
GDI Reference Manual

M ark S alem , Sue Skowronski, B eat Bruderlin

UUCS-92-031

D ep artm en t of C om p u ter Science
U niversity of U tah

Salt Lake C ity, U T 84 1 1 2 , U S A •

Septem ber 16, 1992

Abstract

G D I is a dialog interface tool library for C + + applications. It facilitates the design and
im p lem en tation o f graphical, object-oriented user interfaces for w orkstations equipped with
a graphical display, a m ouse and a keyboard. G D I ’s design allows for its p ortab ility onto a
m u ltitu d e of p latform s. T h is is achieved by separating the user interface from the application
p rogram , as well as the orderly detachm ent o f system independent user- interface tools from
the sy stem depen den t, low level, window operations.

A n O b j e c t - O r i e n t e d , G r a p h ic a l U s e r I n t e r fa c e T o o l k i t

(I n c lu d e s M o t i f V e r s i o n)

M a r k S a le m

S u e S k o w r o n s k i

B e a t B r u d e r l in

T e c h n i c a l R e p o r t U U C S - 9 2 - 0 3 1

D e p a r t m e n t o f C o m p u t e r S c i e n c e

U n iv e r s i t y o f U t a h

1 9 9 2

GDI Reference Manual Tabic of Contents

T a b l e o f C o n t e n t s

1 I n t r o d u c t i o n t o G D I 1
2 D I G r a p h i c W i n d o w s 2

C lass D lW in d o w O b j 2
S creen & W in d o w s 2
B itm aps 3
C o lo r 4
P red e fin ed C o lo rs 4
G ettin g G rap h ic Param eters 4
Setting G ra p h ic Param eters 6
G ra p h ic O peration s 6
D ra w in g T o o ls 7

F illin g T o o ls 9

3 D I O b j e c t s 10
C lass O b je c t . G eneral F unctions 10
C lass O b j e c t E vent-H an dlers 10
D I O b je c ts F unctions 11

4 D I B u t t o n s 1 4
D IC h e c k B o x 14
D IR a d ioB u tton S et 14
D IC M D B u tto n 15

5 D I T e x t F ie l d 17

6 D I S l i d e r 1 9

7 D I U t i l i t i e s 21
8 D I T e x t 22
9 D I M e n u s 2 4

1 0 S a m p le C o d e 2 5

11 A c k n o w l e d g e m e n t s 2 6

1 2 A p p e n d i x 2 7

13 R e f e r e n c e s 4 1

1 4 I n d e x 4 2

GDI Reference Manual Introduction to GDI

1 . I n t r o d u c t i o n t o G D I

What is GDI?
GDI is a dialog interface library for C++ applications. It facilitates the design and

implementation of graphical, object-oriented user interfaces for workstations equipped with a graphical
display, a mouse and a keyboard. GDI's design allows for its portability onto a multitude of platforms.
This is achieved by separating the user interface from the application program, as well as the orderly
detachment of system independent, user interface tools from the system dependent, low level, window
operations.

Introduction
Graphical user interfaces are quickly becoming the norm in computing environments. Such

interfaces are normally very difficult to build. Cardelli {2, p. 152} enumerates three major factors
contributing to this difficulty. The first is the artistic burden: the artistic insight needed in preparing
attractive user interfaces; i.e., the choice of shapes, proportions, arrangements and colors. The second
factor is the polishing burden: the constant redesigning and polishing of interfaces to achieve
"professional smoothness". By "smoothness," Cardelli describes the sense of being intuitive and not
causing surprises to the user. The final factor is the programming burden: the knowledge of graphics and
windowing techniques required to build such interfaces. Application programmers should not need to
deal with the low-level quirks of the particular window system for which they are programming. Such
details of technique often make the difficulty of "getting things to work" an unnecessarily demanding
undertaking.

GDI (Graphical Dialog Interface) mitigates all three of the above burdens. Used in conjunction
with a GDI application, called HyperGDI, GDI attacks the artistic burden. HyperGDI is a user interface
editor which allows the application programmer to construct a layout of the user interface as well as test it
before the application is ever begun. GDI also simplifies the remaining two burdens. It allows the
application programmer to define user interfaces at a high level. This approach not only saves the
programmer from a lot of work spent in building primitive interactors, but also makes the application
easily portable. The library provides graphical units of interaction called interaction objects {1, p. 2}.
These objects have a visual appearance on the screen, and react to user interactions such as clicking,
dragging, or releasing the mouse. The objects' behavior in response to user interaction is specified by
methods which are particular to that interaction object, and defined within the application. GDI also
provides a number of objects with predefined methods; e.g., buttons, sliders, textfields. Unlike with
conventional interactive program design, GDI applications do not dictate an interaction dialog. In other
words, the user can directly interact with all active and visible objects in any order; each object, in turn,
passes messages back to the application describing the user's interaction with it.

Developments of GDI
There are several projects concerning GDI (and consequently MGD1) worth mentioning: The

GDI Editor and GDI-3D. The GDI Editor aids in the design of screen layouts for graphical, interactive
applications using MGDI (or GDI). It allows the application programmer to specify windows, text,
graphics, interaction objects and their locations graphically. The Editor can then produce compile-ready
code. This eases the application programmer's job substantially since the user-interface is automatically
written. GDI-3D is another extension of the GDI library providing 3D transformations, projection, etc.

1

GDI Reference Manual DIGraphicWindows

2 . D I G r a p h i c W i n d o w s

DIGraphicWindows is the part of the MGDI toolkit that is concerned with graphic operations
and window objects. The routines are grouped into logical sections depending on their purpose. All
routines in DIGraphicWindows must be prepended with 'DIGraphicWindows.'; e.g.,
'DIGraphicWindows.GetBorderMode'. This is because DIGraphicWindows is an instance of a C++ object
(DIGraphicWindowsMod) that has these routines as its methods. Only this one instance
(DIGraphicWindows) should be used; no others need be created.

C la s s D I W i n d o w Q b j

Class D lW indowO bj DlWindowObj (R ectangle r , SET a t t r i b s , char *name
DlWindowObj() ;

Constructor for the DlWindowObj class--the GDI window object, 'r'
specifies the dimensions of the window, and 'name' its title, 'attribs' is an
enumerated type that can be:

hasBorder hasTitle
mayBeClosed mayBeDeleted
mayBeMoved mayBeChanged

To get a combination of attributes, use OR; e.g., hasBorder | hasTitle.

S c r e e n & W i n d o w s

ClearWindow void ClearWindow(O bject *w);
Erases the inner rectangle of object 'w' irrespective of the paint mode.

CursorlsVisible BOOLEAN C u r s o r l s V i s i b l e (void) ;
Returns TRUE if cursor is visible, FALSE otherwise.
See also ShowCursor, HideCursor.

GetClipRectangle void G e tC lip R e c ta n g le (BOOLEAN * f l a g , R ectangle *r) ;
Returns in 'r' the clipping rectangle for the window and sets 'flag' to TRUE
if there is clipping in the current window, FALSE otherwise.
See also SetClipRectangle, UnsetClipRectangle.

GetNumColors in t GetNumColors() ;
Returns the size of the color map (the # of possible colors).
See also NewColor, GetColor.

GetPort void G e tP o r t (O bject **o) ;
Returns in 'o' the active port.
See also SetPort.

G etW indowOf void GetWindowOf(O bject *o , O bject **w) ;

2

GDI Reference Manual DIGr ap h i c Wind ow s

Sets W to the window of the object 'o'.
See also SetPort, GetPort.

HideCursor void H ideCursor(void) ;
Hides the cursor on the screen in the current window.
See also ShowCursor.

ScreenRectangle R ectangle Screen R ectan gle (void) ;
Returns the rectangle of the largest usable screen area.
See also ScreenSize.

ScreenSize void Screen Size(CARDINAL *width, CARDINAL *h eigh t) ;
Returns the width and height of the screen in the variables 'width' and
'height'.
See also ScreenRectangle.

SetClipRectangle void S e tC lip R e c ta n g le (R ectangle r) ;
Sets the clipping rectangle for the current window.
See also UnsetClipRectangle, GetClipRectangle.

SetPort void S e tP o r t (O bject *o) ;
Sets the active port to the window or sub-window of object 'o'.
See also GetPort.

ShowCursor void ShowCursor(void) ;
Shows the cursor in the current window.
See also HideCursor.

UiisetClipRectangle void U n se tC lip R e ctan g le (void) ;
Removes the clipping rectangle for the current window.
See also SetClipRectangle, GetClipRectangle.

B i t m a p s

DeflneBitmap Bitmap D efineB itm ap(in t w, in t h, char * b i t s) ;
Creates a bitmap structure from an array of bits, 'w' & 'h* are the number
of pixel columns and rows, respectively. The entire array should be:
(0..(h*w DIV C)), where C is the byte size of the computer.
See also EmptyPattern, FullPattern, HalfPattern, LoadPattern.

EmptyPattern Bitmap EmptyPattern(void) ;
Returns a empty bitmap (i.e., all pixels set to background color) for filling
geometric shapes.
See also EmptyPattern, FullPattern, LoadPattern.

FullPattern Bitmap F u l lP a t t e r n (void) ;
Returns a lull bitmap (i.e., all pixels set) for filling geometric shapes.
See also EmptyPattern, HalfPattern, LoadPattern.

3

GDI Reference Manual DIGraphicWindows

HalfPattern Bitmap H alfP a tte rn (void) ;
Returns a grey bitmap (i.e., every alternate pixel set with fill color, others
set to background color) for filling geometric shapes.
See also EmptyPattern, FullPattern, LoadPattern.

