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Abstract

T h e  generalization of signal a n d  i m a g e  processing to surfaces entails filtering the normals 

of the surface, rather than filtering the positions of points o n  a mesh. U s i n g  a variational 

framework, s m o o t h  surfaces m i n i m i z e  the n o r m  of the derivative of the surface normals—  

i.e. total curvature. Penalty functions o n  the surface normals are c o m p u t e d  using geometry- 

based shape metrics a n d  m i n i m i z e d  using gradient descent. This produces a set of partial 

differential equations (PDE). In this paper, w e  introduce a novel f r a m e w o r k  for i m p l e m e n t ­

ing geometric processing tools for surfaces using a t w o  step algorithm: (i) operating o n  

the n o r m a l  m a p  of a surface, a n d  (ii) manipulating the surface to fit the processed normals. 

T h e  computational approach uses level set surface models; therefore, the processing does 

not d e p e n d  o n  a n y  underlying parameterization. Iterating this two-step process, w e  c an i m ­

pl e ment geometric fourth-order flows efficiently b y  solving a set of coupled second-order 

P D E s .  This paper will demonstrate that the f r a m e w o r k  provides for a w i d e  range of sur­

face processing operations, including edge-preserving s m o othing a n d  high-boost filtering. 

Furthermore, the generality of the implementation m a k e s  it appropriate for very c o m p l e x  

surface models, e.g. those constructed directly f r o m  m e a s u r e d  data.



C h a p t e r  1

I n t r o d u c t i o n

T h e  fundamental principles of signal processing give rise to a w i d e  range of useful tools for 

manipulating a n d  transforming signals a n d  images. T h e  generalization of these principles 

to the processing of 3 D  surfaces has b e c o m e  an  important p r o b l e m  in c o m p u t e r  graphics, 

visualization, a n d  vision. Fo r  instance, 3 D  range sensing technologies produce high reso­

lution descriptions of objects, but they often suffer f r o m  noise. M e d i c a l  i m a g i n g  modalities 

such as M R I  a n d  C T  scans produce large v o l u m e s  of scalar or tensor measurements, but 

surfaces of interest m u s t  be  extracted through s o m e  segmentation process or fitted directly 

to the measurements.

T h e  state of the art in surface processing includes a n u m b e r  of very useful tools for pro­

cessing meshes. H o w e v e r ,  to date there is n o  g e n e r a l  f r a m e w o r k  f o r  g e o m e t r i c  surface 

processing. B y  g en er al w e  m e a n  t w o  things. First, the f r a m e w o r k  should provide a broad 

variety of capabilities, including surface processing tools that resemble the state of the art 

in i m a g e  processing algorithms. S e c o n d  the f r a m e w o r k  should apply to a general class 

of surfaces. Users should be  able to process c o m p l e x  surfaces of arbitrary topology, a nd 

obtain meaningful results with very little a priori k n o w l e d g e  about the shapes. B y  g e o m e t ­

ric w e  m e a n  that output of surface processing algorithms should d e p e n d  o n  surface shape 

a n d  resolution, but should be  independent of arbitrary decisions about the representation or 

parameterization.

This paper presents a f r a m e w o r k  that is based o n  the proposition that the natural general­

ization of i m a g e  processing to surfaces is via the surface n o r m a l  vectors. Thus, a s m o o t h  

surface is o n e  that has smoothly varying normals. In this light, the differences b e t w e e n  

surface processing a n d  i m a g e  processing are threefold. N o r m a l s  live o n  a manifold (the 

surface) a n d  cannot necessarily be processed using a flat metric, as is typically d o n e  with
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Original Model Isotropic Smoothing Edge-Preserving Smoothing High-Boost Filtering

Figure 1.1: Surface processing examples.

images. N o r m a l s  are vector valued a n d  constrained to b e  unit length; the processing tech­

niques m u s t  a c c o m m o d a t e  this. N o r m a l s  are coupled with the surface shape, a n d  thus the 

normals should drag the surface along as their values are modified during processing.

This paper presents an  implementation that represents surfaces as the level sets of v o l u m e s  

a n d  c o m p u t e s  the processing of the normals a n d  the deformation of the surfaces as solutions 

to a set of partial differential equations (PDE ) .  This strategy enables us to achieve the 

“black b o x” behavior, w h i c h  is reflected in the nature of the results. Results in this paper 

will s h o w  a level of complexity in the m o d e l s  a n d  the processing algorithms that has not 

yet b e e n  demonstrated in the literature. This generality c o m e s  at the cost of significant 

computation time. H o w e v e r ,  the m e t h o d  is practical with state-of-the-art computers a n d  is 

well-poised to benefit f r o m  parallel c o m p u t i n g  architectures, d u e  to its reliance o n  local, 

iterative computations.

Figure 1 s h o w s  several results of processing a 3 D  surface m o d e l  with different algorithms. 

T h e s e  algorithms consist of smoothing, feature-preserving smoothing, a n d  surface e n ­

hancement. All three processes are consistent mathematical generalizations of their i m a g e ­

processing counterparts. N o t e  that all of the surfaces in this paper are represented volumet- 

rically a n d  rendered using the m a r c h i n g  cubes algorithm [1].

In s o m e  applications, such as animation, m o d e l s  are manua l l y  generated b y  a designer a nd 

the parameterization is not arbitrary but is an  important aspect of the geometric model. In 

these cases m e s h - b a s e d  processing m e t h o d s  offer a powerful set of tools, such as hierar­

chical editing [2], w h i c h  are not yet possible with the proposed representation. H o w e v e r ,  

in other applications, such as 3 D  segmentation a n d  surface reconstruction [3, 4], the pro­



cessing is data driven, a n d  surfaces can d e f o r m  quite far f r o m  their initial shapes a n d  even 

c h a n g e  topology. Furthermore, w h e n  considering processes other than isotropic s m o o t h ­

ing, such as nonlinear s m o othing or high-boost filtering, the creation or sharpening of small 

features can exhibit noticeable effects of the m e s h  topology— features that are aligned with 

the m e s h  are treated differently than those that are not. T h e  techniques presented in this p a ­

per offer a n e w  set of capabilities that are especially interesting w h e n  processing m e a s u r e d  

data— as are all of the e x a m p l e s  s h o w  in this paper.

T h e  specific contributions of this paper are:

• a novel f r a m e w o r k  for geometric processing of surfaces that relies o n  surface nor­

mals;

• a numerical m e t h o d  for solving fourth-order level set equations in t w o  simpler steps, 

thereby avoiding the explicit computation of unstable high-order derivatives; a nd

• e x a m p l e s  of three geometric processing algorithms with applications to data sets that 

are m o r e  c o m p l e x  than those previously demonstrated in the literature.



