
A NEW APPROACH TO

SPECIFYING AND HANDLING EXCEPTIONS

BY

P. A. SUBRAHMANYAM

UUCS-80-107

JANUARY 1980

A New Approach to Specifying and Handling Exceptions
P. A. Subrahmanyam

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112

January 1980

Abstract

An operation generally exhibits different patterns of behavior over different parts of its
domain. Depending upon the context, such behavior may either be conceived of as
"normal” or as an "exception." Thus, the behavior of an operation Is quite naturally
characterized by the set of partial operations that characterize Its (different) behavior
on Its subdomains, and exceptions essentially serve to extend (modify) the normal
behavior of an operation.

*

In this milieu, we consider the issues of specifying and "handling” exceptional conditions
that might occur during the execution of an operation. We argue that one of the
important features that an exception handling mechanism need possess is to enable the
behavior of an operation to be altered over part of Its domain i.e. that of being able to
incrementally modify the semantics of the partial operations that serve to characterize
an operation. Surprisingly, this requirement arises out of a pragmatic consideration —
that of providing for the existence of a library of subroutines. We propose a general
mechanism for specifying exceptions and their handlers that does not compromise the
possibility of efficient implementations. Examples of application of the method are
presented In the context of abstract (algebraic) data type specifications, using skeletal
specifications of a Stack and an error-correcting parser for a context free grammar. The
major advantage of the proposed mechanism over conventional approaches is that of
completely avoiding the problem of "dynamic context propagation."

Keywords: exceptions, exception handling, specification, abstract data types,
verification, modules.

Table of Contonit

1. On Exceptions and Exception Handling
2. Summary of the Paper
3. Relevant Issues In Exception Handling

3.1. A new paradigm for exception handling
4. Details of the Proposed Exception Handling Mechanism

4.1. On the "Handling" of Exceptions
4.2. Chained Exceptions
4.3. Globally Visible Errors

4.3.1. Backward Error Recovery
5. Some Examples

5.1. A Bounded Stack
5.1.1. Three Handlers for the Exception StackUnderflow
5.1.2. Handlers for the exception StackOverflow

5.2. An Error-Correcting Parser
6. Implementation Considerations

6.1. On Parallelism in Implementations
7. Some Comparisons
8. Conclusions

1

A New Approach to Specif ying and Handling Exceptions

1. O n Exceptions and Exception Handling

Programming Involves representing the primitive operations and objects relevant to a
problem domain using other primitives operations and objects that are presumed to be
available; ultimately, such primitives are those provided by the underlying hardware.
Each layer of such a representation is commonly conceived of as a "module" that
provides a consistent (NcorrectN) implementation of the specifications at the preceding
level, the topmost level being the initial problem specification. The collection of objects
and operations at any such level can, however, be specified in a representation
Independent manner — such a specification Is termed an abstract (data type)
apecification.

Because abstract data types provide a linguistic vehicle to embody the important
notions of modularization and abstraction, they aid In the formulation of a piecewise
design of a program. For this reason, they are fast becoming a standard tool in
programming, and have been incorporated in several recent programming languages in
one of various forms [15, 22] (many of these not so "abstract" e.g. ADA [10].) The
modularization that Is thus achieved is commonly associated with the fact that the
operations defined on such an abstract data type specify all of the allowed
manipulations on the "objects" of the type, and therefore enable a single, well defined
channel of access to such objects.

The notion of modularization, however, can be further exploited in specifying the
semantics of operations defined on a data type. This can be done by making piecewise
assumptions that certain conditions hold In a particular "computing environment," and
specifying the semantics of the operation under this assumption. Thus, for example, It Is
convenient to define the semantics of a parser first under the assumption that the input
program Is a legitimate string in the language generated by the grammar, and then in the
case when the Input string Is not generated by the grammar. Quite often, the second
condition entails some form of error correction.

Thus, it is perfectly natural to view the overall behavior of an operation f as being
characterized by the piecewise behavior of "partial" operations f̂ , ..., fn that are

2

defined only when some associated conditions P̂ , PR on the computing environment
are satisfied. If, in the course of performing the operation f, condition P| Is detected,
then the semantics of f are those of fj.

Of course, In a specific context, some of the conditions in {P ,̂ Pn) might arise
more or less frequently than others. In such cases it is usual to think of the more
frequently occurring case as the "normal" case, and of the others as "exceptions." In
the latter case, an "exception (condition)" is said to have been "ra ised" (i.e. some
associated predicate P| evaluates to true;) the execution of f| is called "handling" the
exception. The distinction between what Is normal, and what Is an exception, however,
is often quite nebulous: It usually depends purely on the programmer's desire to play
down one case, or to share costs differently in an Implementation, etc. [13]. It is
Imperative, however, that any Implementation be consistent with the specified semantics.