LoadPattern Bitmap LoadPattern(char *fi len am e) ;
Returns an MGDI bitmap (pattern) object which it creates from an X
bitmap application file ('filename').
See also EmptyPattern, FullPattern, HalfPattern, DefinePattern.

C o l o r

GetColor void GetColor(Color c l r ,
double * r , double *g , double *b) ;

Given the color map index value 'clr', GetColor will return the red, green,
and blue values associated with it in r, g, & b, respectively.
See also NewColor, GetNumColors.

NewColor Color NewColor(double redValue, double greenValue,
double blueValue) ;

Defines a new color cell in the color map with specific RGB components
and returns its index value. The range for the RGB components is (0..1.0).
Note that this does not set the current color.
See also GetColor, GetNumColors.

P r e d e f i n e d C o l o r s

GDI also has a set of predefined colors:

White Blue
Black Yellow
Red Cyan
Green Magenta
Fg Bg

These predefined colors, as members of a class, need to be prepended with "DIGraphicWindows "; e.g.,
DIGraphicWindows.Yellow. 'Fg' and 'Bg' hold the configuration-dependent foreground and background
colors, respectively. Using 'Fg' and 'Bg' instead of explicit White and Black allows GDI applications to
run independently of the configuration foreground and background colors.

S e t t in g G r a p h i c P a r a m e t e r s

The following functions set the graphic parameters of the currently active window (See SetPort).

4

GDI Reference Manual DIGraphicWindows

SetBorderMode void SetBorderMode(BorderMode bm) ;
Sets the border mode of filled shapes in the currently active port.
'bm' can be:

noBorder: no explicit border is drawn. The border line is filled
with the pattern.

solidBorder: the border is drawn as a solid line with the window's
default paint mode.

backgroundBorder: no border is drawn.
Default value is 'noBorder'.
See also SetPaintMode, SetFillPattern. ‘

SetFillColor void S e t F i l l C o l o r (Color c) ;
Sets the color of filled shapes in the currently active port. The color is
defined by the colormap indeces as retrieved by NewColor.
Default value is 'Fg' (foreground color).
See also SetPaintMode, SetFillPattern.

SetFillPattern void S e t F i l l P a t t e r n (Bitmap p a tte rn) ;
Sets the fill pattern in the currently active port.
Default value is 'FullPattern'.
See also SetPaintMode, SetFillColor.

SetLineColor void S e tL in e C o lo r (Color c o lo r) ;
Sets the color for lines and border-lines of filled shapes in the currently
active port. The color is defined by the colormap indeces as retrieved by
procedure NewColor.
Default value is 'Fg'.
See also SetPaintMode, SetFillPattern.

SetLinePattern void S e tL in e P a tte r n (Bitmap p a tte rn) ;
Sets the pattern for lines and border-lines of filled shapes in the currently
active port.
Default value is 'FullPattern'.
See also SetPaintMode, SetFillPattern.

SetLineThickness void S e tL in eT h ick n ess (in t th ic k n e ss) ;
Sets the line thickness in pixels.
Default value is 1.
See also SetLineColor, SetLinePattern.

SetPaintMode void SetPaintMode(PaintMode mode) ;
Sets the paint mode for the currently active port,
'mode' can be one of the following:

paint -
replace -
invert ~
erase -
mask -

Default value is 'replace'.
See also SetLinePattern, SetFillPattern.

5

GDI Reference Manual DIGraphicWindows

G e t t i n g G r a p h i c P a r a m e t e r s

GetBorderM ode void GetBorderMode(BorderMode *bm) ;
Returns the border mode of filled shapes in the currently active port.
'bm' will be:

noBorder: no explicit border is drawn. The border line is filled
with the pattern.

solidBorder: the border is drawn as a solid line with the window's
default paint mode.

backgroundBorder: no border is drawn..
See also GetPaintMode, GetFillPattern.

GetFillColor void G e t F i l l C o l o r (Color * c o lo r) ;
Returns the color of filled shapes in the currently active port. The color is
defined by the colormap indeces as retrieved by NewColor.
See also GetPaintMode, GetFillPattern.

GetFillPattern void G e t F i l lP a t t e r n (Bitmap *p a ttern) ;
Returns the fill pattern in the currently active port.
See also GetPaintMode, GetFillColor.

GetLineColor void G etL in eC olor (Color * c o lo r) ;
Returns the color for lines and border-lines of filled shapes in the currently
active port. The color is defined by the colormap indeces as retrieved by
procedure NewColor.
See also GetPaintMode, GetFillPattern.

GetLinePattern void S e tL in e P a tter n (Bitmap *p a tte rn) ;
Returns the pattern for lines and border-lines of filled shapes in the
currently active port.
See also GetPaintMode, GetFillPattern.

GetLineThickness void G etLin eT h ickn ess (in t * th ic k n e ss) ;
Returns the line thickness in pixels.
See also GetLineColor, GetLinePattern.

GetPaintMode void GetPaintMode(PaintMode *mode) ;
Returns the paint mode for the currently active port.
See also GetLinePattern, GetFillPattern.

G r a p h i c O p e r a t i o n s

ClearRectangle void C le a rR e c ta n g le (Rectangle r) ;
Clears the area specified by rectangle 'r\
See also ClearWindow.

6

GDI Reference Manual DIGraphicWindows

M oveTo void MoveTo(in t x , in t y) ;
Sets the current pixel position to 'x', *y' in window coordinates.
See also LineTo, DrawChar, DrawString.

PixellsSet BOOLEAN P i x e l l s S e t (in t h, in t v) ;
Returns TRUE if pixel('h'. 'v ') in window coordinates is set. FALSE is
returned for points outside the rectangle of the window.
See also DrawPixel.

D r a w i n g T o o l s

Draw Arc void DrawArc(Point c e n te r , in t h, in t v ,
double fromAngle, double toA n gle) ;

Draws and arc; i.e., part of an ellipse defned by 'center1, 'h', and 'v' (see
DrawEllipse). 'fromAngle' and 'toAngle' are given in radians measured
clockwise from the half axis and delimit the arc to be drawn.
See also DrawEllipse.

DrawCircle void D raw C ircle (Point c e n te r , in t radiu s) ;
Draws a circle with 'radius' and 'center' using the current paint mode.
See also DrawEllipse.

DrawEllipse void D ra w E llip se (Point c e n te r , in t h, in t v) ;
Draws an ellipse with 'h' and V as the lengths of the half axes, and 'center'
as the ellipse's center.
See also DrawCircle.

DrawLine void DrawLine(Point from, Point to) ;
Draws a line from point 'from' to point 'to1.
See also LineTo.

DrawPixel void Draw Pixel(in t h, in t v) ;
Sets pixel('h', 'v') in window coordinates if the paint mode is ppa“
resets the pixel if paint mode is erase. The other paint modes behave as
expected from source set to TRUE.
See also PixellsSet.

DrawPolygon void DrawPolygon(Point *polygon, in t numPoints) ;
Draws a closed polygon consisting of 'numPoints' points using the current
paint mode. If HIGH(polygon) < 'numPoints' - 1 the result is unspecified.
The last point is connected to the first point.
See also DrawPoIyline, DrawRectangle.

DrawPoIyline void Draw PoIyline(Point *polygon, in t numPoints) ;
Draws an open polyline consisting of'numPoints' points using the current
paint mode. If HIGH(polygon) < 'numPoints' - 1 the result is unspecified.
See also DrawPolygon, DrawRectangle.

DrawRoundReCtangle void DrawRoundRectangle (R ectangle r , in t rad) ;

7

GDI Reference Manual DIGr ap li ic Win do w s

Draws a rectangle with rounded corners: 'rad' is the radius of the corner
circle arcs; 'r' is the rectangle.
See also DrawRectangle.

DrawRectangle void DrawRectangle(R ectangle r) ;
Draws rectangle border given by the 'left', 'right', 'top', and 'bottom'
components of rectangle r (in window coordinates) using the current paint
mode.
See also DrawRoundRectangle.

LineTo void L in eT o(in t x , in t y) ;
Draws a line from current pixel position to pixel('x', 'y') and sets the
current pixel position to be 'x', 'y'. •
See also MoveTo.

F i l l in g T o o l s

FillCircIe void F i l l C i r c l e (Point c e n te r , in t radiu s) ;
Fills the circle whose center is 'center' and with radius 'radius'. The fill is
done dependent on the current fill pattern, border color, line pattern, fill
color, and paint mode.
See also DrawCircle.

FillEllipse void F i l l E l l i p s e (Point c e n te r , in t h, in t v) ;
Fills the ellipse whose center is 'center' and with half axes of lengths 'h'
and 'v'. The fill is done dependent on the current fill pattern, border color,
line pattern, fill color, and paint mode.
See also DrawEllipse.

FillPolygon void F i l lP o ly g o n (Point *polygon, in t numPoints) ;
Fills the polygon consisting of 'numPoints' points in 'polyon'. The fill is
done dependent oil the current fill pattern, border color, line pattern, fill
color, and paint mode.
Sec also DrawPolygon.

FillRectangle void F i l lR e c t a n g le (R ectangle r) ;
Fills the rectangle r. The fill is done dependent on the current fill pattern,
border color, line pattern, fill color, and paint mode.
See also DrawRectangle.