C h a p t e r  2

R e l a t e d  W o r k

T h e  majority of surface processing research has b e e n  in the context of surface fairing with 

the motivation of smoothing surface m o d e l s  to create aesthetically pleasing surfaces using 

triangulated m e s h e s  [5, 6, 7, 8]. Surface fairing typically operate b y  minimizing a fair­

ness or penalty function that favors s m o o t h  surfaces [9, 10, 11, 5]. Fairness functionals 

can d e p e n d  o n  the g e o m e t r y  of the surface or the parameterization. G e o m e t r i c  functionals 

m a k e  use of invariants such as principal curvatures, w h i c h  are parameterization indepen­

dent, intrinsic properties of the surface. Therefore, geometric approaches produce results 

that are not affected b y  arbitrary decisions about the parameterization; however, geometric 

invariants are nonlinear functions of surface derivatives that are computationally expensive 

to evaluate. Simpler parameterization dependent functionals are linear approximations to 

geometric invariants. S u c h  functionals c an be  equivalent to geometric invariants w h e n  the 

surface parameterization is isometric) or they can be p oor approximations w h e n  the p a ­

rameterization is irregular a n d  non-differentiable. A n  isometric surface parameterization 

requires the t w o  parameter coordinate axis to be orthogonal a n d  arc-length parameterized. 

In the context of surface fairing with m e s h e s  these concepts are also referred to as g e o m e t ­

ric a n d  parameterization smoothness [7] or outer a n d  inner fairness [12].

O n e  w a y  to s m o o t h  a surface is to incrementally reduce its surface area. This can be 

accomplished b y  m e a n  curvature flow ( M C F )  at every point S:

^ = H N  (2.1)
dt

w h e r e  H  is the m e a n  curvature of the surface, N  is the surface normal, a n d  t is the time 

evolution of the surface shape. F or parameterized surfaces the surface area translates to the
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[  X 2 +  X V  d u  d v  (2.2)
J a

w h e r e  X ( u , v )  a n d  a  are the surface parameterization a n d  its domain, respectively. F or an 

isometric parameterization X ^  +  X 2 =  1; therefore, (2.2) reduces to surface area. H o w e v e r ,  

for larger a n d  smaller X ^  +  X 2, the approximation to surface area is distorted proportionally. 

T h e  variational derivative of (2.2) is the Laplacian,

A X  =  X uu +  X w ,  (2.3)

w h i c h  is equivalent to m e a n  curvature in the isometric case. Laplacian, or m e a n  curvature 

flow, is closely tied to Gaussian filtering— a standard m e t h o d  of s m o o thing images. Clarenz 

etal. [13] propose a m e s h e d - b a s e d  intrinsic flow that incorporates a weighted s u m  principle 

curvatures that d e pends o n  the local surface shape.

A  second-order penalty function is total curvature

/kj2 +  k 2  d S  (2.4)
J s

w h i c h  has b e e n  s h o w n  to d e f o r m  surfaces into spheres [14]. Total curvature is a geometric 

(invariant) property of the surface. T h e  m e s h  fairing approach of [5] w h i c h  minimizes (2.4) 

involves fitting local polynomial basis functions to local neighborhoods for the computation 

of total curvature. T h e s e  polynomial basis functions range f r o m  full quadratic polynomials 

to constrained quadratics a n d  planar approximations. D e p e n d i n g  o n  the complexity of the 

local neighborhood, the algorithm m u s t  choose, at each location, w h i c h  basis to employ. 

Ambiguities result at locations w h e r e  multiple basis provide equally g o o d  representations. 

In [8] the authors search directly for an  intrinsic P D E  that produces fair surfaces instead 

of deriving the P D E s  f r o m  a variational framework. T h e y  propose the Laplacian of m e a n  

curvature A g H  =  0 for m e s h e s  w h e r e  A g is the Laplace-Beltrami operator, i.e. the Laplacian 

for parameterized surfaces. Their approach is not sufficiently general to satisfy the goals of 

this paper, but is closely related to the proposed method. W e  will discuss it further in Sec. 

3.

If w e  penalize the parameterization (i.e. non-geometric), equation (2.4) b e c o m e s  the thin 

plate energy functional

Xu2u 2Xu2v Xv2v d u  d v  (2.5)
a

w h e r e  X  a n d  a  are as defined for (2.2). T h i n  plate energy w a s  used in [10] for surface 

fairing. T h e  variational derivative of (2.5) is the biharmonic operator, w h i c h  is linear:

membrane energy functional

A 2 X  X uuuu 2 X uuvv X vvvv (2.6)



T h e s e  linear energy functionals underly the signal processing approach to surface fairing 

pioneered in [6], w h o  derived the natural vibration frequencies of a surface f r o m  the Lapla- 

cian operator. Taubin observes that Gaussian filtering causes shrinkage. H e  eliminates 

this p r o b l e m  b y  designing a l o w  pass filter using a weighted average of the Laplacian a nd 

the biharmonic operator. T h e  weights have to be fine-tuned to obtain the non-shrinking 

property. A n a l y z e d  in the frequency domain, this low-pass filter c an be  seen as a Gaussian 

smoothing shrinking step followed b y  an  unshrinking step. Indeed, a ny polynomial transfer 

function in the frequency d o m a i n  can be  i m p l e m e n t e d  with this m e t h o d  [15]. [16] describe 

a related approach in w h i c h  surface are s m o o t h e d  b y  simultaneously solving the m e m b r a n e  

(2.2) a n d  thin plate (2.5) energy functionals.

T h e  signal processing approach uses the umbrella operator w h i c h  is a discretization of the 

Laplacian. T h e  e d g e  lengths connecting the nodes of the m e s h  a n d  the angles b e t w e e n  

adjacent edges around a node, also k n o w n  as face angles, introduce parameterization d e ­

pendencies. B y  setting the e d g e  weights in the umbrella operator to the reciprocal of the 

e d g e  length, the d e p e n d e n c y  o n  e d g e  length c an be  r e m o v e d  [6], but the d e p e n d e n c y  o n  

the face angles remain. A  scale dependent intrinsic umbrella operator is defined in [7] 

that r e m o v e s  both dependencies. T h e  time steps in explicitly integrating a scale dependent 

umbrella operator are proportional to the square of the shortest e d g e  length. D e s b r u n  et 

al. o v e r c o m e  this limitation b y  introducing an implicit integration scheme. Nevertheless, 

the weights for the umbrella operator m u s t  be  r e c o m p u t e d  at each iteration to maintain its 

intrinsic property. A  non-uniform relaxation operator is introduced in [2] to m i n i m i z e  a 

locally weighted quadratic energy of second order differences.

M o r e t o n  a n d  Sequin [9] propose a geometric fairness functional that penalizes the varia­

tion of principle curvatures— a third-order, geometric penalty function (corresponding to a 

sixth-order variational derivative), w h i c h  requires very large computation times. T h e  anal­

ysis a n d  implementation of general penalty functions a b o v e  second order remains an o p e n  

problem, w h i c h  is b e y o n d  the scope of this paper. E v i d e n c e  in this paper a n d  elsewhere 

[7, 8] suggests that fourth-order geometric flows f o r m  a sufficient foundation for a general, 

geometric surface processing system.

This w o r k  in this paper is also related to that of C h o p p  &  Sethian [17], w h o  derive the 

intrinsic Laplacian of curvature for an  implicit curve, a n d  solve the resulting fourth-order 

nonlinear P D E .  H o w e v e r ,  they argue that the numerical m e t h o d s  used to solve second order 

flows are not practical, because they lack long term stability. T h e y  propose several n e w  

numerical schemes, but n o n e  are f o u n d  to be  completely satisfactory d u e  to their slow 

computation a n d  inability to handle singularities. O n e  of the results of this paper is to solve 

this equation m o r e  effectively a n d  to demonstrate that this is only o n e  e x a m p l e  of a m o r e  

general class of useful surface processing techniques. Joint interpolation of vector fields 

a n d  gray level functions w a s  used for succesfully filling-in missing parts of i m a g e s  in [18].