It therefore follows that exceptions essentially serve to augment an operation's
behavior In the "normal" case by extending the operation's domain and/or range: this
Important observation was made by Goodenough In [7]. Paradoxically, however,
exception handling has always been treated as a "control flow" issue. As we shall see,
the unfortunate consequence of adopting such a perspective has been the proliferation
of a number of Increasingly complicated proposals for exception handling mechanisms
[13]. We will argue here that exception handling is basically not a control flow Issue, and
that treating It as such gives rise to needless problems.

Divesting the issue of control flow from that of exception handling has a second
non-trlvlal consequence: our treatment of exception handling no longer centers around
the von Neumann architecture with its emphasis on the distinction between control and
data, but is applicable more generally. In particular, it is of relevance in the context of
applicative programming and algebraic data type specifications.

The approach to exception handling proposed in this paper has the desirable (and, we
believe, important) feature that the formal semantics of operations, the notion of an
Implementation, and the "correctness" of an Implementation are relatively simple
extensions of the corresponding notions In the "normal" case. We will, however, only
outline the nature of these extensions here; the mathematical details can be found In a
companion report. Also, we do not discuss here the problem of applying these concepts

3

2. S u m m a r y of tha Paper

We continue this paper In section 3 by focussing on the essential features that are
needed in an exception handling mechanism, as opposed to the Idiosyncrasies of specific
proposals. In section 4, we then propose a new method for exception handling that
attempts to provide the necessary features while eliminating the complications
introduced by extant techniques; in particular, the problem of "dynamic context
propagation" is completely avoided. The proposed mechanism is illustrated in section 5
by its application to two examples. The examples presented revolve around skeletal
specifications for a Stack, and an error-correcting parser (which might form a part of a
compiler.) Some tentative conclusions are contained In section 8.

3. Relevant Issue* in Exception Handling

Most of the existing mechanisms for exception handling have treated the problem as a
control flow issue. An excellent summary of several of these methods may be found in
[7], [13]. The attempts since then have not diverted in any major sense from this
perspective e.g. [10,11], [18], to name only a few. We attempt to distill those
features that seem essential to an exception handling mechanism (as mandated by its
d e s ire d behavior,) as opposed to details particular to existing proposals.

To recapitulate, exceptions essentially serve to extend (or piecewise modify) the
"normal" domain (or behavior) of an operation. Any exception handling mechanism should
therefore provide a way to specify exceptions that reflects this fact In a natural
manner, while preserving the other desirable features of the environment in which such a
mechanism is embedded; these features include:

- The existing boundaries of abstraction and modularization should be
preserved. This fact Is particularly important to stress, since, in the model
adopted conventionally, the contexts of signalling and the handling of an
exception are distinct and as a consequence Information flow occurs
across abstraction boundaries (i.e. across the boundaries of "modules"
that constitute an implementation.) It is therefore necessary to preserve
the abstractions when such a transition occurs. Unfortunately, however,
this important fact is often overlooked in most exception handling
mechanisms with the result that the programmer Is often confronted with
cryptic error messages like "addressing exception at location 05839"

to the realm of concurrent programming.

4

(s/he never was consciously trying to access such a location) or "index
into array exceeds bounds" (s/he was only trying to push items onto a
Stack.)

• The formal semantics of operations, the notion of an Implementation and its
"correctness," as well as the verifiability of the correctness of
implementations should be relatively easily extensible from the normal case
to the exceptional case.

• The possibility of obtaining efficient implementations should not be
compromised.

In other words, since exceptions are as natural a part of an operation as Its "normal"
«

behavior, any facility for specifying and handling them should not, Ideally speaking,
unduly disrupt the existing state of affairs. Despite this, most of the mechanisms that
Have been proposed for exception handling seem to have gone against this precept. We
therefore attempt to Isolate the reasons for this disparity, with a view to remedying the
situation.

One of the primary reasons for the existence of non-uniform exceptional handling
mechanisms Is the fact that, in conventional block-structured programming languages, the
program context In which an unusual event or condition -- the exception — is detected
may not be the best context in which to process It. It is therefore necessary to
propagate exceptions to the appropriate "context" wherein it can be processed. To
provide for adequate flexibility in handling exceptions, it is often necessary to violate
the scope rules implied by block structuring, and most mechanisms do so to a greater or
less extent. An Immediate consequence of such a decision is to compromise the desire
to preserve the benefits of block-structuring, thereby making both the comprehension
and the verification of such programs much more difficult. Even more tragic is the fact
that most proposed mechanisms only half-heartedly make this compromise, thereby
sacrificing some amount of flexibility in addition to Incurring the other disadvantages.

3.1. A new paradigm for exception handling
We now argue that the facility that Is most essential In an exception handling

mechanism is one of enabling "Incremental changeability" of an operation's behavior on
parts of Its domain, and then propose an approach to exception handling which achieves
the desired goals without having to dynamically propagate contexts, etc. Both our

5

1. A formal statement of the problem specification is an essential pre-requisite
for the development of reliable software.

