
Abstract

Design Specifications for

Hardware Assisted

Rollback Computation

USC-88-014

Richard Thomson

An overview of rollback computation is given, followed by a series of possible design sttategies to

implement rollback computations in hardware. Design issues and ttade-offs are examined for each of the

sttategies as an iteration to the chosen strategy. The implementation of the chosen strategy is discussed along

with an outline of remaining work.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.0 Overview of the Rollback Mechanism for Time Warp

Simulation

Rollback computations are a method of implementation for

parallel simulations.[l] The main idea of the rollback process is to

maintain the simulation state as a version controlled memory. Version

controlled memory (VCM) is accessed by both a temporal and spatial

index. A version controlled memory element is accessed by a tuple

(frame, Une, byte). Frame is a temporal index indicating which version

of the specified byte within the Une is desired.

Frames are accumulated by marldng the current frame, which

saves the simulation state at that point. As the simulation progresses,

more frames become marked and frames are accumulated in the VCM.

Since the Simulation consists of parallel processes communicating with

timestamped messages, it is conceivable that a process may receive a

message that took place in its local past. That is, the receiving process

may have advanced its local simulation clock past the timestamp in the

message received. In this case, the process must rollback its

computation in Simulated time to restore the process state

corresponding to the time of the message.

Given the large size of state information in many simulations, it is

not feaSible to implement VCM as a physical memory. The rollback

hardware is used to implement the VCM as a large virtual memory.

Paging of the virtual memory to secondary storage is not performed.

The usage of VCM for most simulations is such that while the entire

Simulation state may be large, only small portions change between

successive versions, or frames.

[1] "Design and Performance of Special Purpose Hardware for Time
Warp", Richard M. Fujimoto, Jya-Jang Tsai and Ganesh
Gopalakrishnan, Fifteenth Annual Symposium on Computer
Architecture, June 1988

Several ancilliary data structures are maintained to improve the

efficiency of VCM management. These are the Rollback History (RBH)

stack, Written Bit Memory (WBM) and the Archive Frame (AF).

The RBH stack maintains a list of the "deepest" rollback since

the ith rollback. In addition to the RBH stack, there is a current

rollback index: (CRBI) corresponding to the current stack element in

use. The CRB! value is used in conjunction with the WBM to manage the

most recent version of a line. Each stack entry, RBHi' contains the

frame number of the ith rollback. This indicates that any frames beyond

that value are invalid since the computation has been "rolled back" in

time to a the indicated stack value.

The written bit memory is used to determine which lines in a

frame have been written since the last mark operation. These bits, if

set. indicate that the simulation state associated a portion of memory

has been written in the current frame. Since there is a single written

bit for every line in every frame. the written bit memory is paged to

allow for a smaller phySical memory to be used. In addition. the WBM is

organized into groups of 16 bits. or working areas. This allows the MRV

calculation to proceed through the mark frame stack one working area

at a time. There is also a rollback history index associated with each

working area. The value of the CRBI is written as the index when the

written bits for this working area are changed. Using the rollback

history information in conjunction with the written bits. the most

recent version (MRV) of a memory line can be obtained.

Since there are a fmite number of frames. data that is older than

the oldest frame is stored in a special frame called the archive frame. If

the most recent version of a line cannot be found within the VCM. then

the data either resides within the archive frame or has never been

written during the course of the simulation. The AF also facilitates

garbage collection of 'fossil' frames. Fossil frames are frames for which

the lower bound of the simulation clock has passed, i.e. there can be no

rollbacks which would cause the fossil frames to be instantiated as the

current version of the Simulation state. The fossil frames cannot be

discarded since they may still contain the most recent version of data

that hasn't been written while the simulation has advanced suffiCiently

to fossilize the frames. Fossil frames are garbage collected and

compiled into a single frame which is the archive frame. The frames

currently in use are between the oldest mark frame, or OMF, and the
current mark frame, or eMF.

1.1 The Most Recent Version Calculation

The most critical operation in the rollback computations is the

computation of the most recent version of a line of data. Calculation of

the most recent version of a line of data involves access to the written

bits, the rollback history stack and finally the frame stack in version

controlled memory.

For a given line, VCM is searched from the current mark frame

(CMF) to the oldest mark frame (OMF). The written bit corresponding

to the line in the current search frame is evaluated in conjunction with

its rollback history information. If there was a rollback deeper than this

frame. then the written bit corresponding to this frame should be

cleared Since the frame was invalidated through a rollback operation. If

the there was no rollback deeper than the current search frame when

this written bit was written, then the bit is valid. If the written bit is

set, the current search frame corresponds to the most recent version of

the line. If all frames between the OMF and the CMF have been
examined and no valid version of the line has been found. then the MRV

of the line reSides in the archive frame.

