
Direct Ray Tracing of Smoothed and
Displacement Mapped Triangles

Brian Smits Peter Shirley M ichael M. Stark
University o f Utah

Technical Report UUCS-00-008
www.cs.utah.edu/ bes/papers/height/tech.html

Abstract.
We present an algorithm for ray tracing displacement maps that requires no ad
ditional storage over the base model. Displacement maps are rarely used in ray
tracing due to the cost associated with storing and intersecting the displaced ge
ometry. This is unfortunate because displacement maps allow the addition of
large amounts of geometric complexity into models. Our method works for mod
els composed of triangles with normals at the vertices. In addition, we present a
special purpose displacement that creates a smooth surface that interpolates the
triangle vertices and normals. Thus two adjacent triangles which share two ver
tices and normals will be smoothly interpolated. This displacement can be added
to the displacement associated with the object. The combination allows relatively
coarse models to be displacement mapped and ray traced with much less storage
and fewer artifacts due to tessellation.

1 I n t r o d u c t i o n

V isually rich im ages are often generated from sim pler m odels by applying displace
ment m aps to increase surface detail (F igure 1). D isplacem ent m aps are a special type
o f offset surface, and are usually assum ed to perturb surface positions a sm all distance
using som e function. Images w ith displacem ent m aps are usually com puted using ex
plicit subdivision [3], The displacem ent is often a sem i-random procedural function
that uses Perlin-style noise [11], Som ew hat surprisingly, displacem ent m aps are alm ost
never used in ray tracing. This turns out to be for entirely technical reasons; a straight
forw ard im plem entation w ould need to store m ore m icropolygons than w ould fit in
m ain m em ory on m ost com puters [4], For this reason, sophisticated caching strategies
have been suggested [12], A lthough caching strategies w ork well for a variety o f app li
cations they are problem atic for applications that resist reordering such as M etropolis
Light T ransport [15], Alternatively, explicit num eric root-finding can be used, provided
the displacem ents can be nicely bounded [5, 8]. A third approach that could w ork for
displacem ent m apped surfaces is the recursive subdivision schem e used for procedural
geom etry by K ajiya[6]. This approach requires know ing tight bounds over each subdi
vided region o f the displacem ent function in order to be efficient. Because m ost global
illum ination algorithm s require ray tracing , it is desirable to find a sim ple w ay to add
displacem ent m aps to ray tracing program s. T his w ould allow realism in both global
lighting com plexity and local geom etric complexity.

We introduce a method for ray tracing polygonal m odels with displacem ents that
avoids com plex strategies by restricting the allow able base geom etry to triangle m eshes
w ith vertex norm als. A lthough this is a narrow class o f m odeling prim itive, alm ost all
other m odeling prim itives can be converted to triangle m eshes in a practical manner.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cs.utah.edu/

Fig. 1. An image of a complex object created by displacement mapping an icosahedron. The
figure is ray traced with global illumination. Only twenty triangles are stored.

The key problem w ith triangle m eshes is the w ell-know n faceting artifacts. However,
w e show how to use a determ inistic spline displacem ent function to sm ooth tessellated
m odels. W hile we have restricted how our base m odels m ust be represented, w e feel
the resulting benefits in com putation and storage m ake up for this restriction.

In Section 2 we give an overview o f our assum ptions on the m odel and the restric
tions we im pose for our algorithm . In Section 3 we present the ray intersection algo
rithm for triangles w ith displacem ent functions. The requirem ents for a displacem ent
function used to sm ooth triangle m eshes is discussed in Section 4. Im ages resulting
from the algorithm are show n in Section 5. Finally, w e discuss fu ture directions for the
work in Section 6 .

2 O v e r v i e w

The inspiration for our m ethod com es from the REYES rendering architecture [3]. That
sim ple architecture has w orked w ell for alm ost two decades, and relies on three sim pli
fying assum ptions related to displacem ents:

• displacem ents are bounded in distance,
• base surfaces know how to subdivide them selves,
• subdividing the displaced base surfaces into a net o f sim ple sub-pixel patches

provides sufficient accuracy.

We borrow these assum ptions directly. By assum ing that a finely subdivided model
provides sufficient accuracy, we can use m icropolygon norm als directly, so no deriva-

2

Fig. 2. A set o f points with normals partitions space into cells (one is shaded) which can be
traversed in order by a ray. This observation holds in 3D as well. An analogous partition can be
added within each cell.

tive properties o f the displacem ent need be known. We also add the assum ption that
the displacem ents are along the direction o f the interpolated norm al. A lthough th is is
m ore restrictive than the displacem ent m apping found in the R EY ES architecture, it is
the type o f displacem ent m apping found in M aya[l], For the intersection m ethod, first
im agine a base surface being “carved u p ” w ith a set o f vertices and norm als (Figure 2).
W ithin each partition w e could displace a triangle w hose vertices lie a long projected
norm al vectors from the base surface. I f one considers a given triangle under all pos
sible displacem ents, it sw eeps out a 3D region in space. For reasonably w ell-behaved
surfaces, adjacent triangles have adjacent regions. The shape o f the boundaries betw een
these regions depends on how the norm al vectors o f base geom etry behave. I f one im ag
ines all the regions sw ept out by all triangles, each triangle form ing a “colum n” in space,
the possib ility o f a traversal algorithm presents itself. If the base geom etry is a plane
then all displacem ents are perpendicular to the plane and the traversal algorithm w ould
be sim ilar to that usually used for ray intersections with height fields [9], except that the
traversed cells w ould have triangular rather than rectangular cross-sections. We w ould
like to choose a base geom etry that is general enough to be geom etrically expressive,
but restrictive enough that such a traversal algorithm is feasible.

