
Multisensor Knowledge Systems 1

Thomas C. Henderson and Chuck Hansen

Computer Science Department
University of Utah

Salt Lake City, Utah 84112 USA

UUCS-86-114

2 September 1986

Abstract

We describe an approach which facilitates and makes explicit the organization of the

knowledge necessary to map multisensor system requirements onto an appropriate

assembly of algorithms, processors, sensors, and actuators. We have previously

introduced the Multisensor Kernel System and Logical Sensor Specifications as a means

for high-level specification of multisensor systems. The main goals of such a

characterization are: to develop a coherent treatment of multisensor information, to allow

system reconfiguration for both fault tolerance and dynamic response to environmental

conditions, and to permit the explicit description of control.

In this paper we show how Logical Sensors can be incorporated into an object-based

approach to the organization of multisensor systems. In particular, we discuss:

* a multi sensor knowledge base,

* a sensor specification scheme, and

* a multi sensor simulation environment.

We give an example application of the system to CAD-based 2-D vision.

l This work was supported in part by NSF Grants MCS-8221750, DCR-8506393. and DMC-8502115. Chuck

Hansen is an ARO Fellow.

1

1. Introduction

The rapid design of embedded electromechanical systems is crucial to success in

manufacturing and defense applications. In order to achieve such a goal, it is necessary

to develop design environments for the specification,simulation, construction and

validation of multisensor systems. Designing and prototyping such complex systems

involves integrating mechanical parts, software, electronic hardware, sensors and

actuators. Design of each of these kinds of components requires appropriate insight and

knowledge. This in turn has given rise to special computer-based design tools in each of

these domains. Such Computer Aided Design (CAD) systems have greatly amplified the

power and range of the human designer. To date, however, it is still extremely difficult to

address overall system issues concerning how the components fit together, and how the

complete system will perform.

It is crucial to develop a design environment in which these multiple facets of system

design can take place in a coordinated way such that the description of one component

can be easily interfaced to another component, even when they are radically different

kinds of things (e.g .. a control algorithm, a mechanical linkage and an actuator). The

designer should have the freedom to tryout ideas at different levels of detail; i.e., from

the level of a sketch to a fully detailed design. The Multisensor Knowledge System

provides part of the solution to developing such an environment.

Logical Sensor Specifications (LSS) were developed previously as a method to permit an

implementation independent description of the required sensors and algorithms in a

multisensor system. Figure 1 gives a pictorial description of the basic unit: a logical

sensor. Sensor data flows up through the currently executing program (one of program,

to program n) whose output is characterized by the characteristic output vector. Control

commands are accepted by the control command interpreter which then issues the

appropriate control commands to the Logical Sensors currently providing input to the

selected program. The programs. 1 through n provide alternative ways of producing the

same characteristic output vector for the logical sensor. The role of the selector is to

monitor the data produced by the currently selected program and the control commands.

If failure of the program or a lower level input logical sensor is detected. the selector

must undertake the appropriate error recovery mechanism and choose an alternative

method (if possible) to produce the characteristic output vector. In addition, the selector

Logical
Sensor Name

Program 1

. . .

Logical Sensor
Inputs

Selector

...

2

•

X

Program n

•

.....

Logical Sensor
Inputs

Control Co

Control
Command
Interpreter

-

. ..

r r

Commands to
Logical Sensors

Figure 1. Logical Sensor Specification Building Block:
The Logical Sensor

mmands

3

must determine if the control commands require the execution of a different program to

compute the characteristic output vector (i.e., whether dynamic reconfiguration is

necessary).

Logical Sensor Specifications are useful then for any system composed of several

sensors, where sensor reconfiguration is required, or where sensors must be actively

controlled. The principle motivations for Logical Sensor Specifications are the emergence

of significant multisensor and dynamically controlled systems, the benefits of data

abstraction, and the availability of smart sensors.

In previous papers we have explored several issues of multisensor integration in the

context of Logical Sensor Specifications:

* fault tolerance [8],

* functional (or applicative) style programming [16],

,., features and their propagation through a network [17],

* the specification of distributed sensing and control [9, 10],

* the automatic synthesis of Logical Sensor Specifications for CAD/CAM
applications [11, 12].