The calculation of the most recent version of a data line is the

heart of the special hardware that facilitates the rollback computation.

The management of version controlled memory is handled through the

MRV calculation: a read from VCM must produce the MRV of the line in

question, while a write to VCM must insure that the newly written

version of the line becomes the MRV of the line for succeeding reads.

2.0 Possible Design Strategies

Several design strategies were explored for implementation of

the rollback computation hardware. The initial design was to explore

possibilities of a micro-sequencer based design. This involved the

examination of micro-sequencers, data paths and microsequencing

cycle times for such a system.

2.1 The initial design was conceptualized as a simple data path

consisting of the individual data operators residing on a common bus

with control lines to activate the current operator on the bus. This

design was considered to be too slow because many of the operations to

be performed in the data path were simple operations that should be

grouped together and performed in a single clock cycle.

2.2 This bus-oriented design was refmed and the focus was shifted to

the implementation of the MRV calculation. Initial designs called for

the rollback history stack, the written bit memory and its associated

page table to reside in a single block of static RAM. While this design

economized on board space it required a three cycle approach to the

heart of the MRV algorithm.

For each search frame between the CMF and the OMF, the first

access would retrieve the paging information for the written bits. The

second access would retrieve the written bits themselves along with a

corresponding rollback history index containing the value of the CRBI at

the time the bits were written. The third access would take the

rollback history index and use it to retrieve the deepest rollback that

has occurred since that index was written.

Once this "deepest rollback" value has been obtained, a

comparison can be made to determine whether or not the written bits

are valid. This is the point where written bits are cleared if necessary

and written back out to the WBM.

If no rollback has occurred to invalidate these written bits, then

the bits are examined to see if they contain a set bit. A set bit indicates

that the frame corresponding to that bit contains the most recent

version of the desired line. This frame number can then be used in an

address translation to retrieve the MRV from physical memory.

2.3 An alternative to 2.2 was to implement the written bit page table,

written bit memory and rollback history stack as three phYSically

separate devices. This would allow for a full data-flow implementation

of the core of the MRV calculation. While markedly Simpler in terms of

the implementation and design effort. it was too considered costly in

terms of parts and board area.

2.4 Design 2.2 was further refined to include the Motorola 68851

Paged Memory Management Unit as the address translator for the

version controlled memory. Due to the complexity of the device it was

decided to add a 68020 to communicate directly with the MMU in

order to initialize its address translation tables and to perform fossil

collection in the background. This simplified the required capabilities

of the MRV machine considerably since it need only present logical

addresses to the 68851 in the form of 68020 style bus cycles to have

them translated to physical addresses. This resulted in a much simpler

interface to the MMU and fossil collector.

3
Q,) I-
~ ..
Q,)

~
Q

Q,)

"C
Q
Z
w.I

'" =

Local
Transputer

Memory (DRAM)

A~

(I)

::I = -e to
~ -- to
c c
e

(.,) (I)

.c
(I)

Q)
(I) ~
Q) 'C
~ 'C It- a: Q)

cc ~
Q)

1: -a: ::I

~ cc
C C

to
~ ...

Transputer

Local
Transputer

Cache

Rollback RO/notWR
Cache ..

Uersion Nibble Mod
Controlled Control

Memory (DRAM)
(0/1

::::I = (0/1

::::I
(0/1 = (0/1

Q) Gel
~ -'C Gel
'C

Q

= ~
~ ::J)

::J) .&:.

.&:. 1:1. , ,
1:1.

68851 MMU

Ooto
MRU

Written Bit
State

Memory (SRAM) Rddress Machine

(I)

::I = (I)

::I
(I) = (I)

to Q)
~ -to 'C
'C C
a: -to - U to .-
U 0) .- e 0)

~ e
~

68020 CPU

3.0 Overview of USE Node

The USE node consists of the host processor, a TSOO transputer,

the custom circuitry used to implement the rollback functions and

memory. The tranputer has its own local memory from which the

simulation code 1s executed and local, non-version controlled Variables

are stored. To increase throughput, the transputer has its own local

memory cache.

The version controlled memory 1s cached through the Rollback

Cache, a direct addressed write-though cache that is maintained

through the most recent version (MRV) state machine. When the

rollback cache is read from or written to, the cache signals the MRV

state machine to read or write, respectively, the most recent version of

the line in question.