B ecause they are so often used in practice, three obvious choices are N U R B S sur
faces, subdivision surfaces, and im plicit surfaces such as m etaballs. Since all three o f
these prim itive types are quite different from each other, it is desirable to find a com m on
representation that they could all be converted into. The only obvious choice for this
com m on representation is a triangulated mesh, to w hich it is straightforw ard to convert
for N U R B S and subdivision surfaces, and at least feasible for im plicit surfaces [14].
For this reason we choose triangles as our base geometry. To ensure that the displaced
surface is continuous, w e use shared vertex norm als and displace along norm als com
puted via barycentric interpolation (i.e., Phong norm al interpolation [13]). A lthough
m ore general d isplacem ents are useful [10], we leverage this restriction on the direction
o f displacem ent to create a sim pler algorithm than w ould be possib le otherw ise.

We strengthen the restriction o f a bound on the displacem ent to lim it the range
o f possible d isplacem ents so that any resulting displaced surface is unable to intersect
itself. Each point in the valid region corresponds to exactly one position and displace
m ent value on the base triangle. This restriction m eans that each region has only one
set o f neighbors, ano ther requirem ent for a simple traversal algorithm . It also means
that the first intersection found will be the closest intersection to the ray origin.

O ur displacem ent fram ew ork assum es there is a point p on an underly ing surface
w hich is displaced in the direction o f the normal vector n (p) by a displacem ent func
tion h(p) (Figure 3). For a triangle w ith points P n ,P i ,P 2 and corresponding norm als

3

Fig. 3. A simple displacement by function h in the normal direction creates a new curve in 2D.

Fig. 4. Icosahedron with displacement pushing each point to a sphere, N = 1,4,100.

no, n i , i>2 the b ilinearly interpolated points and norm als p and n are:

P = a P o + ^ P i + 7 P 2-
n = a n 0 + / ? n i + 7112,

w here (a , /3 ,7) are the barycentric coordinates on the triangle, so a + 3 + 7 = 1. O ur
displaced surface pd is thus:

Pd = QPo + 0Pi + 7P2 + Ma Po + PPi + IP 2) (« no + /?" 1 + 7 " 2)

3 R a y I n t e r s e c t i o n

O ur ray intersection test is sim ilar in spirit to intersecting a ray w ith a height field using
a regular grid over the base plane. We will take advantage o f an im plicit triangular grid
form ed by the barycentric coordinates. We choose a subdivision am ount N (Figure 4)
and use dividing lines a* = 7 i = Pi — i / N for i = 0, ...,7V w hich creates N 2 grid
cells for each triangle. Each grid cell generates one displaced m icrotriangle, as shown
in Figure 5. The grid is regular on the base triangle, but due to the interpolated surface
norm als, it is irregular throughout space. A lthough it is irregular, our restrictions lim it
the range o f the displacem ent function h() to the interval [—m , + M] w here a traversal
algorithm is possible.

M uch like standard grid traversal algorithm s, there are two phases to the algorithm .
First the start point m ust be initialized. N ext the grid m ust be traversed, checking each
cell for an intersection w ith the triangle it contains. The traversal algorithm will be
described first in order to determ ine the quantities that need to be initialized.

4

Fig. 5. The base triangle and four displaced microtriangles generated by setting the subdivision
parameter, N , to 2. The volume fo r the maximum displacement is also shown.

3.1 T raversa]

A ssum ing w e w ill be able to initialize the traversal algorithm , w e focus first on how
to do an efficient traversal. T his traversal is conceptually simple, however the use o f
triangles com plicates the indexing. For each cell entered, the m icrotriangle is generated.
I f it is hit, the traversal is over, i f it is m issed, the next cell m ust be determ ined and a
new m icrotriangle generated. The new triangle w ill differ from the previous triangle
by exactly one vertex. T his m eans that fo r each step through the grid we need only
evaluate the expensive displacem ent function once.

A position in the grid w ill be labeled by a trip le, (i . j , k) , corresponding to the lines
o f constant barycentric coordinates a = i / N , j3 = j /TV, 7 = k / N . The indices sum to
either N — 1 or N — 2 depending upon w hether the triangle is a low er triangle or an
upper triangle as show n in Figure 6 . The classification into low er and upper determ ines
how the vertices are generated given the indices. For a low er triangle, the barycentric
lines corresponding to indices are the edges o f the triangle. For an upper triangle, the
barycentric lines corresponding to the indices touch the triangle only at the vertices.
This is not as neat as other possible num bering schem es, how ever it m eans that each
triangle differs from its neighbors by one in exactly one index.

