame, contains a 
single snapshot. Two pointers, 0 and C, point to the oldest and most recent snapshot, respectively. 
Read and write operations always access the frame pointed to by C ( “frame C” ). A mark operation 
creates a copy of the newest frame and adds it to the queue. The rollback operation discards the

7



newest frame, and the advance operation discards the oldest frame.
Level RM1 is described using the data type

Mtype X Ctype X  Otype

where Mtype is the type of the entire version controlled memory (containing all the snapshots), 
Ctype is the type of the pointer pointing to the current frame, and Otype is the type of the pointer 
pointing to the oldest frame. These types can be described in a Pascal-like notation, thus:

(* Nframes is the number of frames maintained *)
(* maxwordaddr is the largest address within a frame *)

Mtype = array [0..(Nframes-1)] of frametype 
frametype = array [0..maxwordaddr] of word 
Ctype = 0..(Nframes-1)
Otype = 0..(Nframes-1) 
word = integer

(* array containing all'snapshots *)
(* one snapshot *)
(* current frame *)
(* oldest frame *)
(* one word of memory *)

The operations on RM1 are abbreviated as follows: s i denotes reset, r l  denotes read, wl 
denotes write, ml denotes mark, bl denotes rollback, and al denotes advance. We use the operation 
names reset, read, etc., while speaking about these operations in the abstract (for example while 
discussing these operations outside the context of a specific design such as RM1 or RM2).

3.1 Terminology and Notations

Our intention of providing level RM1 is to clearly present the desired functionality of the RBC 
system. Specific timing requirements (e.g. the number of cycles that each operation should take) are 
not being prescribed. Therefore, we shall use a purely functional [22] notation. We select the syntax 
of the functional programming language Miranda1for several reasons. First of all, the Miranda 
notation is very close to standard mathematical notation. Secondly, Miranda is polymorphically 
typed, and implements one of the most rigorous type-checking algorithms [23]. This helps eliminate 
virtually all type inconsistencies in the specification. Thirdly, specifications written in Miranda can 
be simulated and tested for specific test cases, subject to rigorous analysis [24], as well as checked 
for for consistency and sufficient completeness [25]. Finally, the functional sub-language employed 
in HOP is essentially the same as the one used in Miranda.

In this paper, we present level RM1, RM11, and RM12 in Miranda. Then HOP specifications 
of the structure of the roll back chip are provided. Behavioral inference using PARCOMP is then 
discussed. The behavior inferred by PARCOMP is outlined in the syntax of HOP. Then, the 
inferred behavior is shown in full detail in Miranda. Finally, the inferred behavioral description, 
RM2, is verified against the initial specification, RM1.

3.1.1 A Brief Introduction to Miranda

Miranda is a polymorphically typed [23] functional language. A Miranda program consists of a 
collection of function definitions (each preceded by an optional type declaration) and an expres
sion that is evaluated with respect to the function definitions. Miranda programs are referentially 
transparent, which means that an identifier in a given scope denotes only one value. The values 
denoted can be either simple things such as numbers or complex things such as functions. Refer
ential transparency makes Miranda programs easy to understand and reason about. Functions are 
treated as “first class citizens” : they can be passed as arguments, returned as results, and stored in

1 M iranda is a tradem ark o f  Softw are Research C orp ., UK

8



data structures. Expressions in Miranda are lazily evaluated; i.e., they are evaluated only as and 
when needed. In addition to promoting efficiency, lazy evaluation permits succinct (and unusual 
in the traditional sense) expression of concepts. For example, the Miranda program to obtain the 
least common multiple (LCM) of two numbers is:

lcm ::num->num->num

1cm nl n2
= 0, i f  nl=0 \ / n2=0
■ hd [x 1 x <- [min[nl ,n2] .. ! ; (x mod nl = 0 ); (x mod n2 = 0 ) ] ,  otherwise •

The specification consists of two lines. The first line specifies the type signature of function 1cm. 
The type signature says that function 1cm takes two nums (i.e., integers) and returns a num. In 
Miranda, the signature of a function is of the form a->b where a is the domain type and b the range 
type. A function with signature a->b->c represents a function that takes an element of type a and 
returns a function of type b->c; naturally, this function, when given an object of type b returns an 
object of type c. Thus, a function with signature a->b->c represents a two-ary function that can 
be partially applied to arguments (i.e. it can be applied to one argument, and then to another).

The first clause of 1cm returns 0 if either nl or n2 is 0. Otherwise, the second clause in the 
description of 1cm is executed. This clause is presented using the notation of list comprehension. 
It resembles the standard mathematical construction to specify sets:

{a; | predicate(x)}.

The construct [min[nl,n2] . .] represents the set of natural numbers starting at the minimum 
value of nl and n2. The construct x <- [min[nl,n2] . .] means “x is a natural number greater 
than or equal to min[nl,n2]”. The predicate part of the list comprehension is the check that x is 
divisible, with zero remainder, by nl and n2. A list of all such numbers is (conceptually) generated, 
and the hd, i.e., the first such number is returned. Computationally, only the requisite numbers 
starting from 0 are generated, and as soon as the LCM is found, the evaluation terminates.

As another example, a Miranda program that performs the bit-wise and of two bit vectors, 
represented as lists, is shown below:

band bvl bv2 = map and (transpose [bvl,bv2]), if #bvl = #bv2
= error"Bitand applied to unequal-length vectors", otherwise

Here, we omit the type definition: the Miranda system is capable of inferring the type of band. This 
specification says that the bit-wise and of the bit-vectors bvl and bv2 is obtained by mapping func
tion and onto the transpose of the lists bvl and bv2, provided the lists are of the same length. As an 
example, transpose takes a list containing two lists, [[True,False,True] , [False,True,False]], 
and returns the list [[True,False] , [False,True] , [True,False]] . The construct map and ap
plies and to every sublist; e.g. and [True,False], and[False,True], and and [True, False] are 
obtained. The construct #bvl = #bv2 checks to see that the lists are of the same length. If the 
lengths are not the same, an error is raised (the otherwise) clause.

In Miranda descriptions used in this paper, we use the array data type and a two-dimensional 
array data type quite extensively. Their operations are now introduced.

The type array is introduced as an abstract data type in Miranda; its definition is provided in 
the appendix. Operations supported by array are:

1. cv : :maxind_type -> (ind_type -> *) -> array *: Given the maximum index maxind 
into the array (of type maxind_type) and a function that maps indices in the range 0 . .maxind 
to a value of any type at all (indicated by the * symbol), an array of *-typed elements is 
createdv, and initialized such that location i contains (f i).

9



2. empty: :maxind_type ->  array *: Given the maximum index into the array (3), empty 
creates an un-inialized array which is indexable by indices in the range 0 . .3.

Usage example: empty 3

3. indok::array * ->  ind_type -> bool: Checks to see if the given index is within bounds. 

Usage example: indok (cv 3 fa c to r ia l)  22 returns fa ls e

4. maxind: : array * ->  maxind_type: Returns the maximum index permitted by the array.
The minimum index is assumed to be 0.

Usage example: maxind (empty 3) returns 3.

5. a r2 1 :: array * ->  [(in d _ty p e ,*)]: Returns the contents of the array a in the range 
[0..maxind a] as an association list of (index,value) pairs.

Usage example: ar21 (cv 3 fa c to r ia l)  returns [ (0 ,0 )  , (1 ,1 )  , ( 2 ,2 ) ,  ( 3 ,6 ) ] .

6. ar21item s: : array * ->  [* ] : Same as above, except that the indices are stripped.

Usage example: ar21items (cv 3 fa c to r ia l)  returns [ 0 ,1 ,2 ,6 ] .

7. 1 2 a r :: [*] ->  array *: The length of the given list of items is measured, and an array of 
suitable size is created, and returned.

Usage example: 12ar [ 0 ,1 ,2 ,6 ]  is the same as cv 3 fa c to r ia l.

8. upd:: array * ->  ind_type -> * ->  array *: Updates the array at a given index (2) with 
a value (34).

Usage example: upd a 2 34 returns a with location 2 set to 34.

9. in d :: array * ->  ind_type ->  *: Index the given array and retrieve the value at the in
dexed location.

Usage example: ind (cv 3 fa c to r ia l)  3 returns 6.

10. indable: : array * ->  ind_type ->  bool: Checks to see if the array has been defined at 
the location where indexing is being attempted.

Usage example: indable (upd (empty 3) 2 22) 2 returns true, because location 2 has 
been initialized.

Two dimensional arrays are also used in our descriptions. Operations supported by them are as 
follows.

1. empty2d: :num->num->(array (array * ) ) :  Create an empty two-dimensional array with 
the given maximum X  and Y  index values. The element type is not fixed a priori (indicated 
by the * operator).

Usage example: empty2d 7 3 creates an un-initialized array of size [0 . .7 ] by [0 . .3 ] .

2. c2d: :num->num->(num->num->*) ->  (array (array * ) ) :  Creates an initialized two-dimensional 
array. The first two arguments are as for empty2d. The third argument is a two-ary function 
f_ i_ j : its role is to initialize location i ,  j to f_ i_ j i  j .

Usage example: cv 3 fa c to r ia l

10



Usage example: (c2d 7 3 (+ )) creates a [0 . .7] by [0. .3] array such that location i , j  is 
initialized to i+ j .

3. u 2 d i:: (array (array *))->num->(num->*) ->  (array (array * ) ) :  Updates the 2d ar
ray at first coordinate i ,  and for all permissible second coordinates j ,  with ( f  j ) .

Usage example: (u2di a n f )  gives a new array a* such that ind (ind a ’ n) j ,  for any 
j , returns ( f  j ).

4. u 2d j: : (array (array *))->num->(num->*) ->  (array (array * ) ) :  Similar to u2di ex
cept that the update happens at j ,  for all i , with ( f  i ) .

Usage example: (u2dj a n f ) .

5. u 2 d i j : :  (array (array * ) )->num->num->* ->  (array (array * ) ) :  Defined to be (upd 
a i  (upd (ind a i )  j v) ) .

Usage example: (u2dij 2 2 43).

Additional details about Miranda, and supporting definitions, will be introduced as and when 
necessary.

3.2 Description of the RBC Operations

In this section we present the RBC operations at level RM1 in Miranda. Details omitted from the 
Miranda descriptions can be found in the Appendix.

3 .2 .1  D ata Types used at Level R M 1

The state at level RM1 is modeled using a three-tuple data type rml_type. This, and other related 
type definitions are given below. Type names are introduced using the connective ==. Comments 
begin with a l l ,  and extend through the remainder of the line.

rml_type == (m_type,cmf_type,omf_type) | | A three-tuple type
m_type == array frame_type 1 I array version_type of frame_type
version_type == num II 0..maxversion
frame_type == array word_type 1 I array addr_type of word_type
addr_type == num II 0..maxwordaddr
word_type == num 1 I one memory word
cmf_type == num II 0..maxversion - type of CMF
omf_type == num 1 I 0..maxversion - type of OMF

3.2 .2  Operation s i

Operation reset defined at level RM1 is denoted by s i . We specify the behavior of s i  functionally, 
as follows.

si::rml_type->rml_type
si(m,c ,o) = (empty2d maxversion maxwordaddr, 0, 0)

Applying s i  on RM1 whose state is the triple (m,c,o)  yields the triple on the right-hand side. 
empty2d maxversion maxwordaddr creates the initial version controlled memory. The CMF and 
OMF pointers are reset to 0, following s i .

