
Direct Ray Tracing of Smoothed and 
Displacement Mapped Triangles

Brian Smits Peter Shirley M ichael M. Stark 
University o f Utah 

Technical Report UUCS-00-008 
www.cs.utah.edu/ bes/papers/height/tech.html

Abstract.
We present an algorithm for ray tracing displacement maps that requires no ad
ditional storage over the base model. Displacement maps are rarely used in ray 
tracing due to the cost associated with storing and intersecting the displaced ge
ometry. This is unfortunate because displacement maps allow the addition of 
large amounts of geometric complexity into models. Our method works for mod
els composed of triangles with normals at the vertices. In addition, we present a 
special purpose displacement that creates a smooth surface that interpolates the 
triangle vertices and normals. Thus two adjacent triangles which share two ver
tices and normals will be smoothly interpolated. This displacement can be added 
to the displacement associated with the object. The combination allows relatively 
coarse models to be displacement mapped and ray traced with much less storage 
and fewer artifacts due to tessellation.

1 I n t r o d u c t i o n

V isually rich im ages are often generated from  sim pler m odels by applying displace
ment m aps to increase surface detail (F igure 1). D isplacem ent m aps are a special type 
o f  offset surface, and are usually assum ed to  perturb  surface positions a sm all distance 
using  som e function. Images w ith displacem ent m aps are usually  com puted using ex
plicit subdivision [3], The displacem ent is often a sem i-random  procedural function 
that uses Perlin-style noise [11], Som ew hat surprisingly, displacem ent m aps are alm ost 
never used in ray tracing. This turns out to be for entirely technical reasons; a straight
forw ard im plem entation w ould need to  store m ore m icropolygons than w ould fit in 
m ain m em ory on m ost com puters [4], For this reason, sophisticated caching strategies 
have been suggested [12], A lthough caching strategies w ork well for a variety o f  app li
cations they are problem atic for applications that resist reordering such as M etropolis 
Light T ransport [15], Alternatively, explicit num eric root-finding can be used, provided 
the displacem ents can be nicely bounded [5, 8]. A  third approach that could w ork for 
displacem ent m apped surfaces is the recursive subdivision schem e used for procedural 
geom etry by K ajiya[6]. This approach requires know ing tight bounds over each subdi
vided region o f  the displacem ent function in order to be efficient. Because m ost global 
illum ination algorithm s require ray tracing , it is desirable to find a sim ple w ay to add 
displacem ent m aps to ray tracing program s. T his w ould allow realism  in both global 
lighting com plexity and local geom etric complexity.

We introduce a method for ray tracing  polygonal m odels with displacem ents that 
avoids com plex strategies by restricting the allow able base geom etry to triangle m eshes 
w ith  vertex norm als. A lthough this is a narrow  class o f  m odeling prim itive, alm ost all 
other m odeling prim itives can be converted to  triangle m eshes in a practical manner.
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Fig. 1. An image of a complex object created by displacement mapping an icosahedron. The 
figure is ray traced with global illumination. Only twenty triangles are stored.

The key problem  w ith triangle m eshes is the w ell-know n faceting artifacts. However, 
w e show how to use a determ inistic spline displacem ent function to  sm ooth tessellated  
m odels. W hile we have restricted how our base m odels m ust be represented, w e feel 
the resulting benefits in com putation and storage m ake up for this restriction.

In Section 2 we give an overview  o f  our assum ptions on the m odel and the restric
tions we im pose for our algorithm . In Section 3 we present the ray intersection algo
rithm  for triangles w ith displacem ent functions. The requirem ents for a displacem ent 
function used to sm ooth triangle m eshes is discussed in Section 4. Im ages resulting 
from  the algorithm  are show n in Section 5. Finally, w e discuss fu ture directions for the 
work in Section 6 .

2  O v e r v i e w

The inspiration for our m ethod com es from the REYES rendering architecture [3]. That 
sim ple architecture has w orked w ell for alm ost two decades, and relies on three sim pli
fying assum ptions related to displacem ents:

•  displacem ents are bounded in distance,
•  base surfaces know  how to subdivide them selves,
•  subdividing the displaced base surfaces into a net o f  sim ple sub-pixel patches 

provides sufficient accuracy.

We borrow  these assum ptions directly. By assum ing that a finely subdivided model 
provides sufficient accuracy, we can use m icropolygon norm als directly, so no deriva-
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Fig. 2. A set o f points with normals partitions space into cells (one is shaded) which can be 
traversed in order by a ray. This observation holds in 3D as well. An analogous partition can be 
added within each cell.

tive properties o f  the displacem ent need be known. We also add the assum ption that 
the displacem ents are along the direction o f  the interpolated norm al. A lthough th is is 
m ore restrictive than the displacem ent m apping found in the R EY ES architecture, it is 
the type o f  displacem ent m apping found in M aya[l], For the intersection m ethod, first 
im agine a base surface being “carved u p ” w ith a set o f  vertices and norm als (Figure 2). 
W ithin each partition w e could displace a triangle w hose vertices lie a long projected 
norm al vectors from  the base surface. I f  one considers a given triangle under all pos
sible displacem ents, it sw eeps out a 3D region in space. For reasonably  w ell-behaved 
surfaces, adjacent triangles have adjacent regions. The shape o f  the boundaries betw een 
these regions depends on how the norm al vectors o f  base geom etry behave. I f  one im ag
ines all the regions sw ept out by all triangles, each triangle form ing a “colum n” in space, 
the possib ility  o f  a traversal algorithm  presents itself. If  the base geom etry  is a plane 
then all displacem ents are perpendicular to the plane and the traversal algorithm  w ould 
be sim ilar to that usually  used for ray intersections with height fields [9], except that the 
traversed cells w ould have triangular rather than rectangular cross-sections. We w ould 
like to  choose a base geom etry that is general enough to be geom etrically  expressive, 
but restrictive enough that such a traversal algorithm  is feasible.