Each m icrotriangle is represented by three displaced points, a, b, and c, with the
order chosen such that the ray is assum ed to have entered the cell passing through the
side corresponding to edge a, b . The next cell to be tested can be m arked based on
which index w ill change and i f the index will be increm ented or decrem ented. This flag
can be represented as {iplus, jm inus, kplus, im inus, jp lus, km inus}, and depends upon
the orientation o f the current triangle and w hich side o f the cell the ray exits through.
By know ing how the ray entered the current cell, there are usually only two options for
how the ray leaves the cell. The exception for w hen the ray exits through the face it
enters is handled by the initialization code and will be discussed later. These options
can be checked by seeing on w hich side o f the line determ ined by c + s n c (the far
point and its norm al) the ray passes, as shown in Figure 7. I f the above list o f choices
is view ed as a ring, the next possible choice is either the next flag in the ring, or the

5

Fig. 6. Barycentric indexing fo r N — 2 and N = 3. When moving between adjacent triangles,
exactly one index changes by one. For a given triangle, this change has the same sign fo r all
three edges. The "upper" triangle fo r a given (j, k) is the one with the smaller i index.

Fig. 7. The ray o + tv passes between the normals at a and b. It will leave either between the
normals at a and c, or between the normals at b and c. This can be tested by whether the ray
passes left or right o f n. It goes to the left o f the line c + tn i f \ ■ (n x (o — c)) is negative.

6

previous flag in the ring.
The traversal can be term inated by checking if the (i , j , k) values are the sam e as

the stop cell (i e , j e ,k e) determ ined by the initialization phase. We also term inate the
traversal if the ray exits the volum e. The traversal loop can be expressed in pseudocode
as follows:

R ay ray //ray, including valid interval fo r t
Vector3 a,b,c / / microtriangle vertices, ordered
Vector2 uva,uvb,uvc / / ((3,7) fo r each vertex
Vector3 cN orm al / / normal at vertex c
int i, j, k / / indices o f current cell
bool rightO fC / / flag used to determine next cell
L astC hange change //where change is one of:

/ / {iplus, jminus, kplus, iminus, jplus,kminus}
float delta = 1 / N
w hile (tru e)

if T riang le ln te rsec t(ray , a, b, c)
intersectionN orm al = (b-a) x (c-a)
re tu rn tru e

if E ndC ell(i,j,k) re tu rn false
rightO fC = ((cNorm al x (ray.O rigin() - c)) * ray.D irection() > 0)
if(rightO fC)

a = c, uva = uvc
else

b = c, uvb = uvc
/ / Take advantage o f numbering. 5 = — 1 m o d 6

change = AdvanceType((change + (rightO fC ? 1 : 5)) % 6)
if(change == im inus)

if (-----i < 0) re tu rn false
uvc = V ector2((j+ l)*delta, (k+ l)*delta)

else if(change == iplus)
if (+ + i > N) re tu rn false
uvc = Vector2(j*delta, k*delta)

else if(change == jm inus
if (-----j < 0) re tu rn false
uvc = Vector2(j*delta, (k+ l)*delta)

else if(change == jplus)
if (+ + j > N) re tu rn false
uvc = Vector2((j+ l)*delta , k*delta)

else if(change == kminus
if (---- k < 0) re tu rn false
uvc = Vector2((j+ l)*delta , k*delta)

else if(change == kplus)
i f (+ + f c > N) re tu rn false
uvc = Vector2(j*delta, (k+ l)*delta)

(c,cN orm al) = G etP o in t(uvc)

3.2 In itia liza tio n

The initialization phase o f the algorithm m ust determ ine w here in the grid the traversal
algorithm starts and ends. The volum e through w hich the traversal takes place is show n

7

in Figure 5. The top and bottom o f the space are bounded by triangles, the sides are
bounded by bilinear patches.

B efore the start and end cells are determ ined, the subdivision am ount N m ust be
found. This can either be fixed for the displacem ent m ap, N = C , or m ade adaptive,
based on projected screen area. We allow either, and com pute the adaptive size based
on the area and an estim ate o f the di stance to the cam era, w ith a user defined N ma]l.

The initialization phase must determ ine the correct index (i , j , k) for starting the
traversal. In standard grid traversal algorithm s the traversal m ay start anyw here inside
the grid. This clearly m akes sense and w ould be ideal, but determ ining the index given
an arbitrary point is equivalent to determ ining the barycentric coordinates and d isplace
m ent (height) for the point. The com putation involves solving a cubic equation, and the
m ethod seem ed to have num eric problem s. O ur solution is to treat the ray as an infinite
line and find the place w here that line enters the volum e and w here it exits. This can
require a longer traversal than necessary, how ever unlike uniform space subdivision in
ray tracing, w here the grid bounds the environm ent o r a com plex object, the displaced
triangle tends to occupy a relatively small fraction o f the scene, so m ost rays w ill pass
com pletely through the volum es o f m ost triangles.

The start and end points are the sm allest and largest intersections o f the ray w ith
the volum e. I f the intersection point is on one o f the bilinear side patches, one o f the
barycentric coordinates is zero, and the u param etric value found w hile intersecting the
side can be used directly to determ ine the other two. I f the intersection point is on
one o f the triangular end caps, the barycentric coordinates o f the intersection poin t are
exactly w hat is needed. The index for the grid cell is then ([a * i V j , [/3 * N \ , [7 * i V j).

T he last part o f the initialization is to determ ine w hich face o f the cell the ray entered
from , so that the traversal algorithm can determ ine the appropriate next cell. This is
given if the intersection is on one o f the bilinear sides, how ever it is no t given for the
top or bottom boundaries. In this case, the b ilinear w alls o f the cell can be checked. As
the ray entered either the top or the bottom , the side hit w ill be the side the ray leaves
from. It is valid to assum e the ray entered from either o f the o ther tw o sides. I f the ray
does not hit any sides, then this cell is the end cell as well, so the param eter does not
matter.