11



3.2.3 Operation r l

rl::(rml_type,addr_type)->word_type 

rl((m,c,o),a) = (ind (ind m c) a)

Operation r l  indexes m with c (the current mark frame) first, and indexes this array with a (the 
address of the word being read). In other words, c points to the latest version (frame) in memory 
m. This frame is first obtained by (ind m c) and is then indexed with the address a.

3.2 .4 Operation wl

si::(rml_type,addr_type,Bord_type)->rml_type 

wl((m,c,o),a,d) = (u2dij m c a d, c, o)

Operation wl writes data d in the current frame c at address a.

3.2.5 Operation ml

ml::rml_type->rml_type
ml(m,c,o) = (upd m neve (ind m c), neve, o) , if neve ~= o

= error"Mark: CMF wraps around & equals OMF", otherwise 

where newc = (c+1) mod nframes

Operation ml copies the contents of the frame pointed to by c into the frame pointed to by 
(c+1) mod nframes, assuming that an overflow (indicated by the error check) does not occur. 
Thus, starting a new version through the mark operation is tantamount to copying over the entire 
current frame into the new frame being allocated. This is, of course, a succinct description of the 
actual intended effect, and not how the final implementation works.

From the above description of ml, it can be seen that the CMF pointer c can wrap-around, 
thereby causing an overflow, if too many mark operations are issued. More sophisticated imple
mentations of the mark operation are possible; for example, overflows can be prevented by copying 
the top nframes frames of version controlled memory into backup store as in a paged virtual 
memory system. These possibilities are not explored here.

3.2.6 Operation b l

The actual RBC system supports a version of the rollback operation that rolls back over multiple 
frames. We have deliberately simplified the rollback operation in such a way that it rolls back by 
only one frame. This greatly simplified our proof, as well as simplifies our presentation thereof. 
The practical utility of the proof, however, is not diminished because the actual rollback operation 
can be simulated using multiple invocations of our version of the rollback.

b l ::rml_type->rml_type

bl(n,c,o) = (m, (c-1) mod nframes, o) , if c ~= o

= error"Rollback: CMF underflows & equals OMF", otherwise

Operation b l discards the current version by decrementing c, assuming that an underflow does 
not occur.

12



3.2.7 Operation al
We have similarly simplified the operations advance so that it advances by one frame only. The 
actual RBC system supports an advance operation that advances over many frames. The latter 
can be simulated using the former.

al::rml_type->rml_type

al(m,c,o) = (m,c,(o+l) mod nframes), if c '* o
= error"Advance: OMF overflows & equals CMF", otherwise

Operation a l increments the oldest markframe pointer o, thereby discarding the oldest version 
being held. This is a form of fossil collection. Error checks are handled as with mark.

4 Optimization 1: W ritten bits array
RMl is intended to capture the functional behavior of the rollback chip. A direct implementation of 
this specification, however, will clearly be inefficient because each mark operation requires making 
a copy of the entire data segment (one frame) of the process. We will now informally develop the 
RM2 specification through a series of refinements to the RMl specification. A hardware realization 
of the RM2 specification will then be presented, as well as a formal specification using HOP. We 
will then verify that the RMl and RM2 specifications are equivalent.

The first optimization is illustrated in figure 2 as RM11. We eliminate the data copying aspect 
of the mark operation. The mark operation simply increments the CMF register, making mark 
very efficient.

The principal consequence of the above modification is the stack may now contain “holes”— 
locations where no valid data has been stored. Immediately after the mark operation, the CMF 
register points to a frame containing only holes. Clearly, the hardware must be able to distinguish 
holes from valid data, so a new data structure called the written bit array is defined.

A single bit is associated with each word in the stack. This bit is set if valid data has been 
written into that word of the stack, and reset otherwise. Bit WB[f][a] is the bit associated with the 
word at address a (Amin < a < Amax) in frame / (0 < / < Nframes). Initially, the written bits 
for frame 0 are set, and all other written bits are cleared.

This optimization is supported by the use of extra storage locations in the form of the WB 
array. This storage overhead is tolerably small.

The write operation must be modified. In addition to writing data into the frame on top of the 
stack, the write operation must also set the written bit corresponding to the word of data being 
written (i.e., wb[CMF][a] is set during writes to address a). This change does not increase the cost 
of write, as the setting of WB can be done in parallel with the write. This change requires more 
memory bandwidth, however.

The read operation cannot simply read data from the frame on top of the stack because there 
may not be any valid data stored there. Instead, the read operation must return the most recently 
written version of the data, excluding versions that were discarded because of rollback operations. 
Therefore, a read to address a must search back through the stack, starting from the CMF frame, 
looking for the first set written bit, and read the corresponding word of data. The frame con
taining the most recent version is called the MRV frame, and is defined as the frame such that 
wb[MRV][a] = 1 and «;6[/][a] = 0 for all integers / such that M RV < f  < C M F  + 1. The read 
operation returns the data stored in STK[MRV][a].

A caching mechanism was developed to eliminate written bit searches for most read operations, 
in another version of the RBC [1]; however, this model is beyond the scope of the present discussion.

13



The above mentioned linear search involved during read is actually implemented more efficiently, 
as follows. Written bits are actually stored packed in words of Nframes bits. These words can be 
read in one cycle. The search for the first set written bit, scanning these Nframes bits from one end 
to the other, can then be implemented using a circular priority encoder (a priority encoder that 
treats the Nframes bits coming into it in a “circular” (modulo) fashion. The most significant bit 
of our circular priority encoder at any time is defined to be the CMF-i/i bit of the input word).

4.1 T ypes used at Level RM11
The state of level RM11 is modeled using rmll_type. This, and related types, are described below.

rmll_type == (m.type,cmf_type,omf_type,wbstore_type)
wbstore_type == array wb_type 1 I array addr_type of wb_type

wb_type == array bool 1 I array version_type of bool

4.2 The W ritten B its array
The written bits array is a two-dimensional array of bits. We specify the written bits array through 
its operations.

Operation createw creates the initial state of the written bits array:

createw::maxaddr_type->maxversion_type->wbstore_type 

createw maxa maxv = c2d maxa maxv vOset

where vOset i j ■ (j =0)

Operation createw takes the maximum address in a frame, maxa, and maximum number of versions, 
maxv, and creates a two-dimensional array using function c2d. Function vOset, which is used to 
fill the array, returns true for all i ,  j  where j  = 0. In effect, the written bits array created initially 
specifies that for every address, the zeroth version is the latest.

Operation setmrv is used to record that version v is the latest one for address a:

setmrv::wbstore_type->addr_type->version_type->wbstore_type 

setmrv w a v = u2dij w a v  True

Operation clrmrv is used to discard version v belonging to every address a:

clrmrv::wbstore_type->version_type->wbstore_type 
clrmrv w v = u2dj w v f

where f i = False

The written bits at coordinates i ,v ,  for all i  in the allowed range of addresses, are cleared. 
Operation clrmrva clears only the written bit at the given coordinates a and v:

clrmrva::wbstore_type->addr_type->version_type->wbstore_type 

clrmrva w a v = u2dij w a v  False

Operation mrv examines the written bits located at the first coordinate a of the written bits 
array. The second coordinate into the written bits array is started at location c, where c is the 
current mark frame (CMF), and the mrv operation scans the written bits such that if location i 
is being currently examined in the process of scanning, the next location to be examined will be 
» — 1, if i is currently greater than 0, and maxv if i is currently equal to 0. While so scanning, mrv

14



detects the first set written bit and returns its location. If there are no set written bits, mrv returns 
the number of a distinguished location, called af rameaddr. This corresponds to the archive frame, 
whose purpose will be explained shortly. Briefly, operation mrv locates the most recent version for 
a given address, a.

Operation mrv is specified using a series of helping functions. Function circmod behaves similar 
to function mod when applied to positive integers. When applied to negative integers, it simulates 
“wrap around” in the circular buffer of versions:

circmod::num->num->num

circmod x nitems = x mod nitems, if x >= 0 

= x + nitems, otherwise

For example, circmod 0 nitems is 0, and circmod -1  nitems is nitem s-1; the latter example 
shows the “wrap around” effect.

Function genvers generates the list of versions examined in the process of scanning from c, the 
CMF, to o, the OMF. The type signature specifies that genvers takes two nums and returns a list 
of nums:

genvers::num->num->[num]

genvers c o = error"genvers: c or o are out of range",

if (c > maxversion) \/ (o > maxversion) \/ (c < 0) \/ (o < 0) 

= [o] , if c = o

= c:(genvers (circmod (c-1) nframes) o), otherwise

Operation genvers raises an error if c or o are out of range. Else, if c=o, genvers returns a 
list containing o alone; this is the only version to be examined during scanning. Else, genvers 
generates the list obtained by adding c to the head of the list (through the cons operation :) to 
the list of versions generated from (circmod (c-1) nframes) to o.

For example, (genvers 3 1), when nframes = 4, returns [3 ,2 ,1 ] . The expression (genvers 
2 3), when nframes = 4, returns [2 ,1 ,0 ,3 ] .  Notice how the wrap-around occurs beyond version 
0.

Finally, function mrv is:

mrv::wbstore_type->addr_type->cmf_type->omf_type->version_type 

mrv w a c o = fst(hd lset), if lset ~= []

= aframeaddr, otherwise

where lset = [(v,ind (ind w a) v) I v<-(genvers c o); ind(ind w a) v]

Operation mrv first forms the list of (version , w ritte n -b it)  pairs in the range being scanned. 
It is expressed through the following list comprehension

[(v,ind (ind w a) v) I v<-(genvers c o); (ind (ind w a) v)]

If this list is, for example, [(1 .F a lse ) , ( 0 ,F a lse ), (3 ,True)] , mrv returns 1. If this list is, as 
another example, [(1 .False) , ( 0 ,False) , ( 3 ,False)] , mrv returns aframeaddr.

The RBC operations may now be rewritten for level RM11.

15



The reset operation at level RM11, s l l ,  creates an uninitialized memory m, as with operation s i. 
However, note that operation s i  created the memory using the expression (empty2d maxversion 
maxwordaddr) while operation s l l  creates the memory using the expression (empty2d nframes 
maxwordaddr). The constant nframes is defined to be one more than the constant maxversion. 
We provide one more frame for the memory at level RM11 to serve as the “archive frame”, whose 
purpose will be explained later. The CMF and OMF are initialized to 0 by s l l .  Finally, the written 
bits array is initialized to indicate that for every address a, the most recent version is at frame 0,
i.e., at the first frame that is going to be used.

4.2.1 Operation s l l

initial_wb::wbstore_type

initial_wb = createw maxwordaddr maxversion 

sll::rmll_type->rmll_type

sll(m,c,o,w) = (empty2d nframes maxwordaddr, 0, 0, initial_wb)

Operation read fetches data from the mrv location of the memory:

rll::(rmll_type,addr_type)->word_type

rll((m,c,o,w),a) = ind(ind m (mrv w a c o)) a

Operation write updates m at coordinates c ,a  with d. It also records that the most recent 
version at address a resides at version c, through the setmrv operation.

wll::(rmll_type,addr_type,word_type)->rmll_type 

wll((m,c,o,w),a,d) = (u2dij m e a d ,  c, o, setmrv w a c)

Operation mark increments the CMF pointer, modulo nframes. It also does clrmrv for every 
address a, at the new current version ((c+1) mod nframes). This makes sure that when the CMF 
pointer wraps around, “stale” written bits won’t be seen.

mil::rmll_type->rmll_type

mll(m,c,o,w) ■ (m, newc, o, clrmrv w newc), if newc "* o

= error"Mark: CMF wraps around & equals OMF", otherwise 

where newc = (c+1) mod nframes

Operation rollback simply decrements the CMF. It does not clear the written bits as mark does 
this “for rollback”.

bll::rmll_type->rmll_type

bll(m,c,o,w) ■ (m, (c-1) mod nframes, o, w), if c ~= o

= error"Rollback: CMF underflows Jt equals OMF", otherwise

Finally, operation advance updates the memory such that: (i) for every version older than OMF 
that has a set written bit, data from that version is moved into the archive frame, for every address
a. Since the archive frame is part of m, we model this process through function archive.