FillRoundRectangle void F illR ou n d R ectan gle (R ectangle r , in t rad iu s) ;
Fills the rounded-corner rectangle r. The fill is done dependent on the
current fill pattern, border color, line pattern, fill color, and paint mode.
See also DrawRoundRectangle.

FillSector void F i l lS e c t o r (Point c e n te r , in t h, in t v ,
double from Angle ,double toA n gle) ;

8

9

GDI Reference Manual DIGraphicWindows

Fills the arc defined by 'center', 'h', 'v', 'fromAngle', 'toAngle' (see
Draw Arc). The fill is done dependent on the current fill pattern, border
color, line pattern, fill color, and paint mode.
See also DrawArc.

Objects are defined as a class Object. Each object is defined with a rectangle containing its
bounds. Each also has a set of flags indicating its status on the screen, and a set of virtual methods for
event handlers which are automatically activated by the system. Each object has a parent, and the
highest-level parent is the window which the object is in. The following describes these methods of the
class Object.

Class Object O b j e c t (Rectangle r e c t) ;
O b j e c t () ;

Constructor for the 'Object' class. The first allows specification of the
object's rectangle.

GetParent O bject *G etP aren t() ;
Returns the parent of the object; e.g., window of object.

GetRectangle void G etR ectan gle (R ectangle S rect) ;
Upon its return, 'rect' will hold the rectangle of the object.
See also SetRectangle.

IsActive BOOLEAN I s A c t i v e () ;
Returns TRUE if the object is currently active, FALSE otherwise.
See also IsVisible.

IsVisible BOOLEAN I s V i s i b l e () ;
Returns TRUE if the object is currently visible, FALSE otherwise.
See also IsActive.

IsWindow BOOLEAN IsWindow() ;
Returns TRUE if the object is a window, FALSE otherwise.

SetRectangle void S e tR e c ta n g le (R ectangle r e c t) ;
Sets the object's rectangle to 'rect'.
See also GetRectangle.

C la s s O b j e c t : E v e n t - H a n d l e r s

HaildleNextEvent void HandleNextEvent() ;
Handles the next event stored in the event-qucuc (or returns immediately if
the queue is empty). Depending on cursor position at the time of the event,
HaildleNextEvent calls the appropriate object event-handlers (described
below).

10

GDI Reference Manual DIObjccts

See also Sample Code for a sample usage.

The object event—handlers are called when the object is indicated by the user. For instance,
when the user presses the left mouse button down on an object, that object's do\vn() handler is called. The
dra\v() handler is callcd when the MGDI system draws/redraws the display list. The following are the
base-class event-handlers.

When an event-handier method is redefined, a corresponding flag must be set in the constructor
of the inheriting object. The following are these flags:

BOOLEAN down method replaced;
BOOLEAN up_method_rep laced;
BOOLEAN movcmethodreplaced;
BOOLEAN drag_method_replaced;
BOOLEAN char niethod replaced:
BOOLEAN fkcy_method_replaced;
BOOLEAN dclickmethodreplaced;
BOOLEAN bpress method replaced;
BOOLEAN ppickincthodrcplaced;
BOOLEAN rpick method replaced;
BOOLEAN draw_method_replaced;
BOOLEAN enablemethodreplaced;
BOOLEAN disablemethodreplaced;
BOOLEAN delelemethodreplaced;
BOOLEAN copy_method_replaced;

In addition to descriptions of individual objects, a list of objects is maintained for each window.
An object is not added to this list until "DIObjects.AddObject" is called for it. To make it visible and
allow its event handler methods to be activated, "DIObjects. Activate" must be called for that object.

Below are operations on the list and on objects as they affect the list. The following routines
need to be prepended with "DIObjects.".

Handler Method
virtual void down(int x, int y);
virtual void up(int x, int y);
virtual void move(int x, int y);
virtual void drag(int x, int y);
virtual void dclicU();
virtual void bpress();
virtual void char_cv(char c);
virtual void fkcy(CARDINAL fk);
virtual BOOLEAN ppick(Point p);
virtual BOOLEAN rpick(Rectangle r);
virtual void draw();
virtual void cnablc();
virtual void disablc():
virtual void dcletc_cv();
virtual void copy(Object *o);

Event/Description
left mouse button depressed
left mouse button up after depression
mouse moving with button unpressed
mouse moving with button depressed
mouse double-clicked
mouse button continuously held down
single key pressed
function key pressed
determine if ’p' is within the object's rectangle
determine if V overlaps the object's rectangle
called when object needs to be redrawn
called when the object is enabled
called when the object is disabled
called when the object is deleted
called when the object is copied

D I O b j e c t s F u n c t i o n s

11

GDI Reference Manual DIObjects

Activate void A c t iv a te (O bject *o) ;
Activate is simply the equivalent of Enable() and Show() on an object.
See also Enable, Show.

Add Object void AddO bject(O bject *o , O bject *w) ;
void AddO bject(O bject *o , O bject *w, Point p) ;

Adds the object 'o' to the display list as a child of window V . Concerning
the second declaration: every graphic object has a rectangular extension.
This rectangle is moved such that its upper left corner is at 'p'. It must be
given in w'indow coordinates, its size in pizels. The position and size of an
object relative to its window can be changed by Move and Resize.

Copy void Copy(O bject *o , O bject **o 2 , O bject *toWin) ;
Copies the object ’o’ to the object ’o2’ in window 'toWin'.
See also Move.

Deactivate void D e a c t iv a t e (O bject *o) ;
Activate is simply the equivalent of Disable() and Hide() on an object.
See also Disable, Hide.

Disable v o id D is a b le (O bject *o) ;
Makes the object 'o' inactive; i.e., no more events can be directed to it. The
object is not disposed of or made invisible. Disabling an already disabled
object has no effect.
See also Enable, Show.

Dispose void D is p o s e (O bject *o) ;
Deletes the object 'o' and deallocates its resources, 'o' is set to an invalid
value. Disposing an already disposed object has no effect.

Draw void Draw(O bject *o) ;
Redraws object 'o'.
Sec also Copy.

Enable v o id E n a b le (O bject *o) ;
Announces the object to the event-handier. This means that an event,
which occurs inside the object's rectangle, is directed to that object's
methods. Enabling an already enabled object has no effect.
See also Disable, Hide.

Hide v o id H id e (O bject *o) ;
Hides the object 'o' on the screen. No more events can be directed towards
that object. Hiding an already hidden object has no effect.
See also Show, Deactivate.

Inside BOOLEANInside(R ectangle r , in t x , in t y) ;
Returns TRUE if the point ('x','y') is within rectangle 'r'.
See also Intersecting.

Intersecting BOOLEAN I n t e r s e c t i n g (R ectangle r l , R ectangle r2) ;

12

9

GDI Reference Manual DIObjects

Returns TRUE if rectangle 'rl' intersects rectangle 'r2'.
See also Intersecting.

Move void Move(O bject *o , in t dx, in t dy) ;
Changes the coordinates of object o's rectangle and thereby moving it to a
new position within the window. Displacement is specified by 'dx', 'dy'.
See also Resize.

Resize void R esize) O bject *o , R ectangle r) ;
Changes object o's size. If the object is active, it will be redrawn with the
new shape. The new rectangular size is specified in 'r'.
See also Move.

PointPick void PointP ick(O bject *o , Point p) ;
If point 'p' is within the rectangle of 'o' the point pick method is called.
See also RectanglePick, SetPointPickProc.

RectanglePick void R ec ta n g leP ick (O bject *o , R ectangle r) ;
If rectangle 'r' overlaps with the rectangle of 'o' the rectanlge pick method
is called.
See also RectanglePick, SetPointPickProc.

SetPriority void S e t P r i o r i t y (O bject *o , P r i o r i t y p) ;
Sets the priority of object 'o'. It has no effect on inactive objects. The
priority' of objects indicates the order in which they are checked for
selection if an event occurs. The priority is set automatically upon
activation of any object. The object that is activated last has the hightes
priority. Priority only matters for overlapping objects, 'p' can either be
"last", or "first".

Show void Show(O bject *o) ;
Displays the object 'o' on the screen by calling its draw() method.
However, it will not be activated until Activate() is used. Showing an
already visible object has no effect.
See also Hide, Activate.

4 . D I B u t t o n s

Buttons arc derived from the class Object. Three types of buttons exist: checkboxes (signifying
on/off), radiobuttons (signify which of a set of buttons is set), and command buttons (have text
identification and are "loaded" with routines which exectue when the buttons are clicked).

C la s s D I C h e c k B o x

Class DICheckBox DICheckBox(in t x l e f t = 0, in t ytop = 0) ;
DICheckBox(Point u p p e r le ft) ;
DICheckBox(Point u p p e r le f t , DlWindowObj win) ;

Constructor for the checkbox object. New checkboxes will be turned off.
The first definition takes and 'x,y' pair, while the second definition takes a
Point describing an 'x,y' pair. The third definition allows for an option
specification of the window to which the checkbox is added (i.e.,
AddObject is not required).

SwitchCheckBox void SwitchCheckBox(BOOLEAN o n o ff) ;
Switches the status of the checkbox according to 'onoff.
See also IsOn.

IsOn BOOLEAN IsO n() ;
Returns TRUE if the checkbox is ON, FALSE otherwise.
See also SwitchCheckBox.

C la s s D I R a d i o B u t t o n S e t

Because of the length of the string "RadioButton", the two characters "RB" will replace it in the
marginal function names (but will remain in the elongated form within the description section).