B ecause they are so often used  in practice, three obvious choices are N U R B S sur
faces, subdivision surfaces, and im plicit surfaces such as m etaballs. Since all three o f 
these prim itive types are quite different from each other, it is desirable to  find a com m on 
representation that they could all be converted into. The only obvious choice for this 
com m on representation is a triangulated  mesh, to w hich it is straightforw ard to  convert 
for N U R B S and subdivision surfaces, and at least feasible for im plicit surfaces [14]. 
For this reason we choose triangles as our base geometry. To ensure that the displaced 
surface is continuous, w e use shared vertex norm als and displace along norm als com 
puted via barycentric interpolation (i.e., Phong norm al interpolation [13]). A lthough 
m ore general d isplacem ents are useful [10], we leverage this restriction on the direction 
o f  displacem ent to create a sim pler algorithm  than w ould be possib le otherw ise.

We strengthen the restriction o f  a bound on the displacem ent to lim it the range 
o f  possible d isplacem ents so that any resulting displaced surface is unable to intersect 
itself. Each point in the valid region corresponds to exactly one position and displace
m ent value on the base triangle. This restriction m eans that each region has only one 
set o f  neighbors, ano ther requirem ent for a simple traversal algorithm . It also means 
that the first intersection found will be the closest intersection to the ray origin.

O ur displacem ent fram ew ork assum es there is a point p  on an underly ing surface 
w hich is displaced in the direction o f  the normal vector n (p ) by a displacem ent func
tion h(p)  (Figure 3). For a triangle w ith points P n ,P i ,P 2 and corresponding norm als
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Fig. 3. A simple displacement by function h in the normal direction creates a new curve in 2D.

Fig. 4. Icosahedron with displacement pushing each point to a sphere, N  =  1,4,100.

no, n i ,  i>2 the b ilinearly  interpolated points and norm als p  and n are:

P =  a P o + ^ P i + 7 P 2- 
n =  a n 0 +  / ? n i + 7112,

w here ( a ,  /3 ,7 ) are the barycentric coordinates on the triangle, so a  +  3  +  7  =  1. O ur 
displaced surface pd is thus:

Pd =  QPo +  0Pi +  7P2 +  Ma Po +  PPi + IP 2) (« no +  /?" 1 +  7 " 2 )

3  R a y  I n t e r s e c t i o n

O ur ray intersection test is sim ilar in spirit to intersecting a ray w ith a height field using 
a regular grid  over the base plane. We will take advantage o f  an im plicit triangular grid 
form ed by the barycentric coordinates. We choose a subdivision am ount N  (Figure 4) 
and use dividing lines a* =  7 i =  Pi — i / N  for i  =  0, ...,7V w hich creates N 2 grid 
cells for each triangle. Each grid cell generates one displaced m icrotriangle, as shown 
in Figure 5. The grid  is regular on the base triangle, but due to the interpolated surface 
norm als, it is irregular throughout space. A lthough it is irregular, our restrictions lim it 
the range o f  the displacem ent function h() to  the interval [—m , + M ] w here a traversal 
algorithm  is possible.

M uch like standard grid traversal algorithm s, there are two phases to the algorithm . 
First the start point m ust be initialized. N ext the grid m ust be traversed, checking each 
cell for an intersection w ith the triangle it contains. The traversal algorithm  will be 
described first in order to determ ine the quantities that need to be initialized.
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Fig. 5. The base triangle and four displaced microtriangles generated by setting the subdivision 
parameter, N , to 2. The volume fo r  the maximum displacement is also shown.

3.1 T raversa]

A ssum ing w e w ill be able to initialize the traversal algorithm , w e focus first on how 
to do an efficient traversal. T his traversal is conceptually  simple, however the use o f  
triangles com plicates the indexing. For each cell entered, the m icrotriangle is generated. 
I f  it is hit, the traversal is over, i f  it is m issed, the next cell m ust be determ ined and a 
new m icrotriangle generated. The new  triangle w ill differ from  the previous triangle 
by exactly one vertex. T his m eans that fo r each step through the grid we need only 
evaluate the expensive displacem ent function once.