Related work includes that of Albus [1] on hierarchical control, Bajcsy et al. [2] on the

Graphical Image Processing Language, Overton [15] on schemas, and Chiu [4] on

functional language and multiprocessor implementations. For an overview of multisensor

integration, see Mitiche and Aggarwal [13].

In exploring these issues, we have found that the specification of multisensor systems

involves more than just sensor features. It is true that knowledge must be available

concerning sensors, but it is essential to also be able to describe algorithms which use

the sensor data and the hardware on which they are executed. In the rest of the paper,

we describe the components of an object-based approach to developing a knowledge

system to support these requirements.

4

2. Objects and Methods

Several distinct programming styles have been developed over the last few years,

including:

* applicative-style programming,

'" control-based programming,

'" logic programming, and

* object-based programming.

Applicative style programming exploits function application as its main operation and

regulates quite strongly the use of side-effects [6]. Historically, however, control-based

programming has been the most extensively used paradigm, and focuses on the flow of

control in a program. Logic programming is based on logical inference and requires the

definition of the formal relations and objects which occur in a problem and the assertion

of what relations are true in the solution. On the other hand, many current systems are

being developed which are based on the notion of objects; this style emphasizes data

abstraction combined with message passing [3, 14].

In the control-based style a program is viewed as a controlled sequence of actions on

its total set of data structures. As the complexity of a system grows, it is hard to keep a

clear picture of the entire sequence of actions that make up the program. This leads to

the chunking of sequences into subprograms, and this is almost exclusively done for

control purposes. But data structures are not decomposed into independent entities. In

fact, most global data structures are shared by all subroutines.

On the other hand, the object-based style takes the view that the major concern of

programming is essentially the definition, creation, manipulation and interaction of

objects; that" is, a set of independent and well-defined data structures. In particular, a

single data structure (or instance) is associated with a fixed set of subprograms

(methods), and those subprograms are the only operations defined on that object.

Such a use of data abstraction leads to design simplification which in turn makes the

program more understandable. correct. and reliable. In addition, flexibility and portability

are enhanced since details of objects (Le., their representations) are hidden and can be

5

implemented in other ways without changing the external behavior of the object.

For our purposes, an object consists, essentially, of three parts:

1. unique name: this name must be distinguished from all other names in both
time and space,

2.~: an object is an instance of a type which defines the valid set of
operations and which details the nature of the resource represented, and

3. representation: the representation contains the information content associated
with an object. This may include private data structures, references to other
objects, etc.

Thus, an object is a structure with internal state (perhaps called slots and comprised of

name/value relationships) accessed through functions (also called methods) defined in

association with the object. This approach makes management schemes simpler and

fewer, easier to implement and use; in addition, individual resources are easier to specify,

create (allocate), destroy (deallocate), manipulate and protect from misuse.

It has been effectively argued many times that object-based programming is well-suited

to embedded systems processing requirements. In particular, the application of this

methodology to the specification of sensor systems helps to directly describe most of the

important aspects of such systems:

." parallel processing,

." real-time e'Jntrol,

." exception handling, and

." unique I/O control.

Sensors typically require such operations as: enabling/disabling, limit setting, status

checking, and periodic logging of state. That is, sensor systems must respond to out-of

limit readings and issue alarms, detect faulty sensors, and recover from failure, and these

functions can be implemented in a straightforward way.

6

3. Multisensor Knowledge Systems

Much of our previous work on multi sensor systems has concentrated on the

specification of such systems and reasoning about their properties. It is necessary to be

able to describe both the parameters and characteristics of individual components of

multisensor systems, and to be able to deduce global properties of complete systems.

Although it may be possible to deduce such properties (especially static properties like

complexity, data type coercion, etc.), we believe that many interesting properties can only

be determined by simulating the operation of the complete system. .