Class DIRBSet DIRadioButtonSet (in t x l e f t = 0 , in t y top=0 ,
in t numOfButtons=2, D ID irection d i r = v e r t i c a l ,
in t bD ist=10) ;

D IR adioButtonSet(in t x l e f t , in t y top ,
in t numOfButtons, D ID irection d i r , in t b D is t ,
DlWindowObj win) ;

Constructor for the RadioButtonSct object, 'xleft' and 'ytop' define the
upper left position of the set in screen coordinates. 'nuniOfButtons' is the
number of buttons in the radiobutton set. 'dir' can either be 'vertical' or
'horizontal' representing the direction of the set. 'bDist' is the distance
between the buttons in the set. The second form of the constructor is
similar to the first except for allowing the specification of 'win', the
window to which the radiobutton set is to be added (i.e., AddObject is not
required).

14

GDI Reference Manual DIButtons

GetButtonDist in t G etB u tto n D ist() ;
Returns the distance between the buttons in the set.
See also SetButtonDist.

GetDirection D ID irection G e t D ir e c t io n () ;
Returns the direction of the radiobutton set. It will return either
'horizontal' or 'vertical'.
See also SetDirection/

GetNumButtons in t GetNumButtons() ;
Returns the number of buttons within the set.

SetButtonDist void S e tB u tto n D ist(in t b D ist) ;
Sets the distance between the buttons.
See also GetButtonDist.

SetDirection void S e t D ir e c t io n (D ID irection d ir) ;
Sets the direction of the buttonset; 'dir' can be either 'horizontal' or
'vertical'.
See also GetDirection

SwitchRBSet void SwitchCheckBox(in t newButton) ;
Switches the radiobutton set to 'newButton'. If 'newButton' is either 0 or
greater than the number of buttons in the set, then all the buttons will be
switched off.
See also WhichRadioButtonOn.

W hichRBOn in t WhichRBOn();
Returns the index of the radiobutton that is switched on within the set.
See also SwitchRadioButtonSet.

C la s s D I C M D B u t t o n

Class DICMDButton DICMDButton(R ectangle r e c t , char *text=NULL,
ButtonAction funcptr=NULL) ;

DICMDButton(Rectangle r e c t , char * t e x t ,
ButtonAction fu n c p tr , DlWindowObj win) ;

Constructor for the DICMDButton object. Creates a new button that
executes the function 'funcptr' when clicked, 'rect' defines the size of the
button, and 'text' entitles the button. The second form of the constructor
allows the specification of'win', the window to which the command button
is to be added (i.e., AddObject is not required).

GetText char *G etT e x t() ;
Returns the text within the button to 'text1.
See also SetText.

GetTextButton ButtonAction G etTextB u tton() ;

15

GDI Reference Manual DIButtons

Returns a pointer to the action routine attached to the button
See also SetButtonAction.

SetButtonAction void S etB u tto n A c tio n (B uttonAction fu ncptr) ;
Sets the action routine attached to the button.
See also GetTextButton.

SetText void S e tT e x t (char * te x t) ;
Sets the text within the button to 'text1.
See also GetText.

16

GDI Reference Manual DITextField

5 . D I T e x t F i e l d

Textfields are derived from Object. The user may freely insert text anywhere within the existing string by
clicking into a position and typing. Characters may also be deleted with the delete key. Areasy may be
highlighted by dragging the mouse cursor over the desired area, then may be replaced or deleted by
typing. The following operations, Cut, Copy, and Paste are not methods within the TextField class, but
are rather operators 011 the class.

Cut void C u t() ;
Cuts the highlighted portion of the currently highlighted text and copies it
into a temporary buffer.
See also Copy, Paste.

Copy void Copy() ;
Copies the highlighted portion of the currently highlighted text into a
temporary buffer.
See also Paste. Cut.

Paste void P a s t e () ;
Inserts the contents of the temporary buffer at the current cursor position.
See also Copy, Cut.

The following are the methods within the DITextField class (i.e., for DITextField objects).

Class DITextField D IT extF ie ld (R ectangle r e c t ,
BOOLEAN hasBorder = TRUE) ;

D IT e x tF ie ld (R ectangle r e c t , BOOLEAN hasBorder,
DlWindowObj win) ;

Constructor for the textfield object, 'rect' specifies the rectangle of the
textfield. 'hasBorder' specifies whether or not the textfield has its rectangle
outlined; this only works in GDI; MGDI textfields always have borders.
The second declaration allows the specification of the window to which the
textfield is added (i.e., AddObject not necessary).

DeleteString void D e le t e S t r in g (CARDINAL s t a r t , CARDINAL end) ;
Deletes all characters from 'start' to 'end'.
See also WriteString, WriteLn, InsertString.

Erase void E r a s e () ;
Erases the contents of the textfield.

GetFont void GetFont(DIFont * fo n t) ;
Returns (in 'font') the font in the textfield.
See also SetFont.

HasBorder BOOLEAN H asB order() ;
Returns TRUE if the textfield has a border, FALSE otherwise.

17

9

GDI Reference Manual DITcxtFickl

Highlight void H i g h l i g h t (CARDINAL s t a r t , CARDINAL end) ;
Highlights the characters from 'start' to 'end'.
See also HighlightAU.

HighlightAU void H ig h l ig h t A U () ;
Highlights the entire textfield.
See also Highlight.

Inserts tring void I n s e r t S t r i n g (CARDINAL a t , char * s t r) ;
Inserts the string 'str' at position 'at'. The current position is reset after the
operation is completed to the following character.
See also WriteString, WriteLn, DeleteString. ■

Read void Read(char * te x t) ;
Returns (in 'text') the current contents of the textfield.
See also Write, WriteString, WriteLn, InsertString, DeleteString.

SetFont void SetFont(DIFont * fo n t) ;
Sets the font in the textfield to 'font'.
See also GetFont.

Write void W r i t e (char ch) ;
Writes the character 'ch' at the current position in the textfield.
See also WriteString, WriteLn, InsertString, DeleteString.

WriteLn void W r ite L n () ;
Causes a carriage return and line field in the textfield.

WriteString void W r it e S t r in g (char * s t r) ;
Writes the text 'str' into the textfield starting at the current position.
See also Write, WriteLn, InsertString, DeleteString.

18

GDI Reference Manual DlSliderI6 . D l S l i d e r

A slider is a another graphical interactor. Values can be selected by moving a lider up and down the
scale. A slider has two action-procedures assigned to it: one, called ValueChangeAction, is executed
every time the value indicated by the slider changes (i.e., mouse dragged); the other, called
FinalValueAction, is only called when the slider's value is stable (i.e., mouse is released). The following
arc the methods of the DlSlider object.

Class D lSlider D IS lid e r (char * t i t l e , double from, double t o ,
double v a lu e , double s te p , R ectangle r e c t ,
D ID irection d i r ,
S lid erA ction P rocedu re d rag A c tio n ,
Slid erA ction P rocedu re upAction) ;

D IS lid e r (char * t i t l e , double from, double t o ,
double v a lu e , double s te p , R ectangle r e c t ,
D ID irection d i r ,
S lid erA ction P rocedu re d r a g A c tio n ,
Slid erA ction P rocedu re upAction,
DlWindowObj win) ;

Constructor for the DlSlider object, 'title' is written next to the slider
object using the font set by SetSliderTitleFont. 'from' and 'to' indicate the
smallest and largest values represented by the slider, 'step' is the minimal
difference between two numbers on the slider, 'rect' represents the
dimensions of the slider, 'dir' is either 'vertical' or 'horizontal' representing
the direction of the slider. 'dragAction' and 'upAction' represent pointers
to the ValueChangeAction and FinalValueAction functions, respectively.
The second definition allows for specifying which window to add the slider
to (i.e., no AddObject necessary).

Assign ValueChangeAction
void AssignValueChangeAction(

S lid erA ction P rocedu re dragAction) ;
Sets the ValueChangeAction function for the slider. This is, by default, a
no-op operation.
See also AssignFinalValueAction.

AssignFinalValueAction
VOld A s s ig n F in a lV a lu e A c tio n (

S lid erA ction P rocedu re upAction) ;
Sets the FinalValueAction function for the slider. This is, by default, a no
op operation.
See also AssignValueChangeAction.

GetFont void G etFon t(DIFont * fo n t) ;
Returns the font used for the title in 'font'.
See also SetFont.

GetSliderValue double G e tS lid e r V a lu e () ;
Returns the actual current value of the slider.
See also SetSliderValue.

19

GDI Reference Manual DISIider

SetFont void SetFont(DIFont * fo n t) ;
Sets the font used for the title.
See also GetFont.

SetSliderValue void S e tS l id e r V a lu e (double v a l) ;
Sets the actual current value of the slider to 'val'. IMPORTANT NOTE:
this function must never be used within the FinalValueAction procedure
assigned to the slider since they would call each other infinitely.
See also GetSliderValue.

20

GDI Reference Manual DIUtilities

7 . D I U t i l i t i e s

DIUtilities contains some hi-level routines based on the graphics operations in other modules. Prepend
the following routines with "DIUtilities." to call them.

CFade void CFade(O bject *o) ;
Fades out the rectangular area of an object. CFade is called internally
when an object is disabled.
See also Deactivate, Disable.

CText void CText(O bject *o, char * t e x t) ;
Writes centered text onto the object's rectangle.

Frame void Frame(O bject *o) ;
Draws a rectangular frame around the object 'o'.
See also Highlight.

Highlight void H ig h l ig h t (O bject *o) ;
Inverts the rectangular area of object 'o'.
See also Frame.

