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Abstract 

We describe an approach which facilitates and makes explicit the organization of the 

knowledge necessary to map multisensor system requirements onto an appropriate 

assembly of algorithms, processors, sensors, and actuators. We have previously 

introduced the Multisensor Kernel System and Logical Sensor Specifications as a means 

for high-level specification of multisensor systems. The main goals of such a 

characterization are: to develop a coherent treatment of multisensor information, to allow 

system reconfiguration for both fault tolerance and dynamic response to environmental 

conditions, and to permit the explicit description of control. 

In this paper we show how Logical Sensors can be incorporated into an object-based 

approach to the organization of multisensor systems. In particular, we discuss: 

* a multi sensor knowledge base, 

* a sensor specification scheme, and 

* a multi sensor simulation environment. 

We give an example application of the system to CAD-based 2-D vision. 

l This work was supported in part by NSF Grants MCS-8221750, DCR-8506393. and DMC-8502115. Chuck 

Hansen is an ARO Fellow. 
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1. Introduction 

The rapid design of embedded electromechanical systems is crucial to success in 

manufacturing and defense applications. In order to achieve such a goal, it is necessary 

to develop design environments for the specification,simulation, construction and 

validation of multisensor systems. Designing and prototyping such complex systems 

involves integrating mechanical parts, software, electronic hardware, sensors and 

actuators. Design of each of these kinds of components requires appropriate insight and 

knowledge. This in turn has given rise to special computer-based design tools in each of 

these domains. Such Computer Aided Design (CAD) systems have greatly amplified the 

power and range of the human designer. To date, however, it is still extremely difficult to 

address overall system issues concerning how the components fit together, and how the 

complete system will perform. 

It is crucial to develop a design environment in which these multiple facets of system 

design can take place in a coordinated way such that the description of one component 

can be easily interfaced to another component, even when they are radically different 

kinds of things (e.g .. a control algorithm, a mechanical linkage and an actuator). The 

designer should have the freedom to tryout ideas at different levels of detail; i.e., from 

the level of a sketch to a fully detailed design. The Multisensor Knowledge System 

provides part of the solution to developing such an environment. 

Logical Sensor Specifications (LSS) were developed previously as a method to permit an 

implementation independent description of the required sensors and algorithms in a 

multisensor system. Figure 1 gives a pictorial description of the basic unit: a logical 

sensor. Sensor data flows up through the currently executing program (one of program, 

to program n) whose output is characterized by the characteristic output vector. Control 

commands are accepted by the control command interpreter which then issues the 

appropriate control commands to the Logical Sensors currently providing input to the 

selected program. The programs. 1 through n provide alternative ways of producing the 

same characteristic output vector for the logical sensor. The role of the selector is to 

monitor the data produced by the currently selected program and the control commands. 

If failure of the program or a lower level input logical sensor is detected. the selector 

must undertake the appropriate error recovery mechanism and choose an alternative 

method (if possible) to produce the characteristic output vector. In addition, the selector 
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must determine if the control commands require the execution of a different program to 

compute the characteristic output vector (i.e., whether dynamic reconfiguration is 

necessary). 

Logical Sensor Specifications are useful then for any system composed of several 

sensors, where sensor reconfiguration is required, or where sensors must be actively 

controlled. The principle motivations for Logical Sensor Specifications are the emergence 

of significant multisensor and dynamically controlled systems, the benefits of data 

abstraction, and the availability of smart sensors. 

In previous papers we have explored several issues of multisensor integration in the 

context of Logical Sensor Specifications: 

* fault tolerance [8], 

* functional (or applicative) style programming [16], 

,., features and their propagation through a network [17], 

* the specification of distributed sensing and control [9, 10], 

* the automatic synthesis of Logical Sensor Specifications for CAD/CAM 
applications [11, 12]. 

Related work includes that of Albus [1] on hierarchical control, Bajcsy et al. [2] on the 

Graphical Image Processing Language, Overton [15] on schemas, and Chiu [4] on 

functional language and multiprocessor implementations. For an overview of multisensor 

integration, see Mitiche and Aggarwal [13]. 

In exploring these issues, we have found that the specification of multisensor systems 

involves more than just sensor features. It is true that knowledge must be available 

concerning sensors, but it is essential to also be able to describe algorithms which use 

the sensor data and the hardware on which they are executed. In the rest of the paper, 

we describe the components of an object-based approach to developing a knowledge 

system to support these requirements. 
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2. Objects and Methods 

Several distinct programming styles have been developed over the last few years, 

including: 

* applicative-style programming, 

'" control-based programming, 

'" logic programming, and 

* object-based programming. 