C h a p t e r  3

G e o m e t r i c  S u r f a c e  P r o c e s s i n g

O n e  of the underlying strategies of this paper is to use g e o m e t r i c  surface processing, w h e r e  

the output of the process d e p ends only o n  the shape of the input surface, a n d  does not 

contain artifacts f r o m  the underlying parameterization. T h e  motivation for this strategy is 

discussed in detail in [12], w h e r e  the influence of the m e s h  parameterization o n  surface 

fairing results is clearly shown, a n d  higher-order geometric flows, such as the intrinsic 

Laplacian of curvature, are proposed as the solution.

A s  an illustration of the importance of higher-order geometric processing, consider the 

results in Fig. 3.1, w h i c h  demonstrates the differences b e t w e e n  processing surfaces with 

m e a n  curvature flow ( M C F )  a n d  intrinsic Laplacian of m e a n  curvature flow ( I L M C F ) .  T h e  

a m o u n t  of s moothing for M C F  a n d  I L M C F  w a s  chosen to be  qualitatively similar, a nd 

yet important differences can be observed o n  the smaller features of the original model. 

M C F  has shortened the horns of the original model, a n d  yet they remain sharp— not a 

desirable behavior for a “smoo t h i n g” process. This behavior for M C F  is well d o c u m e n t e d  

as a pinching off of cylindrical objects a n d  is expected f r o m  the variational point of view: 

M C F  minimizes surface area a n d  therefore will quickly eliminate smaller parts of a model. 

S o m e  authors [19] have proposed v o l u m e  preserving forms of second-order flows, but these 

processes c o m p e n s a t e  b y  enlarging the object as a  w hole, w h i c h  exhibits, qualitatively, the 

s a m e  behavior o n  small features. Intrinsic Laplacian of m e a n  curvature flow, in Fig. 3.1, 

preserves the structure of these features m u c h  better while smoothing them.

A n  alternative to solving a fourth-order equation directly is to decouple it into a pair of 

second-order equations. For instance, a two-step solution to I L M C F  for m e s h e s  is proposed 

in [8]. H o w e v e r ,  this approach w o r k s  only for meshes, a n d  relies o n  analytic properties of 

the steady-state solutions, A H  =  0, b y  fitting surface primitives that hav e  those properties.
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Figure 3.1: Second- a n d  fourth-order surface smoothing. F r o m  left to right: Original 

model, m e a n  curvature flow, a n d  intrinsic Laplacian of m e a n  curvature flow.

Figure 3.2: S h o w n  here in 2 D ,  the process begins with a shape a n d  constructs a n o r m a l  m a p  

f r o m  the distance transform (left), modifies the n o r m a l  m a p  according to a P D E  derived 

f r o m  a penalty function (center), a n d  re-fits the shape to the n o r m a l  m a p  (right).

Thus, the formalism does not generalize well to applications, such as surface reconstruc­

tion, w h e r e  the solution is a combination of m e a s u r e d  data a n d  a fourth-order smoothing 

term. Also, it does not apply to other types of s m o othing processes, such as those that 

m i n i m i z e  nonlinear feature-preserving penalties.

In [18], the authors penalize the smoothness of a vector field while simultaneously forc­

ing the gradient directions of a gray scale i m a g e  to closely m a t c h  the vector field. T h e  

penalty function o n  the n o r m a l  field is proportional to the divergence of the n o r m a l  v e c ­

tors. This forms a high-order interpolation function, w h i c h  is s h o w n  to be  useful for i m a g e  

inpainting— recovering missing patches of data in 2 D  images. This strategy of simultane­

ously penalizing the divergence of a n o r m a l  field a n d  the m i s m a t c h  of this field with the 

i m a g e  gradient is closely related to the total curvature penalty function used in this p a ­

per. T h e  formulation proposed in this paper emphasizes the processing of normals o n  an 

arbitrary surface manifold (rather than the flat g e o m e t r y  of an  image), with an explicit re­

lationship to fourth-order surface flows. Furthermore, this paper establishes n e w  directions 

for surface flows—  toward edge-preserving surface s m o othing a n d  feature enhancement.



Figure 3.3: F l o w  chart

In this section, w e  will generalize [17] to the intrinsic Laplacian of m e a n  curvature for level 

set surfaces, a n d  introduce a m e t h o d  for breaking it into t w o  simpler P D E s .  This pair of 

equations is solved b y  allowing the surface shape to lag the normals as they are filtered a nd 

then catch u p  b y  a separate process. Figure 3.2 s h o w s  these three step process graphically 

in 2 D — shapes give rise to n o r m a l  m a ps, which, w h e n  filtered, give rise to n e w  shapes. In 

the limit, this approach is equivalent to solving the full-blown, intrinsic fourth-order flow, 

but it generalizes to a w i d e  range of processes a n d  m a k e s  n o  assumptions about the shapes 

of the solutions. In Sec. 4, w e  s h o w  results for several different kinds of surface filters. 

T h e  appendix describes a numerically stable discrete solver for the system of equations.

3 . 1  L e v e l  s e t  m e t h o d s

T h e  remainder of this paper addresses the higher-order g e o m e t r y  of implicit surfaces, i.e. 

level sets. E v e n  though very g o o d  surface fairing results have b e e n  obtained with meshes, 

there are s o m e  d r a w b a c k s  to using m e s h e s  a n d  other parametric m o d e l s  for purposes other 

than simple smoothing (i.e. l o w  pass filtering). W e  believe that level set m e t h o d s  [20, 21] 

are better suited for a w i d e  range of surface-processing for the following reasons.

1. S o m e  surface processes, such as anisotropic diffusion a n d  high-boost filtering, have 

the capability of introducing n e w  features— a fundamental difference f r o m  s m o o t h ­

ing. M e s h e s  d o  not f o r m  discontinuities well unless the edges of the face triangles 

coincide with the edges of the surface.



2. A n y t h i n g  m o r e  than a m o d e s t  a m o u n t  of smoothing is likely to evolve the surface far 

f r o m  its original shape. This requires the creation a n d  deletion of faces in m e s h e s  to 

maintain the original resolution. Implicit surfaces d o  not exhibit this problem.

3. Fo r  surface reconstruction, such as f r o m  range i m a g e r y  or t omographic data, the 

evolving surface c an undergo topological changes [3, 4]. Surface m e s h e s  d o  not 

(readily) allow topological changes, w h e reas level set surfaces do.