21

GDI Reference Manual DIText

8 . D I T e x t

DIText deals with text manipulation within graphic windows. Text can be placed with various
colors and fonts. Individual fonts can be queried for character heights and widths. To set a new font,
LoadFont must first be called, (using the ascii name of the font in the X system), then SetFont to set it
within the current window. Text placement position is determined by DIGraphicWindows.MoveTo.
Prcpcnnd the following operations with "DIText.".

CliarHeight in t CharHeight(char c) ;
Returns the height in pixels of the character 'c' in the current font.
See also CharWidth.

CharWidtli in t CharWidth(char c) ;
Returns the width in pixels of the character 'c' in the current font.
See also CharHeight.

DrawChar void DrawChar(char c) ;
Write the character 'c' in the current window, with the current font, and
current text color.
See also DrawString.

DrawString void DrawString(char *s) ;
Write the string 's' in the current window, with the current font, and
current text color.
See also DrawString.

GetFont void G etFont(DIFont * fo n t) ;
Sets 'font' to the current font.
See also SetFont, LoadFont.

GetTextColor C olor G etT e xtC olor (void) ;
returns the text color in the current window.
See also SctTextColor.

LoadDefaultFont void L oadD efau ltFon t(DIFont * fo n t) ;
Sets 'font' to the default font for the X screen.
See also GetFont, SetFont, LoadFont.

LoadFont void LoadFont(char *fname, DIFont * f o n t , in t *re s) ;
Given 'fname' as an X font name, LoadFont loads it in and returns a
pointer to the DIFont structure in 'font', 'res' is 0 if an error (e.g., font not
found) occurs. Note: this does not set the current font.
See also GetFont, SetFont.

SetFont void S e tF o n t (DIFont * fo n t) ;
Sets the current font to 'font'.
See also GetFont, LoadFont.

22

9

GDI Reference Manual DIObjccts

9 . D I M e n u s

Prepend the following operations with "DIMenus.".

ActivateMenu void A ctivateM enu (Menu *menu, O bject *w) ;
Makes 'menu' available to the interactive user attached to window \v' if it is
an active window.
See also DeactivateMenu. i

Addltem void Addltem(Menultem *item , char *itemName,
MenuAction a c t io n , Menu menu) ;

Adds the item with name 'itemName' to 'menu' and assigns the procedure
'action' to it as the action to be taken when this item is selected, 'item' is
used to reference this item in Removeltem.
See also Removeltem.

DeactivateMenu void D eactivateMenu (Menu *menu, O bject *w) ;
Makes 'menu' unavailable by deactivating it
See also ActivateMenu.

DisposeMenu void DisposeMenu(Menu ‘ menu) ;
Prevents 'menu' from being selectable any more. If'menu' is still active, it
will be deactivated, 'menu' is set to an invalid value.
See also NewMenu.

NewMenu void NewMenu(Menu ‘ menu, char * t i t l e) ;
Creates a menu with the given 'title', 'menu' is an identifier which can be
used to reference the menu later on.

See also DisposeMenu.

Removeltem void ActivateM enu (Menultem *item , Menu menu) ;
Removes 'item' from 'menu'.
See also Addltem.

24

GDI Reference Manual Sample Code

1 0 . S a m p l e C o d e

The following is a simple sample program (For more, see the Appendix). It creates four
command buttons ("Cut", "Copy", "Paste", and "Exit") as well as two textfields. The text in the MGDI
textfields can be edited and copied from one textfield to another (or to any other X-window). Although a
very simple example, this program demonstrates the organization of a typical GDI (or MGDI) program.
The first section of the code includes all the necessary GDI function and object declarations (",h" files).
Next come the definitions of the GDI objects (rectangle, window, commandbuttons, textfields, font) and
their layout. These objects are then activated (DIObjects.Activate) in the body of main(). Activating an
object displays it within its window and announces it to the event-handier so as events lying within that
object's area are directed to it.

The 'while' statement near the end of the program is the "event-handling loop." That is, the call
DIObjects.HandleNextEvent() handles the next event to any of the GDI objects (e.g., mouse click, mouse
drag, etc). That call is continually made until a boolean variable (exitt) is set (by the function ExitProc()
which is called when the command button "Exit" is pressed)._____________________________________
^ inc lude ’’D IO b jec ts .h ”
^ inc lude "D IG ra ph icW ind o w s .h ’’
^ inc lude '’ D IB u ttons.h "
^ inc lude "D IT e x tF ie ld s .h ”
inc lude "D ITe rm ina te .h "

void ExitProcO;
I* Define the ob jec ts & th e ir layou t * /
Rectangle r;
D lW indow O b j w in (r.R (100 , 100, 345 , 255), hasBorder) hasT itle | m ayBeM oved, "M D em o"
D IC M D B utton c u tb u t to n ! r.R(25, 130, 70, 30), "C u t" , 8 iCut, & w in),

co py_b u tton (r.R{ 130, 130, 70, 30 I, "C o p y", &C opy, & w in),
pas te _bu tton |r.R (235, 130, 70, 30), "P aste", &Paste, & w in),
ex it b u tto n (r.R(245, 205, 70, 30), "E x it” , &ExitProc, & w in J;

D ITextF ie ld t f 1 (r.R(30, 30, 265, 25), & w in);
D ITextF ield t f2 (r.R(30, 85, 265, 25), & w in);
BOOLEAN e x it t = FALSE;
D IFont f o n t l ;

void ExitProcO
{ e x it t = TRUE; } /* Sets 'e x it t ' to TRUE so as event-handling loop ex its *7

/ * main program ’ /
void main()
{

in t res;
D IO b jec ts .S how (& w in); / ” D isplay main w in d o w V

/ * A c tiv a te th e b u tto n s ' /
D IO b jec ts .A c tiva te (& c u t_ b u tto n);
D IO b jec ts .A c tiva te (& co p y_b u tto n);
D IO b jec ts .A c tiva te { & paste b u tto n);
D IO b jec ts .A c tiva te (& e x it b u tto n);

/ *■ A c tiva te th e te x tf ie ld s */
D IText.LoadFontl "c o u ro 1 4 " , & fo n t1 , & res);
t f 1 .SetFont{ & fon t1 1);
D IO b jec ts .A c tiva te ! & tf1);
t f 1 .W riteS tring ("E d it ");
tf2 .S e tF o n t(& fon t1);
D IO b jec ts .A c tiva te (8 itf2);
tf2 .W rite S tr in g ("H ere" };

w h ile ! le x it t) /* S ta rt the even t-handling loop */
D IO bjects .H and leN extE vent();

D ITerm ina te .Term ina te !); / * S h u td o w n *!

j _____________________________________

25

1 2 . A p p e n d i x

The MGDI Project
The MGDI (Motif GDI) project consisted of the transparent porting of GDI onto Motif. GDI had

already been ported onto the X-windows window system. However, using such a low-level graphics
system, the interaction objects did not look very attractive. Motif ' r .
"widgets" (Motif interaction objects) with three-dimensional appearance which are also built on top of X-
windows. Porting GDI onto Motif made it feasible to produce more professional-looking applications
than formerly possible. Because of GDI's already-existing clean separation between the tools and the
underlying window system, the port would be concentrated in the low-level, system dependent code.

GDI had been used for the length of the academic year in the instruction of Computer Graphics
(CS431-CS433) at the University of Utah. For this reason, one of the main project goals was making
MGDI absolutely compatible with GDI. Therefore, MGDI would work with GDI code with no changes at
all needed.

The Structure of MGDI
MGDI, like GDI, consists of four system-dependent modules: DIObjects, DIGraphicWindows,

DIText, and DIMenus. These modules are almost identical in both GDI and MGDI. The main difference
is DlWindowObj which is the interaction object for a graphical window. In GDI, this object used a low-
level X-window call to open a window. In contrast, MGDI uses a higher-level call to Motif to create a
similar X-window that has a motif structure associated with it. This change was necessary since the Motif
widgets may only be added to Motif windows (which are really X-windows at the low-level).

The high level objects reside in three modules: DIButtons, DISliders, and DITextFields. These
modules were redesigned since the objects they contained were replaced by Motif widgets. No low-level
calls to create such widgets existed in GDI; therefore, these functions had to be implemented from scratch
using low-level graphics and event-handling functions.

In MGDI, each of the GDI standard objects is mapped onto a Motif widget. However, the
window object is a little more complicated. Each DlWindowObj object requires an application shell (an
Xt Intrinsics structure) that enables each window to have its own independent tree of widgets attached to
it. Below the application shell, a MainWindovvWidget is created as a child. Within each
MainWindowWidget is a BulletinBoardWidget and a MenuBarWidget. The BulletinBoardWidget is the
equivalent of the GDI DlWindowObj — a plain drawing area. The MenuBarWidget is for future
attachment of pulldown menus to MGDI. All MGDI standard and user-objects are attached as children of
the BulletinBoardWidget.

Another necessary change between GDI and MGDI is the initialization of the Xt Intrinsics
library. This code was added in the X-window initialization module of GDI. Furthermore, since the Xt
initialization procedure can parse command-line arguments, this capability is now inherently a part of
MGDI. The format of the command-line arguments accepted follows the standard X-windows style (See
the X-windows Reference Manual).

Event-Handling in MGDI
Event-handling was a major issue in this project. The chief problem centered around the fact

that both Motif and GDI had their own event-handlers ''

implemented above the Xt Toolkit.