Applicative style programming exploits function application as its main operation and 

regulates quite strongly the use of side-effects [6]. Historically, however, control-based 

programming has been the most extensively used paradigm, and focuses on the flow of 

control in a program. Logic programming is based on logical inference and requires the 

definition of the formal relations and objects which occur in a problem and the assertion 

of what relations are true in the solution. On the other hand, many current systems are 

being developed which are based on the notion of objects; this style emphasizes data 

abstraction combined with message passing [3, 14]. 

In the control-based style a program is viewed as a controlled sequence of actions on 

its total set of data structures. As the complexity of a system grows, it is hard to keep a 

clear picture of the entire sequence of actions that make up the program. This leads to 

the chunking of sequences into subprograms, and this is almost exclusively done for 

control purposes. But data structures are not decomposed into independent entities. In 

fact, most global data structures are shared by all subroutines. 

On the other hand, the object-based style takes the view that the major concern of 

programming is essentially the definition, creation, manipulation and interaction of 

objects; that" is, a set of independent and well-defined data structures. In particular, a 

single data structure (or instance) is associated with a fixed set of subprograms 

(methods), and those subprograms are the only operations defined on that object. 

Such a use of data abstraction leads to design simplification which in turn makes the 

program more understandable. correct. and reliable. In addition, flexibility and portability 

are enhanced since details of objects (Le., their representations) are hidden and can be 
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implemented in other ways without changing the external behavior of the object. 

For our purposes, an object consists, essentially, of three parts: 

1. unique name: this name must be distinguished from all other names in both 
time and space, 

2.~: an object is an instance of a type which defines the valid set of 
operations and which details the nature of the resource represented, and 

3. representation: the representation contains the information content associated 
with an object. This may include private data structures, references to other 
objects, etc. 

Thus, an object is a structure with internal state (perhaps called slots and comprised of 

name/value relationships) accessed through functions (also called methods) defined in 

association with the object. This approach makes management schemes simpler and 

fewer, easier to implement and use; in addition, individual resources are easier to specify, 

create (allocate), destroy (deallocate), manipulate and protect from misuse. 

It has been effectively argued many times that object-based programming is well-suited 

to embedded systems processing requirements. In particular, the application of this 

methodology to the specification of sensor systems helps to directly describe most of the 

important aspects of such systems: 

." parallel processing, 

." real-time e'Jntrol, 

." exception handling, and 

." unique I/O control. 

Sensors typically require such operations as: enabling/disabling, limit setting, status 

checking, and periodic logging of state. That is, sensor systems must respond to out-of

limit readings and issue alarms, detect faulty sensors, and recover from failure, and these 

functions can be implemented in a straightforward way. 
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3. Multisensor Knowledge Systems 

Much of our previous work on multi sensor systems has concentrated on the 

specification of such systems and reasoning about their properties. It is necessary to be 

able to describe both the parameters and characteristics of individual components of 

multisensor systems, and to be able to deduce global properties of complete systems. 

Although it may be possible to deduce such properties (especially static properties like 

complexity, data type coercion, etc.), we believe that many interesting properties can only 

be determined by simulating the operation of the complete system. . 

Thus, we seek a representation that supports: 

1. multisensor system specification: this describes the components and 
interconnection scheme of the particular system being designed, 

2. sensor, algorithm, processor and actuator knowledge representation: this 
structures information about sensor characteristics (e.g., accuracy, hysteresis, 
dynamic range, etc.), algorithms {e.g., space and time complexity, amenity to 
parallel computation, stability, etc.} processors (e.g., cycle times, memory 
limits, address space, power requirements, etc.), and actuators (e.g., actuation 
principle, power requirements, etc.), and 

3. multisensor system simulation: this permits one to monitor important 
parameters and to evaluate system performance. 

Figure 2 shows the organization of the three capabilities within an object-oriented 

context. In the following subsections, we describe the Multisensor Knowledge System 

(MKS), an object-based approach to providing a unified answer to these three capabilities. 

3.1. The Multisensor Knowledge Base 

The multisensor knowledge base serves two main purposes: 

1. to describe the properties of the system components (e.g., sensors, 
algorithms, actuators and processors), and 

2. to provide class descriptions for the actual devices which are interconnected 
in any particular logical sensor specification. 

That is, the knowledge base must describe not only generic sensors (e.g., cameras), but 

specific sensors (e.g., Fairchild 9000, Serial No. 28753). It is then possible to reason about 

sensor systems at several levels. Moreover, it is possible that two distinct specifications 

require some of the same physical sensors. In such a case, it is the responsibility of the 
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execution environment to resolve resource allocation conflicts. 