A position in the grid  w ill be labeled by a trip le, ( i . j ,  k) ,  corresponding to the lines 
o f  constant barycentric coordinates a  =  i / N ,  j3 =  j  /TV, 7  =  k / N .  The indices sum  to 
either N  — 1 or N  — 2 depending upon w hether the triangle is a low er triangle or an 
upper triangle as show n in Figure 6 . The classification into low er and upper determ ines 
how the vertices are generated given the indices. For a low er triangle, the barycentric 
lines corresponding to indices are the edges o f  the triangle. For an upper triangle, the 
barycentric lines corresponding to the indices touch the triangle only at the vertices. 
This is not as neat as other possible num bering schem es, how ever it m eans that each 
triangle differs from  its neighbors by one in exactly  one index.

Each m icrotriangle is represented by three displaced points, a, b, and c, with the 
order chosen such that the ray is assum ed to  have entered the cell passing through the 
side corresponding to  edge a, b . The next cell to  be tested  can be m arked based on 
which index w ill change and i f  the index will be increm ented or decrem ented. This flag 
can be represented as {iplus, jm inus, kplus, im inus, jp lus, km inus}, and depends upon 
the orientation o f  the current triangle and w hich side o f  the cell the ray exits through. 
By know ing how the ray entered the current cell, there are usually  only two options for 
how the ray leaves the cell. The exception for w hen the ray exits through the face it 
enters is handled by the initialization code and will be discussed later. These options 
can be checked by seeing on w hich side o f  the line determ ined by c +  s n c (the far 
point and its norm al) the ray passes, as shown in Figure 7. I f  the above list o f  choices 
is view ed as a ring, the next possible choice is either the next flag in the ring, or the
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Fig. 6. Barycentric indexing fo r  N  — 2 and N  =  3. When moving between adjacent triangles, 
exactly one index changes by one. For a given triangle, this change has the same sign fo r  all 
three edges. The "upper" triangle fo r  a given (j, k ) is the one with the smaller i index.

Fig. 7. The ray o +  tv  passes between the normals at a and b. It will leave either between the 
normals at a and c, or between the normals at b  and c. This can be tested by whether the ray 
passes left or right o f  n. It goes to the left o f  the line c +  tn  i f  \  ■ (n x  (o — c)) is negative.
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previous flag in the ring.
The traversal can be term inated by checking if  the ( i , j ,  k) values are the sam e as 

the stop cell ( i e , j e ,k e) determ ined by the initialization phase. We also term inate the 
traversal if  the ray exits the volum e. The traversal loop can be expressed in pseudocode 
as follows:

R ay ray //ray, including valid interval fo r  t 
Vector3 a,b,c / /  microtriangle vertices, ordered 
Vector2 uva,uvb,uvc / /  ((3,7 ) fo r  each vertex 
Vector3 cN orm al / /  normal at vertex c 
int i, j, k / /  indices o f current cell 
bool rightO fC  / / flag used to determine next cell 
L astC hange change //where change is one of:

/ /  {iplus, jminus, kplus, iminus, jplus,kminus} 
float delta = 1 / N 
w hile (tru e )

if  T riang le ln te rsec t(ray , a, b, c) 
intersectionN orm al = (b-a) x (c-a) 
re tu rn  tru e  

if  E ndC ell(i,j,k ) re tu rn  false
rightO fC  = ((cNorm al x (ray.O rigin() - c)) * ray.D irection() >  0) 
if(rightO fC ) 

a = c, uva = uvc 
else

b = c, uvb = uvc 
/ /  Take advantage o f numbering. 5 =  — 1 m o d  6 

change = AdvanceType((change +  (rightO fC  ? 1 : 5)) %  6) 
if(change == im inus)

if  ( -----i  <  0 ) re tu rn  false
uvc =  V ector2((j+ l)*delta, (k+ l)*delta) 

else if(change == iplus) 
if  ( +  +  i  >  N )  re tu rn  false 
uvc = Vector2( j*delta, k*delta) 

else if(change == jm inus
if  ( -----j  <  0 ) re tu rn  false
uvc =  Vector2( j*delta, (k+ l)*delta) 

else if(change == jplus)
if  ( + +  j  >  N )  re tu rn  false 
uvc = Vector2( (j+ l)*delta , k*delta) 

else if(change == kminus
if  (---- k < 0 ) re tu rn  false
uvc = Vector2( (j+ l)*delta , k*delta) 

else if(change == kplus) 
i f ( + + f c  > N)  re tu rn  false 
uvc =  Vector2( j*delta, (k+ l)*delta)

(c,cN orm al) = G etP o in t(uvc)

3.2 In itia liza tio n

The initialization phase o f  the algorithm  m ust determ ine w here in the grid the traversal 
algorithm  starts and ends. The volum e through w hich the traversal takes place is show n
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in Figure 5. The top and bottom  o f  the space are bounded by triangles, the sides are 
bounded by bilinear patches.

B efore the start and end cells are determ ined, the subdivision am ount N  m ust be 
found. This can either be fixed for the displacem ent m ap, N  =  C , or m ade adaptive, 
based on projected screen area. We allow either, and com pute the adaptive size based 
on the area and an estim ate o f  the di stance to the cam era, w ith a user defined N ma]l.