The MRV machine manages version controlled memory through

Motorola 68020 bus cycles. The 68851 paged memory management

unit is used to map the virtual address space of version controlled

memory into the 4 megaword DRAM physical address space. The MRV
machine also manages the written bit memory, a 64K word static RAM.

In addition to bus cycles generated by the MRV machine, a 68020 is

included as the fossil collection processor. The 68020 is also used to

initialize the MMU with special coprocessor instructions specific to the

68000 coprocessor interface specification.

4.0 MRV State Machine Detail

The MRV state machine is the heart of the rollback hardware. It

communicates through interfaces to the transputer bus, the rollback

cache and the 68020 bus. It controls the management of written bit

memory, the rollback history stack and the control registers containing

the OMF, CMF, and CRBI.

4.1 Transputer Interface

Communication between the MRV machine and the transputer is

accomplished through the use of a dual-port register file and an address

latch. The register me contains the values of the OMF, CMF and CREI

registers as well as values used for written bit address translation and

management of the rollback history stack. This register file is mapped

into the address space of the transputer, allowing the transputer to

change the value of the CMF, OMF, etc. This allows a mark operation,

which simply increments the CMF, to take place on the transputer. In

addition, a context switch means that all these values must be replaced

for the new process. The register file approach allows the transputer to

perform these operations in addition to its own process switching tasks.

The address latch is used to obtain the line and byte fields from the

address requested by the transputer when version controlled memory is

accessed. These fields are only used when the request is not filled by

the cache.

4.2 Rollback Cache Interface

The rollback cache signals to the transputer when a read or write

of the most recent version of a line is necessary. In the case of a read

this means that the MRV of the line is not in the cache and the MRV

must be found in VCM and placed in the cache. In the case of a write

the cache is indicating that a write operation just took place and the

line in the cache must be written out to the CMF to maintain

consistency.
The MRV machine interfaces to VCM using nibble mode DRAMs

so that an entire line may be obtained with a single address assertion. A

single address will be asserted on the 68020 bus by the MRV machine.

This address will be translated by the 68851 to a physical address

asserted to VCM. Once this address translation has taken place and the

data is placed on the bus by the DRAMs. the MRV machine can maintain

control of the bus and retrieve an entire line of data from the DRAMs

using the nibble mode control signals. During this time the MRV

machine is the master of the 68020 bus.

4.3 68020 Bus Interface

The MRV machine communicates over the 68020 bus through an

internal state machine that manages 68020 style bus cycles. This

interface is used to request mastership of the bus in order to assert a

VCM address to be translated. Once mastership of the bus has been
granted. the internal state machine asserts the logical address onto the
bus which will initiate an address translation by the MMU. If the

address is translated successfully, a line of data consisting of four VCM

memory words will be transferred through the MRV machine's internal

data bus. The direction of data flow will be from VCM to the cache for

the case of a read and from the cache to the VCM in the case of a write.

In addition to interfacing the MRV machine to the VCM through

the 68020 bus. the internal state machine provides a method whereby
the fossil collection processor (68020) can access values in the MRV

machine's register me. These are implemented as 68020 coprocessor
instructions.

4.4 Written Bit Memory Management

The written bit memory is managed by the MRV state machine

itself. The written bit page table, the written bits and the rollback

history stack are all contained in the same physical memory.

The written bits are translated through a single level of

indirection. First the entry from the page table must be read by adding

a portion of the requested address to the written bit page table pOinter.
contained in the register me. Once the page table entry has been read.

the presence of a page is determined by examining the high order bit of

the page table entry. If the bit is set, then the page has not been

allocated. If the page has been allocated, the rest of the address is

concatenated with the page table entry and used as an address to the

WBM to retrieve the written bits and their associated rollback history

index. The written bits are set when the MRV of a line is written to the

CMF. The current value of CRBI is written as the rollback history index

when a word of written bits has been modified.

The written bit pages are allocated when a write MRV operation

occurs and there is no page present for the current mark frame. A page

is allocated and the written bUs are written to the newly allocated page.

During an MRV read if there is no page allocated for the written bUs,

then there are no written bits for that frame and the search can

continue to an older frame whose written bits are present. If there are

no written bit pages allocated for the rest of the search, then the MRV

lies in the archive frame.

The rollback history stack is indexed through a rollback history

index, the value of the eRBI when a group of 16 written bits are

changed. This RBH stack index allows the validity of the written bits to

be detennlned when they are read back from the WBM. ThIs allows a

rollback over many frames to occur without incurring the penalty of

clearing all written bits that may have been set during the advancement

of the frames that have been rolled back. The stack index is translated

into a physical WBM address by concatenating the RBH index with the

RBH base pOinter. The RBH base pOinter Is contained in the register

me discussed earlier.