T o  facilitate the discussion, w e  use the Einstein notation convention, w h e r e  the subscripts 

indicate tensor indices, a n d  repeated subscripts within a product represent a s u m m a t i o n  

over the index (across the dimensions of the underlying space). Furthermore, w e  use the 

convention that subscripts o n  quantities represent derivatives, except w h e r e  they are in 

parenthesis, in w h i c h  case they refer to a vector-valued variable. Thus, fy. is the gradient 

vector of a scalar quantity fy : IR” i->- IR. T h e  Hessian is fy.j, a n d  the Laplacian is fy.. A  vector 

field is v ^ , w h e r e  v : IR” i->- IR”, a n d  the divergence of that field is v ^.. Scalar operators,

such as differentials b e have in the usual way. Thus, gradient m a g n i t u d e  is |0;| =  a nd 

the differential for a coordinate system is d x ^ =  d x 1d x 2 .. .d X”.

Level set surface m o d e l s  rely o n  the notion of a regular surface, w h i c h  is a collection of 3 D  

points, ,y, with a topology that allows each point to be m o d e l e d  locally as a function of 

t w o  variables. W e  can describe the deformation of such a surface using the 3 D  velocity of 

each of its constituent points, i.e., d s ^ ( t )  j d t  for all E  y .  If w e  represent the surface 

implicitly at each time t, then

^ = { s (f) « l  fy(s(0M , » )  = o } .  (3.1)

Notice that surfaces defined in this w a y  divide a v o l u m e  into t w o  parts: inside (fy >  0) a nd 

outside (fy <  0). It is c o m m o n  to choo s e  fy to be  the signed distance transform of 5?, or an 

approximation thereof.

T h e  surface remains a level set of fy over time, a n d  thus taking the total derivative with 

respect to time (using the chain rule) gives

dfy d s (j)

~ d t = ~ (l)j~ d r  (3-2)

Notice that fyj is proportional to the surface normal, a n d  thus d S j  j d t  affects fy only in the 

direction of the surface n o r m a l —  surface m o t i o n  in a n y  other direction is merely a c h a n g e  

in the parameterization. U s i n g  this framework, the P D E  o n  fy that describes the m o t i o n  of 

a surface b y  m e a n  curvature, as in (2.1), is

dfy fyijfyifyj 

dt fykfyk



T h e  following sections give the mathematical description of the process outlined in Fig. 3.3. 

First w e  will derive the energy functional for minimizing the total curvature of a n o r m a l  

m a p .  T h e  first variation of the total curvature results in a second-order P D E  o n  the normals. 

This process is denoted in Fig. 3.3 as the j d N  loop. Next, in Sec. 3.3, w e  s h o w  another 

energy functional for fitting a surface to an  evolved n o r m a l  m a p ,  resulting in a second- 

order P D E  o n  h . This is the d  d h  loop in Fig. 3.3. Finally, w e  will s h o w  that the overall 

process of simultaneously solving these t w o  P D E s  as s h o w n  in Fig. 3.3 is equivalent to 

I L M C F .  This establishes the mathematical foundation of the proposed method.

3 . 2  I n t r i n s i c  L a p l a c i a n  o f  m e a n  c u r v a t u r e  f l o w  f o r  n o r m a l  

m a p s

W h e n  using implicit representations o n e  m u s t  account for the fact derivatives of functions 

defined o n  the surface are c o m p u t e d  b y  projecting their 3 D  derivatives onto the tangent 

plane of the surface. Let N  i : IR3 S 3 be the n o r m a l  m a p ,  w h i c h  is a field of normals 

that are e v e r ywhere perpendicular to the family of e m b e d d e d  isosurfaces of h — thus N ^  =  

§ i!s/4^k- T h e  3 x 3  projection matrix for the implicit surface n o r m a l  is P (jj) =  N ^ N ^ y  

a n d  P j V t y  returns the projection of onto . Let I j  be  the identity matrix. T h e n  

the projection onto the plane that is perpendicular to the vector field N ^  is the tangent 

projection operator, T j =  I P j . U n d e r  n o r m a l  circumstances the n o r m a l  m a p  N ^  

is derived f r o m  the gradient of h, a n d  T  j  projects vectors onto the tangent planes of the 

level sets of h . H o w e v e r ,  the computational strategy w e  are proposing allows h to lag the

n o r m a l  m a p .  Therefore, the tangent projection operators differ, a n d  w e  use T h to denote
ij

projections onto the tangent planes of the level sets of h  a n d  T j  to denote projections onto

planes perpendicular to the n o r m a l  m a p .

T h e  shape matrix [22] of a surface describes its curvature independent of the parameteriza­

tion. T h e  shape matrix of an implicit surface is obtained b y  differentiating the n o r m a l  m a p  

a n d  projecting that derivative onto the tangent plane of the surface. T h e  Euclidean n o r m  of 

the shape matrix is the total curvature, K. T h u s

K

If N  i is derived directly f r o m  h , this gives

(3.4)

K
T h-, h u T i

(3.5)

2



T h e  strategy is to treat these expressions as penalty functions, a n d  develop surface process­

ing m e t h o d s  b y  solving the P D E s  that result f r o m  the first variation of surface integrals 

over these penalty functions. Notice, that if w e  take the first variation of (3.5) w e  obtain 

a fourth-order P D E  o n  0, but if w e  take the first variation of (3.4), with respect to N ^ , 

allowing 0  to remain fixed, w e  obtain a second-order P D E  o n  N ^ . T o  see the first variation

of (3.4) w e  re-express the n o rm, using the identity | |A| |2 =  T r a c e [ A T A]. This gives

2

K
N «)j

0 k0 k

(3.6)

a n d  thus the penalty function for the total surface curvature is

2

N

2

0 k 0 k

d x (3.7)

A s  w e  process the n o r m a l  m a p  N ^ , letting 0  lag, w e  m u s t  ensure that it maintains the unit 

length constraint, N ^ N ^  =  1. This is expressed in the penalty function using L a g r a n g e  

multipliers. T h e  constrained penalty is

N
(N (0) +  x ( ^  (N (k)N (k) 1) d x (l) ’

w h e r e  A ( x t
(O'

(f)/ j y  K w
is the L a g r a n g e  multiplier at x ^

(3.8)

U s i n g  the first variation a n d  solving for

X  introduces a projection operator T j  o n  the first variation of 1 

length. T h u s  the first variation of (3.8) with respect to N (j) is

w h i c h  keeps N r) unit

T
N d

M d N ,
j

N  

" \'j)
N (3.9)

A  gradient descent o n  this metric d N ^ / d t  =  — d & / d N ^ , results in a P D E  that a smoothes 

the n o r m a l  m a p  b y  minimizing total curvature while maintaining the unit n o r m a l  constraint. 

Notice that this is precisely the s a m e  as solving the constrained diffusion equation o n  N ^  

using the m e t h o d  of solving P D E s  o n  implicit manifolds described in [23]. This derivation 

is w h a t  w e  consider the b a s e  c as e— subsequent sections of this paper will introduce other 

processes o n  the n o r m a l  maps.

2

m

3 . 3  S u r f a c e  e v o l u t i o n  v i a  n o r m a l  m a p s

W e  hav e  s h o w n  h o w  to evolve the normals to m i n i m i z e  total squared curvature; however, 

the final goal is the reconstruction of the surface w h i c h  requires evolving 0, rather than the



n o r m a l  m a p .  H e nce, the next step is to relate the evolution of fy to the evolution of . 