The initialization phase must determ ine the correct index (i , j , k ) for starting the 
traversal. In standard grid traversal algorithm s the traversal m ay start anyw here inside 
the grid. This clearly m akes sense and w ould be ideal, but determ ining the index given 
an arbitrary point is equivalent to determ ining the barycentric coordinates and d isplace
m ent (height) for the point. The com putation involves solving a cubic equation, and the 
m ethod seem ed to have num eric problem s. O ur solution is to  treat the ray as an infinite 
line and find the place w here that line enters the volum e and w here it exits. This can 
require a longer traversal than necessary, how ever unlike uniform  space subdivision in 
ray  tracing, w here the grid bounds the environm ent o r a com plex object, the displaced 
triangle tends to occupy a relatively small fraction o f  the scene, so m ost rays w ill pass 
com pletely through the volum es o f  m ost triangles.

The start and end points are the sm allest and largest intersections o f  the ray  w ith 
the volum e. I f  the intersection point is on one o f  the bilinear side patches, one o f  the 
barycentric coordinates is zero, and the u param etric value found w hile intersecting the 
side can be used directly to  determ ine the other two. I f  the intersection point is on 
one o f  the triangular end caps, the barycentric coordinates o f  the intersection poin t are 
exactly  w hat is needed. The index for the grid cell is then ( [a  * i V j , [/3 * N \ ,  [7  * i V j ).

T he last part o f  the initialization is to determ ine w hich face o f  the cell the ray entered 
from , so that the traversal algorithm  can determ ine the appropriate next cell. This is 
given if  the intersection is on one o f  the bilinear sides, how ever it is no t given for the 
top or bottom  boundaries. In this case, the b ilinear w alls o f  the cell can be checked. As 
the ray entered either the top or the bottom , the side hit w ill be the side the ray leaves 
from. It is valid to assum e the ray entered from either o f  the o ther tw o sides. I f  the ray 
does not hit any sides, then this cell is the end cell as well, so the param eter does not 
matter.

3.3 C o m plica tions

There are som e com plications created in using a traversal algorithm  to w alk through 
an irregular volum e filled w ith many small triangles. The first and m ost significant is 
that the sides o f  the volum e are not p lanar and the ray m ay intersect one tw ice. This 
m eans that the traversal m ay exit the grid w ithout reaching the correct stop cell. M ore 
im portantly, the intersection w ith the surface m ay lie in the second interval w ith in  the 
volum e. The initialization codc can be modified so that if  the ray hits one o f  the b ilinear 
sides tw ice, and no intersection is found in the first interval, then the traversal is called 
again w ith a new  start cell determ ined by the second intersection point.

A second com plication occurs due to the sides o f  the grid  cells being non-planar. 
The first w ay this could cause problem s was briefly m entioned w hile d iscussing the 
traversal. G eom etrically, the ray can enter a cell briefly, and then quickly return to 
the first cell. This does not happen in our algorithm  because o f  the w ay the traversal 
chooses the next cell; the ray passes on the sam e side o f  both point-norm al pairs for 
that side, so the ray never enters the cell. In term s o f  Figure 7, although the ray could 
possibly intersect the bilinear patch along edge be tw ice, our algorithm  ignores the dou
ble intersection and chooses the cell on the other side o f  edge ac. For certain extrem e

8



Fig. 8. An icosahedron with a smoothing displacement that only uses the vertices and vertex 
normals fo r  the triangle being displaced fo r  N  =  1, 4,100.

configurations, it is possible that the ray m ay actually  intersect the m icrotriangle in the 
m issed  cell. Because the cells in general do not exactly  bound the m icrotriangles, it is 
possible the ray should have hit the neighbor’s triangle even i f  the ray m isses the b ilin 
ear wall o f  the cell. Due to the small size o f  the m icrotriangles, and the significantly 
sm aller size o f  the potentially m issed piece, w e have not noticed any significant errors 
caused by  this problem . One solution w ould be to grow  the triangle slightly  in the 
triangle intersection test, a solution som etim es used to  prevent cracking in sim ple tri
angle m eshes. We chose not to do this because in our experience, expanding geom etry 
eventually  causes it’s own set o f  problem s.

A  final issue to  consider is that this m ethod has the potential to  create very sm all 
triangles. Som e o f  the standard triangle intersection tests use epsilons that m ay be not 
be suitable for the size o f  the input. This can cause m icrotriangles to be falsely missed.

The intersection algorithm  is im plem ented entirely  using four byte floats. A lthough 
there are occasional rays that m iss the surface, these problem s are about the sam e fre
quency as those often found in ray tracers using sim ple polygonal objects.

4  A  S m o o t h i n g  D i s p l a c e m e n t  F u n c t i o n

Since we have a m echanism  to create im ages w ith displacem ents, it is useful to have a 
displacem ent that creates a sm ooth mesh. This w ould  allow  rendering sm oothed ver
sions o f  tessellated m odels w ith or w ithout additional displacem ents. To m ake the p rob
lem  as local as possible, we assum e the sm oothing displacem ent only has know ledge o f  
a given triang le’s vertices and vertex norm als. K now ledge about neighboring triangles 
w ould  allow  a sm oother surface, but w e leave that as future work. O ur goal is to create 
a sim ple sm oothing displacem ent as a p ro o f o f  concept. A lthough exam ining how to 
sm ooth triangle m eshes has been exam ined by m any researchers (e.g., [7]), our p rob
lem  is different in that our function m ust have the algebraic form  o f  a height function 
in barycentric coordinates with respect to barycentric interpolated norm als.