27

the objects in the particular toolkit interacted with the user. The first approach we tried with this problem
was to capture each event, decide if it w'as directed to a Motif widget or a user object, and then send the
event to the appropriate event-handier. Motifs event-handier could return a TRUE if it handled the
widget (i.e., there's a widget where the event happened) and FALSE otherwise. This method was used to
determine whether or not the event was directed to a Motif widget.

Thinking that this was a successful approach, each event was sent to the Motif event-handier; if a
TRUE was returned, it was assumed that the event had been sent to the appropriate method within a Motif
widget; otherwise, the event was not directed to a Motif widget and would be sent to the GDI event-
handier. After implementing this algorithm, it was discovered that the Motif Event handler never
returned FALSE to MGDI, implying that all events were "valid" to Motif. After investigation, it was
discovered that since the window itself was a Motif widget, any events within the bounds of the window
were considered "valid" by the Motif event-handier even if the event did not occur within the bounds of a
widget within that window. The final solution to this problem involved capturing each event and sending
a copy to each event-handier. This solved the problem very easily since each handler, upon receiving an
"invalid" event, merely discarded it.

The following are a few extra sample programs that demonstrate some of the capabilities of
(M)GDI. Moreover, a few diagrams present a graphical layout of both GDI and MGDI.

GDI Reference Manual Appendix

S a m p l e P r o g r a m : B u t t o n T e s t

I* This illu s tra tes the fo llo w in g in the (M)GDI system :
1 - Check boxes
2- Radio bu ttons
3- Command b u ttons
4- D raw ing background graphics via w in d o w draw l)

*/
^ inc lude "D IO b je c ts .h ”
^ inc lude "D IT e x t.h "
^ inc lude "D IG ra ph icW ind o w s.h ”
^ inc lude "D IU tilitie s .h "
^ inc lude "b u tto n s .h ”
^ inc lude < s td io .h >

Point cp t(20, 5 0);

m ain w in d o w ::m a in _ w in d o w (R ectangle r, SET a ttribu tes , char * title)
: D lW indow O b j! r, a ttr ib u te s , t it le)
(

in t sta t;

d raw m ethod replaced = TRUE;
D IText.LoadFont(" * -c o u rie r-b o ld -r-*-2 40 - + ", & b ig _ fon t, & s ta t };
D IText.LoadFont(" *-tim e s -m e d iu m -i-*-1 4 0 - * " , & sm a ll_ fon t, & s ta t)

void m a in _w in d o w ::d raw ()
{ “

Rectangle r(0, 0, re c t.r ig h t-re c t.le ft, c p t.v);
O b ject o(r);

D IG raph icW indow s.S e tP a in tM ode ! replace);

/ ’ D raw T itle 1 /
D IText.S etFon t(&big fo n t);
D IText.S etTextC o lo r(D IG raph icW indow s.Y e llow };
D IU tilitie s .C Text(&o, "B u tto n T e s t”);

/ ‘ Label CheckBox. * /
D IText.S etFon t(& sm a ll_ fo n t };
D IText.S etTextC o lo r(D IG raph icW indow s.R ed);
D IG raph icW indow s.M oveTo(c p t.h + 20, c p t.v)
D IText.D raw S tring ('Th is is a C heckBox");

28

GDI Reference Manual Appendix

/* Label Radio B u ttons. * /
D IT ext.S e tT extC o lo rl D IG raph icW indow s.C yan };
D IG raph icW indow s.M oveTo(c p t.h + 20, c p t.v + 50)
D IT ex t.D raw S tring ! "R ad ioB u tton # 1 ”);
D IG raph icW indow s.M oveTo(c p t.h + 20, c p t.v + 75);
D IText.D raw S tring ("R ad ioB u tton # 2 ”):

void exitprocO ;
void check_bu ttons();
void b te s tp ro c (double d);
void b tes tp roc2();

BOOLEAN e x it t = FALSE;
in t bu tto n num = 1;

Rectangle rect(10, 10, 3 00 , 5 00);
SET w a ttrs = hasBorder | hasT itle | m ayBeClosed | m ayBeChanged;
m ain w in d o w m w in (rec t, w a ttrs , "T e s t”);

D ICheckBox cb 1 | c p t);
D IR ad ioB uttonS et rb 1 (c p t.h , c p t.v + 50, 7);
Rectangle r1 (cp t.h , c p t.v + 100, c p t.h + 50, cp t. v + 1 20);
D IC M D B utton c m d b l (r1 .R(c p t.h + 55, cp t. v + 100, 50 , 20), "E nab le", & ch e ck_bu tton s };
D IC M D B utton cm db2(r1 .R(c p t.h + 1 05, cp t. v + 100, 50, 20), " 'Q U IT * " , & ex itp roc);
D IC M D B utton cm db3(r1 ,R{ c p t.h + 1 55, c p t.v + 100, 50, 20), "D isab le ", 8 ib testproc2);

Rectangle re c t i (1 60, 250, 1 70, 3 5 0);

m ain{ int, ch a r* *)
{

I' Make w in d o w show up, then ac tiva te event handlers */
/ * D IO b jec ts .S how ! & m w in); *1
D IO b jec ts .A c tiva te ! & m w in);

/ * Check Box. ‘ /
/ * Make CheckBox * /
D IO b jec ts .A d d O b je c tl & cb1 , & m w in);
cb1 .S w itchC heckB ox(TRUE I;
D IO b jec ts .A c tiva te ! &cb1 |;

/ * Make Radio b u tto n s * /
D IO b jec ts .A d d O b je c tl 8irb1, & m w in);
D IO b je c ts .A c tiva te ! &rb1);

I' Make Command B u tton */

D IO b jec ts .A ddO b jec t! & cm db1, & m w in);
D IO b je c ts .A c tiva te ! &cm db1);
D IO b jec ts .A ddO b jec t! & cm db2 , & m w in);
D IO b je c ts .A c tiva te ! & cm db2);
D IO b jec ts .A ddO b jec t! & cm db3, & m w in);
D IO b jec ts .A c tiva te ! 8 icm db3);
do
{

D IO bjects.H andleN extEventO ;
} w h ile < le x it t);

}

void b tes tp roc2{)
(

D IO b jects.D isab le ! &cb1);
D IO b jects .D isab le! &rb1);
D IO b jects ,H ide ! & cm db2)

}

void b te s tp ro c ! double d)
{

in t num berO fB uttons;
num berO fB uttons = in t! d) / 10;
rb 1 .S e tN um B u ttons! num berO fB uttons)

}
void exitprocO

29

GDI Reference Manual Appendix

e x it t = TRUE;
)
void ch eck_bu ttons()
{ "

fp r in t f | stderr, " \n B u tto n S ta tu s :\n ");
fp r in t f l s tderr, " \tC heckB ox: ");
if { cb l.Is O n O }

fp r in t f l s tderr, " O N \n");
else

fp r in t f l s tderr, ” OFF\n");

fp r in t f(stderr, "\tR ad io B u tton : % d \n ” , rb 1 .W hichRadioButtonO nO };

D IO bjects.Enable(&cb1);
D IO bjects.Enable ! &rb1);
D IO b jec ts .S how (& cm db2 I;

S a m p l e P r o g r a m : S l i d e r

^ inc lude "D IO b jec ts .h ”
^ inc lude "D IG raph icW indow s.h ”
^ inc lude "D IM enus.h "
^ inc lude "D IT e x t.h ”
^ inc lude "D lS lide rs .h "
^ inc lude "D ITe rm ina te .h "
^ inc lude "D IB u tto n s .h "

/ * Sample ob jec t to change w ith s lider bar,
* should really be in separate file .
*/

class m yR ect : pub lic O bject
{
pub lic:

m yR ect(R ectangle);
Point centre ;

p riva te :
v irtua l void d raw d ;

>;
void noop2{);
Point c p t| 20, 50);
BOOLEAN e x it t = FALSE;
void s lidertestO ;
void e x itp ro c l);
void rectC hange(double d];

in t sliderL = 10;
in t s liderT = 50;
in t sliderR = 35;
in t sliderB = 200;

R ectangle re c t i I sliderL, sliderT, sliderR, sliderB);
D ISIider slider) "P ercen t S ize-', 0 .0 , 100 .0 , 5 0 .0 , 15.0 , 5, 0 , 100, 50, r e c t i) ;

R ectangle r1 (cp t.h , c p t.v + 100, cp t.h + 50, c p t.v + 1 20);
D IC M D B utton c m d b l (r l ,R{ cp t.h + 65, c p t.v + 11 5, 60, 4 5), "T e s t” , & s lid e rte s t };
D IC M D B utton cm db2 | r 1 .R(cp t.h + 1 35, c p t.v + 115, 60, 45], "Q u it" , & ex itp roc)

R ectangle rec t2 (140, 50 , 240 , 150);
m yR ect mr(rec t2);

m ain (in t, char * *)
{

R ectangle r(100, 10, 410 , 300);
SET w a ttrs = hasBorder| hasT itle | m ayBeClosed | m ayBeChanged;
D lW indow O b j w in ! r, w a ttrs , "S lider Dem o");

/ ' M ake w in d o w show up. * /
D IO b jec ts .A c tiva te ! & w in I;
D IO b jec ts .S how (& w in);

30

GDI Reference Manual

D IO b jec ts .A ddO b jec t! & slider, & w in);
D IO b jec ts .A c tiva te ! & s lide r I;

/* Set ac tion routines fo r s lider bar. (optional) * /
s lide r.A ss ignV a lueC hangeA ction ! & rectC hange);
s lide r.A ss ignF ina lV a lueA ction ! & rectC hange);