Thus, we seek a representation that supports:

1. multisensor system specification: this describes the components and
interconnection scheme of the particular system being designed,

2. sensor, algorithm, processor and actuator knowledge representation: this
structures information about sensor characteristics (e.g., accuracy, hysteresis,
dynamic range, etc.), algorithms {e.g., space and time complexity, amenity to
parallel computation, stability, etc.} processors (e.g., cycle times, memory
limits, address space, power requirements, etc.), and actuators (e.g., actuation
principle, power requirements, etc.), and

3. multisensor system simulation: this permits one to monitor important
parameters and to evaluate system performance.

Figure 2 shows the organization of the three capabilities within an object-oriented

context. In the following subsections, we describe the Multisensor Knowledge System

(MKS), an object-based approach to providing a unified answer to these three capabilities.

3.1. The Multisensor Knowledge Base

The multisensor knowledge base serves two main purposes:

1. to describe the properties of the system components (e.g., sensors,
algorithms, actuators and processors), and

2. to provide class descriptions for the actual devices which are interconnected
in any particular logical sensor specification.

That is, the knowledge base must describe not only generic sensors (e.g., cameras), but

specific sensors (e.g., Fairchild 9000, Serial No. 28753). It is then possible to reason about

sensor systems at several levels. Moreover, it is possible that two distinct specifications

require some of the same physical sensors. In such a case, it is the responsibility of the

Seqment Edq.
Under

/.~
Sobe~ Canny

l
Sobel

SuI>rout in.

7

Sensor

/.~
Tactile Visual

/.~
2-D carnera Range

Fairchild 3000
CCD,

Sensor

Libraries of Executable Code

i -

i
!

Processor

Special

7~
Vision
Sy.t ...

VICOH

"rray
Processor

Figure 2 Multisensor Knowledge System

General
Purpose

Multisenso:
II:.nowledqe
Sase

Sen.or Syst_
Specification

8

execution environment to resolve resource allocation conflicts.

We have chosen a frame-like knowledge representation. Frames relate very naturally to

object-based descriptions, and, in fact, can be viewed as a class of restricted objects. It

is straightforward to provide hierarchical descriptions of system components. For

example, Figure 3 shows the CCO Camera hierarchy. The CCO Camera frame has two

slots: element spacing and aspect ratio. These slots are specific to eeo cameras and as

such do not appear as slots for 2-D cameras. These latter have slots for scanning format.

scan timing, resolution, output signal, and operating conditions. These slots are inherited

by any instance of eeo camera. One level up, we find a frame for Vision sensors. This

frame has specific slots for the spectral band and for the output type (e.g., 2-D byte

array, multi-band, etc.). At the highest level of the hierarchy is the Sensor frame which

has a slot for the physics of operation. This slot is used by any particular sensor to

allow for an explanation of the physics behind the workings of the sensor. In this way, if

reasoning is required about the sensor, it is possible to look in this slot for information.

As can be seen, knowledge is organized such that there are more specific details lower in

the hierarchy.

Note that frames are themselves implemented as objects. Thus, actual devices are

instances of some class of objects. This is very concise 'and conveniently exploits the

similarities of frames and objects.

In previous work, we have described a set of generally applicable physical sensor

features [7]. The manner in which physical sensors convert physical properties to some

alternative form, i.e., their transducer performance, can be characterized by: error,

accuracy, repeatability, drift, resolution, hysteresis, threshold, and range. These properties

can be encoded in the appropriate slots in the frames describing the sensor.

3.2. Sensor Specification

An object-based style of programming requires that the logical sensor of Figure 1 be

re-described in terms of objects and methods. We shall next give the general flavor of

this style, but it must be remembered that any particular sensor is actually an instance of

some object class, and, in fact. inherits properties from many levels up.

Each logical sensor is completely specified as shown in Figure 4. Thus, in order to get

9

SENSOR

* physics of operation

VISION

* spectral band
* output type

2-D CAMERA

* scanning format
* scan timing
* resolution
* output signal
* operating conditions

CCD

* element spacing
* aspect ratio

Figure 3 Organization of Camera Knowledge

Characteristic
Output Vector

/1\

Logical Sensor Name

Selector

Description

10

Control
Commands

1[\

Figure 4. The Logical Sensor Object and Methods

Methods on
Logical Sensors

The
Logical
Sensor
Object

11

data from a logical sensor, the characteristic output vector method must be invoked.