16



all::rmll_type->rmll_type
all(m,c,o,w) = (archive m w o, c, (o+l) mod nframes, w) , if c ~= o

= error"Advance: OMF overflows & equals CMF", otherwise

archive::m_type->wbstore_type->num->m_type

archive m w o

= foldr oneupd m [0..maxwordaddr]

where

oneupd a m

= u2dij m aframeaddr a (ind ind_m_copy_source a),

if (indable ind_m_copy_source a)

= m, otherwise

where ind_m_copy_source = (ind m copy_source)

copy_source = o, if ind (ind w a) o .

= aframeaddr, otherwise

Function archive calls function f  o ldr. Function f  o ld r helps form right-linear trees of function 
applications. For example

foldr (+) 23 [4,5,6] = (4 + (5 + (6 + 23)))

In the definition of function archive, we pass as the first argument of fo ld r  the function oneupd. 
Function oneupd performs one update of the memory m. Operation oneupd is repeatedly applied 
for a ranging through 0 through maxwordaddr. For example,

foldr oneupd m CO..2] = (oneupd 0 (oneupd 1 (oneupd 2m)))

Operation archive is implemented by repeatedly updating the memory m at version af rameaddr 
and address a with data (ind ind_m_copy_source a). Let us examine where this data comes from.

Expression (ind ind_m_copy.source a) retrieves the data at address a from the appropriate 
version. This version is determined by the value of the expression ind_m_copy_source: it is the 
version pointed to by the OMF value o if the written bit at version o is set (as shown by the test 
(ind (ind w a) o)); it is version af rameaddr if this bit is not set.

Thus, the data at version o and address a is saved if the OMF bit is set; otherwise, the data 
present at version aframeaddr and address a is copied back to that location itself. This last 
aspect—that of copying data from a location back to itself is simply an artifact of the definition 
(to make keep the definition succinct); this feature will not be implemented in the final hardware!

Lastly, as part of the operation advance, OMF is incremented.

5 Optimization 2: Roll Back Histories
An important optimization pertaining to the rollback operation is presented in this section. As 

mentioned in section 3, in addition to popping frames from the stack, the rollback operation must 
also clear the written bits corresponding to these discarded frames. Clearing these written bits 
will be relatively expensive, so an optimization called the rollback history (RBH) mechanism was 
developed (level RM12 of figure 2).

The rollback history mechanism avoids explicitly clearing written bits when a rollback occurs, 
allowing the rollback operation to be implemented very efficiently. Rather than clearing the written 
bits on each rollback, they are cleared “lazily,” i.e., just before they are examined by subsequent 
read and write operations. Therefore, the question that must be answered is “which written bits

17



7
6

5
4
3
2
1
0

tag=10 

1
1
0
1
0
1
1
0

10
CRB I

10 1111111 1

Mark Frame WBs Rollback H istory
Stack Stack

(a)

7
6

5
4
3
2
1
0

tag=10

1
1
0 

1 
0 

1 
1 
0

11
10

11
CRB I

1 1 1 1 1 1 1 1

11111100
Mark Frame WBs Rollback H istory

Stack Stack

(b)

7
6
5
4
3
2

1
0

tag=10

1
1
0 

1 

0 

1 
1 
0

12
11
10

12
CRB I

Mark Frame WBs Rollback H istory  
Stack Stack

(c)

7
6

tag=10

1
1

13
CRB I

5 0 13 1111111 1
4 1

1 111111 1 3 0 12 11110000

11100000 2 1 11 11100000
1 1

11100000 0

Oi-io 11100000

Mark Frame WBs Rollback H istory 
Stack Stack

(d)

Figure 3: Examples Referring to the Rollback Histories stack (RBH)

18



must be cleared when they are read from the written bit memory?” The rollback history (RBH) 
stack provides the information necessary to answer this question.

A word of the written bit memory is defined as the collection of written bits associated with a 
single word of version controlled memory (i.e., WB[f][a] for all f). A “tag” value is included with 
each word that indicates when the written bits were last updated. This tag value is actually a 
count of the number of rollback operations that have been issued to the RBC thus far.

One word for eight frames of the mark frame stack, the corresponding written bits, and the 
tag are shown in figure 3a. We see that valid data has been stored into frames 1, 2, 4, 6, and 7, 
and no valid data was stored into the other frames. The tag value of 10 indicates that the written 
bits were last updated sometime after the 10th rollback. Further, assume that no rollbacks have 
occurred since the 10th rollback, so the written bits are up-to-date.

Suppose that a rollback now occurs to frame 5. This means that the written bits for frames 
6 and 7 should become zero because those frames have been discarded. Rather than explicitly 
clearing the written bits, we instead remember that a rollback to frame 5 has since occurred, and 
bits 6 and 7 are now actually zero. We do this by storing a mask vector equal to 11111100 into 
RBH[10] (the leftmost bit refers to frame 0, the rightmost to frame 7). In general, zero bits of 
the mask vector correspond to discarded frames, and one bits indicate frames that remain in the 
stack. When the written bits (01101011) are later read, we also (1) read the tag (10), (2) read 
the corresponding RBH entry (RBH[10] = 11111100), and perform a bitwise logic AND on the 
written bits and RBH value (yielding the desired value, 01101000). The state of the system after 
this rollback is shown in figure 3b. An additional entry has been added to the RBH stack, as will 
be described next.

In general, RBH[i] indicates, the “deepest” rollback (i.e., smallest destination frame number) 
that has occurred since time ith rollback. This implies that a new element is pushed onto the stack 
after each rollback. This explains the new entry at RBH[11] in figure 3b. The new element always 
contains a mask of all one bits because no rollbacks have occurred since the last one (obviously!).

Each rollback operation requires that the following operations be performed:

1. The counter indicating the number of rollbacks that have occurred thus far, called the CRBI 
(current roll back index), is incremented. The current value of the CRBI register is stored as 
the tag whenever written bits are stored into the written bit memory.

2. RBH [CRBI] is set to a bit vector of all ones, as described above.

3. For each mask vector RBH[i] for i<CRBI, clear any bits of the mask that correspond to 
frames that were discarded as a result of the rollback.

The latter operation would seem to be expensive because it appears that every element of 
the RBH stack must be checked. One can optimize this operation by observing that the deepest 
rollback since the ith rollback (stored in RBH[i]) is no deep than the deepest rollback since the i-lst 
rollback. Thus, if no bits were cleared in the mask for RBH[i], we are guaranteed that no bits will 
be cleared in RBH[i-l]. Thus, when updating the RBH, we can scan the RBH elements from high 
indices to low, and stop scanning once we discover that no mask bits were cleared.

Suppose that in the above example the rollback to frame 5 is followed by a rollback to frame
2, two mark operations occur that push two new frames onto the mark frame stack, followed by a 
rollback to frame 3. The rollback to frame 2 will push a new vector of l ’s onto the RBH, clear three 
additional bits of RBH[10] (corresponding to the three additional frames that were discarded), and 
clear bits 3 through 7 of RBH[11], leaving the RBH in the state shown in figure 3c. The subsequent 
marks and rollback operation (to frame 3) leave the RBH stack in the state shown in figure 3d. 
This last rollback creates a new entry RBH[13] and updates RBH[12]. It is discovered that RBH[11] 
is not modified, so there is no need to check the remainder of the stack.

19



Here, we will assume the RBH stack is allowed to grow without bound. A mechanism has been 
developed to “forget” old RBH elements, as described in [1], but is beyond the scope of the present 
discussion.

5.1 T ypes used at Level RM 12
The RBC state at this level is modeled using type rml2_type. This, and related types, are described 
below.

rml2_type == (m_type ’ ,cmf_type,omf_type,wbstore_type,tsta]np_type,

rbh.type)

m_type’ == array frame_type II array [0..maxversion+1] of frame_type

rbh_type == [num] II list of 0..maxversion + "infinity"

tstamp_type “ array time_type I I array addr_type time_type 
time_type == num I I time-stamps for each wbword in wbstore

5.2 Formal D escription
We implement the RBH stack using rbh_type. The in f in i ty  word can be implemented suitably, 
using a number that does not belong to the set of valid versions. One example is in f in i ty  = 9999. 

The initial state of the RBH stack is realized through the c rea te r operation:

creater::rbh_type 

creater = [infinity]

When a rollback occurs, the depth of the deepest rollback since time t, for every time t, is 
updated using operation updater.

updater::rbh_type->version_type->rbh_type 

updater r d = infinity:(minimize r d)

minimize:: [*]-> * ->[*]
minimize [] d = []

minimize (h:rest) d = h:rest, if d >= h

= d:(minimize rest d ) , otherwise

The key function here is minimize. This function takes a list representing the rollback history stack 
and a “destination” value d that represents the deepest of the versions to be discarded following a 
rollback. If the RBH stack is empty (represented by the notation []), then there is nothing to be 
done. If the RBH stack is a list with head h and tail re s t  (h :rest), no changes are effected if d 
>= h; else, we replace the head with d, and recursively apply minimize to the tail of the list.

The depth of the deepest rollback since time t  is returned by function indexr. It simply reads 
off the 1 -1 - t th  element, where 1 = #r is the length of the RBH stack. (Function # returns the 
length of a list.)

indexr::rbh_type->time_type->version_type 

indexr r t = r!(#r-l-t)

time::rbh_type->time_type 

time r = (lengthr r)-l

20



Given an RBH stack r, the “current time” is calculated by function time.
We now describe the operations at the level RM12. These operations are efficient versions of the 

operations defined at level RH1; however they still do not correspond to a hardware realization of 
the RBC; this would be the purpose of level RM2, which is yet to come in this paper. The state of 
the RBC at level RM12 is rml2_type.

5.2 .1 Operation definitions at level R M 12

Operation s l2  resets the timestamps associated with the written bits, t ,  through the expression 
cv maxwordaddr zerofn. It also creates an empty RBH stack, creater. The other components 
of the state are initialized as before.

sl2::rml2_type->rml2_type ■

sl2(m,c,o,w,t,r)

* (empty2d nframes maxwordaddr, 0, 0,

initial_wb, cv maxwordaddr zerofn, creater) 

where zerofn i = 0

Operation r l2  reads data from location clearedmrv of the memory.

rl2::(rml2_type,addr_type)->word_type

rl2((m,c,o,w,t,r),a) = ind(ind m (clearedmrv w t r c o a)) a

Function clearedmrv simulates the process of clearing the written bits read off the wbarray using 
information contained in the RBH, and then obtaining the most recent version. First of all, the 
written bits that ought to have been cleared corresponding to address a are determined through 
the expression (indexr r  (ind t  a)). This value, called the RBH version, or rv , is then passed 
to function f  ixw along with the other arguments of f  ixw.