3.3 C o m plica tions

There are som e com plications created in using a traversal algorithm to w alk through
an irregular volum e filled w ith many small triangles. The first and m ost significant is
that the sides o f the volum e are not p lanar and the ray m ay intersect one tw ice. This
m eans that the traversal m ay exit the grid w ithout reaching the correct stop cell. M ore
im portantly, the intersection w ith the surface m ay lie in the second interval w ith in the
volum e. The initialization codc can be modified so that if the ray hits one o f the b ilinear
sides tw ice, and no intersection is found in the first interval, then the traversal is called
again w ith a new start cell determ ined by the second intersection point.

A second com plication occurs due to the sides o f the grid cells being non-planar.
The first w ay this could cause problem s was briefly m entioned w hile d iscussing the
traversal. G eom etrically, the ray can enter a cell briefly, and then quickly return to
the first cell. This does not happen in our algorithm because o f the w ay the traversal
chooses the next cell; the ray passes on the sam e side o f both point-norm al pairs for
that side, so the ray never enters the cell. In term s o f Figure 7, although the ray could
possibly intersect the bilinear patch along edge be tw ice, our algorithm ignores the dou
ble intersection and chooses the cell on the other side o f edge ac. For certain extrem e

8

Fig. 8. An icosahedron with a smoothing displacement that only uses the vertices and vertex
normals fo r the triangle being displaced fo r N = 1, 4,100.

configurations, it is possible that the ray m ay actually intersect the m icrotriangle in the
m issed cell. Because the cells in general do not exactly bound the m icrotriangles, it is
possible the ray should have hit the neighbor’s triangle even i f the ray m isses the b ilin
ear wall o f the cell. Due to the small size o f the m icrotriangles, and the significantly
sm aller size o f the potentially m issed piece, w e have not noticed any significant errors
caused by this problem . One solution w ould be to grow the triangle slightly in the
triangle intersection test, a solution som etim es used to prevent cracking in sim ple tri
angle m eshes. We chose not to do this because in our experience, expanding geom etry
eventually causes it’s own set o f problem s.

A final issue to consider is that this m ethod has the potential to create very sm all
triangles. Som e o f the standard triangle intersection tests use epsilons that m ay be not
be suitable for the size o f the input. This can cause m icrotriangles to be falsely missed.

The intersection algorithm is im plem ented entirely using four byte floats. A lthough
there are occasional rays that m iss the surface, these problem s are about the sam e fre
quency as those often found in ray tracers using sim ple polygonal objects.

4 A S m o o t h i n g D i s p l a c e m e n t F u n c t i o n

Since we have a m echanism to create im ages w ith displacem ents, it is useful to have a
displacem ent that creates a sm ooth mesh. This w ould allow rendering sm oothed ver
sions o f tessellated m odels w ith or w ithout additional displacem ents. To m ake the p rob
lem as local as possible, we assum e the sm oothing displacem ent only has know ledge o f
a given triang le’s vertices and vertex norm als. K now ledge about neighboring triangles
w ould allow a sm oother surface, but w e leave that as future work. O ur goal is to create
a sim ple sm oothing displacem ent as a p ro o f o f concept. A lthough exam ining how to
sm ooth triangle m eshes has been exam ined by m any researchers (e.g., [7]), our p rob
lem is different in that our function m ust have the algebraic form o f a height function
in barycentric coordinates with respect to barycentric interpolated norm als.

We w ould like the displacem ent to interpolate the triangle vertices, and have a
sm ooth tangent plane on the transition betw een tw o adjacent triangles. T his im plies
a num ber o f constraints:

• the surface m ust depend only on the vertices and vertex norm als,
• the surface m ust be sm ooth over the triangle,
• the surface m ust interpolate the vertices o f the triangle,
• the surface norm al at each vertex m ust m atch the prescribed vertex norm als,
• the tangent plane along each edge o f the surface m ust m atch that constructed on

an adjacent triangle, so that jo ined patches m eet w ith G 1 continuity.

9

The final requirem ent listed above is the one w hich is the m ost difficult to satisfy, be
cause Hermite (derivative) interpolation is m ore difficult to enforce over a line than
at single points. We use the Coons patch approach to construct our surface. First,
boundary curves and prescribed tangent p lanes are constructed using ordinary H erm ite
interpolation. Then we use transfinite in terpolation to construct three surfaces which
interpolate the boundary curves and tangents along tw o o f the edges. These three sur
faces are blended in such a w ay as to preserve the derivatives and remove the “bad”
edges from the final surface. The surface w ill be constructed in term s o f barycentric
coordinates. The approach applied to an icosahedron is shown in Figure 8 .

Note that in our entire discussion the vertex norm als are assumed to be outw ard
facing and unit-length. However, the interpolated norm als are not necessarily unit-
length, i.e. they are not autom atically renorm alized.

4.1 S u rface C o n s tru c tio n

The general problem o f determ ining the boundary curves and the surface curves are
special cases o f the follow ing interpolation problem : given two points po and p i , as
well as associated norm als no and n i , find a function o f the form

p (i) = (1 - t) p 0 + fp i + g (t) [(1 - t) n0 + in ,] •

w hich interpolates surface points po and p i w ith tangent norm al to n0 and n i at the
endpoints. I f p(<) is to interpolate the endpoints, then g(0) = g(1) = 0. We com pute
the required values for g ’(t) at the endpoints and apply H erm ite interpolation.