We have chosen a frame-like knowledge representation. Frames relate very naturally to 

object-based descriptions, and, in fact, can be viewed as a class of restricted objects. It 

is straightforward to provide hierarchical descriptions of system components. For 

example, Figure 3 shows the CCO Camera hierarchy. The CCO Camera frame has two 

slots: element spacing and aspect ratio. These slots are specific to eeo cameras and as 

such do not appear as slots for 2-D cameras. These latter have slots for scanning format. 

scan timing, resolution, output signal, and operating conditions. These slots are inherited 

by any instance of eeo camera. One level up, we find a frame for Vision sensors. This 

frame has specific slots for the spectral band and for the output type (e.g., 2-D byte 

array, multi-band, etc.). At the highest level of the hierarchy is the Sensor frame which 

has a slot for the physics of operation. This slot is used by any particular sensor to 

allow for an explanation of the physics behind the workings of the sensor. In this way, if 

reasoning is required about the sensor, it is possible to look in this slot for information. 

As can be seen, knowledge is organized such that there are more specific details lower in 

the hierarchy. 

Note that frames are themselves implemented as objects. Thus, actual devices are 

instances of some class of objects. This is very concise 'and conveniently exploits the 

similarities of frames and objects. 

In previous work, we have described a set of generally applicable physical sensor 

features [7]. The manner in which physical sensors convert physical properties to some 

alternative form, i.e., their transducer performance, can be characterized by: error, 

accuracy, repeatability, drift, resolution, hysteresis, threshold, and range. These properties 

can be encoded in the appropriate slots in the frames describing the sensor. 

3.2. Sensor Specification 

An object-based style of programming requires that the logical sensor of Figure 1 be 

re-described in terms of objects and methods. We shall next give the general flavor of 

this style, but it must be remembered that any particular sensor is actually an instance of 

some object class, and, in fact. inherits properties from many levels up. 

Each logical sensor is completely specified as shown in Figure 4. Thus, in order to get 
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data from a logical sensor, the characteristic output vector method must be invoked. 

Likewise, to issue control commands to the sensor (e.g., camera pan and tilt parameters), 

the control commands method must be used. The role of the selector is still the same as 

in previous logical sensor implementations, however, it now, in essence, is invoked to 

produce the characteristic output vector. 

Such a representation makes it very easy to design sensor systems. Moreover, such 

specifications allow for replacement of sensors and dynamic reconfiguration by simply 

having the selector send messages to different objects. Given current object-based 

programming technology, such systems can be rapidly developed and permit dynamic 

typechecking (on objects). 

Figure 5 shows the Multisensor Knowledge Base, and below the dashed line, a set of 

particular instances of various algorithms, sensors, etc. (drawn as circles). A logical 

sensor specification (indicated as a blocked in subset of the circles) defines a grouping of 

algorithms, sensors, etc. This newly created logical sensor is an instance of the logical 

sensor object and can be sent messages. As mentioned above, there are two methods 

defined on logical sensors: the characteristic output vector method and the control 

commands method. Thus, any logical sensor can be defined recursively in terms of other 

logical sensors (including itself). 

Currently, our main interest is in the automatic synthesis of logical sensor 

specifications. Given a CAD model of an object, we would like to synthesize a specific, 

tailor-made system to inspect recognize, locate or manipulate the object. Note that the 

synthesis of a logical sensor specification consists, for the most part, of interconnecting 

instances of sensors and algorithms to perform the task. This is done by writing the 

selector to invoke methods on other logical sensors. Given certain constrained problems, 

most notably the CAD/CAM environment, such a synthesis is possible. 

3.3. The Simulation of Multisensor Systems 

Effective simulation plays an important role in successful system development. A key 

requirement is the support for hierarchical specification of the system and the ability to 

perform stepwise refinement of the system. In addition, it is necessary to be able to 

efficiently emulate realtime software that will eventually be embedded in the system. 
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Finally, it would be quite useful to be able to embed physical components in the simulator 

in order to monitor the system's operation. 

An object-oriented simulation methodology is well-suited to satisfy these goals. The 

multisensor system, that is, the system being modeled, consists of a collection of 

interacting physical processes. Each such process is modeled in the simulator by an 

object, i.e., an independent process. Interactions among physical processes are modeled 

through messages exchanged among the corresponding objects. 

This general paradigm is currently supported in the SIMON simulator developed by 

Fujimoto [5, 18]. A toolkit approach is used in which the simulator is viewed as a 

collection of mechanisms from which application specific simulation environments are 

constructed. We are currently exploring the simulation of multisensor systems in the 

SIMON environment. Simulation can be accomplished by substituting simulation libraries 

for the run time libraries (see Figure 1). 

A crucial aspect of the simulation is the ability to execute specific algorithms on 

specific hardware. SIMON permits such a direct execution technique in which application 

programs are executed directly on a host processor rather than through a software 

interpreter. Performance information is obtained through the automatic insertion of 

probes and timing software into the program at compile time. These probes perform 

whatever runtime analysis is required to accurately estimate execution time of basic 

blocks of code. A prototype implementation using this technique has been developed 

modeling the MC680 1 0 and 68020 microprocessors. Initial data indicate that application 

programs may be emulated one to two orders of magnitude more efficiently over 

traditional register transfer level simulation, while highly accurate performance estimates 

can still be obtained. 