2. Such a formal specification should explicitly specify all the relevant
conditions on Its Input values, and the corresponding action to be taken I.e.
all "exceptional" conditions that are relevant to the operation's semantics
must be explicitly specified. (It is crucial to note that this does not imply
specifying the exceptions that any of the implementing modules might
raise.) Any unspecified condition is treated as causing a globally visible
error.

3. The implementation must be designed so as to ensure its adherence to the
mandated specifications. Thus, for example, If we consider the figure 3-1,
the Implementation "module" at level I should ensure consistency with the
specifications of level 1+1.

As a natural consequence, any conditions that are Irrelevant to the specifications at
some level, say I, should not be "propagated" to that level. Not only does such
propagation introduce needless machinery, it is quite meaningless: since level I is not
even aware of the details at level 1-1 that caused the exception in question, and what Is
more, does not, and in fact should not, even care!

Our basic assumption that level I Is Implemented correctly by level 1-1 avoids any
problems Inherent In such "dynamic" propagations. At first sight, then, It even appears
that there Is no need for any exception handling mechanism. Pragmatically, however, this
Is somewhat of an oversimplification. For, If each implementation must be tailored to the
requirements at level I, need this imply that for even very slight differences In
specifications, (that might arise due to the need for slightly different "handlers",) the
routines at level i-1 be re-implemented? Hopefully not. What Is therefore needed of an
exception handling mechanism Is the facility of being able to view the same operation
from slightly different perspectives -- that is, the facility of enabling Incremental
changeability of an operation's semantics on part of Its domain. In its absence, It is no
longer possible to have standard library routines — which Is clearly an undesirable
consequence. An exception handling mechanism in fact need just address this question,
for the original existing method of solving this problem by "propagating" the exception to
the Invoking "context" clearly leads to clumsy ways of handling the (wrong!) Issues.

rationale as well as the proposed mechanism are based on the following assumptions:

6

I I
I Level i+1

I . I

/\ \
. \
. \

....... \— -
. \
. \
. \

I . I
I . .h.. I Level i
I . I

A \
. \
. \

-----------------------\ — -

. \
. \
. \

I . I
I ••e.•• I LeveI i *1
I I

Figure 3-1: Hierarchies of Modules.
An exception at level 1-1 should not be propagated to level I

7

4. Details of tho Proposed Exception Handling Mechanism

We view the overall behavior of an operation f as being characterized by a set of
partial operations (functions,)̂ each of which characterizes the piecewise behavior of f
when some associated predicate holds over its domain. The range of a function may be a
disjoint union of types T ,̂ Tg, Tn, denoted by T̂ * Tg + — + Tn>

We denote the n partial functions characterizing the function f, f : T -> T̂ + Tg + — +
2Tn, by f.Tj, f.Tn< We refer to the tuple T.T̂ ♦-.■♦■Tn as the arlty of the function f. We

note that T can in general represent any arbitrary tuple of types. The partial function f.T,
has arlty • '

f.T,: T -> T,

Associated with each partial function f.T, is a predicate P.f.T, of arity
Pf.T,: T -> Boolean.

This predicate P.f.T, embodies the condition on the input domain T when the behavior
of f is characterized by the partial function f.T,. Thus, the semantics of the function f
can be expressed as follows:

f(t) * If P.f.T j (t) then f.T^t)
else If P.f.Tg(t) then f.T2(t)

else If P.f.T,(t) then f.T,(t) .
• • •

else If P.f.Tn(t) then f.Tn(t)

Consequently, the specification of the semantics of f Involves specifying the
semantics for {P.f.T,} and {f.T|}. Since an exception merely serves to extend the
domain and/or range of a function, the above framework needs no additional
embellishments to allow for the specification of "exceptional conditions." The Intuition
behind this is that if a predicate P.f.T, on the Input corresponds to an exceptional

Throughout this paper, wo use function and operation synonymously. Strictly speaking, however, we wish to allow
non-determmism as an intrinsic characteristic of an operation, and as a consequence we use the term "function* quite
loosely to allow such an interpretation.

Âlthough the term arity is sometimes confused with functionality, there is a technical difference: the former alludes
only to the syntactic strings nsmlng the domain(s) and range(s) of a function, whereas the latter refers to the domain(s)
and range(s) themselves.

8

condition, then the partial function f.Tj returns an "exception type" and the "handling" of
this exception Is accordingly embodied In the semantics of f.T| as defined on the

exception type (c.f. section 4.1.)