D erivative interpolation requires that the tangents p '(0) and p '(l) lie in the plane
norm al to the n 0 and n i , respectively, w hich am ounts to requiring p '(0) ■ n0 = 0 and
p '(l) • n(= 0. We have

P '(0 = P i - Po + g { t) (n i - n 0) + g'(t) [(1 - t) n 0 + in i]

and consequently

gl^ = [Po-Pi+ff(0)(no —n i)]-n0
no • no

(P o -P i+ ff(l)(n 0 - ih)] - n j
9 W = -------------- „— „---------------n i • n j

The height function g(t) is then constructed from the endpoint derivative values and the
H erm ite basis functions:

g(t) = g ' (0)H f (t) - g ' { \) H l { t) (3)

w here H f are tw o o f the cubic H erm ite basis functions:

Hf (t) = (1 - t f t
H%(t) = (1 ~ t) t 2 .

4.2 B o u n d a ry C urves

The first step in the construction o f the surface is to construct three boundary curves
w hich interpolate the endpoints and derivatives (from the vertex norm als). The edges

= [Po — Pi] - n0 (1)

= [P o -p i]-n i. (2)

10

of the triangle are parameterized in terms of a single barycentric coordinate as follows:

P0P1

P1P2

P2P0

(1 - P,P,0)
(0 ,1 - 7 , 7)

(a , 0,1 — a).

Each is therefore a univariate function and the cubic H erm ite interpolation described
in the previous section m ay be applied. The height function on the endpoints is neces
sarily zero, and if we assum e the vertex norm als are unit vectors, the boundary height
functions have the clean form ulation

(4)

(5)

(6)

We have used the sam e letter h, for all three edges because in effect the above equations
represent the desired height function restricted to the boundaries. The Coons patch
approach “fills in” the rest o f the surface function in a m eaningful way. The actual
boundary curves are com puted as

M l - / ? , 13,0) = n 0 (Po - P l)(l - 0) 2(3
- n j (Po - P l)(l ~ P) P 2

M 0 , 1 - 7 , 7) = n i (Pi - P2)(l - 7) 27

- n 2 (Pi - P2)(1 - 7) 7 2

h(a , 0 ,1 — a) = n 2 (P2 Po)(l — a) 2 a

- n 0 (P2 - Pn)(l — a) a 2

P(l-AAO) = (l-/?)p0 + /3p,
+ h (l - /?,/?, 0) [(1 - /3)n0 + /3nj]

p(0,1 - 7 , 7) = (l-7)Pi+7P-2
+ MO, 1 - 7 , 7) [(1 - 7) " i + 702]

p(Q,0,1 - a) = ap0 + (l-a)p2
+ h (a , 0 , 1 — a) [«no + (1 — a) n 2] •

(7)

(8)

(9)

4.3 E dge su rface n o rm a ls

To apply the Coons patch technique, the partial derivatives o f the surface at the bound
ary curves m ust be specified. We do this by constructing a surface norm al along each
boundary curve, in a w ay w hich is dependent only on the two vertices and vertex nor
m als o f the edge so that the surface norm al w ill be com patible w ith an adjacent triangle
sharing the edge and vertex norm als.

By definition, the surface norm als at the vertices are sim ply the corresponding ver
tex norm als. The surface norm als along the edges, however, m ust be perpendicular to
the tangents o f the boundary curves constructed in the previous section, but this still
leaves one degree o f freedom . There are tw o obvious candidates for the surface norm al:
the interpolated norm al along the edge, and the boundary curve norm al obtained from
the second derivative. But neither works. The interpolated norm al does not generally
m atch the curve tangent along the edge, w hile the curve norm al fails to m atch the the
vertex norm als at the endpoints. So we use a norm al constructed as

N s{a ,(3 ,7) = [T(a, ^ , 7) x n (a , 0 , 7)] x T (a , /3,7) (10)

11

where T is the tangent vector to the boundary curve, and n is the interpolated normal
on the edge. The tangent vector is simply the derivative of the boundary curve; in terms
of the expressions above, these derivatives are

~ (1 ~ P,P,0) = pj - p 0 + /i(l- / ? , £ , 0)(n! - n 0)

dh
+ 0 ^ (1 ~ P, P, 0) [(1 — /3)no + /3ni]

| ^ (0 , 1 — 7 .7) = P2 - Pi + M O , 1 - 7 ,7) (n2 - nj)07

0p

d h ,
+ — (0 ,1 - 7 ,7) [(l - 7) n 1 + 7 n 2]

_ - (a , 0 , 1 - q) = po - p2 + M « ,0 ,1 - a)(n 0 - n2)
o a

+ — (a ,0 ,1 - a) [an0 + (1 - a) n 2]
oa

where

0 (l - / 3 , / 3 , O) = n0 • (Po — Pi) [3(1—/3)2 — 2(1—/3)1

- n, • (p 0 - p i) [2/3 - 3/32]
dh
— (0 ,1 - 7 , 7) = n i • (P! - p 2) [3 (1- 7) — 2(1—7)1

- n 2 • (p j - p 2) [2 7 - 3721
dh
— (a, 0,1 - a) = n 2 • (p 2 - p 0) [3 (l - a)2 - 2 (l- a) l

- n0 ■ (p2 - po) [2a - 3q21 .