We w ould like the displacem ent to interpolate the triangle vertices, and have a 
sm ooth tangent plane on the transition betw een tw o adjacent triangles. T his im plies 
a num ber o f  constraints:

•  the surface m ust depend only on the vertices and vertex norm als,
•  the surface m ust be sm ooth over the triangle,
•  the surface m ust interpolate the vertices o f  the triangle,
•  the surface norm al at each vertex m ust m atch the prescribed vertex norm als,
•  the tangent plane along each edge o f  the surface m ust m atch that constructed on 

an adjacent triangle, so that jo ined  patches m eet w ith G 1 continuity.
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The final requirem ent listed above is the one w hich is the m ost difficult to satisfy, be
cause Hermite (derivative) interpolation is m ore difficult to enforce over a line than 
at single points. We use the Coons patch  approach to construct our surface. First, 
boundary curves and prescribed tangent p lanes are constructed using ordinary H erm ite 
interpolation. Then we use transfinite in terpolation to construct three surfaces which 
interpolate the boundary curves and tangents along tw o o f  the edges. These three sur
faces are blended in such a  w ay as to preserve the derivatives and remove the “bad” 
edges from  the final surface. The surface w ill be constructed in term s o f  barycentric 
coordinates. The approach applied to an icosahedron is shown in Figure 8 .

Note that in our entire discussion the vertex norm als are assumed to be outw ard 
facing and unit-length. However, the interpolated  norm als are not necessarily unit- 
length, i.e. they are not autom atically  renorm alized.

4.1 S u rface  C o n s tru c tio n

The general problem  o f  determ ining the boundary  curves and the surface curves are 
special cases o f  the follow ing interpolation problem : given two points po and p i ,  as 
well as associated norm als no and n i ,  find a function o f  the form

p (i)  =  (1 -  t ) p 0 +  fp i + g ( t )  [(1 -  t ) n0 +  in ,]  •

w hich interpolates surface points po and p i  w ith  tangent norm al to n0 and n i at the 
endpoints. I f  p(<) is to interpolate the endpoints, then g(0) =  g(  1) =  0. We com pute 
the required values for g ’(t)  at the endpoints and apply H erm ite interpolation.

D erivative interpolation requires that the tangents p '(0 )  and p '( l )  lie in the plane 
norm al to the n 0 and n i ,  respectively, w hich am ounts to requiring p '( 0) ■ n0 =  0 and 
p '( l )  • n( =  0. We have

P '( 0  =  P i -  Po +  g { t ) (n i  -  n 0) +  g'( t )  [(1 -  t) n 0 +  in i] 

and consequently

gl^  =  [Po-Pi+ff(0)(no —n i)]-n0
no • no

(P o -P i+ ff( l)(n 0 - ih ) ] - n j
9 W  = -------------- „— „---------------n i • n j

The height function g( t )  is then constructed  from  the endpoint derivative values and the 
H erm ite basis functions:

g( t )  =  g ' ( 0 )H f ( t )  -  g ' { \ ) H l { t )  (3)

w here H f  are tw o o f  the cubic H erm ite basis functions:

Hf ( t )  =  (1 - t f t  
H%(t)  =  (1 ~ t ) t 2 .

4.2 B o u n d a ry  C urves

The first step in the construction o f  the surface is to construct three boundary curves 
w hich interpolate the endpoints and derivatives (from  the vertex norm als). The edges

=  [Po — Pi] - n0 (1)

= [P o -p i]-n i. (2)
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of the triangle are parameterized in terms of a single barycentric coordinate as follows:

P0P1

P1P2

P2P0

(1 -  P,P,0)
(0 ,1  -  7 , 7 ) 

(a , 0,1 — a).

Each is therefore a univariate function  and the cubic H erm ite interpolation described 
in the previous section m ay be applied. The height function on the endpoints is neces
sarily zero, and if  we assum e the vertex norm als are unit vectors, the boundary height 
functions have the clean form ulation

(4)

(5)

(6)

We have used the sam e letter h, for all three edges because in effect the above equations 
represent the desired height function restricted to the boundaries. The Coons patch 
approach “fills in” the rest o f  the surface function in a m eaningful way. The actual 
boundary curves are com puted as

M l - / ? ,  13,0) =  n 0 (Po -  P l)(l - 0 ) 2(3
-  n j (Po -  P l)( l ~ P ) P 2

M  0 , 1 - 7 , 7 ) =  n i (Pi -  P2)(l -  7 ) 27

-  n 2 (Pi -  P2)(1 - 7 ) 7 2

h(a ,  0 ,1  — a ) =  n 2 (P2 Po)(l — a ) 2 a

-  n 0 (P2 -  Pn)(l — a ) a 2

P(l-AAO) = (l-/?)p0 + /3p,
+  h ( l  -  /?,/?, 0) [(1 -  /3)n0 +  /3nj]

p(0,1 - 7 , 7 ) = (l-7)Pi+7P-2
+  MO, 1 - 7 , 7 ) [ ( 1  - 7 ) " i  + 702]

p(Q,0,1 - a )  = ap0 + (l-a)p2
+  h ( a ,  0 , 1 — a )  [«no +  (1 — a ) n 2] •

(7)

(8) 

(9)

4.3 E dge su rface  n o rm a ls

To apply the Coons patch  technique, the partial derivatives o f  the surface at the bound
ary curves m ust be specified. We do this by constructing a surface norm al along each 
boundary curve, in a w ay w hich is dependent only on the two vertices and vertex nor
m als o f  the edge so that the surface norm al w ill be com patible w ith an adjacent triangle 
sharing the edge and vertex norm als.