D IO b jec ts .A ddO b jec t! & cm db1, & w in I;
D IO b jec ts .A c tiva te ! &cm db1 I;

D IO b jec ts .A ddO b jec t! & cm db2 , & w in };
D IO b jec ts .A c tiva te ! & cm db2);

D IO b jec ts .A ddO b jec t! & m r, & w in);
D IO b jec ts .A c tiva te ! & m r I;

do
{

D lO b jects .H and leNextE vent!);
} w h ile { !e x it t);
D (Term inate. Term inate !);

}

void
noop2!)
{
}

void s lide rtes t!)
{

in t value;
p r in tf !" C urrent slider value is % f \n " , s lider.G etS liderValue!))
p r in tf !" Please inp u t a value to set the slider to ; ”):
scanf! "% d " , &va lue };
s lide r.S e tS lide rV a lue ! (double) value);

}

void
exitp roc!)
{

e x it t = TRUE;
}
/ * This rou tine causes the rectangle to g row & shrink w hen the

* s lider bar is m oved.
V

void
rectC hange! double d)
{

R ectangle r;
in t radius;

I* U ndraw old rectangle */
m r.G etR ectang le (r);
D IG raph icW indow s.S e tP a in tM ode(inve rt I;
D IG raph icW indow s.D raw R ectang le ! r);

/ * re con s tru c t rectangle w ith slider value d as radius. * /
radius = (int) d /2 ;
r . le ft = m r.cen tre .h - radius;
r .r ig h t = m r.cen tre .h + radius;
r.top = m r.ce n tre .v - radius;
r.b o tto m = mr. centre , v + radius;
m r.S e tR ectangle ! r);
D IG raph icW indow s.S e tP a in tM ode ! inve rt);
D IG raph icW indow s.D raw R ectang le ! r);

m yR ect m yR ect(Rectangle r)
{

SetR ectang le! r);
cen tre .h = (r.le ft + r.righ t) / 2;

GDI Reference Manual Appendix

cen tre .v = (r.top + r.b o tto m) / 2;
d raw _m ethod_rep laced = TRUE;

) '
void

m yR ect :: draw()
{

Rectangle r;

GetR ectangle{ r);
D IG raph icW indow s.S e tP a in tM ode l inve rt)
D IG raph icW indow s.D raw R ectang le ! r |;

S a m p l e P r o g r a m : M o v i n g R e c t a n g l e

/ * This sam ple program illus tra tes 2 main po in ts :
1- H ow to create one ’ s o w n ob jec t and a ttach even t handlers
2- H ow to create a sim ple menu

V
inc lude "D IO b je c ts .h ”
^ inc lude "D IG ra ph icW ind o w s.h ”
^ inc lude "D IM enus.h "
inc lude "D ITe rm ina te .h "
^ inc lude "D IB u tto n s .h ”
inc lude < s td io .h >

r Includes patte rn fo r rectangle . *!

^ inc lude "x xxs .b m p "
B itm ap xxxs_p a tte rn ;

Class m o v in g o b j : pub lic O bject
{ “
pub lic:

in t xO, yO, x 1 , y 1 ;
Rectangle r;
void dow n{ in t x, in t y);
void drag(in t x, in t y);
void up(in t x, in t y);
void d raw l);
m oving_obj{ Rectangle I;

vo id exitprocO ;
void noopprocO ;
BOOLEAN e x itt;

Rectangle r;
D IC M D B utton b u tto n t r.RI 10 ,10 , 8 0 ,5 0), "Q U IT ", & exitp roc};

main(in t * , c h a r * *)
{

D IG raph icW indow s.Fg = D IG raph icW indow s.R ed;
R ectangle r(245, 245, 265, 265);
m oving_obj mo{ r);
SET w a ttrs = hasBorder, hasT itle | mayBeCiosed | m ayBeChanged;
D lW indow O b j w in (r.R(10, 10, 300, 300), w a ttrs , "M ov ing Parts" |;
M enu main;
M enu ltem m ite m l, m item 2;

/* Make w in d o w show up. * /
D IO b jec ts .S how ! & w in);

I' In itialize oa tte rn fo r m oving rectangle . * /
x x x s p a t te rn =

D IG raph icW indow s.D e fineB itm ap(xxxs w id th , xxxs height, xxxs bits)

!' Make rectangle w h ich "m oves" */
D IO b jec ts .A ddO b jec t{ &m o, & w in);
D IO b jec ts .A c tiva te ! &m o);

32

GDI Reference Manual Appendix

D IO bjects, A ddO b jec t! & b u tto n , & w in },
D IO b jec ts .A c tiva te ! & b u tto n);

/ ' Set up M enus * /
D IM enus.N ew M enu! &m ain, "EX IT");
D IM enus.A dd ltem (& m item 1, "E x it" , & ex itp roc , main);
D IM enus.A dd ltem ! & m item 2, "No Op” , & noopproc, m ain },
D IM e nu s .A c tiva teM e n u ! m ain, & w in);

do
{

D !0 b jects . H and leNextE vent ();
} w h ile { le x it t);
D (Term inate. Te rm ina te !);

}
void e x itp roc !)
{

e x it t = TRUE;
)
void noopproc!)
{

fp r in t f ! stderr, "B o o !\n ");
}

m ov ing_ob j::m ov ing_ob j! Rectangle r)
{ ' '

re c t = r;
xO = yO = x1 = y1 = 0;
up_m ethod_rep laced = TRUE;
drag_ m ethod replaced = TRUE;
dow n m ethod replaced = TRUE;

void m oving ob j::d raw ()
{ “

R ectangle r;

D IG raph icW indow s.S e tP a in tM ode l pa in t);
D IG raph icW indow s.S e tB orderM ode ! noBorder);
D IG raph icW indow s.S e tF illP a tte rn ! xxxs_p a tte rn)
G etR ectangle ! r);
D IG raph icW indow s.F illR ectang le ! r);

void m oving o b j::d o w n { in t x, in t y)
{

G etR ectangle ! r);
D IG raph icW indow s.S e tP a in tM ode ! erase);
D IG raph icW indow s.F illR ectang le ! r);
xO = x1 = x;
yO = y1 = y;
D IG raph icW indow s.S e tP a in tM ode ! inve rt);
D IG raph icW indow s.F illR ectang le ! r);

}
void m oving obj::drag< in t x, in t y)
{

Rectangle r2;

D IG raph icW indow s.F illR ectang le ! r2.R ! r. le ft + x1 -x0 , r.top + y1*y0,
r.r ig h t-r.le ft, r .b o tto m -r.top))

x1 = x; / * redraw at new place */
yi = y;
D IG raph icW indow s.F illR ectang te ! r2 .R | r . le ft + x1 -x0 , r.top + y1-y0,

r.r ig h t-r.le ft, r.b o tto m -r.top))
}
void m oving o b j::u p ! in t x, in t y }
{

Rectangle r2;

33

GDI Reference Manual Appendix

D IG raph icW indow s.F illR ectang le ! r2 .R | r . le ft + x l-x O , r.top + y1-yO,
r .r ig h t-r.le ft, r .b o tto m -r.top));

D IO b jects .M ove(th is , x-xO, y-yO I;

i

}

S a m p l e P r o g r a m : D r a w L i n e s

^ inc lude "D IO b je c ts .h "
include "D IG ra ph icW ind o w s .h ”
include "D IM enus.h "
inc lude " lin e .h ”

/******..........
4 TAG(m y _w in d o w _o b j::m y_w in d o w _o b j)

' Create a d e fa u lt co n s tru c tio n o f m y w in d o w o b j. To change
* some o f the a ttr ib u te s later, use ob jec ts ::S e tR ectang le ,
* D IW in do w O b j::S e tA ttr ibu te s & D IW indow O b j::S e tT itle . These
* m ust be changed BEFORE adding w in d o w to disp lay lis t.
V

my w in d o w _o b j::m y_w in d o w _o b j()
: D lW indow O b jl)
{

p1 .h = p i .v = 0;
p2.h = p 2 .v = 0;

/ ' Set the proper even t-hand ie r flags . *7
d ow n m ethod replaced = TRUE;
d ra g m e th o d re p la c e d = TRUE;
u p m e th o d re p la c e d = TRUE;

} “ "
/***..........

* TAG(m y w in d o w _ o b j::m y _ w in d o w obj)

* C on s tru c to r fo r m y w in d o w obj. A rgum ents are the same as listed
* in D IG raph icW indow s.h fo r D lW indow O b j.
*/
m y_w in d ow o b j::m y_w in d o w _o b j{ Rectangle rect, SET a ttr ibu tes , char * tit le)

; D lW in d ow O b jl rect, a ttr ib u te s , t it le)
{

p1 .h = p1 .v = 0;
p2 .h = p2 .v = 0;

/ * Set the proper even t-hand ie r flags. */
d o w n m ethod replaced = TRUE;
drag m ethod replaced = TRUE;
up m ethod replaced = TRUE;

}
/■..
* TAG(my w in d o w o b j::d o w n)

' This sets the even t handler w h ich is ac tiva ted w hen the mouse
‘ b u tto n is pressed dow n w ith in th is w in d o w . This d raw s an in itia l
* line at the given po in t, w h ich w ill be changed as the line is
* " rubbe rbanded ” .
*/

void my w in d o w obj: :dow n(in t h, in t v)
{ ~ ~

p1 .h = p2 .h = h;
p1 .v = p2. v = v;
D IG raph icW indow s.S e tP a in tM ode ! inve rt);
D IG raph icW indow s.D raw L ine ! p1, p2);

}
/*•••*.................