By construction, the boundary curve tangents are perpendicular to the vertex norm als
at the vertices, so equation (10) m atches the direction o f the vertex norm als. A lso
by construction, the surface norm al is sm ooth on the edges, and only depends on the
tw o incident vertices and vertex norm als, so an adjacent triangle w ith the sam e vertex
norm als w ill have m atching edge norm als. Substituting the appropriate derivative for
T in E quation 10 produces a viable surface norm al on each edge. This construction
therefore provides a viable edge surface norm al, as long as neither the tangent vector
nor the interpolated norm al is zero.

4.4 In te rp o la te d S u rfaces

G iven the boundary curves and associated surface norm als, we can create a surface over
the triangle using the “ loft” operator

V 0h(a,(3,')) = H $(t)h (a , 1 - a ,0)
+ (a , 1 — a , 0)
+ H$ (t) h i (a , 0 , 1 - a)
+ H%(t)h(a, 0,1 — a)

12

p« p„ p.

Fig. 9. Left: Transfinite interpolation along a line o f constant a. The parameter is either /? / (/? +
7) or 7 / (/3 + 7), depending on the direction. Right: The resulting interpolated curves form a
surface on the triangle.

where
t = - L -

P + l
The operator takes the boundary function and returns a surface (defined over the entire
triangle) form ed by H erm ite interpolation along lines o f constant a , as show n in F ig
ure 9. The values o f hi are the directional derivatives o f ft, in the direction o f constant
a , and correspond to the derivatives g' com puted in equations (1) and (2). The norm als
n0 and are the edge surface norm als n s (a , 1 —a , 0) and n s (a , 0,1 —a) , respectively.

The surface function V qh interpolates both the boundary curve and the surface nor
mal on the tw o edges P0P 1 and p2pn, but only interpolates the curve on the edge p i p 2-

Surfaces V \ h and V?h are constructed sim ilarly; each V, has the proper interpola
tion on the tw o edges adjacent to vertex i, but not on the opposite edge.

4.5 B lend ing

The traditional C oons patch approach is to com bine the lofted surfaces Vi using B oolean
sum s in a w ay w hich enforces the correct interpolation on all three edges. A n alterna
tive approach, w hich w e follow, is to blend the three surfaces using Hermite blending
functions. T hat is, the final height function is com puted by blending the three surfaces

hb{a,P,-y) = bo{a,P,~f)Voh(a,P,'i)
+ b i (a ,P , ' y)V ih { a , (3 , ' y)

+ b2{a,P ,i)V 2h{a,(3,7) (1 1)

using appropriate blending functions bi.
To see w hat blending functions are required, consider the edge pop i w here 7 = 0 .

The surfaces Vqh and Vi h have the proper behavior on this edge, but V 2h does not. We
m ust therefore have both the blending function b2, and its derivatives with respect to a
and ft, be zero for 7 = 0 . A gain w e are in the realm o f H erm ite interpolation; we b lend
based on the function

f (t) = 312 - 213

w hich has / (0) = 0, / (l) = 1, and / ' (0) = / ' (l) = 0. Furtherm ore, / satisfies the

13

symmetry relation /(I — t) = 1 — f (t) . Our blending functions are

bo {a ,0 ,l)

kz(oi, (3,7)

/(<*)
cr(a,/3,~f)

m
cr(a,P, 7)

fi'y)
a (a , / 3 , 7)

w ith <x(a, /?, 7) = f{ce) + f(/3) + f (7). (This denom inator is included so that the b lend
ing functions always sum to 1, and rem arkably enough, is necessary for the derivative
interpolation to rem ain valid.)

There is a great deal o f repetitive com putation in the above exposition. In our im
plem entation, w e have a single function w hich, w hen passed two vertices and corre
sponding unit norm als, returns the height function o f the interpolated curve A sim ilar
function returns the surface norm al. A nother function effects the V^h surface func
tion by evaluating the boundary curves at (a , 1 — a, 0) and (a , 0.1 - a) and applying
H erm ite interpolation. This function is called three tim es, each time with the vertices
“ cycled” , and the resulting three height values are blended according to the blending
function.

The H erm ite interpolation w as done w ith respect to the contrived edge surface nor
mal N s in this exposition, but that surface norm al could be anything, as long as it
m atches the vertex norm als. For exam ple, i f one o f the edges o f the triangle w ere part
o f a “crease” in a mesh, the edge surface norm al could be different than that o f the
adjacent triangle.

5 R e s u l t s

We evaluated our system on m odels w ith a large num ber o f displaced triangles. A d
ditionally, we w anted to verify the robustness o f the algorithm under fairly extrem e
displacem ents. All scenes w ere rendered in parallel on an SGI 0 2 K w ith 250 M HZ
R 1000K processors using a fairly standard M onte Carlo path tracer in order to capture
shadow s and indirect lighting effects.

The im age in Figure 1 show s an icosahedron w ith high frequency displacem ents o f
roughly h a lf the sphere radius. W ithout a sm oothing displacem ent, the outline o f the
icosahedron w ould be v isually obvious.