In order to be able to provide for tailored handlers for exceptions (c.f. Section 3,) it
Is necessary to permit Incremental modification of the semantics of a function f defined
on the type T. For this purpose, we adopt the following convention: If the predicate P.f.Tj
characterizes an exception condition, then

1. The "modifiabillty" of the handler for this condition is syntactically
indicated by prefixing T(with an asterisk in the syntactic specification of f
thus:

f : T -> T, ♦ ♦ *T, ♦ ... ♦ Tn

2. The semantics of f take the form

f(t) *
else if P.f.T,(t) then f.T,(f.T,(t))
• •••

(The point to be noted here is that the function f.Tj Is seemingly applied
twice! We will elaborate on the significance of this shortly.)

Usually, all but one of the predicates P.f.Tj,..., P*f«Tn correspond to an "exceptional"
condition. If we assume that P.f.Tj corresponds to the normal case, then the semantic
specification of f takes the form:

f(t) » If P.f.Tj (t) then f.T^t)
else If P.f.T2(t) then f.T1(f.T1(t)) .
•••• ' -

else If P.f.Tn(t) then f.Tn(f.Tn(t))

4.1. On the "Handling" of Exceptions
If P.f.Tj corresponds to an "exceptional condition" In the domain of f, then the type Tj

represents the "handler type" for this condition. Obviously, Tj is no different from any
other type, and can be arbitrarily complex. Also, since an instance of T| Is spawned by
the function f.Tj, Tj Is a "parameterized exception handler" and the function f.Tj Is one of

9

the base constructors of type Tj. As a result, the type T| must, of necessity, have the
following two functions defined on It:

1. the base constructor f.Tj : T -> Tj, and

2. a distinct function f.Tj : Tj -> Tj' which differs from the base constructor
f.T| by having a different arlty.

If the exception handler for the condition P.f.Tj is modifiable, (indicated by the
asterisk in f : T -> ... ♦ *Tj ♦ ... ,) then the type returned by f is Tj\ with Its semantics
given by the semantics of f.Tj : Tj -> Ty. Thus, both the syntax and the semantics of f
are determinable only at "execution time." This explains the reason for the two
applications of f.Tj present in the semantics of f: they are applications of two diffe re n t

functions that have the same name ~ the first application is that of the base
constructor f.Tj:T->Tj which serves to establish the proper "environment" for the
exception handler, whereas the second application of f.Tj: T| -> Tj' serves to initiate the
handling itself. .

4.2. Chained Exceptions
Using the method detailed above, it Is possible to deal with arbitrary levels of

exceptions (I.e. exceptions within an exception handler) in a uniform way, since the
functions at each level are incrementally modifiable. Thus, if

f : T -> ... + *T| + ...

and
f.Tj : Tj •) ... + *Tj' ♦ ...

then P.f.T|.T|' characterizes an exception condition (which may In turn have another
parameterized exception handler.)

4.3. Globally Visible Errors
The only "exception" to the description above occurs when the mandated

specification (and/or performance) at level i+1 cannot be achieved by the implementation

A base constructor of a type is a function that serves to spawn new instances of a type. Quite often, f.T. is the
only base constructor of the type T..

i

10

module at level I. Examples of situations of this kind are: "unrecoverable disk failure,"
"power failure," etc. In such a case, a globally visible error occurs, which might uniformly
have the effect of "collapsing" all terms to a single "error" type. This situation may also
be treated as in [5].

4.3.1. Backward Error Recovery
In order to have robust "programmed" exception handling (sometimes termed forward

error recovery,) the disjunction of the predicates {P.f.Tj} characterizing the subdomains
of the partial functions {f.Tj} should always be TRUE; that Is, all anticipated cases
{P.f.Tj} should serve to exhaust the domain of a function. The notion of globally visible
errors may also be interpreted so as to account for unanticipated exceptions; usual!y«
the only way to recover from such exceptions is to "rollback" to some previous state of
the system that is known to be consistent. We will not, however, elaborate on this
aspect of exception handling, as it relate more to issues of fault-tolerant systems, and
is outside the scope of this paper [8], [17].

5. S o m e Examples

We now Illustrate the application of the proposed method for specifying exception
conditions and associated "handlers" by its use in two examples: a bounded stack, an
error correcting parser for a context free language.

6.1. A Bounded Stack
The specifications for the type Bounded-Stack are given in figure 5-1. There are

three exceptional conditions that may arise: StackOverflow (while applying PUSH to an
already "full" stack,) StackUnderfiow (while applying POP to an empty stack,) and
ItemUndefinedError (while applying TOP to an empty stack). These three conditions are
embodied in the predicates P.PUSH.Stack, P.PUSH.StackOverflowHandler, P.POP.Stack,
P.POP.StackUnderflowHandler, P.TOP.Item, and P.TOP.ItemUndefinedError defined over the
domains of the operations PUSH, POP, and TOP. The complete definitions of these
functions Is given in figure 5-1. We can now specify the "error handler types."