Function f  ixw returns w unchanged if the most recent version after “fixing” the written bits is 
the archive frame (the first clause in the definition of f  ixw). This means that all the written bits 
were already cleared or ended up getting cleared by fixw. It returns ( fo ld r  oneupd w (genvers 
mrv> rv ) ) , if o, rv, and mrv’ are all “lined up” (determined by predicate lineup).

Predicate lineup makes sure that rv  is within the range defined by the values o and mrv’ , 
where mrv’ is the first set written bit scanning backwards from c without clearing any bits that 
ought to have been cleared. We can see how lineup is defined—a, b and c “line up” if b is a member 
of the list generated by genvers. (Function genvers was defined earlier.)

Coming back to the fo ld r  expression below, it applies function oneupd to w for every value in 
the range generated by genvers mrv’ rv. Each application of oneupd clears one written bit that 
ought to have been cleared.

clearedmrv::wbstore_type->tstamp_type->rbh_type->cmf_type->omf_type-> 

addr_type -> version_type 

clearedmrv w t r c o a = mrv (fixw w a (indexr r (ind t a)) c o) a c o

fixw::wbstore_type->addr_type->version_type->cmf_type->omf_type->wbstore_type 

fixw w a rv c o = w, if m rv’ = aframeaddr

■ foldr oneupd w (genvers m rv’ rv), if lineup o rv mrv’

» w, otherwise 

where

oneupd v w = u2dij w a v  False 

m rv’ ■ mrv w a c o

lineup::num->num->num->bool

lineup a b c = member (genvers c a) b

21



Operation wl2 fixes stale written bits in the wbarray and also sets the written bit corresponding 
to the word being written. This is achieved through the expression setmrv(fixw w a (indexr r (ind 
t a)) c o). Also notice that while writing the written bits, we update the time-stamp of the written 
bits at address a, the address being written. The other components of the state are updated as 
before.

wl2::(rml2_type,addr_type,word.type)->rml2_type 

wl2((m,c,o,w,t,r),a,d)

= (u2dij m c a d, c, o, setmrv(fixw w a (indexr r (ind t a)) c o) a c, 

upd t a (time r) , r)

Operation ml2 performs the updater operation on the RBH, using the version newc as argument. 
The purpose of this step, an optimization step, is as follows. '

During a mark operation, when the CMF pointer wraps around from frame F  to frame F  -f
1 mod nfram es , stale written bits will be encountered. One (straight-forward) solution would be 
to clear all the written bits at all addresses a, corresponding to frame number (c+1) mod nframes. 
This is again an operation reminiscent, of r l l  in that written bits are being industriously cleared. 
A better solution would be to do the following:

• increment c to (c+1) mod nframes;

• simulate a rollback by one version;

• do a mark again.

This simulated one-version rollback is “remembered” by the RBH unit. Thus, instead of clearing 
written bits when mark causes CMF to wrap around, we remember that the bits ought to have 
been cleared, and proceed!

This optimization was, in fact, discovered in the process of verification.

ml2::rml2_type->rml2_type
ml2(m,c,o,w,t,r) = (m, newc, o, w, t, updater r newc), if newc ~= o

= error"Hark: CMF wraps around ft equals OMF", otherwise 

where

newc = (c+1) mod nfreuses

Operation rollback does an updater on the RBH, thereby remembering which written bits ought 
to have been cleared.

bl2::rml2_type->rml2_type

bl2(m,c,o,w,t,r) = (m, (c-1) mod nframes, o, w, t, updater r c) , if c ~= o 

= error"Rollback: CMF underflows £ equals OMF", otherwise

Finally, advance does the archiving as before, except that when words are read from memory, 
the written-bits clearings supported by RBH are invoked.

The archiving is achieved through function archive2. It is worth noticing how the source 
address, for reading the data to be archived, is determined. This address, copy_source, is o, if the 
most recent version of data for address a starting with version o is the OMF o itself. If not, the 
value of copy_source is the archive frame itself.

22



al2::rml2_type->rml2_type

al2(m,c,o,s,t,r) = (archive2 m s o c r t, c, (o+l) mod nframes, s, t, r) ,

if c "= o

= error"Advance: OMF overfloss & equals CMF", othersise

archive2::m_type’->sbstore_type->omf_type->cmf_type->rbh_type->

tstamp_type->m_type’

archive2 m s o c r t

= foldr oneupd m [0..maxwordaddr]

shere #
oneupd a m

= u2dij m aframeaddr a (ind ind_m_copy_source a),

if (indable ind_m_copy_source a)

= m, othersise .

where ind_m_copy_source = (ind m copy_source)

copy_source = o, if (mrv (fixs s a (indexr r (ind t a)) c o)

a o o) = o

- aframeaddr, othersise

6 Structural Specification
The final realization of RM2 is shown in figure 4. This figure provides a hardware realization 

of the ADT RM12 discussed in the previous section. It is this version that was run through PAR- 
COMP, producing the inferred behavior. Similar to the description of the RM1 level, the inferred 
behavior RM2 is also a collection of functional programs that map RM2 states to RM2 states. The 
differences with RM1 are: (a) RM2 programs and data structures are more involved; (b) they will 
execute with much more space and time efficiency, as can be checked through performance simula
tion studies; (c) last, but not the least, they reflect all the design decisions taken by the designer; 
thus, when formally verified, the entire design is verified for structural, temporal, and functional 
correctness.

Each submodule in the schematic of RM2 includes data inputs and outputs, as well as its control 
points (in the form of input events, described below). The RBH unit is ideally built in custom VLSI. 
The WB+TS store comprises the WAC counter also. One operation, w rite, will now be discussed 
with respect to this schematic.

When w rite  is invoked, written bits for the input address word are read from the w ritten  
b its  store. The time-stamp corresponding to this address is read from the time-stamp tag store, 
and used to index the RBH unit to read a masking word from the RBH. This word is used to 
mask bits read from the w ritten  b its  store, through the help of WBAND. Then, the written bit 
corresponding to CMF is set with the assistance of the BITOR gate and WBlatch is loaded with 
this value. Concurrently, a write request is issued on the RAM, with CMF acting as the MSB of 
the address (this being the effective address). All the above happens in the first cycle of the w rite. 
In the second cycle of the w rite, the value latched in WBlatch is written into the written bits store, 
in place of the old value.

We now provide an overview of the HOP description of the architecture shown in figure 4. 
We first provide the ABSPROC descriptions of two representative modules: an and gate, and the 
WB+TS-t-WAC module. We then provide an overview of the REALPROC description describing 
the entire RM2 architecture.

6.0.2 Absproc o f an and gate

The following is the description of a 32-bit and gate. It has name and32. We first declare a local 
type called wbtype which is a bit vector of size 32. We then declare the input ports ? in l and

23



Figure 4: Structural Specification (Architectural Schematic)

24



?in2, and output port lout of the and gate. Finally the behavior of the and gate is specified in 
the section protocol.

The behavior of a HOP process is specified by modeling it as an idealized synchronous sequential 
system. The following process description captures the behavior of a combinational unit (and32). 
Process and32 simultaneously (simult) acquires two inputs, ini and in2, through input ports 
(whose names are prefixed by ?) ?inl and ?in2. It then outputs the bit-wise and of the inputs 
on output port lout. Then it continues to behave (become) as and32. More formally, the and32 
module implements a mapping from its input streams to its output stream where the element of 
the output stream at time t is obtained by performing bit-wise and of the inputs arriving at times 
t.

((absproc and32)

(type wbtype = (make-type vector-type :min-indx 0 :max-indx 31 :base-type bit))

(port (?inl ?in2 lout) of wbtype)

(protocol 

(process and32 ()

( (simult (ini = ?inl)(in2 = ?in2)

(lout = (create-vector wbtype

(i (and (index-vector wbtype ini i)

(index-vector wbtype in2 i)))))

) -> (become and32) )))

(end and32))

6.0.3 Absproc o f W B + T S+ W A C

Unit WB+TS+WAC maintains the written bits (W) and the time-stamps (T) mentioned in level 
RM12. In addition, it maintains a counter called WAC that is used to step through all addresses in 
the range 0..maxwordaddr during the advance operation. Three vector types which are used in the 
specification are declared first. This is followed by the declaration of the ports. WB+TS+WAC 
also supports five operations, nop, read, write, reset, clrwac, upwac, and rdwac. These operations 
are invoked by asserting one of the input events supported by WB+TS+WAC. Each of the events 
supported by WB+TS+WAC corresponds to a Boolean condition that is typically encoded via 
control and clock inputs of WB+TS+WAC. During the top-down design of a large hardware system, 
the exact nature of these encodings is either unknown, or it is desirable to suppress such details. 
Events used in HOP serve this purpose by associating the module with a fictitious Boolean input 
that represents the encodings. A module that uses module WB+TS+WAC can generate one of 
the events supported by WB+TS+WAC through an output event. Again, in an actual hardware 
circuit, these events may be generated by suitable control encodings.

The behavior of WB+TS+WAC is specified by process wb+ts+wac. This process has one 
control state called wb+ts+wac and a three-component data state, namely (wbs, t s s ,  wac). It 
begins with a choice construct, which is a deterministic construct that captures branching. The 
first two choices are based on whether the events inop and iread  are found asserted. The next 
two choices are captured by a simult construct. Consider the first simult construct for detailed 
study:

((sim ult iread  (wordaddr = ?wordaddr)
(Iwb = (index-vector wbarray wbs wordaddr))
(I ts  = (index-vector tsa rra y  ts s  wordaddr)))

This simult construct has four arguments:

• iread , which is a control input event,

25



• (wordaddr = ?wordaddr), which is a data query, that acquires a value through port ?wordaddr, 
and assigns this value to wordaddr,

• (!wb = (index-vector wbarray wbs wordaddr)), which is a data assertion, that asserts 
on port !wb the value (index-vector wbarray wbs wordaddr), and

• a data assertion on port !ts .
The entire specification of wb+ts+wac is now given.
((absproc wb+ts+wac maxwordaddr ol int) .

(type

wbtype = (make-type vector-type :min-indx 0 :max-indx 31 :base-type bit)

wbarray = (make-type vector-type :min-indx 0 :max-indx maxwordaddr :base-type wbtype)

tsaxray = (make-type vector-type :min-indx 0 :max-indx maxwordaddr :base-type int)

)
(port (?wordaddr ?ts Its) of int 

(?wb !wb) of wbtype

Iwaciszero of bit);assume wac is a modulo counter. This o/p t when wac=0 

(event (inop iread iwrite ireset iclrwac iupwac irdwac) = tbd)

(protocol 

(process wb+ts+wac (wbs of wbarray 

tss of tsarray 

wac of int)

(choice

(inop -> (become wb+ts+wac wbs tss wac))

(ireset -> (become wb+ts+wac (reset-wb wbs) (reset-ts tss) wac))

((simult iread (wordaddr = ?wordaddr)

(!wb = (index-vector wbarray wbs wordaddr))

(Its = (index-vector tsarray tss wordaddr)))

-> (become wb+ts+wac wbs tss wac))

((simult iwrite (wordaddr = ?wordaddr) (wb = ?wb) (ts = ?ts))

-> (become wb+ts+wac (update-vector wbarray wbs wordaddr wb)

(update-vector tsarray tss wordaddr ts) 

wac))

(iclrwac -> (become wb+ts+wac wbs tss 0))

(iupwac -> (become wb+ts+wac wbs tss (modaddl wac maxwordaddr)))

((simult irdwac (Iwaciszero = (iszero wac))

(Iwb = (index-vector wbarray wbs wac))

(Its = (index-vector tsarray tss wac)))

-> (become wb+ts+wac wbs tss wac))

)))
(defun

(function reset-wb (wb of wbarray) to wbarray 

(create-vector wbarray

(i (create-vector wbtype (j F)))))

(function reset-ts (ts of tsarray) to tsarray 

(create-vector tsarray (i 0)))

)
(end wb+ts+wac))

6.1 Inferring Behavior using PARCOM P
As referred to in section 1, PARCOMP infers the behavior of a network of synchronous system 
components specified in HOP. More specifically, the input to PARCOMP is a REALPROC defining

26



the architectural schematic. A REALPROC does three things: it instantiates previously declared 
ABSPROCs; it specifies connections between the data ports of the submodule ABSPROCs, and 
also between events of the submodule ABSPROCs; and finally, specifies which connections are 
exported and which are hidden.