By definition, the surface norm als at the vertices are sim ply the corresponding ver
tex norm als. The surface norm als along the edges, however, m ust be perpendicular to 
the tangents o f  the boundary curves constructed in the previous section, but this still 
leaves one degree o f  freedom . There are tw o obvious candidates for the surface norm al: 
the interpolated norm al along the edge, and the boundary curve norm al obtained from 
the second derivative. But neither works. The interpolated norm al does not generally 
m atch the curve tangent along the edge, w hile the curve norm al fails to m atch the the 
vertex norm als at the endpoints. So we use a norm al constructed as

N s{a ,(3 ,7 ) =  [T(a, ^ , 7 ) x n ( a ,  0 , 7 )] x T (a , /3,7 ) (10)
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where T is the tangent vector to the boundary curve, and n is the interpolated normal 
on the edge. The tangent vector is simply the derivative of the boundary curve; in terms 
of the expressions above, these derivatives are

~ ( 1 ~  P,P,0) =  pj -  p 0 + /i(l- / ? , £ ,  0)(n! -  n 0 ) 

dh
+  0 ^ ( 1  ~  P, P, 0 ) [(1 — /3)no +  /3ni]

| ^ ( 0 , 1 — 7 .7 ) =  P2 -  Pi + M O , 1 -  7 ,7 ) (n2 -  nj)07

0p

d h , . . .  . . 
+  — (0 ,1 - 7 ,7 ) [ ( l - 7 ) n 1 + 7 n 2 ]

_ - ( a , 0 , 1 - q )  =  po -  p2 +  M « ,0 ,1 -  a )(n 0 -  n2) 
o a

+ —  ( a ,0 ,1 -  a )  [an0 + ( 1 - a ) n 2] 
oa

where

0 ( l - / 3 , / 3 , O )  =  n0 • (Po — Pi) [3(1—/3)2 — 2(1—/3)1

-  n, • (p 0 -  p i)  [2/3 -  3/32]
dh
—  ( 0 ,1 - 7 , 7 ) =  n i • (P! -  p 2) [3 (1- 7 ) — 2(1—7)1

-  n 2 • (p j -  p 2) [2 7 -  3721
dh
—  (a, 0,1 -  a) =  n 2 • (p 2 -  p 0) [3 ( l - a )2 -  2 ( l- a ) l

-  n0 ■ (p2 -  po) [2a  -  3q21 .

By construction, the boundary curve tangents are perpendicular to the vertex norm als 
at the vertices, so equation (10) m atches the direction o f  the vertex norm als. A lso 
by construction, the surface norm al is sm ooth on the edges, and only depends on the 
tw o incident vertices and vertex norm als, so an adjacent triangle w ith the sam e vertex 
norm als w ill have m atching edge norm als. Substituting the appropriate derivative for 
T  in E quation 10 produces a viable surface norm al on each edge. This construction 
therefore provides a viable edge surface norm al, as long as neither the tangent vector 
nor the interpolated norm al is zero.

4.4 In te rp o la te d  S u rfaces

G iven the boundary curves and associated surface norm als, we can create a surface over 
the triangle using the “ loft” operator

V 0h(a,(3,')) =  H $(t)h (a , 1 -  a ,0 )
+ (a , 1 — a , 0)
+  H$ ( t ) h i ( a , 0 , 1 -  a )
+  H%(t)h(a,  0,1 — a)

12



p« p„ p.

Fig. 9. Left: Transfinite interpolation along a line o f  constant a. The parameter is either /? / (/? +  
7 ) or 7 /  (/3 +  7 ), depending on the direction. Right: The resulting interpolated curves form  a 
surface on the triangle.

where
t = - L -  

P +  l
The operator takes the boundary function and returns a surface (defined over the entire 
triangle) form ed by H erm ite interpolation along lines o f  constant a ,  as show n in F ig
ure 9. The values o f  hi are the directional derivatives o f  ft, in the direction o f  constant 
a ,  and correspond to the derivatives g'  com puted in equations (1) and (2). The norm als 
n0 and are the edge surface norm als n s ( a ,  1 —a ,  0 ) and n s ( a ,  0,1  —a ) ,  respectively.

The surface function V qh interpolates both the boundary curve and the surface nor
mal on the tw o edges P0P 1 and p2pn, but only interpolates the curve on the edge p i p 2- 

Surfaces V \ h  and V?h  are constructed sim ilarly; each V,  has the proper interpola
tion on the tw o edges adjacent to  vertex i, but not on the opposite edge.