S u p p o s e  that w e  are given the n o r m a l  m a p  N ^  to s o m e  set of surfaces, but not necessarily 

level sets of fy— as is the case if w e  filter N ^  a n d  let fy lag. W e  can manipulate fy so that 

it catches u p  to N ^  b y  minimizing a penalty function that quantifies the discrepancy. This 

penalty function is

fy fyifyi fyiN d x
j

(3.10)

w h e r e  U  IR3 is the d o m a i n  of fy. A  gradient descent o n  fy that minimizes this penalty 

function is

d(j) _  d 2 $  _  || | 

dt d(j) k

fyj

fym fym
N

jj IVfyl H fy —  H
N

(3.11)

w h e r e  H fy is the m e a n  curvature of the level set surface a n d  H N  is the induced curvature of 

the n o r m a l  m a p .  Thus, the surface m o v e s  as the difference b e t w e e n  its o w n  curvature a nd 

that of the n o r m a l  field. T h e  factor of Vfy , w h i c h  is typical with level set formulations, 

c o m e s  f r o m  the fact that w e  are manipulating the shape of the level set, w h i c h  is e m b e d d e d  

in fy, as in (3.2).

W e  propose to solve fourth-order flows o n  the level sets of fy b y  a splitting strategy, w h i c h  

entails processing the normals a n d  allowing fy to lag a n d  then catch u p  later, in a separate 

process. This is only correct if w e  k n o w  that in the limit, as the lag b e c o m e s  very small, w e  

are solving the full fourth-order P D E .  T o  s h o w  this w e  analyze o n e  iteration of the m a i n  

loop in Fig. 3.3. Before processing the normals, they are derived f r o m  0 ”, a n d  w e  have 

N " .  =  <ft" j Evolving the n o r m a l  m a p  o nc e  according to (3.9) for a small a m o u n t

of time dt gives

N ” 1

(0

N ”
T,
N d

M d N , . ,
j

dt (3.12)

If w e  immediately apply (3.11) to fit fy to this n e w  n o r m a l  m a p

H fy
N w

(3.13)

B e c a u s e  N ”̂ is derived directly f r o m  fy”, w e  have N ”̂  =  H fy, w h i c h  gives the expression 

for changes in fy in order to m a k e  u p  this infinitesimal lag:

£  = -i i*n j N

W d N , . .
j

(3.14)



W e  can express the penalty function in terms of either N ^  or h, a n d  take the first variation 

with respect to either of these quantities. T h e  relationship b e t w e e n  d & / d N ^  a n d  d ^ / d t y  

is established b y  integrating (by parts)— it is

d<S_

d h

r<>

li d N f .v 
j

(3.15)

w h e r e  T h  =  Tff as dt — v 0. T h u s  the update o n  h  after it lags N ^ ,  b y  s o m e  small a m o u n t  is

actually

d<j> ,, d &

dt k d t y 1
(3.16)

w h i c h  is a gradient descent, of the level sets of h, o n  —  the total curvature of the surface.

This analysis s h o w s  that the strategy depicted in Figs. 3.2 a n d  3.3 is a valid m e c h a n i s m  

for implementing the base-case, w h i c h  is I L M C F  o n  implicit, level set surfaces. H o w e v e r ,  

this strategy has broader implications. Sec. 4.2 will s h o w  that other choices of (there are 

m a n y  options f r o m  the i m a g e  processing literature) will produce different kinds of P D E -  

based surface processing algorithms. Furthermore, Sec. 4.2.1 will demonstrate that the 

general strategy of processing normals separately f r o m  surfaces, in a t w o  phase process, 

offers a set of useful tools that g o  b e y o n d  the strict variational framework.



C h a p t e r  4  

A p p l i c a t i o n s

4 . 1  I s o t r o p i c  D i f f u s i o n

W e  have discussed I L M C F  in detail in Sec. 3. H e r e  w e  will present s o m e  results of this 

diffusion process. Figure 4.1 s h o w s  m o d e l  at various stages of the diffusion process. T w o  

iterations of the m a i n  processing loop in Fig. 3.3 are e n o u g h  to r e m o v e  the smallest scale 

features f r o m  the model. Later iterations start s m o othing the global shape of the model. 

T h e  m o d e l  s h o w n  in this e x a m p l e  consists of a 3 5 6  x  161 x  2 51 volume. T h e  computation 

time required for o n e  iteration of the m a i n  processing loop for this m o d e l  is around 30 

minutes o n  a 1.7 G h z  Intel processor. T h e  m o d e l s  used in the e x a m p l e s  in the rest of this 

paper approximately hav e  the s a m e  level of complexity.

4 . 2  A n i s o t r o p i c  D i f f u s i o n

Mi n i m i z i n g  the total squared curvature of a surface w o r k s  well for smoothing surfaces a nd 

eliminating noise, but it also d e f orms or r e m o v e s  important features. This type of s m o o t h ­

ing is called isotropic because it corresponds to solving the heat equation o n  the n o r m a l  

m a p  with a constant, scalar conduction coefficient. This is equivalent to a convolution of 

the surface normals with a Gaussian kernel that is isotropic (using a metric that is flat o n  the 

surface). Isotropic diffusion is not particularly effective if the goal is to de-noise a surface 

that has an underlying structure with fine features. This scenario is c o m m o n  w h e n  e x ­

tracting surfaces f r o m  3 D  i m a g i n g  modalities, such as magnetic resonance i m a g i n g  (MRI),

15



(c) (d)

Figure 4.1: Various stages of isotropic diffusion: (a) original model, (b) after 2 iterations, 

(c) after 8 iterations, a n d  (d) after 25 iterations.



in w h i c h  the m e a s u r e m e n t s  are inherently noisy. Figure 4.2(a) is an e x a m p l e  of the skin 

surface, w h i c h  w a s  extracted, via isosurfacing, f r o m  an M R I  data set. Notice that the r o u g h ­

ness of the skin is noise, an  artifact of the m e a s u r e m e n t  process. This m o d e l  is also quite 

c o m p l e x  because, despite our best efforts to avoid it, the isosurfaces include m a n y  c o n v o ­

luted passages u p  in the sinuses a n d  around the neck. A s  an  indication of this complexity, 

consider that m a r c h i n g  cubes produces 543,000 triangles f r o m  this volume. This is over 10 

times the n u m b e r  of faces in m a n y  of the “standard” m o d e l s  used to demonstrate surface 

processing algorithms [2, 7]. T h e  strategy in this paper is to treat such surfaces as they are 

measured, in their volumetric representation, rather than process this data indirectly via a 

simplified, fitted surface m e s h  [24].