11

6.1.1. Three Handlers for the Exception Stackllnderflow
For the sake of illustration, we list three distinct handlers for the case of Stack

underflow (see figure 5-2, 5-3, 5-4). The first simply outputs the string "STACK
UNDERFLOW". The second outputs the string "STACK UNDERFLOW:" concatenated with
the present Stack configuration (converted to the form of a printable string by the
function CONVERT: Stack -> String.*) The third “resumes" normal execution by returning
the Stack NEWSTACK.

6.1.2. Handlers for the exception StackOverflow
Two distinct handlers for the exception StackOverflow are given. The first handler

"corrects" the overflow condition that has occurred by creating a new Stack of size one
greater than the one in which the overflow has occurred, and initializing it with the
contents of the previous Stack. The second handler for Overflow merely returns the
String "STACK OVERFLOW".

6.2. An Error-Correcting Parser
We consider here the problem of parsing a sentence generated by a context-free

grammar e.g. LL(1) as might be required in course of the compilation of say, a PASCAL
program. The output of the parser in such a case Is a parse tree (Parse-Tree,) and a
set of messages (Parser-Msgs) generated during the parsing phase. The input to the
parser consists of the grammar for the language (perhaps In some suitable tabular form,)
the input program string, and an Initially empty parse stack. If and when an error is
detected during a parse, it Is often desirable to attempt some form of error-recovery
(see, for example, [19]). The detection of a syntactic error in the input string can be
viewed as an exceptional condition where the associated handler performs the syntactic
error recovery functions. We merely delineate below (figure 5-6) the structure of such
a parser to Illustrate how such an exception handler may be structured, without detailing
the semantics of any of the functions involved.

We do detail any semantics for CONVERT here, but it should be quite obvious how this may be done.
4

12

Type Bounded-Stack

Suntax

NEUSTACK: Integer -> Stack

PUSH: Stack, Item -> Stack + aStackOverflouHandler
PUSH.Stack : Stack, Item -> Stack
PUSH.StackOverflouHandler : Stack, Item ->

*StackOverflouHandler
POPi Stack -> Stack + *StackUnderflouHandler

POP.Stack t Stack -> Stack
POP.StackUnderflouHandler t Stack -> ttStackUnderflouHandler

TOP* Stack -> Item + *1 temUndefinedError
TOP.Item s Stack -> Item
TOP. I temUndef inedError : Stack -> *1 temUndef inedError

ISEMPTY: Stack -> Boolean
BOUND: Stack -> Integer
SIZE: Stack -> Integer

{The following are the various "characteristic" predicates for relevant subdomains}
P.PUSH.Stack : Stack, Item -> Boolean .
P.PUSH.StackOverflouHandler : Stack, Item -> Boolean
P.POP.Stack : Stack -> Boolean
P.POP.StackUnderflouHandler t Stack -> Boolean
P. TOP.Item : Stack -> Boolean
P. TOP.ItemUndefinedError : Stack -> Boolean

Semant ic9

{Note that the functions NEWSTACK and PUSH.Stack serve to generate all
Instances of the type Stack.)

JSEHPTY(NEUSTACK(n)) - TRUE
ISEMPTY(PUSH.Stack(9 ,x)) - FALSE

SIZE(NEUSTACK(n)) - ZERO
SIZE(PUSH.Stack(9,x)) - 1 + SIZE(s)

BOUND(NEUSTACK(n)) « n
BOUND(PUSH.Stack(s,x)) - BOUND(s)

P.PUSH.Stack(NEUSTACK) - TRUE
P.PUSH.Stack(PUSH.Stack(s,x)) - if SIZE(s) < BOUND(s)

then TRUE
else FALSE

{Note that P.PUSH.StackOverflowHandler(s) = NOT(P.PUSH.Stack(s))>

P.PUSH.StackOverf louHandler (NEUSTACK,x) - FALSE
P. PUSH. StackOver f I ouHand I er (PUSH. Stack (9, x), x) -

if SI Z E (9) < BOUND(9) then FALSE elee TRUE

P.POP.Stack(NEUSTACK) - FALSE
P.POP.Stack (PUSH.Stack(9,x)) - TRUE

13

{Note that P.POP.STACKUNDERFLOWHANDLER(s) = NOT(P.POP.Stack(s))}

P.POP.Stackllnderf IouHandIer (NEUSTACK) ■ TRIE
P.POP.StackUnderf lowHandler(PUSH.Stack(s,x)) - FALSE

P. TOP. I tem (NEUSTACK) - FALSE
P. TOP. Item (PUSH.Stackts, k)) - TRUE

P. TOP. I temUndef i nedError (NEUSTACK) » TRUE ’
P. TOP. I temUndef inedError(PUSH.Stack(s,x)) » FALSE

{Now the semantics of the partial functions characterizing POP and TOP}

POP.Stack (PUSH.Stack (s,x)) - s
POP.StackUnderf lowHandler (NEUSTACK (n)) -

StackUnder f IouHandIer (StackUnderf louHandler (NEUSTACK (n)))