4.5 B lend ing

The traditional C oons patch approach is to com bine the lofted surfaces Vi using B oolean 
sum s in a w ay w hich enforces the correct interpolation on all three edges. A n alterna
tive approach, w hich w e follow, is to blend the three surfaces using Hermite blending 
functions. T hat is, the final height function is com puted by blending the three surfaces

hb{a,P,-y) =  bo{a,P,~f)Voh(a,P,'i)
+  b i (a ,P , ' y )V ih { a , ( 3 , ' y )

+ b2{a,P ,i)V 2h{a,(3,7 ) ( 1 1 )

using appropriate blending functions bi.
To see w hat blending functions are required, consider the edge pop i w here 7  =  0 . 

The surfaces Vqh  and Vi  h have the proper behavior on this edge, but V 2h does not. We 
m ust therefore have both the blending function b2, and its derivatives with respect to a  
and ft, be zero for 7  =  0 . A gain w e are in the realm  o f  H erm ite interpolation; we b lend 
based on the function

f ( t )  =  312 -  213

w hich has / ( 0 )  =  0, / ( l )  =  1, and / ' ( 0 )  =  / ' ( l )  =  0. Furtherm ore, /  satisfies the
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symmetry relation /(I — t) = 1 — f ( t ) .  Our blending functions are

bo {a ,0 ,l)  

kz(oi, (3,7 )

/(<*)
cr(a,/3,~f)

m
cr(a,P,  7 )

fi'y)
a (a , / 3 ,  7 )

w ith <x(a, /?, 7 ) =  f{ce) +  f( /3)  +  f ( 7 ). (This denom inator is included so that the b lend
ing functions always sum  to 1, and rem arkably enough, is necessary for the derivative 
interpolation to rem ain valid.)

There is a great deal o f  repetitive com putation  in the above exposition. In our im 
plem entation, w e have a single function w hich, w hen passed two vertices and corre
sponding unit norm als, returns the height function o f  the interpolated curve A sim ilar 
function returns the surface norm al. A nother function effects the V^h surface func
tion by evaluating the boundary curves at ( a ,  1 — a,  0 ) and (a ,  0.1  -  a )  and applying 
H erm ite interpolation. This function is called three tim es, each time with the vertices 
“ cycled” , and the resulting three height values are blended according to the blending 
function.

The H erm ite interpolation w as done w ith respect to the contrived edge surface nor
mal N s  in this exposition, but that surface norm al could be anything, as long as it 
m atches the vertex norm als. For exam ple, i f  one o f  the edges o f  the triangle w ere part 
o f  a “crease” in a mesh, the edge surface norm al could be different than that o f  the 
adjacent triangle.

5  R e s u l t s

We evaluated our system  on m odels w ith a large num ber o f  displaced triangles. A d
ditionally, we w anted to verify the robustness o f  the algorithm  under fairly extrem e 
displacem ents. All scenes w ere rendered in parallel on an SGI 0 2 K  w ith 250 M HZ 
R 1000K  processors using  a fairly standard M onte Carlo path tracer in order to capture 
shadow s and indirect lighting effects.

The im age in Figure 1 show s an icosahedron w ith high frequency displacem ents o f  
roughly h a lf the sphere radius. W ithout a sm oothing displacem ent, the outline o f  the 
icosahedron w ould be v isually  obvious.

The second exam ple is a piece o f  pottery containing 4680 initial triangles. The final 
displaced pottery is show n in Figure 10. For this scene N  was fixed at 80. The 4680 
initial triangles w ould have generated 30 m illion triangles if  the geom etry had been 
represented explicitly. N ote that instancing w ould not have helped here. The image 
show s global illum ination and shadow ing effects on the grooves that w ould not have 
been possible either w ith bump m apping in a ray tracer, or w ithout a global illum ination 
fram ew ork. The 640x480 im age was rendered using 256 paths o f length 4 per pixel, and 
took roughly 24 CPU  hours to run.

The final exam ple is a sm all section o f  terrain data consisting o f  roughly 55,000 
thirty m eter cells. The resulting 110,000 triangles have been displacem ent m apped w ith 
an expensive displacem ent function based on several uses o f  the turbulence function[l 1] 
and is shown in Figure 11. The view point is set near the ground, roughly at eye height 
for a person. The am ount o f  subdivision was determ ined adaptively for each triangle.
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Fig. 10. A vase modeled with 4860 triangles showing interreflection effects. Generating all 
displaced microtriangle would have resulted in 30,000,000 triangles.

Fig. 11. A terrain dataset with 110,000 initial polygons shown without displacements on the left. 
Right, with 7Vmax =  3162 and a procedural displacement map. Instantiating all the geometry 
would have resulted in more than 1,000,000,000,000 triangles.