Likewise, to issue control commands to the sensor (e.g., camera pan and tilt parameters),

the control commands method must be used. The role of the selector is still the same as

in previous logical sensor implementations, however, it now, in essence, is invoked to

produce the characteristic output vector.

Such a representation makes it very easy to design sensor systems. Moreover, such

specifications allow for replacement of sensors and dynamic reconfiguration by simply

having the selector send messages to different objects. Given current object-based

programming technology, such systems can be rapidly developed and permit dynamic

typechecking (on objects).

Figure 5 shows the Multisensor Knowledge Base, and below the dashed line, a set of

particular instances of various algorithms, sensors, etc. (drawn as circles). A logical

sensor specification (indicated as a blocked in subset of the circles) defines a grouping of

algorithms, sensors, etc. This newly created logical sensor is an instance of the logical

sensor object and can be sent messages. As mentioned above, there are two methods

defined on logical sensors: the characteristic output vector method and the control

commands method. Thus, any logical sensor can be defined recursively in terms of other

logical sensors (including itself).

Currently, our main interest is in the automatic synthesis of logical sensor

specifications. Given a CAD model of an object, we would like to synthesize a specific,

tailor-made system to inspect recognize, locate or manipulate the object. Note that the

synthesis of a logical sensor specification consists, for the most part, of interconnecting

instances of sensors and algorithms to perform the task. This is done by writing the

selector to invoke methods on other logical sensors. Given certain constrained problems,

most notably the CAD/CAM environment, such a synthesis is possible.

3.3. The Simulation of Multisensor Systems

Effective simulation plays an important role in successful system development. A key

requirement is the support for hierarchical specification of the system and the ability to

perform stepwise refinement of the system. In addition, it is necessary to be able to

efficiently emulate realtime software that will eventually be embedded in the system.

12

7i~
Seqment Edge

Finder

/~
Sobel Canny

/.~
Tactile Visual

/~
2-D camera Rang_

Sensor

Processor

/~
Special General

/~ Purpose

Vii ion ... rray
Sy.tea Proceslor

LogI.:.1 Sensor Specl'I.:.tlon Defines ObJlCt InterconnectIons

Figure 5. Logical Sensor Specification Using Object Instances

13

Finally, it would be quite useful to be able to embed physical components in the simulator

in order to monitor the system's operation.

An object-oriented simulation methodology is well-suited to satisfy these goals. The

multisensor system, that is, the system being modeled, consists of a collection of

interacting physical processes. Each such process is modeled in the simulator by an

object, i.e., an independent process. Interactions among physical processes are modeled

through messages exchanged among the corresponding objects.

This general paradigm is currently supported in the SIMON simulator developed by

Fujimoto [5, 18]. A toolkit approach is used in which the simulator is viewed as a

collection of mechanisms from which application specific simulation environments are

constructed. We are currently exploring the simulation of multisensor systems in the

SIMON environment. Simulation can be accomplished by substituting simulation libraries

for the run time libraries (see Figure 1).

A crucial aspect of the simulation is the ability to execute specific algorithms on

specific hardware. SIMON permits such a direct execution technique in which application

programs are executed directly on a host processor rather than through a software

interpreter. Performance information is obtained through the automatic insertion of

probes and timing software into the program at compile time. These probes perform

whatever runtime analysis is required to accurately estimate execution time of basic

blocks of code. A prototype implementation using this technique has been developed

modeling the MC680 1 0 and 68020 microprocessors. Initial data indicate that application

programs may be emulated one to two orders of magnitude more efficiently over

traditional register transfer level simulation, while highly accurate performance estimates

can still be obtained.

4. An Example Application: CAD-Based 2-D Vision

A simple example which demonstrates some of the power of the Multisensor Knowledge

System approach is that of CAD-Based 2-D Vision. The goal is to automate visual

inspection, recognition and localization of parts using pattern recognition techniques on

features extra'cted from binary images. Figure 6 shows the scheme pictorially.