4. An Example Application: CAD-Based 2-D Vision 

A simple example which demonstrates some of the power of the Multisensor Knowledge 

System approach is that of CAD-Based 2-D Vision. The goal is to automate visual 

inspection, recognition and localization of parts using pattern recognition techniques on 

features extra'cted from binary images. Figure 6 shows the scheme pictorially. 

The Multisensor Knowledge System stores knowledge about the algorithms, sensors, 
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processors, etc. This knowledge is used by application specific rules. The systems to be 

synthesized here require that a model be created for the part to be inspected, and that a 

robust and (perhaps) independent set of features be chosen along with an appropriate 

distance metric. 

The left side of the figure shows the offline training component. The new part is 

designed using a Computer Aided Geometric Design system. A set of images are 

rendered by the CAGD system giving a sample of various views of the part in different 

positions, orientations, and scales. These serve as a training set to the Multisensor 

Knowledge System. 

A set of rules (or productions) performs an analysis of the views of the part to select a 

subset of the total set of possible features. Features are used if they are robust, 

independent and reliable. Once these features have been chosen, a new logical sensor 

object is created whose only function is to recognize the given part based on an analysis 

of the selected features. The part detector is then linked into a particular application 

(e.g., an inspection task at a specific workcell) by sending a message to the appropriate 

camera. 

As a specific example, consider the object shown in Figure 7. It was designed with 

Alpha _1, an experimental solid modeling system developed at the University of Utah. For 

the past few years the Computer Aided Geometric Design group has been involved in a 

concerted. effort to build this advanced modeler. Alpha _1 incorporates sculptured 

surfaces and embodies many theoretical and algorithmic advances. It allows in a single 

system both high-quality computer graphics and freeform surface representation and 

design. It uses a rational polynomial spline representation of arbitrary degree to 

represent the basic shapes of the models. The rational B-spline includes all spline 

polynomial representations for which the denominator is trivial. Nontrivial denominators 

lead to all conic curves. Alpha _, uses the Oslo algorithm for computing discrete B-

splines. Subdivision, effected by the Oslo algorithm, supports various capabilities 

including the computation associated with Boolean operations, such as the intersection of 

two arbitrary surfaces. B-splines are an ideal design tool, they are simple, yet powerful. 

It is also the case that many common shapes can be represented exactly using rational 

B-splines. For example, all of the common primitive shapes used in CSG systems fall into 
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Figure 7. The Green Piece 

this category. Other advantages include good computational and representational 

properties of the spline approximation: the variation diminishing property; the convex hull 

property and the local interpolation property. There are techniques for matching a spline

: represented boundary curve against raw data. Although the final result may be an 

approximation, it can be computed to any desired precision (which permits nonuniform 

sampling). 

The object shown in Figure 7 was rendered at orientations of 0, 22.5 and 45 degrees. 

These images were analyzed. The set of possible features included: 
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The result of the analysis was the following weightings: 

Area 
Thinness 
Perimeter to Area Ratio 
Perimeter 
x-v Aspect Ratio 
Diameter 
Center of Mass in X 
Center of Mass in Y 
Normalized Moment 
Normalized Moment 2 
Normalized Moment 3 
Normalized Moment 4 
Normalized Moment 5 
Normalized Moment 6 
Normalized Moment 7 

0.8739003 
0.0 
0.0 
0.002932551 
0.0 
0.002932551 
0.0 
0.0 
0.06451613 
0.01173021 
0.005865103 
0.002932551 
0.002932551 
0.02052786 
0.01173021 

The synthesized logical sensor object merely sends a message to the segment program 

for Camera 1 (a Fairchild 3000 CCD camera), then sends a message to each of the 

features used, then sends a message to the distance function object with the appropriate 

weights. The system has been implemented in PClS (the Portable Common Lisp System) 

using objects and methods. The feature calculations are performed by running C code 

called from within the instances of the feature objects. 

5. Summary and Future Work 

The Multisensor Knowledge System offers many advantages for the design, construction, 

and simulation of multisensor systems. We have described many of those. In addition, 

we are currently working on a CAD-Based 3-D vision system. That is, we are developing 

a set of rules which will evaluate the 3-D geometry and function of any part designed 

with the Alpha _1 CAGD system. In this way, weak recognition methods can be avoided 

and specially tailored logical sensor objects can be synthesized automatically. Another 

area of current research interest is the simulation of multisensor systems. We believe 

that our approach can lead to very natural, straightforward, and useful simulations which 
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can include native code running on the target processors. Finally, we are also 

investigating the organization of knowledge in the Multisensor Knowledge Base. Certain 

structuring of the data may lead to improved or simplified analysis. 
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