TOP. I tem(PUSH.Stack(s.x)) - x
TOP. I temUndef inedError (NEUSTACK (n)) »

I temUndef inedError(ItemUndef inedError(NEUSTACK(n)))

{Now the semantics of the functions PUSH, POP, and TOP in terms of the
partial functions that characterize them. Note that this definition
follows automatically from the definitions given above — we give this
explicitly only for the sake of completeness.}

PUSH(s,x) - if P.PUSH.Stackts,x) then PUSH.Stackts,x)
else if P.PUSH.StackOverflowHandler(s,x)

then PUSH.StackOverflowHandler(b,x)
POP(s) - if P.POP.Stack(9) then P0P.Stack(9)

else if P.POP.StackUnderfIouHandIer(s)
then POP.StackUnder fIouHandIer(s)

TOP(s) - if P.TOP.Item(s) then TOP.Item(s)
else if P.TOP.ItemUndefinedError(s)

then TOP.ItemUndefinedError(s)

End Stack

Figure 5-1: Bounded-stack

Type UnderflowHandier[Stack]

Suntax

POP.Under f louHandler i Stack -> UnderfIouHandIer
POP. Under f louHandler i Under f I ouHand I er -> String ,
Semant ics

to r all s In Stack:
POP.Underf louHandler (POP.Underf louHandler (s)) ■ "STACK UNDERFLOW"
End UnderflowHandler

Figure 5*2: UnderflowHandler - 1

Type UnderflowHandlerfStack!

Suntax

POP.Underf louHandler : Stack -> Underf louHandler
POP.Underf louHandler i Under f louHandler -> S trin g

Semant i eg

fo r all b In Stack:
POP.Underf louHandler (POP.Underf louHandler (s)) «

CONCATENATE("STACK UNDERFLOUt", CONVERT(a))

End UnderflowHandler

Figure 6-3i UnderflowHandler - 2

15

Type UnderftowHandlerrstackl

Suntax

POP.Underf louHandler : Stack -> UnderflowHandler
POP.Underf louHandler : Under f I ouHand I er -> Stack

Semant ics
fo r all s tn Stack:
POP.Underf louHandler (POP.Underf louHandler («)) » NEUSTACK
End UnderflowHandler

Figure 5-4: UnderflowHandler - 3

16

Type Overf(owHandleiTStack!

Suntax
PUSH. Overf louHandler : Stack, Item -> Overf louHandler
PUSH.Overf louHandler t Overf louHandler -> Stack
{Auxiliary functions used by the OverflowHandler}

COPY : Stack, Stack -> Stack '
Semant ics
fo r alt si, b2 in Stack
PUSH. Over f I ouHand I er (PUSH. Overf louHandler (9)) • COPY(s,NEUSTACK (BOUND (s)+l))

COPY (si. s2) - if ISEtlPTY(sl)
then s2
eIse COPY(POP(si) ,PUSH(s2,TOP(si))

End OverflowHandler

Type OverflowHandlerrstackl

Suntax

PUSH. Overf louHandler : Stack -> Overf louHandler
PUSH. Overf louHandler 1 Overf louHandler -> String •

Somant ic9
to r at! s in Stack

PUSH. Overf louHandler (PUSH. Overf I ouHand I er(s)) • "STACK OVERFLOW"
End OverflowHandler

Figure 5-5: StackOverflow Handlers

17

Type Parser
Suntax
• * I « •

PARSE t Grammar, Parse-Stack, String ->
<Parse-Tree, Parser-MsgB>

+ #Syntax-Error

Semantics
fo r all g In Grammar, ps In Parse-Stack, s In String
PARSE(g,ps,s) - .. if (s is not uell formed) then RECOVER(g,ps,s)
• • • •

End Parser .

Type Svntax-ErrorfParser-SfacA)

Suntax

RECOVER : Grammar, Parse-Stack, String -> Syntax-Error
RECOVER J Syntax-Error -> <Parse-Tree, Parser-MBgs>

{This function "recovers" from the error as best as
possible, using the existing states of the Parse-Stack,
the Input String, and a knowledge of the grammar}

EMIT-ERROR-MESSAGE : Syntax-Error -> String

{An appropriate error message is emited)

PROGRAM-SUFFIX : Syntax-Error -> String
{The remainder of the input string Is "reset" .
according to some appropriate error recovery
Scheme (see [19] for an example.}

PARSE-STACK : Syntax-Error -> Parse-Stack
{The parse Stack is re-configured, again in
accordance with some error recovery algorithm.}