The Multisensor Knowledge System stores knowledge about the algorithms, sensors,

CAGD
system

set of
synthesized

images of
object

""L-_..,....-___ ---'

14

camera

\V

image
of

scene

1 L~ Multisensor __ sY.[lth.esj,s _ _ __ ~ executable
Knowledge system
System

application
specific rules

Figur. 6. Synthesis of Part Detector

result

15

processors, etc. This knowledge is used by application specific rules. The systems to be

synthesized here require that a model be created for the part to be inspected, and that a

robust and (perhaps) independent set of features be chosen along with an appropriate

distance metric.

The left side of the figure shows the offline training component. The new part is

designed using a Computer Aided Geometric Design system. A set of images are

rendered by the CAGD system giving a sample of various views of the part in different

positions, orientations, and scales. These serve as a training set to the Multisensor

Knowledge System.

A set of rules (or productions) performs an analysis of the views of the part to select a

subset of the total set of possible features. Features are used if they are robust,

independent and reliable. Once these features have been chosen, a new logical sensor

object is created whose only function is to recognize the given part based on an analysis

of the selected features. The part detector is then linked into a particular application

(e.g., an inspection task at a specific workcell) by sending a message to the appropriate

camera.

As a specific example, consider the object shown in Figure 7. It was designed with

Alpha _1, an experimental solid modeling system developed at the University of Utah. For

the past few years the Computer Aided Geometric Design group has been involved in a

concerted. effort to build this advanced modeler. Alpha _1 incorporates sculptured

surfaces and embodies many theoretical and algorithmic advances. It allows in a single

system both high-quality computer graphics and freeform surface representation and

design. It uses a rational polynomial spline representation of arbitrary degree to

represent the basic shapes of the models. The rational B-spline includes all spline

polynomial representations for which the denominator is trivial. Nontrivial denominators

lead to all conic curves. Alpha _, uses the Oslo algorithm for computing discrete B-

splines. Subdivision, effected by the Oslo algorithm, supports various capabilities

including the computation associated with Boolean operations, such as the intersection of

two arbitrary surfaces. B-splines are an ideal design tool, they are simple, yet powerful.

It is also the case that many common shapes can be represented exactly using rational

B-splines. For example, all of the common primitive shapes used in CSG systems fall into

16

Figure 7. The Green Piece

this category. Other advantages include good computational and representational

properties of the spline approximation: the variation diminishing property; the convex hull

property and the local interpolation property. There are techniques for matching a spline

: represented boundary curve against raw data. Although the final result may be an

approximation, it can be computed to any desired precision (which permits nonuniform

sampling).

The object shown in Figure 7 was rendered at orientations of 0, 22.5 and 45 degrees.

These images were analyzed. The set of possible features included:

Area
Perimeter to Area Ratio
Perimeter
X-V Aspect Ratio
Diameter
Center of Mass in X
Center of Mass in Y
Normalized Moment 1

Normalized Moment 2
Normalized Moment 3
Normalized Moment 4
Normalized Moment 5
Normalized Moment 6
Normalized Moment 7

17

The result of the analysis was the following weightings:

Area
Thinness
Perimeter to Area Ratio
Perimeter
x-v Aspect Ratio
Diameter
Center of Mass in X
Center of Mass in Y
Normalized Moment
Normalized Moment 2
Normalized Moment 3
Normalized Moment 4
Normalized Moment 5
Normalized Moment 6
Normalized Moment 7

0.8739003
0.0
0.0
0.002932551
0.0
0.002932551
0.0
0.0
0.06451613
0.01173021
0.005865103
0.002932551
0.002932551
0.02052786
0.01173021

The synthesized logical sensor object merely sends a message to the segment program

for Camera 1 (a Fairchild 3000 CCD camera), then sends a message to each of the

features used, then sends a message to the distance function object with the appropriate

weights. The system has been implemented in PClS (the Portable Common Lisp System)

using objects and methods. The feature calculations are performed by running C code

called from within the instances of the feature objects.