* TAG< m y_w in d ow _o b j::d rag)

‘ This is the even t-hand ie r w h ich is activated w hen the mouse
* b u tto n is pressed and the m ouse is m oved, or dragged w ith in
* the w in d o w . R ubberbanding takes place here; the old line

34

GDI Reference Manual Appendix

* is erased and a new one is d raw n based on the last poin t.
*1

void m y w in d o w _o b j::d rag (in t x, in t y }
{ “ "

D IG raph icW indow s.D raw L ine{ p1, p2);
p2 .h = x;
p2. v = y;
D IG raph icW indow s.D raw L ine{ p1, p2);

' TAG{ m y_w in d ow _o b j::u p I

* This even t-hand ie r is ac tiva ted w hen th e le f t m ouse bu tto n
* is released a fte r being pressed w ith in the w in d o w . The previous
* line is erased, and a perm anent one is d raw n. A lso,
* a perm anent line o b je c t is created based on th is fina l line.
*/

void m y_w in d o w _o b j::u p (in t x, in t y)
{ '

line obj ‘ line;

D IG raph icW indow s.D raw L ine(p1, p2);
p2.h = x;
p2 .v = y;
D IG raph icW indow s.S e tP a in tM ode(pa in t);
D IG raph icW indow s.D raw L ine{ p1, p2);

I* Create line ob jec t. ' /
line = new line o b j(p1, p2);
D IO b jec ts .A ddO b jec t(line, th is);
D IO b jec ts .A c tiva te ! line),

/I . . .*.*.**. .*. . .*.**.***.*******,*. ,*****
* TAG ! line_ob j::line_ob j I

* D e fau lt fu n c tio n fo r m aking line obj. Use access fu n c tio ns
1 to change.
V
line ob j::line obj{)
{ "

p1 .h = p2.h = 0;
p l . v = p 2 .v - 0;
m ove m ethod replaced = TRUE;

4 TAG (line_ob j:;line_ob j)

* A n o th e r line obj construc to r.
7
line o b j;: line obj{ Point p t l , Point p t2)

{ "
R ectangle r;

p1 = p t l ;
p2 = p t2 ;
set rect();
m ove m ethod replaced = TRUE;

) “

' TAG(line o b j::d raw)

* The d raw even t handler. Is called w hen the area o f the
* w in d o w th a t line is on is redraw n.
V

void line ob j::d raw ()
{ “

D IG raph icW indow s.S e tP a in tM ode(pa in t);
D IG ra p h icW in d ow s.D ra w line { p i , p2);

}

TAG { se t_ rec t)

35

GDI Reference Manual Appendix

* This se ts/rese ts the bounding rectangle o f th is line.
■/

void line_ob j::se t_ rec t|)
{ " "

Rectangle r;

r. le ft = p1 .h;
r.top = p l. v ;
r. righ t = p2.h ;
r.b o tto m = p2.v;
S etR ectang le! r);

}
/•**••*...

* TAG (set_p1)

* Set po in t 1 in line.
*1

void line_obj::set_p1 < Point p)
{ ”

p i = p;
s e tre c tO ;

} “
+ TAG (se t_p2)

* Set po in t 2 in line.
•/

void line o b j::se t_p 2 (Point p)
{ “

p2 = p;
set rect();

}
...................................

* TAG{ line_ob j::m ove I

* Move even t handler. This is jus t a te s t to see how "m ove " w orks.
*/

void line ob j::m ove(in t, in t }
{

fp r in t f l s tderr, ’’ Line move e ve n t.\n ");
}
BOOLEAN quit = FALSE;
void ex itprocO ;
void fro n t p roc!);
void back_proc();

R ectangle r(25, 25, 425 , 325);
SET a ttrib u te s — hasBorder | hasT itle ;
m y_w in d ow _o b j m y_w in d ow (r, a ttr ib u te s , "L ine S ke tche r”);

m ain! int, cha r* *)
{

M enu m ain, prio;
M enu ltem m ite m l, m item 2;
M enu ltem prio i te m l, prio item 2;

!' Make w in d o w show up. Since th is w in d o w has event handlers,
‘ w e also need to "a c tiv a te " them . * /

D IO b jec ts .S how ! &m y w in d o w);
D IO b jec ts .A c tiva te ! & m y w in d o w);

r Set up Menus ' /
D IM enus.N ew M enu! &m ain, "E X IT");
D IM enus .A dd ltem ! & m item 1, "E x it '', & ex itp roc , main);
D IM enus.A dd ltem ! & rn item 2, "N o th ing Done H ere .", NULL, main);
D IM e nu s .A c tiva teM e n u ! m ain, & m y_w in d o w };

D IM enus.N ew M enu! & prio , "W IN D O W PRIORITY”);
D IM e nu s .A dd lte m l & prio i te m l, "W ind o w in fro n t" , & fro n t proc, prio)
D IM enus .A dd ltem ! & prio item 2, "W ind o w in b ack", & back_proc, prio);
D IM e nu s .A c tiva teM e n u ! prio, & m y_w in d o w);

/ ' Let system handle events. */
do

36

{
DIObjects. HandleNextEventO;

} while (!qu it);

void exitprocO

qu it = TRUE;

void fro n t procO

D IO b jects.S e tP rio rity(& m y _ w in d o w (firs t);

void back proc()

D IO b jec ts .S e tP rio rity (& m y_w in d o w , last);

GDI Reference Manual Appendix

GDI Reference Manual Appen dix

E ven t H a n d lin g In M G D I

I'ig. 3. Evenl-handling in MGDI.

39

MGDI Reference Manual Rcfcrcnccs

4. Salem, M., and Bruderlin B, "GDI: A Portable, Object-Oriented User Interface Toolbox", Journal of
Undergraduate Research, vol. III. University of Utah, 1992.

1 4 . In d e x

A
Acknowledgements, 26
Activate, 12
ActivateMenu, 24
Addltem, 24
AddObject, 12
AssignFinal Value Action, 19
Assign ValueChangeAction,
19

B
bpress. 11

c
CFade, 21
charcv, 11
CharHeight, 22
Char Width, 22
ClcarRcctanglc, 6
ClearWindow, 2
Copy, 12, 17
copy. 11
CText, 21
CursorlsVisible, 2
Cut. 17

D
dclick, 11
Deactivate. 12
DeactivaleMenu, 24
DefineBitinap, 3
deleteev. 11
DeleteString, 17
DIButtons. 14
DICheckBo.x, 14. 15, 28, .10,
32, 34
DIGraphicWindows, 2
DIMenus, 24. 25, 27
DIObjects, 10
DIRadioButtonSet. 14
Disable, 12
disable, 11
DISlider, 19
Dispose, 12
DisposeMenu. 24
DIText, 22
DITextField, 17
DIUtilities, 21

down, 11
drag, 11
Draw, 12
draw, 11
DrawArc, 7
DrawChar, 22
DravvCircle, 7
DrawEllipse, 7
DrawLine, 7
DrawPixel, 7
DrawPolygon, 7
DrawPolyline, 7
DrawRectangle, 8
DrawRoundRectangle, 7
DrawString, 22

EmptyPallcrn, 3
Enable. 12
enable. 11
Erase, 17

F
FillCircle, 8
FillEllipse, 8
FillPolygon, 8
FillRectangle, 8
FillRoundRectangle,
FillSector, 8
fkey, 11
Frame. 21
FullPattern, 3

GetBorderMode. 6
GetButtonDist, 15
GetClipRectangle, 2
GetColor, 4
GetDirection, 15
GetFillColor, 6
GclFillPatlern, 6
GetFont, 17. 19, 22
GetLineColor, 6
GelLinePattern, 6
GetLineThickness, 6
GetNumButtons, 15
GelNumColors, 2
GetPaintMode, 6

GetParent, 10
GetPort, 2
GetRectangle, 10
GctSliderValue, 19
GetTextColor, 22
GetWindowOf, 2

H
HalfPattern, 4
HasBorder, 17
Hide, 12
HidcCursor, 3
Highlight, 18, 21
HighlightAll, 18

I
lnsertString, 18
Inside. 12
Intersecting, 12
lsActive. 10
IsOn. 14
IsVisible. 10
lsWindow, 10

L
LineTo, 8
LoadDefaultFont, 22
LoadFont, 22
LoadPattern, 4

M
Move. 13
move, 11
MoveTo, 7

N
NcwColor, 4
NewMenu, 24

o
Object. 10

P
Paste, 17
Pixel IsSet, 7
PointPick, 13
ppick, 11

R
Read, 18
RectanglePick, 13

42

GDI Reference Manual Index

Removeltem, 24
Resize, 13
rpick, 11

s
ScreenRectangle, 3
ScrcenSize, 3
SetBorderMode, 5
SetButtonDist, 15
SelClipRectangle, 3
SelDireclion, 15
SetFillColor, 5
SelFillPaitern, 5
SetFont, 18, 20, 22
SelLineColor, 5
SetLinePattern, 5
SetLineTliickness, 5
SetPaintMode, 5
SetPort, 3
SetPriorily, 13
SetRectangle, 10
SetSliderValue, 20
SetText Color, 23
Show. 13
ShowCursor, 3
SwitchClieckBox, 14
SwilchRadioButtonSet, 15

u
UnsetClipRectangle, 3
up, 11

w
WhichRadioBultonOn, 15,
16
Write, 18
WriteLn, 18
WriteString, 18

43