Semant ics

RECOVER(RECOVER(g.ps,a)) -
<PROJ (1 .PARSE (g, RECOVER (RECOVER (g.ps, s)) .PROGRAM-SUFFIX (RECOVER (g,ps,s)))>,
CONCATENATE (EMI T-ERROR-MESSAGE (.. .kind of error...),

PROJ (2,PARSE (g, RECOVER (RECOVER (g,ps, s)) .PROGRAM-SUFFIX(RECOVER (g, ps, s)))) >

{PROJO,...) and PROJ(2,...) respectively project out the first and
second components of a pair.}

Figure 5-0: Skeletal Specifications of an Error Correcting Parser

18

6. Implementation Considerations

The mechanism described above enables full generality in the specification of
exceptions as well as their handling. Goodenough [7] distinguishes between three
possible types of exceptions:

1. ESCAPE exceptions, which require termination of the operation raising the
exception; .

2. NOTIFY exceptions, which forbid termination of the operation raising the
exception;

9. SIGNAL exceptions, which permit the handler to decide whether to resume
or terminate the operation raising the exception.

It is a trivial matter to enforce any of these restrictions in a specific implementation, If
It Is so desired. It Is also equally simple to conjure up syntactic extensions for,say, a
compiler to check such a restriction.

In addition, It is possible to have standard "default" handlers associated with every
type (which are modularly replaceable,) or even "fixed" handlers. The implementation
overhead paid to achieve this generality Is quite negligible; further, the Implementation
Itself Is quite straightforward.

8.1. On Parallelism in Implementations
Although we have mainly been emphasizing the aspects essential to the specification

of exceptions and their handlers, the proposed method lends itself to Implementation
using parallelism that Is Inherent in the way of specification. It should first be noted that
at most one of the predicates that Identify the subdomain in which the arguments of a
function lie can evaluate to true. As a consequence, there are two Immediate ways that
the evaluation of a function can be speeded up:

1. in case of a purely sequential evaluation, the predicates can be evaluated
In the order of descending probabilities of their being true. (Alternatively,
the user may explicitly order the If-then-else's to reflect this order.)

2. All the predicates can be evaluated In parallel: the first one evaluating to
true then serves to Indicate which computation should proceed next. If the
available processing elements are dynamically reconfigurable, then this
solution can be quite efficient.

18

We have observed that the complexity of the "discriminant" predicates {P-f-Tj} Is
usually quite small (compared to the complexity of f.Tj. Moreover, there Is a lot of
commonality that Is present in the computation of these predicates: this fact can also be
exploited to yield efficient parallel evaluation strategies.

7. S o m a Comparisons

Since the exception handling mechanism described herein is particularly relevant in
the contexts of functional programming and algebraic data type specifications, we
attempt a brief comparison with existing proposals for dealing with "errors” in abstract
data types.

In [6] errors are handled by having a global error type Error; whenever any function of
an arbitrary type has an Error in its argument, the entire term collapses to the single
instance of Error of this type. This approach is theoretically sound, but is usually too
restrictive (and perhaps unnatural at times) in practise -- It does not provide any
practical mechanism for error recovery as such. Goguen [5] has developed a theory of
"error algebras" wherein operations (and their semantic specifications) are classified as
being "ok-operatlons" ("ok-speclfications") or "error-operations"
("error-speclfications"). Again, this proposal is theoretically sound, but lacks the
flexibility that Is required In a general error handling mechanism; in particular, It does not
provide adequate mechanisms for actual recovery. Majster [16] discusses a method for
specifying errors In algebraic data types that Is in a sense similar to ours; however, we
believe that allowing functions to return a disjoint union of types provides a convenient
way of thinking about exceptions, whereas Majster does not allow for functions to return
disjoint union of types. More importantly, she does not address the practical problems
Inherent in error handling and the issue of how such a mechanism fits Into a general
programming paradigm.

We summarize below some of the advantages of the proposed exception handling
mechanism.

- There is a precisely defined notion of abstraction, and of an Implementation
of an abstraction.

- The different exceptions, as well as the associated "Invocation" conditions
and their handlers are clearly visible In the specifications.

20

• There is a provision for standard "default" exception handlers, (which are
replaceable) and "fixed" exception handlers.

• It Is possible to pass parameters to the exception handling type, thus
allowing full generality in the recovery mechanism (allowing an operation to
be either resumed or terminated.)

- There Is no longer any need for any "dynamic propagation of contexts."

- Disjoint unions of types are allowed as ranges of operations. .