Given this information, PARCOMP symbolically simulates the submodules through all possible 
executions. Since data path states and data inputs/outputs are kept symbolic, PARCOMP has 
to only explore various combinations of control flows (for every transition possible in a submodule 
at time t, the interaction of that transition with every other transition of other submodules at 
t is determined). In exploring combinations of control flows, PARCOMP eliminates control flow 
combinations that will not arise. For example if submodule A would make a transition based on 
input event e, if no other submodule generates event e at this time, and further, e is hidden from 
outside, the move through event e will not be taken by submodule A. ,

The schematic shown in figure 4 was the largest example run through PARCOMP, to date. 
Due to the size of RM2, we had to (manually) split the controller into separate ones, one for 
each operation. Also, the datapath was divided into two sections and these sections were composed 
separately before being composed together. All this was to conserve memory usage. Some statistics 
are provided in figure 5.

Operations
C trl States In 

Cartesian Prod.
C trl States In 
Final Process

Transitions Pruned 
During PARCOMP

Transitions In 
Final Output

Run time (secs) 
Lucid Lisp, 16M HP320

Reset 2 2 2686 3 11
Read 1 1 1343 2 5.5
W rite 2 2 2686 3 11
Mark 1 1 105 4 0.82

Rollback 2 2 2686 3 11
Advance 4 4 6715 6 28

Figure 5: Performance of PARCOMP on the RBC

6.2 Sim plified results of PARCOM P
The behavior inferred by PARCOMP in the syntax of HOP is not presented due to lack of 

space. We subjected the inferred behavior to simplifications, such as alpha-conversion of identifier 
names, and the application of the following rewrite-rules:

(if true a b) => a 

(if false a b) => b

(index-vector vtype (create-vector vtype (I exp)) I) => exp

c r e a te - v e c to r  creates a vector of type v typ e  such that the Ith  location contains exp. in d e x -v e c to r  
indexes such a vector at location I, yielding exp. The simplified inferred behavior is outlined in 
figure 6 for the ro l lb a c k  and figure 7 for read . (Note that section 7 presents the inferred behavior 
for all the operations in our simple syntax, preparatory to verification.)

Rollback takes the state elements shown on the left column of this figure and the inputs shown 
in the middle column. It updates RBHDPS to an expression that, according to our conventions, is 
tantamount to pushing an “infinity” word. The CMF register is updated to the circular priority- 
encoded value of the RBDEST value, unless the RBDEST value is a vector of zeros (the a l lz e r o  test),

27



State I Inputs I ■ext-state

RAH 1 IRB 1 RAH

DLATCH I RBDEST=?RBDEST| DLATCH
OMF | OHF

AFRAHEREG| AFRAHEREG
WB I WB

TS I TS

MAC I WAC
RBHDPS | (UPDATE-VECTOR RBHARRAY

(RBH-UPDATE RBHDPS RBDEST) .

<+ CRBI 1)

(CREATE-VECTOR WBTYPE (I T)))

WBLATCH | WBLATCH
AMASKREG I AHASKREG '

CHF I (IF (ALLZERO RBDEST)
AFRAHEADDR
(CPESCODE RBDEST

(DECODE CHF)))

CRBI I (+ CRBI 1)

Figure 6: Inferred Behavior for Rollback

in which case th e  ro llb ack  has underflow ed; in th is case, th e  fra m e num ber o f  th e  arch ive fra m e is 
loaded in to  CMF.

The inferred behavior corresponding to the read operation reflects the value flows through the 
circuit even more clearly. Output data is generated by concatenating the effective frame address 
with WORDADDR. The effective frame address is generated using the expression that begins with 
( i f  (a llz e ro  . . . ) ) .  This expression yields the archive frame address, if the written bits, after 
masking using WBAND, emerge to be all zeros. If not, this masked written bits word is encoded using 
the circular priority encoder and sent to the RAM.

7 Inferred Behavior, RM2
7.1 Specification o f Level RM 2
The state at level RM2 is described using the type rm2_type. This, and related type definitions, 
are listed below.

rm2_type == (m_type’ ,cmf_type,omf_type,obstore_type,tstanip_type,

rbh.type’, time.type, version_type) 

rbh_type’ == [wbmask_type] II [[list_of_bool_of_length_nframes]]

wbmask.type == [bool] I I Each value in RBH is like a mask

maxversion_type== num I I Sundry types used in defining wbstore

maxaddr_type == num I I operations.

The fields of rm2_type stand, respectively, for the Memory, CMF, OMF, Written bits array, Time 
stamp array, Rollback histories stack, current rollback Index, and Advance counter. This level 
represents the inferred behavior of the RBC, and was obtained by hand-transliterating the inferred 
behavioral description into Miranda. There are many reasons why this path was followed. First of 
all, this notation is consistent with the notations used during the process of top-down refinement. 
Also, as HOP stands, its functional notation is a bit involved (as can be seen from figure 7). Under

28



State I Inputs

RAH IIREAD
DLATCH I

OMF I(WORDADDR = TWORDADDR)
AFRAHEREGI 

HB |

TS I

Output

(!DATA »
(IIDEX-VECTOR COITEITS 

RAH
(COIC WORDADDR

(IF (ALLZERO
(CREATE-VECTOR WBTYPE 

(I (AID
(IIDEX-VECTOR 
WBTYPE

(IIDEX-VECTOR WBARRAY WB WORDADDR) 

I)
(IIDEX-VECTOR 
WBTYPE

(IIDEX-VECTOR 
RBHARRAY 
RBHDPS

(IIDEX-VECTOR 
1 TSARRAY TS WORDADDR))

I)))))
AFRAHEADDR
(CPEICODE

(CREATE-VECTOR WBTYPE
(I (AID (IIDEX-VECTOR 

WBTYPE

(IIDEX-VECTOR WBARRAY WB 

WORDADDR)

I)
(IIDEX-VECTOR
WBTYPE

(IIDEX-VECTOR RBHARRAY RBHDPS 

(IIDEX-VECTOR 
TSARRAY 

TS
WORDADDR))

I))))
(DECODE CHF))))))

Figure 7: Inferred Behavior for Read

29



the space limitations of this paper, it would be difficult to discuss large examples such as the one 
we are considering without such a transliteration.

The main differences between RM2 and RM12 are: the RBH stack has now a more concrete 
implementation; the state representation of the RBC is more detailed; the process of searching for 
the most recent version of the written bits is supported by a circular priority encoder. We now 
discuss the RBH stack.

7.1.1 The RBH Stack
The RBH stack is implemented using a list of bit-vectors. We use primed names (e.g. name’ ) to 
distinguish this description from the earlier RBH description. Bit-vectors themselves are repre
sented as a list of Booleans. In Miranda, we write the following type definition to describe the type 
of the RBH stack:

rbhtype’ == [wbmask_type] 

wbmask_type == [bool]

An example of an RBH state: [[True,True,False,True],[True,True,True,True]]

The in f in i ty  word is represented using a bit 

infinity’ = rep nframes True

For example, rep 4 True gives [True,True,True,True]. rep is defined by Miranda

The initial state of RBH is [ in f in i t y ’ ]. Since the bit pattern of words in RBH are used for 
masking written bits read from memory using the bit-and operation, the word in f in i t y ’ also 
signifies that it will clear none of the written bits when anded.

The update operation is implemented as shown:

updater’::rbh_type’->version_type->cmf_type->omf_type->rbh_type’ 

updater’ r d c o = infinity’:(map (band dmask) r) 

where 

dmask
= (rep nframes True), if "(lineup o d e )

= gendmask c d maxversion [], otherwise

band:: [bool]->[bool]->[bool]

band bvl bv2 = map and (transpose [bvl,bv2]), #bvl = #bv2

= error"Bitand applied to unequal-length vectors", otherwise

Function updater’ uses function band, which takes the bit-wise and of two bit vectors. Function 
gendmask used in updater’ generates the mask corresponding to the RBH destination, d. Essen
tially, it generates a bit vector such that the nth position of the bit vector has truth value (member 
(genvers c d) n). In other words, if n is in the circular range defined by c and d, the bit value 
is False; else the bit value is True.

gendmask::cmf_type->version_type->num->ybmask_type->wbmask_type 

gendmask c d n l = l ,  if n = (-1)

= gendmask c d (n-1) ('(member (genvers c d) n):l), 

otherwise

Operation index, tim e’ , and fix w ’ are implemented as shown

indexr’::rbh_type’->time_type->wbmask_type 

indexr’ r tim = r!(#r-l-tim)

We now describe the operations on RM2.

30



7.1.2 Operation s2

s2::rm2_type->rm2_type

s2(m,c,o,w,t,r,i,ac) = (empty2d nframes maxwordaddr, 0, 0, initial_wb,

cv maxwordaddr zerofn, creater , 0, 0)
where zerofn i = 0

Operation s2 creates an empty memory array. It resets c and o to 0. The rollback history stack r  is 
initialized through c re a te r ’ . The rollback index register I is set to 0, indicating that the current 
“time” is 0. Finally, the advance counter—a local counter used during the advance operation—is 
set to 0.

7 .1 .3  Operation r2

r2::(rm2_type,addr_type)->word_type 

r2((m,c,o,w,t,r,i,ac),a)

= ind (ind m ea) a

where ea = aframeaddr, if zero (fixedwb w a r t c o) decc deco

= (cpe2num (cpe (fixedwb w a r t c o) decc deco)), otherwise 

where decc = dec c 

deco = dec o

f ixedwb::wbstore_type->addr_type->rbh_type’->tstamp_type->cmf_type->omf_type 

-> wbmask_type

fixedwb w a r t c o = (band (ar21items (ind w a)) (indexr’ r (ind t a))) 

dec::num->wbmask_type

dec d = (rep d False)++[True]++(rep (nframes-1 -d) False), if d < nframes 

= error"Decoding number outside the range nframes", otherwise

Operation r2  returns data from memory m by first indexing m with a frame number called ea, and 
then indexing the frame thus retrieved with a, the given address. The value ea is the same as the 
version number of the archive frame, aframeaddr, if all the written bits end up being cleared after 
the operation fixedwb. In this case, the data is read from the archive frame. Otherwise, three 
things are done: function fixedwb is used to clear the written bits at address a that ought to have 
been cleared; a circular priority encode of the fixed written bits is done using function cpe; this 
value is then converted from a bit vector to an integer.