MRU State Machine: Data Flow

Dual Port
Register rile

Transputer Rddress/Data Bus

Rddress I
Latch

--~ ~_..L-__ ~ ____ -I ____ + _____ -OY_"'. !,:~- ~ WR Counter I

~,

'374
Latch
w/OE

Data

" ~,
WR MUH J

~, ~, "

1r " " ,,. \ + /

~, " ~,

'374 '374 '374
Latch Latch Latch
w/OE w/OE w/OE

+ + +
... 64KH32

SRRM +-----.-.t ~L RBH Latch J
(WBM)

Mask
~enerator

Priority
Encoder

~ a. 68020/68851 ~ t------.. _~Coprocessor Interface --------.....

68020 Logical Data Bus

68020 LO..Q.ical Rddress Bus

5.0 MRV Data Flow Description

The entire data flow of the MRV machine is utlllzed in the MRV

calculation. The organization of the written bit memory into words

containing 16 written bits and an associated rollback history index

allows the frames to be searched by working areas. A working area

contains 16 frames. The MRV machine loops from the CMF to the OMF,

working area by working area, until either the MRV of the line has been

found or the OMF has been reached. If all frames between the CMF and

the OMF have been searched and the MRV has not been found then the

MRV of the line is in the archive frame. The archive frame resides in a

fixed place in VCM, so its address is known immediately.

First, the MRV machine must initialize for the loop. This is done

by loading the WA counter with the value of the current working area.

The current working area is kept in a register in the register file. At

this time, the coprocessor interface state machine may begin arbitrating

for the 68020 bus, anticipating the address translation process.

A portion of the. requested address and search working area is

passed through the WA multiplexor to an input of the adder. The other

input of the adder is received from the local data bus and contains the

base pOinter to the written bit page table. The result of the adder is
latched onto the address lines of the WBM, while the page table entry

on the data lines of the WBM are driving the bus for the next cycle.

The high order bit page table entry is examined to see if the page

has been allocated. If no page has been allocated, the search continues

onto the next working area. If the page has been allocated, the page

table entry is concatenated with the remaining bits of the working area

and address. This concatenated value is then asserted as the address to

the WBM, while the written bits and rollback history index are driven

onto the local data bus by the WBM data lines. The written bit latch is

also enabled and the written bits are stored here for possible use in

detennining the frame number of the MRV.

The rollback history index is combined with the rollback base

pOinter, obtained from the register me, to produce the address

corresponding to that entry in the rollback history stack. This address

is presented to the WBM address lines and the resulting stack value is

then routed to the working area comparator.

The comparison of the rollback stack value and the current
search working area determine if the written bits need to be examined

to determine if they may contain the MRV.

If the stack value 1s less than the search working area, this means

that a rollback has occurred which invalidated these bits and the search

may continue to the next working area.
If the working area values are equal, or the stack value is greater

than the search working area, the written bits may contain the MRV. If
the values are equal, the frame number of the rollback history value is

used to prepare a mask so that the invalid written bits in the word may

be cleared. The result of the comparison 1s fed to the mask generator

which generates a mask that 1s anded with the written bits. This mask

1s all ones if the stack value is greater than the serach working area.

The masked written bits are then priority encoded to determine the

MRV of the line. If no bits are set in the masked result, then the search

continues to the next working area.

If there is a set bit in the masked written bit word. then the

priority encoder gives the frame within the working area containing the

MRV of the line. This frame number. along with the current search

frame is presented to the 68020 coprocessor interface so that it may

request an address translation for the MRV of the line. When the data is

received from the VCM. 1t 1s gated through the local data bus into the

rollback cache. Four data transfers occur. moving an entire line from

VCM into the rollback cache.

6.0 Further Work

Remaining work that needs to be completed is the full

implementation of the 68020 coprocessor interface. This will consist

of a bus arbitration state machine, coprocessor interface state machine,

coprocessor registers and a simple interface to the MRV state machine.

The full control state of the MRV machine needs to be mapped

out to handle the flow of control needed in the MRV read/write

operations as well as handling management of the written bit pages.

The suggested scheme for managing the pages is to maintain a list of

free pages from which new pages will be allocated by removing the head

from the list and writing the pages base pOinter into the page table.

Simple control sequences should also be provided to allow the

transputer /68020 to access the internal data structures of the MRV

machine to facilitate debugging.