Isotropic diffusion, s h o w n  in Fig. 4.2(b), is marginally effective for de-noising the h ead 

surface. Notice that the sharp edges around the eyes, nose, lips a n d  ears are lost in this 

process. T h e  p r o b l e m  of preserving features while s m o othing a w a y  noise has b e e n  studied 

extensively in c o m p u t e r  vision. Anisotropic diffusion introduced in [25] has b e e n  very suc­

cessful in dealing with this p r o b l e m  in a w i d e  range of images. P e rona &  M a l i k  proposed 

to replace Laplacian smoothing, w h i c h  is equivalent to the heat equation d I / d t  =  V  • VI, 

with a nonlinear P D E : a

d I / d t  =  V -  [g(|| V I  ||) VI], (4.1)

w h e r e  I is generally the grey-level image, a n d  g  is the e d g e  stopping function, w h i c h  

should be a decreasing sigmoidal function. P e r o n a  &  M a l i k  suggested using e ~ lVIl Z2 u ,

w h e r e  u  is a positive, free parameter that controls the level of contrast of edges that can 

affect the smoothing process. Notice that g(|| V I  ||) approaches 1 for || V I  ||<C u  a n d  0 for 

|| V I  ^  u  E d g e s  are generally associated with large i m a g e  gradients, a n d  thus diffusion 

across edges is stopped while regions that are relatively flat u n d ergo smoothing. A  m a t h e ­

matical analysis s h o w s  that solutions to (4.1) ca n  actually exhibit an  inverse diffusion near 

edges, a n d  can e n h a n c e  or sharpen s m o o t h  edges that hav e  gradients greater than u  [19].

U s i n g  anisotropic diffusion for surface processing with m e s h e s  w a s  p roposed in [13]. In 

that work, the authors m o v e  the surface according to a weighted s u m  of principle cur­

vatures, w h e r e  the weighting d e p ends o n  the surface geometry. This is not a variational 

formulation, a n d  is thereby not a generalization of (4.1). B e c a u s e  it performs a c o n v e x  

re-weighting of principle curvatures, it can reduce smoothing, but cannot exhibit sharpen­

ing of features. Furthermore, the level set implementation w e  are proposing allows us to 

produce results o n  significantly m o r e  c o m p l e x  surface shapes.

T h e  generalization of anisotropic diffusion as in (4.1) to surfaces is achieved f r o m  varia­

tional principles b y  minimizing the penalty function

r K2
< //= e - ^ d x , . , ,  (4.2)
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Figure 4.2: Processing results o n  the M R I  h e a d  model: (a) original isosurface, (b)) isotropic 

diffusion of surface normals, a n d  (c) anisotropic diffusion of surface normals. T h e  small 

protrusion under the nose is a physical m a r k e r  used for registration.



w h e r e  K 2 is c o m p u t e d  f r o m  according to (3.4). T h e  first variation with respect to the 

surface normals gives gives a vector-valued anisotropic diffusion o n  the level set surface—  

a straightforward generalization of (4.1). If w e  take the first variation with respect to 0, 

w e  obtain a fourth-order P D E ,  w h i c h  is a modified version of I L M C F  that preserves or 

enhances areas of high curvature, w h i c h  w e  will call creases. Creases are the generalization 

of edges to surfaces. W e  will solve this variational p r o b l e m  b y  solving the second-order 

P D E  o n  the normals using the f r a m e w o r k  introduced in Sec. 3. T h e  strategy is the s a m e  as 

that in Fig. 3.3, w h e r e  w e  replace j d N  with the first variation of the penalty function 

f r o m  (4.2). This gives

M d N , . ,
0)

T
N

Qj) g  (K ) N (4.3)

w h e r e  K  is the total curvature as in (3.4), a n d  the edge-stopping function b e c o m e s

{K ) =  e 2v2 (4.4)

T h e  rest of the process s h o w n  in Fig. 3.3 remains unchanged.

2

De-noising of m e a s u r e m e n t  data is o n e  of the m o s t  important applications of anisotropic 

diffusion. T h e  differences b e t w e e n  anisotropic diffusion a n d  isotropic diffusion can clearly 

b e  observed in Fig. 4.2(c). A r o u n d  the s m o o t h  areas of the original m o d e l  such as the 

forehead a n d  the cheeks, there is n o  noticeable difference in the results of the t w o  pro­

cesses. H o w e v e r ,  very significant differences exist around the lips a n d  the eyes. T h e  

creases in these areas, w h i c h  h ave b e e n  eliminated b y  isotropic diffusion, are preserved 

b y  the anisotropic process.

R u n n i n g  anisotropic diffusion for m o r e  time steps produces surfaces that h ave piecewise 

s m o o t h  normals (analogous to the behavior of the P e r o n a  a n d  M a l i k  equation for images), 

w h i c h  corresponds to smooth, almost planar, surface patches b o u n d e d  b y  sharp creases. 

Figure 4.3 s h o w s  the evolution of the dragon m o d e l  with anisotropic diffusion. After a 

f e w  iterations of the overall loop in Fig. 3.3 the smallest details, such as the scales of the 

dragon's skin, disappear, as in Fig. 4.3(b). After s o m e  m o r e  iterations in Fig. 4.3(c), the 

finest details of the face a n d  the spikes o n  the ridge of the b a c k  h ave b e e n  suppressed. 

G o i n g  even further, observe that the surface is starting to b e c o m e  polyhedral in Fig. 4.3(d).

T h e  non-linear progression of elimination of details f r o m  the smallest scale to the largest in 

Fig. 4.3 suggests a possibility for i m p r o v e d  surface compression strategies, w h e r e  details 

a b o v e  a desired scale are kept effectively unchanged. This is in sharp contrast to isotropic 

diffusion a n d  m e a n  curvature flow, w h i c h  distorts all features a n d  generates sharp discon­

tinuities as features disappear.



Figure 4.3: Various stages of anisotropic diffusion: (a) original model, (b) after 2 iterations, 

(c) after 6 iterations, a n d  (d) after 2 6  iterations.



(a) (b)

Figure 4.4: E n h a n c e d  surface (a) after 1, a n d  (b) 2 iterations of high-boost filtering.

T h e s e  results support our proposition that processing the normals of a surface is the nat­

ural generalization of i m a g e  processing. Processing normals o n  the surface is the s a m e  

as processing a vector-valued i m a g e  (such as a color image) with a distance metric that 

varies over the domain. This is in contrast to processing the points o n  a surface directly 

with lower-order flows, w h i c h  offers n o  clear analogy to m e t h o d s  established in i m a g e  

processing.

4.2.1 High-boost filtering

T h e  surface processing f r a m e w o r k  introduced in Sec. 3 is flexible a n d  allows for the i m ­

plementation of eve n  m o r e  general i m a g e  processing methods. W e  demonstrate this b y  

describing h o w  to generalize i m a g e  e n h a n c e m e n t  b y  high-boost filtering to surfaces.

A  high-boost filter has a frequency transform that amplifies high frequency components. In 

i m a g e  processing this can be  achieved b y  u n s h a r p  m a s k i n g  [26]. Let the low-pass filtered 

version of an i m a g e  I be I. T h e  high-frequency c o m p o n e n t s  are I =  I — I. T h e  high-boost 

output is s u m  of the input i m a g e  a n d  s o m e  fraction of its high-frequency components:

Iout =  I +  a / = ( 1  +  a  I -  aI, (4.5)

w h e r e  a  is a positive constant that controls the a m o u n t  of high-boost filtering.