8. Conclusions

Most of the existing mechanisms for exception handling have treated the problem as a
control flow issue. Because of the fact that exceptions usually arise In a context that is
different from the one where they can be most appropriately handled, this has had the
unfortunate consequence of creating needless complications due to necessitating the
propagation of dynamic execution contexts. As a result, several of the desirable
features of the environment in which such exception handling mechanisms are embedded
<*»ase of understanding, locality, block-structuredness of the scope rules, modularity,
trio.) are often compromised and flexibility is lost. The paradigm for exception handling
that is proposed here differs radically from existing mechanisms In the philosophy it
espouses: It views the probiem of exception handling as one of satisfactorily allowing for
an operation to be specified in terms of the partial functions that characterize it, while
providing for Incremental modlflability of it semantics. A major advantage of this is that
the probiem of dynamic propagation of contexts becomes non-existent. The proposed
mechanism Is of particular relevance in the context of abstract (algebraic) data types
and functional programming.

21

1. C.Bron et. al. A Proposal for Dealing with Abnormal Termination of Programs. Twente
University of Tehnology, 1976.

2. Digital Equipment Corporation. BUSS-11 Programmer's Manual. . Maynard, Mass.,
1974.

3. C.M.Geschke et. al. Early Experience with MESA. Proceedings of an ACM Conference
on Language Design for Reliable Software, SIGPLAN, March, 1977.

4. J.A.Goguen and J.J.Tardo. An Introduction to OBJ: A Language for Writing and Testing
I ormal Algebraic Program Specifications. Proceedings Of A Conference On Specifications
Of Reliable Software, IEEE, April, 1979, pp. 170-189.

5. J.Goguen. Abstract Errors for Abstract Data Types. Formal Descriptions of
Programming Concepts, 1978, pp. 491-526.

6. J.Goguen, J.Thatcher.E.Wagner. An Initial Algebra Approach to the Specification,
Correctness, and Implementation of Abstract Data Types. In R.Yeh, Ed., Current Trends In
P rogra m m in g M ethodology, Itot IV, Prentice-Hall, N.J, 1979, pp. 80-149.

7. J.B.Goodenough. Exception Handling: Issues and a Proposed Notation. CACM 18, 12
(December 1975), 683-696.

8. J.J.Hornlng. Program Structure for Error Detection and Recovery. Proc. Conf. on
Operating Systems: Theoretical and Practical Aspects, IRIA, 1974.

9. IBM Corporation. PI/I (F) Language Reference Manual, Form GC28-8201. IBM
Corporation, 1970.

10. J.D.Icbiah, J.G.P.Barnes, J.C.Heliard, B.Krieg-Bruckner, O.Roublne, B.A.Wichmann. ADA
- Language Reference Manual. SIGPLAN Notices 14, 6, PART A (June 1979), 1-1 -
15-12.

11. J.D.Ichblah, J.G.P.Barnes, J.C.Heliard, B.Krieg-Bruckner, O.Roublne, B.A.Wichmann.
Rationale for the Design of the ADA Programming Language. SIGPLAN Notices 14, 6 PART
B (June 1979).

12. B.W.Lampson, J.G.Mitchell, E.H.Satterthwaite. On the Transfer of Control Between
Contexts. Lecture Notes In Computer Science, 1974, pp. 181-203. Sprlnger-Verlag,
N.Y. 1974

13. R.Lovin. Program Structures for Exception Handling. Ph.D. Th., Carnegie Mellon
University, Pittsburgh, Pennsylvania, June 1977.

14. B.H.LIskov and A.Snyder. Exception Handling In CLU. IEEE Trans, on Software E n g g .
S E -S , 6 (November 1979), 546-558.

Roferencot

22

15. B.H.Liskov, A.Snyder, R.Atkinson, C.Schaffert. Abstraction mechanisms In CLU. Tech.
Rept. Computation Structures Group Memo 144-1, MIT-LCS, Jan, 1977.

16. M.E.Majster. Treatment of Partial Operations In the Algebraic Specification
Technique. Proceedings of a Conference on the Specifications of Reliable Software,
IEEE, April, 1979, pp. 190-197.

17. P.M.Melliar-Smlth and B.Randell. Software Reliability -- The Role of Programmed
Exception Handling. SIGPLAN Notices 72, 3 (March 1977).

18. H.J.Kugler, N.Lehmann, P.Putfarken, C.Unger. Project NICOLA, Project Report #3,
March 1979, sections 2.6.9, 2.7. . Universltat Dortmund, Abteilung Informatlk, Postfach
500 500, D-4600, Dortmund 50, FDG

19. A.B.Pal and R.B.Kieburtz. Global Context Recovery: A New Strategy for Syntactic
Error Recovery by Table Driven Parsers. ACM Transactions on Programming Languages
and Systems 2, 1 (January 1980), 18-41.

20. O.L.Parnas and H.Wurges. Response to Undeslred Events in Software Systems.
T.H. Darmstadt, 1976.

21. B.Randell. System Structure for Fault Tolerance. Proc. Intl. Conf. on Reliable
Softw are 10, 6 (June 1975), 437-449.

22. W.A.Wulf, R.L.London, M.Shaw. Abstraction and Verification in ALPHARD. CMU, ISI,
August, 1976.