In the calculation of ea, we use the decoded values of the CMF and the OMF. These are 
calculated by the function dec, whose definition can be read: form a list as follows; replicate the 
False bit d times; then append (the ++ operator) a singleton list containing True; then append a 
list of length nfram es-1-d containing False. This is a recipe for setting the dth position of the 
generated bit vector.

Function cpe works like an ordinary priority encoder, except that the word to be encoded is 
the one in the circular range defined by c and o; within this range, the priority of the bits is the 
highest at c, and decreases towards o. cpe locates the first set written bit in this circular range 
and outputs a True corresponding to its position, and outputs False for other positions. The 
implementation of cpe is shown in the appendix; basically its definition directly corresponds to its 
proposed hardware implementation.

31



7.1.4 Operation w2
Operation w2 updates m with data d in the current frame c at address a. It also sets the written bits 
corresponding to the current frame in the written bits memory through the operation bor, after 
clearing ‘stale’ written bits in the written bits array through the operation f  ixedwb. In addition, 
the written bits are timestamped, to indicate when they were written, through the operation (upd 
t  a i) .

w2::(rm2_type,addr_type,word_type)->rm2_type

w2((m,c,o,w,t,r,i,ac),a,d) •

“ (u2dij m e a d ,  c, o,

upd w a (12ar (bor (fixedwb w a r t c o) (dec c))),

upd t a i, r, i, ac)

bor:: [bool]->[bool]->[bool]

bor bvl bv2 = map or (transpose [bvl,bv2]), #bvl = #bv2

= error"Bitor applied to unequal-length vectors", otherwise

7.1.5  Operation m2

m2::rm2_type->rm2_type

m2(m,c,o,w,t,r,i,ac) = (m, newc, o, w, t, updater’ r newc newc o, i+l,ac),

if newc ~=o

= error"Mark: CMF wraps around & equals OMF", otherwise 

where newc = (c+1) mod nframes

Operation m2 increments the current mark frame c by one, modulo nframes. Basically that is all 
that needs to be done in order to allocate a new frame. However, as discussed in section 5, the 
same optimization has been incorporated into m2 as with operation ml2:

• increment c by one, modulo nframes;

• simulate a one-step internal rollback (which decrements c by one);

• increment c by one again.

The advantages of this optimization are:

• During the advance operation, each location of the written bits memory W is subject to a 
read cycle, as opposed to a read-modify-write cycle that would be necessary without the 
optimization.

• In computations where only a fraction of all the addresses are written into over a span of 
nframes frames, not clearing the written bits can be a big win.

• Written bits are actually cleared only during a write operation.

The disadvantage is that the RBH stack grows by one following a mark; without this optimization, 
RBH will grow only following a rollback.

7 .1 .6  Operation b2

b 2 ::rm2_type->rm2_type

b2(m,c,o,w,t,r,i,ac) = (m, (c-1) mod nframes, o, w, t, updater’ r c c o,

i+1, ac), if c ”= o 
“ error"Rollback: CMF underflows k equals OMF", otherwise

32



Operation b2 decrements c to discard the current mark frame. It also updates the RBH stack to 
record which written bits ought to have been cleared following the rollback. Though b2 is defined as 
if it performs a one step rollback, in the actual implementation, a multi-step rollback is performed. 
The only difference between a multi-step rollback and a one step rollback is in the mask word used 
as argument to the upd operation. In the case of a one step rollback, a word with bit position c 
cleared is used. In a k step rollback, a mask word with bits c through c-k+1 cleared (this range 
is computed in a “circular mod” fashion as explained in section 4.2) are used. The verification 
technique changes very little, and so we study the version that is easier to follow, namely a one 
step rollback. ■

7 .1 .7  Operation a2

a2::rm2_type->rm2_type

a2(m,c,o,w,t,r,i,ac)= (archive2’ m w o c r t, c,(o+l) mod nframes,w,t,r,i,0), 

if c ~= o

= error"Advance: OMF overflows & equals CMF", otherwise

archive2’::m_type’->wbstore_type->omf_type->cmf_type->rbh_type’->tstamp_type 

->m_type ’ 

archive2 ’ m w o c r t 

= foldr oneupd m [0..maxwordaddr] 

where 

oneupd a m

= u2dij m aframeaddr a (ind ind_m_copy_source a),

if (indable ind_m_copy_source a)

= m, otherwise

where ind_m_copy_source = (ind m copy_source) 

copy_source = aframeaddr, if zero_cpword 

= cp_cpword, otherwise 

where
cpword = (band (fixedwb w a r t c o)(dec o)) 

decc “ (dec c) 

deco = (dec o)

zero_cpword = (zero cpword decc deco) 

cp_cpword = (cpe2num (cpe cpword decc deco))

For simplicity, operation a2 is implemented as if it were a one step operation. It discards the 
frame being pointed to by the oldest mark frame pointer o. Before discarding this frame, however, 
it may be the case that there are addresses for which only this frame (that is about to be discarded) 
has the most recent version of data. These data items are archived as before.

Significant differences between a l2  and a2 can be noticed in the way copy_source is defined. 
In al2 , we check to see whether the written bits for address a (after fixw has been performed) 
equals the OMF, o; if so, the OMF contents at address a has to be archived. In a2, we simply 
check if the result of circularly priority encoding the written bits (after fixw has been performed) 
results in a written bits word of all False; if so, no archiving is needed; else the location a of the 
OMF frame has to be archived.

8 Verification of RM2 Against RM1
As far as the external world is concerned, both RM1 and RM2 are systems whose internal states 
are observable only through the read operation. Also, both RM1 and RM2 must be first subject 
to a reset operation before any other operation can be applied on them.

33



Considering the above facts, the verification criterion by us states that RM1 and RM2 must be 
observably equivalent, defined as follows:

Let opi, 1 < i < N denote the ith operation in a sequence of N operations. Let 
urgi, 1 < i < N denote the arguments of opi. Let op) denote opi as defined by RM1, 
and op? denote op, as defined by RM2. Then, for any state a\ of RM1 and of RM2, 
for all N,

rl(op]v( . . .op{(sl(<Ti), a r g i ) . . . ,  argN), a) = r2(op%(... op\(s2(a2), argx) . . . ,  argN), a)

In other words, the data read from RM1 and RM2 should be the same after they both have been 
subject to an identical sequence of operations.

Since all possible states of the RBC can be created only through its operations w rite , m ark, 
rollback, and advance, observable equivalence can be established through generator induction[4],
i.e., induction over sequences of state changing operations. Applying this technique leads to the 
generation of the following formulas, called verification conditions, or ‘VCs’. (Note: The basis case 
for induction is included as part of the reset operation.) All these VCs have to be shown to be 
true for all states SI of RM1 and S2 of RM2, all addresses a and a ’ , and all data d:

V C 1: r l ( s l ( S l ) ,a )  = r2(s2(S2),a)

VC2: ( r l( S l ,a )  = r2(S2,a)) => (rl(w l(S l,a*  ,d) ,a) = r2(w2(S2, a ’ ,d ) , a))

VC3: ( r l( S l ,a )  = r2(S2,a)) => (rl(m l(SI) ,a) = r2(m2(S2) ,a))

VC4: ( r l( S l ,a )  = r2(S2,a)) => ( r l(b l(S l)  ,a) = r2(b2(S2) ,a))

VC5: ( r l( S l ,a )  = r2(S2,a)) => ( r l( a l(S l)  ,a) = r2(a2(S2) , a))

Let LHS2 stand for the left-hand side of the consequent (the part after =>) of any VC, RHS2 
for the right-hand side of the consequent of the VC, LHSl the left-hand side of the antecedent (the 
part before the =>) of the VC, and RHS1 the right-hand side of the antecedent. We shall now show 
the proof of correctness of VC1 and VC2. The other VCs have been proved similarly, but their 
proof not presented for lack of space.

8.1 P roof of VC1
The equality to be proved is 

r l ( s l ( S l ) ,a )  = r2(s2(S2),a)

First of all, notice that s i (SI) can also be written as (s i SI). Expanding the left-hand side using 
the definitions of r l ,  we get

(ind (ind (m (s i SI)) 0) a)

where function m selects the m component of the state triple (m,c,o), at level RM1. Expanding 
the left-hand side using the definitions of s i, we get

(ind (ind (empty2d maxversion maxwordaddr) 0) a) (1)

The right-hand side is

r2 (s 2 (S 2 ) ,a ) ( 1 . 5 )



Let t  selects the time_stamp array, t ,  component of the eight-tuple (m .c .o .w .t.r .i.a c ). 
Similarly, define selector functions m, c, o, w, t , r, i, and ac. We have the following facts:

1. From the definition of s2,

(ind (t (s2 S2)) a) = 0, fo r a l l  a.

2. From the definition of s2,

(ind (r (s2 S2)) 0) = in f in i ty ’ .

3. From the definition of s2,

(ind (w (s2 S2)) a) = (c2d maxaddr maxversion vOset), where vOset i  j = (j=0).

4. band(wb,infinity’ ) = wb, for all wb.

5. (c (s2 S2)) = (o (s2 S2)) = 0.

Expanding the right-hand side (1.5) using the above facts, and the definition of r2, we obtain 

(ind (ind (m (s2 S2)) 0) a).

Now expanding using the definition of s2, we get

(ind (ind (empty2d nframes maxwordaddr) 0) a) (2)

We can assume that uninitialized memory arrays return an unspecified, but the same (in the case 
of RM1 and RM2) values. Therefore, we have (1) = (2) , and the proof of V C 1 is finished.

8.2 P roof of VC2
The goal is to show 

LHS2 = RHS2, 

that is,

r l ( w l( S l ,a ’ ,d ),a) = r2(w2(S2,a’ ,d ) ,a ) .

Consider the left-hand side 

r l( w l( S l ,a ’ ,d ) ,a ) .

Expanding it using the definition of r l  and wl, we get

r l((u 2 d ij (m SI) (c SI) a ’ d, c, (o S I)), a)
= (ind (ind (u2dij (m SI) (c SI) a ’ d) (c SI)) a)

Since the first-component of the address of ind matches that of u2di j , we simplify the above:

(ind (ind (u2dij (m SI) (c SI) a ’ d) (c SI)) a)
= d, i f  (a = a ’ )
= (ind (ind (m SI) (c SI)) a), otherwise (1)

Consider the fragment of RHS 

w2(S2,a’ ,d ) .

35



Expanding it using the definition of w2, we get

(u2dij (m S2) (c S2) a’ d,

(c S2),

(o S2),

upd (w S2) a’ (12ar (bor (fixedwb (w S2) a' (r S2) (t S2) (c S2) (o S2))

(dec (c S2)))) , 

upd (t S2) a’ (i S2),

(r S2), ^

(i S2), *
(ac S2)) (2)

Let the following abbreviations be defined ■

Wl = upd (w S2) a’ (12ar (bor (fixedwb (w S2) a’ (r S2) (t S2) (c S2) (o S2))

(dec (c S2)) ) ) ,

T1 = upd (t S2) a' (i S2)

eff-mrv-frame = fixedwb Wl a (r S2) T1 (c S2) (o S2)

Now consider the whole RHS 

r2(w2(S2,a’,d),a).