Because o f  the view, the foreground m ust be subdivided a large am ount. We set Armax =  
3162, resulting in ten m illion potential m icrotriangles per input triangle (approxim ately 
lcm  w ide m icrotriangles). The m axim um  N  is achieved and needed for the left quarter 
o f  the im age, w here som e facets can still be seen. Storing all 1012 triangles w ould 
have required about 100 terabytes. O ur im plem entation requires roughly 10 m egabytes 
for the terrain data. The 1200x900 im age was generated w ith 36 paths o f  length 2 
per pixel. Total CPU tim e w as 43 hours. We believe that optim izing the algorithm  
and displacem ent function could reduce this tim e, as could changing the assum ption 
in the ray tracer that object intersections are cheap, so testing objects m ultiple tim es is 
acceptable.
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6 Discussion

The algorithm  presented in this paper can produce ray traced images o f  displacem ent 
m apped geom etry w ithout resorting to explicitly stored tessellation or num erical root- 
finding. The goal o f  our system  is to be able to render m odels with large am ounts of 
displaced geom etry. I f  the resulting displaced geom etry is small, explicitly generating 
all polygons and putting them  into a general acceleration schem e should prove faster. 
O ur approach benefits from processor speeds continuing to grow faster than m em ory 
speeds and sizes, and provides a viable alternative to geom etry caching schem es and 
num erical root finding.

We view  this w ork as a proof-of-concept. There are potential num eric stability 
problem s w ith the traversal. There are m any areas where efficiency could be im proved. 
A daptively determ ining the subdivision am ount, N ,  provides som e perform ance bene
fits, however, there are two problem s that can occur. C hanging the level o f  subdivision 
for two adjacent pixels m ay cause som e tearing. We are conservative in choosing the 
subdivision level, and haven’t seen any artifacts due to this. A potentially m ore seri
ous problem  occurs w hen the displacem ent m aps are used to represent surfaces such 
as brushed o r scratched metal. R educing the subdivision level can result in significant 
changes in appearance, even if  the geom etry itse lf is subpixel. In this case, w e w ould 
like to carefully  replace geom etry w ith B RD F as discussed by Becker and Max [2].

O ur current spline-based sm oothing displacem ent function ensures that the base 
tessellations can be converted to sm ooth surfaces. The sm ooth surface is not alw ays 
desirable, particularly  in regions o f  high curvature or where the triangles have poor 
aspect ratios. It m ay take m ore inform ation about the surface than we allow ed in the 
restrictions from  Section 4 to elim inate these problem s. A m ore global interpolation 
schem e could ensure higher orders o f  continuity or a m ore intuitive fit to the data.
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A p p e n d i x :  P r o o f  o f  S m o o t h i n g  P r o p e r t i e s

To prove that the blending does create the proper surface function, let hb be the b lended 
height function defined in equation ( 11), and suppose h is an arbitrary height function 
w ith the desired boundary derivatives (consistent w ith the surface normal given in equa
tion (10).) We show the derivatives o f  hi  m atch those o f  h. We will restrict attention to 
the edge w ith 7  =  0, and the other edges w ill follow  from symmetry. For simplicity, w e 
w rite hi for Vih,  and leave o ff the explicit dependence on the barycentric coordinates 
in all expressions.

On the edge 7  =  0 we have a + / 3  =  1 and as /( /? )  =  / ( I  — a )  =  1 — / (a )  w e have 
/ ( « ')  +  f { P )  =  1 and o(a. f3,0) =  1. Thus b0 =  f ( a ) ,  bx =  /( /3 )  and b2 =  / ( 7 ) =  0.
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Consequently, we have

hb — boho +  bihi
=  f { a ) h o  +  f ( P ) h i

=  [ / (<*) +  / ( / ? ) ]  h 
= h

the last equality com ing from  the fact both ho(a, p, 0)  and h i ( a , / 3 , 0) interpolate the 
boundary height function on the edge.

We prove the derivative interpolation by show ing all the directional derivatives o f 
the blended hb surface m atch those o f  the boundary  surface h itself. In barycentric 
coordinates, a directional derivative in the direction d =  (w here the com 
ponents sum to zero) is

d h  d h  dh  
ha =  dad^ +  d0dp +  d l d^

It therefore suffices to  show the partials o f  the b lended height function hb are equal to 
those o f  the boundary height partials. (The partials o f  the boundary function h have not 
been explicitly form ulated, only im plicitly in term s o f  the edge surface norm al, but their 
explicit values are not needed to  show  that they m atch those o f  the blended function hb-) 

The partials o f  the b lended surface evaluate to

dhb , dh0 , d b 0 , dhi , dbi dh2 dbi
-5— =  b0—----- ^ - ^ - h 0 + bi —------1- -5 — hi + 62-5— +  h2
dot da  da  aa  da  aa  aa
dhb , dh0 db0 , , dhi dbi . , dh2 dbi
w  = bo-W  + w ho + blW  + W hl + b2W + w ‘ 2
dhb dh0 db0 , , dhi . d b i  dh2 dbi
~a— — ----  ̂~a~ “0 + ~a------------------------- ^d'y 07  C77 d  7 07  07  07

The partials o f  the blending functions on the edge are

^ = / ' ( a ) - / ( a ) / ' ( a )  g l  = -/(/?)/'(« ) ^ = 0

^ = - / (a)/'(/9) j p = m - m f w  f | = o

dbo dbi db,
d'y d'y 9 7

Substitution, com bined w ith the identities / ( a )  +  f ( p )  =  1, and the observation that 
the relevant partials o f  Hq and hi  are equal to those o f  h  on the edge (by construction) 
it follow s that

dhb dh  dhb d h  dhb dh  
d a  d a  ’ d p  d p '  d'y d 7 

and thus the blending produces the proper surface.
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