The second exam ple is a piece o f pottery containing 4680 initial triangles. The final
displaced pottery is show n in Figure 10. For this scene N was fixed at 80. The 4680
initial triangles w ould have generated 30 m illion triangles if the geom etry had been
represented explicitly. N ote that instancing w ould not have helped here. The image
show s global illum ination and shadow ing effects on the grooves that w ould not have
been possible either w ith bump m apping in a ray tracer, or w ithout a global illum ination
fram ew ork. The 640x480 im age was rendered using 256 paths o f length 4 per pixel, and
took roughly 24 CPU hours to run.

The final exam ple is a sm all section o f terrain data consisting o f roughly 55,000
thirty m eter cells. The resulting 110,000 triangles have been displacem ent m apped w ith
an expensive displacem ent function based on several uses o f the turbulence function[l 1]
and is shown in Figure 11. The view point is set near the ground, roughly at eye height
for a person. The am ount o f subdivision was determ ined adaptively for each triangle.

14

Fig. 10. A vase modeled with 4860 triangles showing interreflection effects. Generating all
displaced microtriangle would have resulted in 30,000,000 triangles.

Fig. 11. A terrain dataset with 110,000 initial polygons shown without displacements on the left.
Right, with 7Vmax = 3162 and a procedural displacement map. Instantiating all the geometry
would have resulted in more than 1,000,000,000,000 triangles.

Because o f the view, the foreground m ust be subdivided a large am ount. We set Armax =
3162, resulting in ten m illion potential m icrotriangles per input triangle (approxim ately
lcm w ide m icrotriangles). The m axim um N is achieved and needed for the left quarter
o f the im age, w here som e facets can still be seen. Storing all 1012 triangles w ould
have required about 100 terabytes. O ur im plem entation requires roughly 10 m egabytes
for the terrain data. The 1200x900 im age was generated w ith 36 paths o f length 2
per pixel. Total CPU tim e w as 43 hours. We believe that optim izing the algorithm
and displacem ent function could reduce this tim e, as could changing the assum ption
in the ray tracer that object intersections are cheap, so testing objects m ultiple tim es is
acceptable.

15

6 Discussion

The algorithm presented in this paper can produce ray traced images o f displacem ent
m apped geom etry w ithout resorting to explicitly stored tessellation or num erical root-
finding. The goal o f our system is to be able to render m odels with large am ounts of
displaced geom etry. I f the resulting displaced geom etry is small, explicitly generating
all polygons and putting them into a general acceleration schem e should prove faster.
O ur approach benefits from processor speeds continuing to grow faster than m em ory
speeds and sizes, and provides a viable alternative to geom etry caching schem es and
num erical root finding.

We view this w ork as a proof-of-concept. There are potential num eric stability
problem s w ith the traversal. There are m any areas where efficiency could be im proved.
A daptively determ ining the subdivision am ount, N , provides som e perform ance bene
fits, however, there are two problem s that can occur. C hanging the level o f subdivision
for two adjacent pixels m ay cause som e tearing. We are conservative in choosing the
subdivision level, and haven’t seen any artifacts due to this. A potentially m ore seri
ous problem occurs w hen the displacem ent m aps are used to represent surfaces such
as brushed o r scratched metal. R educing the subdivision level can result in significant
changes in appearance, even if the geom etry itse lf is subpixel. In this case, w e w ould
like to carefully replace geom etry w ith B RD F as discussed by Becker and Max [2].

O ur current spline-based sm oothing displacem ent function ensures that the base
tessellations can be converted to sm ooth surfaces. The sm ooth surface is not alw ays
desirable, particularly in regions o f high curvature or where the triangles have poor
aspect ratios. It m ay take m ore inform ation about the surface than we allow ed in the
restrictions from Section 4 to elim inate these problem s. A m ore global interpolation
schem e could ensure higher orders o f continuity or a m ore intuitive fit to the data.

A c k n o w l e d g m e n t s

T hanks to M ichael A shikm in, M ark B loom enthal, Elaine Cohen and Sim on Prem oze
for helpful discussions. T hanks to A lias|W avefront for their donation o f M aya. This
w ork w as supported by N SF grants C D A -96 -23614 , 97 96136 and 97 31859.

A p p e n d i x : P r o o f o f S m o o t h i n g P r o p e r t i e s

To prove that the blending does create the proper surface function, let hb be the b lended
height function defined in equation (11), and suppose h is an arbitrary height function
w ith the desired boundary derivatives (consistent w ith the surface normal given in equa
tion (10).) We show the derivatives o f hi m atch those o f h. We will restrict attention to
the edge w ith 7 = 0, and the other edges w ill follow from symmetry. For simplicity, w e
w rite hi for Vih, and leave o ff the explicit dependence on the barycentric coordinates
in all expressions.

On the edge 7 = 0 we have a + / 3 = 1 and as /(/?) = / (I — a) = 1 — / (a) w e have
/ (« ') + f { P) = 1 and o(a. f3,0) = 1. Thus b0 = f (a) , bx = /(/3) and b2 = / (7) = 0.

16

Consequently, we have

hb — boho + bihi
= f { a) h o + f (P) h i

= [/ (<*) + / (/ ?)] h
= h

the last equality com ing from the fact both ho(a, p, 0) and h i (a , / 3 , 0) interpolate the
boundary height function on the edge.