Using (2), the above abbreviations, and the definition of r2, we get

(ind (ind (u2dij (m S2) (c S2) a’ d) ea) a)

where ea = aframeaddr, if zero (fixedwb Wl a (r S2) T1 (c S2) (o S2)) decc deco 

= (cpe2num (cpe (fixedwb Wl a (r S2) T1 (c S2) (o S2)) decc deco)), 

otherwise 

where decc = dec (c S2)

deco = dec (o S2) (3)

Now, perform a case analysis. Consider the case a = a’ on (3).

8.2.1 Case a=a’

Let us modify the above abbreviations to suit this case

Wll = upd (w S2) a (12ar (bor (fixedwb (w S2) a (r S2) (t S2) (c S2) (o S2))

(dec (c S2)))),

Til = upd (t S2) a (i S2)

eff-mrv-framell = fixedwb Wll a (r S2) Til (c S2) (o S2)

We then have

(ind Wll a) = (12ar (bor (fixedwb (w S2) a (r S2) (t S2) (c S2) (o S2))

(dec (c S2)))),

(ind Til a) = (i S2)

eff-mrv-framel = fixedwb Wll a (r S2) Til (c S2) (o S2)

= (band (ar21items (ind Wll a)) (indexr’ (r S2) (ind Til a)))

= (band (ar21items

(12ar (bor (fixedwb (w S2) a (r S2) (t S2) (c S2) (o S2))

(dec (c S2))))

)

36



= (band (bor (fixedwb (w S2) a (r S2) (t S2) (c S2) (o S2))

(dec (c S2)))

(indexr’ (r S2) (i S2))

)

The proof seems stuck here, until we recognize that the following is a system invariant

(indexr’ (r S2) (i S2)) = infinity’ (S)

In other words, as the designers of the RBC, we had arranged for the top of the RBH stack to 
always have the word in f. (The fact that this is indeed an invariant is proved as Lem m al, below.)
Using this invariant, simplify eff-mrv-framel to

eff-mrv-framel — which is also equal to (fixedwb Wll a (r S2) Til (c S2) (o S2))

= (band (bor (fixedwb (w S2) a (r S2) (t S2) (c S2) (o S2))

(dec (c S2))) 

infinity’

)
= (bor (fixedwb (w S2) a (r S2) (t S2) (c S2) (o S2))

(dec (c S2)))

Since eff-m rv-fram el has a subterm (dec (c S2)) that gets bit-wise or-ed with the rest of the 
term, we can conclude that the following test used in equation (3), specialized according to case 
a=a’, is false:

if zero (fixedwb Wll a (r S2) Til (c S2) (o S2)) decc deco —> reduces to false

We replace

(fixedwb W1 a (r S2) T1 (c S2) (o S2)) 

with

(bor (fixedwb (w S2) a (r S2) (t S2) (c S2) (o S2))

(dec (c S2)))

in equation (3), giving us:

r2(w2(S2,a,d),a) = (ind (ind (u2dij (m S2) (c S2) a d) ea) a)

where

ea = (cpe2num (cpe

(bor (fixedwb (w S2) a (r S2) (t S2) (c S2) (o S2)) 

decc)

decc

deco)

)
where decc = dec (c S2)

deco = dec (o S2) (6)

(indexr’ ( r  S2) ( i  S2))
)

We use Lemma2 (proved later) which asserts:

37



(c p e  ( b o r  v  d e c c )  d e cc  d e co ) = d e cc

and so

(cpe2num  (c p e  ( b o r  v  d e c c )  d e c c  d e c o ) )  = (c  S 2 )

and so

r 2 ( w 2 ( S 2 , a , d ) , a )  = ( in d  ( in d  ( u 2 d i j  (m S 2 )  (c  S 2 )  a  d ) (c  S 2 ) )  a )
= d . ( 7 )

N otice th a t ( 1 )  also yields d, w hen a = a ’ . Thus V C 2  holds fo r  a=a*.

8 .2 .2  C a s e  a  <> a ’ '

Using the defin itions o f r l  and  w l, and  using a rra y  axiom s, LH S2 can be sim plified to  

( in d  ( in d  (m S I )  (c  S I ) )  a)

Since th e addresses a  and a ’ do not m atch , we can sim plify R H S2 to

( in d  ( in d  (m S 2 )  e a )  a )
w h ere  e a  = a f ra m e a d d r , i f  z e r o  ( f ix e d w b  Wl a  ( r  S 2 )  T1 (c  S 2 )  (o  S 2 ) )  d e c c  deco  

= (cpe2num  (cp e  ( f ix e d w b  Wl a  ( r  S 2 )  T1 (c  S 2 )  (o  S 2 ) )  d e c c  d e c o ) ) ,  
o th e r w is e  

w h ere  d e cc  = d ec  (c  S 2 )
d eco  = d ec  (o  S 2 )  ( 8 )

LH S1 is, using th e  definitions o f  r l  and w l,

( in d  ( in d  (m S I )  (c  S I ) )  a )

R H S1 can be expanded using th e  definition o f  r 2  to  ex a c tly  w h at R H S2 is. T hus, th is case o f  a  <> 
a ’ is also estab lished . This finishes th e  p ro o f o f  correctness o f th e  w rite  o p e ra tio n , w ith  resp ect to  
th e  re a d  o p era tion .

8 .2 .3  P r o o f  o f  L e m m a l

W e shall use a technique know n as g en era to r induction  [4]. W e notice th a t  RBH  is affected  by  
o p era tion s s 2 ,  m2, and b2  only. O p eration  s 2  in itia lizes i  to  a  va lue “iO ” , w hich is 0 . It also  
in itializes th e  RBH unit to  c r e a t e r ’ . W e notice th a t c r e a t e r ’ has an  i n f i n i t y ’ w ord  on to p ; i.e ., 
i n d e x r ’ ( c r e a t e r ’ , i 0 ) = i n f i n i t y ’ . T hus, th e  basis case fo r th e  indu ction  holds. A fte r  op era tion  
m2, i  is increased by 1 , to  a tta in  a  value th a t w e shall call “i l ” , an d  th e  RBH  s ta te  advances to  
( u p d a t e r ’ r  newc newc o ) .  F rom  th e  definition o f  u p d a t e r ’ , we can see th a t  it  increases th e  
len gth  o f th e  RBH b y one and also pushes an  i n f i n i t y ’ w ord  on top  o f  th e  RBH  stack. T herefore, 
th e  value o f i n d e x r ’ ( r , i l )  is also i n f i n i t y ’ . S im ilar s ta te  u p d ates a re  p erfo rm ed  on RBH a fte r  
o p era tion  b2 also. T hus, in a ll cases, th e RBH u n it has as its  “to p ” e n try  (e n try  p o in ted  to  by  
i )  th e  value i n f i n i t y ’ . T he ab ove argum ents estab lish  th e  indu ction  step . T hus, L e m m a l  is 
established .

38



8.2.4 Proof of Lemma2
To show

(cpe (bor v decc) decc deco) = decc

Informally, this is true because function bor (bit-wise or) sets the bit at position decc, which will 
be detected as the first set bit by the circular priority encoder function cpe, when it is scanning 
from decc towards deco. More formally, from the definition of cpe,

cpe wb dc do = map pickcpo [(cpencode i  dc do wb) I i< -[ 0 . .maxversion]] 
where pickcpo ( (pout,in rn g), (kout,cpout)) = cpout

We can see that in the above list-comprehension, cpencode will be called,as

(cpencode i  decc deco (bor v decc))

for i  in the range [ 0 . .maxversion].
From the way cpencode is defined, we can see:

1. the ith  cp ce ll produces a cpout bit set to true if din is true, inrng is true, and c is true. 
(This stems from the clause

where cpout = din & inrng & ("kin\/c) of the definition of cp cell, below.

2. Once cpout is set, kout is set true, thus killing the circular carry.

3. Thus, once the cell numbered decc has produced the cpout signal, the remaining cpout 
signals are reset to False. Thus, the lemma holds.

See the appendix for further details.

9 Conclusions

The design of the Roll Back Chip (RBC), a custom architecture that helps speed up the state- 
saving and roll-back parts of an implementation of distributed discrete event simulation using Time 
Warp, was presented. Specifications for the RBC system were written in our hardware description 
language HOP. Top-down design was followed to some extent, but many of the crucial refinement 
steps were simply based on the experience of one of the authors as an architect, and captured after 
the fact by the other author whose primary role has been that of formal specification. The final 
implementation of the RBC used in [2] is very close to the final design specification in HOP that 
was verified against a high-level specification of the RBC. Verification is greatly aided by the ability 
of PARCOMP to deduce behavioral descriptions from structural descriptions.

9.1 Lessons Learned
The exercise of designing the RBC system, writing its specification, and conducting its formal 
verification have taken nearly three years of part-time effort on part of both the authors.. This 
time-frame is not representative of how verification will ultimately be used in the industry. The 
reason for taking three years is mainly because we were developing both the specification of the 
RBC and the implementation of HOP side by side. This time period can be drastically reduced once 
sufficient support tools are developed. All these tools have well-understood functionality. Some of 
them are outlined below.

In the authors’ estimate, the percentage of time allocated to various tasks is as follows:

39



Paper design: About six man-months and two graduate seminar classes (one quarter each) later, 
we had the initial specifications for the RBC system, and a simulator written in the C lan
guage;

Design iterations: Our initial design involved an on-chip written bits memory. This design was 
simulated in C. We concluded that this scheme would involve the use of large amounts of 
silicon area. Hence we developed a version of the RBC based on a special purpose Cache 
memory [1]. This took about three man-months.

Developing the Simplified Version: Following the commercial development of the RBC [2], we 
decided to try and verify this version. These decisions cost us a few man-months.

Developing HOP Specifications: Since the HOP effort was also goiug side-by-side, “teething 
troubles” forced us to take nearly six man-months to develop HOP specifications, and run 
them through PARCOMP.

Verification: Another two man-months were spent in writing out a formal proof of correctness of
the inferred behavior.

Developing M iranda Specifications: For the purposes of exposition, it was felt that the HOP 
syntax was a bit tedious. Also, developing Miranda specifications has the added advantages 
of the ease of making the RBC specifications available for other groups to try their approaches 
on. This took only one week, thanks to the expressive power of Miranda.

The rest of the time was spent in coordinating between the authors through electronic mail.

9.2 How to do it again? Future Plans
We are convinced that formal verification is here to stay as a powerful technique to supplant other
design validation techniques. Here are our concrete plans to make our future efforts in this area
easier:

• Re-implement HOP and PARCOMP: The HOP system is currently being re-implemented, 
using the Standard ML functional language [18] as the implementation language. ML has 
nearly all the expressive power of Miranda, and also comes with much a more efficient compiler 
than Miranda. This will help in many ways, including the ability to present our results in 
the syntax of HOP itself.

• Automate low-level reasoning steps: We are planning to write an expression simplifier as part 
of PARCOMP to help carry out many of the proof-steps under human guidance.

• Capture timing details: The RBC system offers many possibilities for the overlapped execution 
of its operations. In the current design, these possibilities have not been fully exploited. Our 
notation is also presently incapable of formally expressing many of these operational details 
pertaining to resource contention, overlapped execution, synchronization, etc.
Fortunately for us, we have developed a process+functional language called hopCP. A simu
lator as well as PARCOMP has been implemented for it by the first author’s group [26, 27]. 
Plans are in place to specify the RBC in hopCP, conduct its formal verification, and develop 
an asynchronous version of the RBC.