5. Summary and Future Work

The Multisensor Knowledge System offers many advantages for the design, construction,

and simulation of multisensor systems. We have described many of those. In addition,

we are currently working on a CAD-Based 3-D vision system. That is, we are developing

a set of rules which will evaluate the 3-D geometry and function of any part designed

with the Alpha _1 CAGD system. In this way, weak recognition methods can be avoided

and specially tailored logical sensor objects can be synthesized automatically. Another

area of current research interest is the simulation of multisensor systems. We believe

that our approach can lead to very natural, straightforward, and useful simulations which

18

can include native code running on the target processors. Finally, we are also

investigating the organization of knowledge in the Multisensor Knowledge Base. Certain

structuring of the data may lead to improved or simplified analysis.

19

References

[1] Albus, J.
Brains, Behavior and Robotics.
BYTE Books, Peterborough, New Hampshire, 1981.

[2] Bajcsy, R.
GRASP:NEWS Quarterly Progress Report.
Technical Report Vol. 2, No.1, The University of Pennsylvania, School of

Engineering and Applied Science, 1 st Quarter, 1984.

[3] Booch, Grady.
Software Engineering with Ada.
Benjamin/Cummings Publishing Co., Menlo Park, california, 1983.

[4] Chiu, S.L., D.J. Morley and J.F.Martin.
Sensor Data Fusion on a Parallel Processor.
In Proceedings of the IEEE Conference on Robotics and Automation, pages

1629-1633. San Francisco, CA, April, 1986.

[5] Fujimoto, R.M.
The SIMON Simulation and Development System.
In Proceedings of the 1985 Summer Computer Simulation Conference, pages

123-128. July, 1985.

[6] Henderson, T., E. Triendl and R. Winter.
Model-Guided Geometric Registration.
Technical Report NE-NT -0-50-80, Deutsche Forschungs- und Versuchsanstalt fuer

Luft- und Raumfahrt, September, 1980.

[7] Henderson, T.C. and E. Shilcrat.
Logical Sensor Systems.
Journal of Robotic Systems 1 (2): 169-193, 1984.

[8] Henderson, T.C., E. Shilcrat and C.D. Hansen.
A Fault Tolerant Sensor Scheme.
In Proceedings of the I nternational Conference on Pattern Recognition, pages

663-665. August, 1984.

[9] Henderson, T.C., C.D. Hansen, and Bir Bhanu.
The Specification of Distributed Sensing and Control.
Journal of Robotic Systems 2(4):387-396, 1985.

[10] Henderson, T.C., Chuck Hansen and Bir Bhanu .
A Framework for Distributed Sensing and Control.
In Proceedings of / JC A I '985, pages 1106-1109. Los Angeles, CA, August, 1985.

[11] Henderson, T.C. and Steve Jacobsen.
The UTAH/MIT Dextrous Hand.
In Proceedings of the ADP A Conf. on I nte/l i gent Control Systems, pages to

appear. Ft. Belvoir, Va., March, 1986.

20

[12] Henderson, T.C., Chuck Hansen, Ashok Sama!, C.C. Ho and Bir Bhanu.
CAGO Based 3-~ Visual Recognition.
In Proceedings of the International Conference on Pattern Recognition, pages to

appear. Paris, France, October, 1986.

[13] Mitiche, A. and J.K. Aggarwal.
An Overview of Multisensor Systems.
SPI E Optical Computing 2:96-98, 1986.

[14] Organick, E.I., M. Maloney, D. Klass and G. Lindstrom.
Transparent Interface between Software and hardware Versions of Ada

Compilation Units.
Technical Report UTEC-83-030, University of Utah, Salt Lake City, Utah, April, 1983.

[15] Overton, K.
Range Vision, Force, and tactile Sensory Integration: Issues and an Approach.
In Proceedings of the iEEE Conference on Robotics and Automation, pages 1463.

San Francisco, California, April, 1986.

[16] Shilcrat, E., P. Panangaden and T.C. Henderson.
I mpiementing Multi-sensor Systems in a Functional Language.
Technical Report UUCS-84-00 1, The University of Utah, February, 1984.

[17] Shilcrat, E.
Logical Sensor Systems.
Master's thesis, University of Utah, June, 1984.

[18] Swope, S.M. and R.M. Fujimoto.
51 MON II Kernel Reference Manual.
Technical Report UUCS-86-001, University of Utah, May, 1986.