We prove the derivative interpolation by show ing all the directional derivatives o f
the blended hb surface m atch those o f the boundary surface h itself. In barycentric
coordinates, a directional derivative in the direction d = (w here the com
ponents sum to zero) is

d h d h dh
ha = dad^ + d0dp + d l d^

It therefore suffices to show the partials o f the b lended height function hb are equal to
those o f the boundary height partials. (The partials o f the boundary function h have not
been explicitly form ulated, only im plicitly in term s o f the edge surface norm al, but their
explicit values are not needed to show that they m atch those o f the blended function hb-)

The partials o f the b lended surface evaluate to

dhb , dh0 , d b 0 , dhi , dbi dh2 dbi
-5— = b0—----- ^ - ^ - h 0 + bi —------1- -5 — hi + 62-5— + h2
dot da da aa da aa aa
dhb , dh0 db0 , , dhi dbi . , dh2 dbi
w = bo-W + w ho + blW + W hl + b2W + w ‘ 2
dhb dh0 db0 , , dhi . d b i dh2 dbi
~a— — ---- ̂~a~ “0 + ~a------------------------- ^d'y 07 C77 d 7 07 07 07

The partials o f the blending functions on the edge are

^ = / ' (a) - / (a) / ' (a) g l = -/(/?)/'(«) ^ = 0

^ = - / (a)/'(/9) j p = m - m f w f | = o

dbo dbi db,
d'y d'y 9 7

Substitution, com bined w ith the identities / (a) + f (p) = 1, and the observation that
the relevant partials o f Hq and hi are equal to those o f h on the edge (by construction)
it follow s that

dhb dh dhb d h dhb dh
d a d a ’ d p d p ' d'y d 7

and thus the blending produces the proper surface.

R e f e r e n c e s

1. A l i a s | W a v e f r o n t . Maya v. 1.5. Toronto, Canada, 1998.

17

2. B e c k e r , B. G ., a n d M a x , N . L. Smooth transitions between bump rendering algorithms.
In Computer Graphics (SIGGRAPH ’93 Proceedings) (Aug. 1993), J. T. Kajiya, Ed., vol. 27,
pp. 183-190.

3. COOK, R. L . , C a r p e n t e r , L . , a n d C a t m u l l , E . The reyes image rendering architecture.
Computer Graphics (SIGGRAPH ’87 Proceedings) (July 1987), 9 5 -1 0 2 . Held in Anaheim,
California.

4. GRITZ, L., a n d H a h n , J. K. BMRT: A global illumination implementation o f the render-
man standard. Journal o f Graphics Tools I, 3 (1996), 29-47. ISSN 1086-7651.

5. HEIDRICH, W., AND SEIDEL, H .-P. Ray-tracing procedural displacement shaders. Graph
ics Interface '98 (June 1998), 8 -16 . ISBN 0-9695338-6-1.

6. K a j i y a , J. T. New techniques for ray tracing procedurally defined objects. In Computer
Graphics (SIGGRAPH '83 Proceedings) (July 1983), vol. 17, pp. 91-102.

7. KRISHNAMURTHY, V., AND LEVOY, M. Fitting smooth surfaces to dense polygon meshes.
In SIGGRAPH 96 Conference Proceedings (Aug. 1996), H. Rushmeier, Ed., Annual Con
ference Series, ACM SIGGRAPH, Addison Wesley, pp. 313-324. held in New Orleans,
Louisiana, 04-09 August 1996.

8. LoGIE, J. R . , AND Pa t t e r s o n , J. W. Inverse displacement m apping in the general case.
Computer Graphics Forum 14, 5 (Decem ber 1995), 261-273.

9. M u s g r a v e , F. K . Grid tracing: Fast ray tracing for height fields. Technical Report
YALEU/DCS/RR-639, Yale University Dept, o f Computer Science Research, 1988.

10. P e d e r s o n , H. K. Displacement m apping using flow fields. In Proceedings o f SIGGRAPH
’94 (Orlando, Florida, July 24-29, 1994) (July 1994), A. Glassner, Ed., Com puter Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH, ACM Press, pp. 279-286. ISBN
0-89791-667-0.

11. PERLIN, K ., a n d H o f f e r t , E. M . Hypertexture. In Computer Graphics (SIGGRAPH '89
Proceedings) (July 1989), J. Lane, Ed., vol. 23, pp. 253-262.

12. P h a r r , M., a n d H a n r a h a n , P. Geometry caching for ray-tracing displacement maps.
Eurographics Rendering Workshop 1996 (June 1996), 31-40. ISBN 3-211-82883-4. Held in
Porto, Portugal.

13. P h o n g , B.-T. Illumination for com puter generated pictures. Communications o f the ACM
18, 6 (June 1975), 311— 317.

14. S t a n d e r , B. T., a n d H a r t , J. C. Guaranteeing the topology o f an implicit surface poly-
gonization for interactive modeling. In SIGGRAPH97 Conference Proceedings (Aug. 1997),
T. W hitted, Ed., Annual Conference Series, ACM SIGGRAPH, Addison Wesley, pp. 279
286. ISB N 0-89791-896-7.

15. V e a c h , E., a n d G u i b a s , L. J. M etropolis light transport. In SIGGRAPH 97 Conference
Proceedings (Aug. 1997), T. W hitted, Ed., Annual Conference Series, ACM SIGGRAPH,
Addison Wesley, pp. 65-76. ISBN 0-89791-896-7.

18