40



A The Specification of the Array Data Type

maxind_type == num 

ind.type == m m

abstype array *
with cv::maxind_type -> (ind_type -> *) -> array * 

empty::maxind_type -> array *

indok::array * -> ind_type -> bool ,

maxind::array * -> maxind_type 

ar21::array * -> [(ind_type,*)] 

ar21items::array * -> [*]

12ar::[*] _> array *

upd::array * -> ind_type -> * -> array * 

ind::array * -> ind_type -> * 

indable:: array * -> ind_type -> bool 

showarray::(*->[char]) -> array * -> [char] 

array * == (maxind_type,[(ind_type,*)]) 

empty m = (m, [] )

cv m f = (m,[(i,f i) I i<-[0..m]]) 

indok a i = i<=(maxind a) & i>«0 

maxind (m,l) = m 

ar21(m,l) = 1

ar21items(m,l) = map snd 1 

12ar 1 = (#1-I,zip2 (index 1) 1)

upd a i e = (maxind a,(i,e):[(x,y)I(x,y)<-(ar21 a); x "= i]), if indok a i 

= error ("Index "++(shownum i)++" out of range "), otherwise

ind a i

= hd projecti, if (indok a i) & projecti ~= []

= error "Indexed item not found", if projecti = []

= error ("Index "++(shownum i)++" out of range "), otherwise 

where

projecti = [y I (x,y)<-(ar21 a); x=i] 

indable a i = ([y I (x,y)<-(ar21 a); x=i] ~= []) 

showarray f (m,l) = "(" ++ (shownum m) ++ ",[])", if 1=[]

41



= "(" ++ (shownum m) ++ ",\n[" ++ 

concat(map she (init 1)) ++
(sh (last 1)) ++ "]\n)\n", otherwise

where

sh (x,y) = "(" ++ (shownum x) ++ ++ (f y) ++ ")" 

she x = (sh x)++'\"

I I Create a 2d array 

empty2d::num->num->(array (array *)) 

empty2d dl d2 =
cv dl f_i 

where

f_i i = empty d2

c2d::num->num->(num->num->*) -> (array (array *)) 

c2d dl d2 f_i_j =

cv dl f_i 

where

f_i i = cv d2 f_j 
where 

f - j  j  = f - i - j  i  j

I I Update 2d array at i, for all j with (f j) 

u2di::(array (array *))->num->(num->*) -> (array (array *)) 

u2di a i f =

(upd a i new.islice) 

where

new_islice =

(cv (maxind old_islice) f) 

where

old.islice = (ind a i)

I I Update 2d array at j, for all i with (f i) 
u2dj::(array (array *))->num->(num->*) -> (array (array *)) 

u2dj a j f =

(iter 0 a)!(maxind a) 

where

iter i x = x:(iter (i+1) (g i x)) 

where

g i x = u2dij x i j (f i)

I I Update 2d array at i,j with v

u2dij::(array (array *))->num->num->* -> (array (array *)) 

u2dij a i j v = (upd a i (upd (ind a i) j v))

B The Circular Priority Encoder Specification
Imagine a hardware implementation o f ’’cpcell”, as follows:

42



1 1 
V V 

_ _ _ 1

I c din | 
1 |

>-|pout pin I<- 
I j

I cpcell I 
I I

>-|kout kin |<- 

1 1
■

1 1 
1 o cpout inrngj 
|----------------------

* 1 1 
I V V

Then, replicating the cells as shown nframes times, with a wrap-around connection from the 
most significant pin and kin to the least significant pout and kout, constitutes the cpencode hard
ware.

<-

c din

pout pin

cpcell 

kout kin

0 cpout inrng

* I I
1 V V

<-<-

c din

pout pin

cpcell 

kout kin

o cpout inrngI

<-<-

c din

pout pin

cpcell 

kout kin

0 cpout inrng

* I I
1 V V

<—

Above, we show a three-bit circular priority encoder.
Notice that there is a combinational loop! However, the evaluation of this loop terminates, 

thanks to the use of many non-strict operators. (E.g. and(False,anything) = False.) Since 
Miranda is lazy, we can directly model this combinational loop in it! The definitions, leading up 
to the cpe function are now presented. First, define a “range computation cell” that is contained 
within the cpcell:

rngcell (c,pin,o) 11 outputs are (pout,inrng) -this is a ’helper’

= (True,True), if ck~o
* (pin ,pin) , if (~c)fe(~o)

= (False,pin), if ~c&o
= (False,True),if c&o

Now define the c p c e ll:

43



cpcell (c,din,pin,kin,o) II outputs are ((pout,inrng),(kout,cpout))

= ((pout,inrng),(kout,cpout))

where cpout = din ft inrng & ("kin \/ c)

kout = cpout

(pout,inrng) = rngcell(c,pin,o)

Now write cpencode, that returns the outputs for the i-th  position. Here, decc is the decoded 
CMF, deco the decoded omf, and d in l  the data input list.

The outputs of this function are: .

•  pout_i = the propagate signal generated for the inrng signal generation;

• in rn g_i = the signal that tells whether the current bit i  is within the circular range defined 
by CMF and OMF;

•  kout_i = the kill signal generated by the i-th  stage;

•  cpout_i = the circularly priority encoded signal.

cpencode i decc deco dinl II gives ((pout_i,inrng_i),(kout_i,cpout_i))

= cpcell(c_i,din_i,pin_i,kin_i,o_i) 

where

((pin_i,inrng_i’),(kin_i,cpout_i’))
= cpencode ((i+1) mod nframes) decc deco dinl 

(c_i,o_i,din_i) = (zip3 decc deco dinl)!i

Notice how the recursion proceeds. It won’t “chase the tail” because, very soon, a term of 
the form an d (F a lse .X ), a n d (X ,F a lse ), o r(T ru e ,X ), or o r(X ,T rue) will be encountered, thus 
terminating the “tail chasing”.

A simulation session further clarifies how this function operates:

Miranda cpencode 0 [False,False,True,False][True.False,False,False][False,True.False.False] 

((False.True),(False,False))

Miranda cpencode 1 [False,False,True,False][True,False,False,False][False,True,False,False] 

((True,True),(True,True))

Miranda cpencode 2 [False,False,True,False][True,False,False,False][False,True,False,False] 

((True,True),(False,False))
Miranda cpencode 3 [False,False,True,False][True,False,False,False][False,True,False,False] 

((False,False),(False,False))

References
[1] Richard Fujimoto, Jya-Jang Tsai, and Ganesh Gopalakrishnan. Design and performance of special 

purpose hardware for time warp. In 15th Annual International Symposium on Computer Architecture, 
Honolulu, pages 40 1-408 , 1988.

[2] C. A. Buzzell, M. J . Robb, and R. M. Fujimoto. M odular VME rollback hardware for Time W arp. 
Proceedings o f the SC S Multiconference on Distributed Simulation, 22( 1): 153—156, January 1990.

[3] D. R. Jefferson. V irtual time. AC M  Transactions on Programming Languages and Systems, 7 (3):404-  
425, Ju ly  1985.

44



[4] John V. Guttag, Ellis Horowitz, and David R. Musser. Abstract data types and software validation. 
Communications o f the ACM, 21(12): 1048—1064, December 1978.

[5] Boyer and Moore. A Computational Logic. Academic Press, 1979.

[6] Michael Gordon. HOL: A  proof generating system for Higher Order Logic. In Graham  Birtwistle 
and P.A.Subrahm anyam , editors, VLSI Specification, Verification and Synthesis, pages 73 -128 . Kluwer 
Academic Publishers, Boston, 1988. ISBN-0-89838-246-7.

[7] Mandayam Srivas and Mark Bickford. Formal verification o f a pipelined microprocessor. IEEE Software, 
(9), September 1990.

[8] W . Richards Adrion, M artha A. Branstad, and John C. Cherniavsky. Validation, verification, and 
testing o f computer software. Computing Surveys, 14(2): 159—192, June 1982.

[9] Krzysztof R. A pt and Ernst-Rudiger Olderog. Verification of Sequential and Concurrent Programs. 
Springer-Verlag, 1991. ISBN 0-387-97532-2.

101 Paolo Cam urati and Paolo Prinetto. Formal verification of hardware correctness: Introduction and 
survey o f current research. IEEE Computer, 21(7 ):8 -20 , Ju ly  1988.

I l l  G .Birtwistle and P.A.Subrahmanyam, editors. Current Trends in Hardware Verification and Automated 
Theorem Proving. Springer-Verlag, 1989.

121 Luc Claesen, editor. Proceedings of the IMEC-IFIP Workshop on Applied Formal Methods fo r  Correct 
VLSI Design, Leuven, Belgium. North Holland, November 1989.

131 Daniel Weise. Automatic Formal Verification o f Synchronous MOS VLSI Designs. PhD thesis, Dept, 
of EE and CS, MIT, 1986.

141 Randal E. Bryant. Formal verification of memory circuits by switch-level simulation. IEEE Transactions 
on Computer-Aided Design, 10 (1):94—102, January 1991.

15] A vra  Cohn. Correctness properties of the Viper block model: The second level. In G .Birtwistle and 
P.A.Subrahm anyam , editors, Current Trends in Hardware Verification and Automated Theorem Proving, 
chapter 1, pages 1 -9 1 . Springer-Verlag, 1989.

161 W arren A. Hunt Jr. The mechanical verification o f a microprocessor design. In D. Borrione, editor, 
From HDL Descriptions to Guaranted Correct Circuit Designs. Elsevier Science Publishers B.V. (North 
Holland), 1987. (Proc of the IFIP W G  10.2 Working Conference with the same title.).

171 David A. W ood, G arth A. Gibson, and Randy H. Katz. Verifying a multiprocessor cache controller 
using random test generation. IEEE Design & Test o f Computers, August 1990.

181 Lawrence C. Paulson. ML fo r  the Working Programmer. Cambridge University Press, 1991. ISBN 
0-521-39022-2.

191 R- M. Fujimoto. Time W arp on a shared memory multiprocessor. Transactions of the Society fo r  
Computer Simulation, 6 (3):211—239, Ju ly  1989.

201 R- M. Fujimoto. Parallel discrete event simulation. Communications of the ACM, 33 (10):30-53 , October 
1990.

211 Mani Narayana and Surya Mantha. The design o f a tlb for the roll back chip. VLSI Class Project 
Report, Dept, of Computer Science, Univ. of Utah, W inter 1988.

221 Paul Hudak. Conception, evolution, and application o f functional programming languages, acm Com
puting Surveys, (3):359—411, September 1989.

231 Robin Milner. A  theory of type polymorphism in programming. Journal of Computer System Sciences, 
17 :348-375 , 1978.

241 David A. Turner. Functional Programs as Executable Specifications, edited by C.A.R. Hoare and 
J.C.Shepherdson. Prentice-Hall International Series in Computer Science, 1985.

251 John V. G uttag and J . J . Horning. The algebraic specification o f abstract data types. Acta Informatica, 
10(1) :27—52, 1978.

45



[26] Venkatesh Akella. Action refinement based transform ation o f concurrent processes into asynchronous 
hardware. Ph.D. research in progress.

[27] Vankatesh Akella and Ganesh Gopalakrishnan. “Hierarchical Action Refinement: A  Methodology for 
Compiling Asynchronous Circuits from a Concurrent HDL” . In D. Borrione and R. W axman, editors, 
CHDL 91 - Computer Hardware Description Languages and their Application, pages 319-33 8 , Marseille, 
France, April 1991.

46