This s a m e  algorithm applies to surface normals b y  a simple modification to the flow chart 

in Fig. 3.3. Recall that the d ^  j d N  loop produces N ”̂ 1. Define a n e w  set of n o r m a l  vectors 

b y i

(1 +  a ) N ”, -  a N ”f 1

N (i) =  TT7------ ^
W  ||(i +  a ) ^ » )- a A ^ « + 1||

This n e w  n o r m a l  m a p  is then input to the d  dfy catch-up loop. T h e  effect of (4.6) is 

to extrapolate f r o m  the previous set of normals in the direction opposite to the set of nor­

mals obtained b y  isotropic diffusion. Recall that isotropic diffusion will s m o o t h  areas with 

high curvature a n d  not significantly affect already s m o o t h  areas. Processing the loop with 

the modification of (4.6) will have the effect of increasing the curvature in areas of high 

curvature, while leaving s m o o t h  areas relatively unchanged. T h u s  w e  are able to obtain 

high quality surface e n h a n c e m e n t  o n  fairly c o m p l e x  surfaces of arbitrary topology, as in 

Figs. 4.4 a n d  4.5. T h e  effects of high-boost filtering c an be observed b y  c o m p a r i n g  the 

original dragon m o d e l  in Fig. 4.3 with the high-boost filtered m o d e l  in Fig. 4.4. T h e  scales 

o n  the skin a n d  the ridge b a c k  are enhanced. Also, note that different a m o u n t s  of e n h a n c e ­

m e n t  can be  achieved b y  controlling the n u m b e r  of iterations of the m a i n  loop. T h e  degree 

of low-pass filtering used to obtain N ”̂ 1 controls the size of the features that are enhanced. 

Figure 4.5 s h o w s  another e x a m p l e  of high-boost filtering; notice the e n h a n c e m e n t  of fea­

tures particularly o n  the wings.



(c) (d)

Figure 4.5: High-boost filtering: (a) original model, (b) after filtering, (c) close-up of orig­

inal, a n d  (d) filtered model.



C h a p t e r  5

C o n c l u s io n

T h e  natural generalization of i m a g e  processing to surfaces is via the normals. Variational 

processes o n  the surface hav e  corresponding variational formulations o n  the surface nor­

mals. T h e  generalization of image-processing to surface normals, however, requires that 

w e  process the normals using a metric o n  the surface manifold, rather than a simple, flat 

metric, as w e  d o  with images. In this framework, the diffusion of the surface normals (and 

corresponding motions of the surface) is equivalent to particular fourth-order flow, the in­

trinsic Laplacian of m e a n  curvature. B y  processing the normals separately, w e  can solve 

a pair of coupled second-order equations instead of a four-order equation. Typically, w e  

allow o n e  equation (the surface) to lag the other, but as the lag gets very small, it should not 

matter. W e  solve these equations using implicit surfaces, representing the implicit function 

o n  a discrete grid, m o d e l i n g  the deformation with the m e t h o d  of level sets. This level set 

implementation allows us to separate the shape of the m o d e l  f r o m  the processing m e c h a ­

nism.

T h e  m e t h o d  generalizes because because w e  ca n  d o  virtually anything w e  w i s h  with the 

n o r m a l  m a p .  A  generalization of anisotropic diffusion to a constrained, vector-valued func­

tion, defined o n  a manifold, gives us a smoothing process that preserves creases. If w e  w a n t  

to e n h a n c e  the surface, w e  can e n h a n c e  the normals a n d  allow the surface to catch up. B e ­

cause of the implementation, the m e t h o d  applies equally well to a ny surface that can be 

represented in a volume. Consequently, our results s h o w  a level of surface complexity that 

goes b e y o n d  that of previous methods.

Future w o r k  will study the usefulness of other interesting i m a g e  processing techniques such 

as total variation [27] a n d  local contrast enhancement. T o  date, w e  h ave dealt with post 

processing surfaces, but future w o r k  will c o m b i n e  this m e t h o d  with segmentation a n d  re­

24



construction techniques. T h e  current shortcoming of this m e t h o d  is the computation time, 

w h i c h  is significant. H o w e v e r ,  the process lends itself to parallelism, a n d  the advent of 

cheap, specialized, vector-processing h a r dware promises significantly faster i m p l e m e n t a ­

tions.
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A p p e n d i x  A  

N u m e r i c a l  I m p l e m e n t a t i o n

B y  e m b e d d i n g  surface m o d e l s  in volumes, w e  hav e  converted equations that describe the 

m o v e m e n t  of surface points to nonlinear, P D E s  defined o n  a volume. T h e  next step is 

to discretize these P D E s  in space a n d  time. In this paper, the e m b e d d i n g  function 0  is 

defined o n  the v o l u m e  d o m a i n  U  a n d  time. T h e  P D E s  are solved using a discrete sampling 

with forward differences along the time axis. T h e r e  are t w o  issues with discretization: 

(i) the accuracy a n d  stability of the numerical solutions, (ii) the increase in computational 

complexity introduced b y  the dimensionality of the domain.

A . 1  N o t a t i o n

For brevity, w e  will discuss the numerical implementation in 2 D —  the extension to 3 D  

is straightforward. T h e  function 0  : U  ^  IR has a discrete sampling 0 [ p , q ], w h e r e  [p,q] 

is a grid location a n d  §\p,q] =  0 { x p ,yq ). W e  will refer to a specific time instance of this 

function with superscripts, i.e. 0 n [ p ^ ^  =  0 { x p ,yq itn) . F or a vector in 2-space v, w e  use 

v ^  a n d  v ^  to refer to its c o m p o n e n t s  consistent with the notation of Sec. 3. In our calcula­

tions, w e  n e e d  three different approximations to first-order derivatives: forward, b a c k w a r d  

a n d  central differences. W e  denote the type of discrete difference using superscripts o n  a 

difference operator, i.e., 8  W  for forward differences, 8  ̂  for b a c k w a r d  differences, a nd 

8  for central differences. Fo r  instance, the differences in the x  direction o n  a discrete grid 

with unit spacing are

8X + ) 0 Ip a ] =  0 [ p +  1  q ] -  0 Ip a I
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8 X > 0 lp,<ll =  0 l p , < l l - M p -  1 «], a nd ( A .1) 

m M ]  A f l p + l , „ ] - 0 [ p - l , d

w h e r e  the time superscript has b e e n  left off for conciseness. T h e  application of these dif­

ference operators to vector-valued functions denotes c o m p o n e n t w i s e  differentiation.

A . 2  N u m e r i c a l  s o l u t i o n  t o  I L M C F

In describing the numerical solution to I L M C F ,  w e  will refer to the flow chart in Fig. 3.3 

for o ne time step of the m a i n  loop. H enc e ,  the first step in our numerical implementation is 

the calculation of the surface n o r m a l  vectors f r o m  0 ”. Recall that the surface is a level set 

of 0 ” as defined in (3.1). Henc e ,  the surface n o r m a l  vectors can be c o m p u t e d  as the unit 

vector in the direction of the gradient of 0 ” 

differences as

T h e  gradient of 0 ” is c o m p u t e d  with central

0 ?[p q ]

a n d  the n o r m a l  vectors are initialized as

8 x 0”

8 y 0”[ p o \

(A.2)

N ^  °[ p a ] W I p a M 11 W I p a ] (A.3)

B e c a u s e  0 ” is fixed a n d  allowed to lag behind the evolution of , the time steps in the 

evolution of N (» are denoted with a different superscript, u. Fo r  this evolution, d N (i)/ dt =

— d & / d , N ^  is i m p l e m e n t e d  with smallest support area operators. F or I L M C F  d & / d N ^  

is given b y  (3.9) w h i c h  w e  will rewrite here c o m p o n e n t  b y  co m p o n e n t .  T h e  Laplacian of 

a function c an be  applied in t w o  steps, first the gradient a n d  then the divergence. In 2D ,  

the gradient of the normals produces a 2 2 matrix, a n d  the divergence operator in (3.9) 

collapses this to a 2 1 vector. T h e  diffusion of the n o r m a l  vectors in the tangent plane 

of the level-sets of 0, requires us to c o m p u t e  the flux in the x  a n d  y  directions, w h i c h  w e  

M uix M uiy . T h e  “c o l u m n s” of the flux matrix are c o m p u t e d  independentlydenote M u
(lJ)

as

MU

M U »

8l+ %

8 l+% N U v

0

W \  Sj+)f
) ii n  ii 
j0 J”

0 ”

(A.4)

(A.5)

a  ii / ii Y k ii

w h e r e  the time index ” remains fixed as w e  increment u . Derivatives of the n o r m a l  vectors 

are c o m p u t e d  with forward differences; therefore they are staggered, located o n  a grid that
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Figure A.1: C o m p u t a t i o n  grid

is offset f r o m  the grid w h e r e  0  a n d  N ^  are defined, as s h o w n  Fig. A.1 for the 2 D  case. 

Furthermore, notice that since the offset is half pixel only in the direction of the differ­

entiation, the locations of d ^ N ^  a n d  d ^ N ^  are different, but are the s a m e  locations 

as M X  a n d  a n d  M y  respectively. T o  evaluate (A.4) a n d  (A.5), 0 n N ^ .  m u s t  c o m p u t e d  

at p  1 2 q  a n d  p  q  1 2 , respectively. T h e s e  computations are also d o n e  with the 

smallest support area operators, using the s y m m etric 2 3 grid of samples around each 

staggered point, as s h o w n  in Fig. A .1 with the h e a v y  rectangle. F or instance,

0  p q \

^ ( 8 y 0[p,q] +  8y0 [ p + l , q ] )  

^ ( S x 0 [ p , q ]  +  Sx4 [ p , q + l ]

and

q

(A.6)

B a c k w a r d s  differences of the flux matrix are used to c o m p u t e  the divergence operation in 

(3.9)
1 u

d &

d N (,
i

S t ) M (ix) +  S y - ' M i y ) (A.7)

Notice that b a c k w a r d s  difference of M ^ , is defined at the original 0  grid location \ p q ], 

a n d  the s a m e  holds for M uiy . T h u s  all the c o m p o n e n t s  of d  d N  i are located o n  the 

original grid for 0. U s i n g  the tangential projection operator in (3.9), the n e w  set of n o r m a l  

vectors are c o m p u t e d  as

N f t 1
(')

N u  T N d

d N

u



Nh + " d $  '
u

' d $  '

d N (.v 
. (0.

dN,.,
. {]).

N j ) N U)
(A.8)

Starting with the initialization in (A.3) for u  =  0, w e  iterate (A.8) for a fixed n u m b e r  of 

steps. In other words, w e  d o  not a i m  at minimizing the energy given in (3.8) in the d ^  j d N  

loop of Fig. 3.3; w e  only reduce it. T h e  minimization of total m e a n  curvature as a function 

of 0  is achieved b y  iterating the m a i n  loop in (A.3). In Sec. 3.3, it w a s  s h o w n  that to 

m i n i m i z e  total m e a n  curvature, the d  d N  loop should b e  processed for only o n e  time 

step before processing the d Q } j d 0  loop in every iteration of the m a i n  loop. H o w e v e r ,  the 

d @ f d 0  loop is the m o s t  computationally expensive part of the algorithm a n d  run-times can 

b e  reduced b y  running the m a i n  loop as f e w  times as possible. T o  this effect, w e  f o und that 

the d & j d N  loop can be  processed for multiple time steps before m o v i n g  onto the d ^  j d 0  

loop. Moreover, the n u m b e r  of iterations of the m a i n  loop necessary to obtain the s a m e  

result is reduced with this approach (25 iterations or less per m a i n  loop for the e x a m p l e s  in 

this paper).

u

O n c e  the evolution of N  is concluded, 0  is evolved to catch u p  with the n e w  n o r m a l  vectors 

according to (3.11). W e  denote the evolved normals b y  N n̂ 1. T o  solve (3.11) w e  m u s t

calculate H 0 a n d  H N 'n+1. H N 'n+1 is the induced m e a n  curvature of the n o r m a l  m a p ;  in 

other words, it is the curvature of the hypothetical target surface that fits the n o r m a l  m a p .  

Calculation of curvature f r o m  a field of normals is

H Nn+1 «  8xN n + 1 +  8 y N ^ + 1, (A.9)

w h e r e  w e  h ave used central differences o n  the c o m p o n e n t s  of the n o r m a l  vectors. H N n  1 

needs to be  c o m p u t e d  o nce at initialization as the n o r m a l  vectors rema i n  fixed during the 

cathc u p  phase. Let v be  the time step index in the d @  j d 0  loop. H 0 is the m e a n  curvature 

of the m o v i n g  level set surface at time step v a n d  is calculated f r o m  0  with the smallest 

area of support:

\\0]\P+hQ}\\ y Wtjfoq+hn

w h e r e  the off-grid gradients of 0  in the denominator are calculated using the 2 x 3  staggered 

n e i g h borhood as in (A.6).

T h e  P D E  in (3.11) solved with a finite forward differences, but with the u p - w i n d  s c h e m e  

for the gradient m a g n i t u d e  [20], to avoid overshooting a n d  maintain stability. T h e  u p - w i n d  

m e t h o d  c o m p u t e s  a one-sided derivative that looks in the u p - w i n d  direction of the m o v i n g  

w a v e  front, an d  thereby avoids overshooting. Moreover, because w e  are interested in only 

a single level set of 0, solving (3.11) over all of U  is not necessary. B e c a u s e  different level



sets evolve independently, w e  can c o m p u t e  the evolution of 0  only in a n a r r o w  b a n d  around 

the level set of interest a n d  re-initialize this b a n d  as necessary [28, 29]. S ee [21] for m o r e  

details o n  numerical s c h e m e s  a n d  efficient solutions for level set methods.

U s i n g  the u p w i n d  s c h e m e  a n d  n a r r o w  b a n d  methods, 0 V + 1 is c o m p u t e d  f r o m  0 v according 

to (3.11) using the curvatures c o m p u t e d  in (A.9) a n d  (A.10). This loop is iterated until the 

energy in (3.10) ceases to decrease; let vfmal denote the final iteration of this loop. T h e n  

w e  set 0  for the next iteration of the m a i n  loop (see Fig. 3.3) as 0 ”+ 1 =  0 vfmal a n d  repeat 

the entire procedure. T h e  n u m b e r  of iterations of the m a i n  loop is a free parameter that 

generally determines the extent of processing, i.e. the a m o u n t  of smoothing for I L M C F .


