
Log ica l S e n so r S y s te m s 1

Tom H enderson and Esther Shilcrat

U U C S -84 -002
9 March 1984

Departm ent of Com puter Science
The University of Utah

Salt Lake City, Utah 84112

A b strac t

M ulti-sensor systems require a coherent and efficient treatm ent of the inform ation

provided by the various sensors. We propose a fram ework, the Logical Sensor

Specification System, in which the sensors can be abstractly defined in term s of

computational processes operating on the output from other sensors. Various properties

of such an organization are investigated, and a particular im plem entation is described.

' This work was supported In part by the System Development Foundation and NSF Grants ECS-8307483 and

MCS-82-21 750

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277720?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

1. Introduction
W e describe and m otivate a particular sensor system methodology, that of Logical

Sensors, and its linguistic implementation, the Logical Sensor Specification Language.

The overall goal of Logical Sensors and the Logical Sensor Specification Language is to

aid in the coherent synthesis of efficient and reliable sensor systems (see [4, 5, 17]).

Both the availability and need for sensor systems is growing, as is the com plexity in

term s of the number and kind of sensors within a system. For example, most robotic

sensor-based systems to date have been designed around a single sensor or a small

number of sensors, and ad hoc techniques have been used to integrate them into the

com plete system and for operating on their data. In the future, however, such systems

must operate in a reconfigurable m ulti-sensor environment; for example, there m ay be

several cameras (perhaps of different types), active range finding systems, tactile pads,

and so on. In addition, a wide variety of sensing devices, including m echanical,

electronic, and chemical, are available for use in sensor systems, and a single sensor

system may include several kinds of sensing devices. Thus, at least two issues regarding

the configuration of sensor systems arise:

1. How to develop a coherent and efficient treatm ent of the information provided
by many sensors, particularly when the sensors are of various kinds.

2. How to allow for sensor system reconfiguration, both as a means toward
greater tolerance for sensing device failure, and to facilitate future
incorporation of additional sensing devices.

The M ulti-sensor Kernel System (MKS) has been proposed as an efficient and uniform

mechanism for dealing with data taken from several diverse sensors [6, 7, 20]. MKS has

three major components: low -level data organization, h igh-level modeling, and logical

sensor specification. The first two components of MKS concern the choice of a low -leve l

representation of real-w orld phenomena and the integration of that representation into a

meaningful interpretation of the real world, and have been discussed in detail

elsewhere [20], The logical sensor specification component aids the user in the

configuration and integration of data such that, regardless of the number and kinds of

sensing devices, the data is represented consistently with regard to the low -leve l

organization and h igh-level modeling techniques that are contained in MKS. As such, the

logical sensor specification component is designed in keeping with the overall goal of

2

MKS, which is to provide an efficient and uniform mechanism for dealing with data taken

from several diverse sensors, as well as facilitating sensor system reconfiguration.

However, the logical sensor specification component of MKS can be used independently

of the other tw o MKS components; for example, in conjunction with any desired low -leve l

organization and high-level modeling technique. Thus, a use for logical sensors is

evident in any sensor system which is composed of several sensors, and /or where sensor

reconfiguration is desired.

The em ergence of significant m ulti-sensor systems provides a major m otivation for the

developm ent of logical sensors. Monitoring highly automated factories or complex

chemical processes requires the integration and analysis of diverse types of sensor

measurements; e.g., it may be necessary to m onitor tem perature, pressure, reaction rates,

etc. In many cases, fault tolerance is of vital concern; e.g., in a nuclear power plant [13].

Our work has been done in the context of a robotic work station where the kinds of

sensors involved include:

* cameras: an intensity array of the scene is produced,

* tactile pads: local forces are sensed,

* proximity sensors: the proximity of objects to a robot hand is sensed,

* laser range finders: the distance to surface points of objects in the scene are
produced, and

* smart sensors: special algorithms implem ented in hardware for detecting
features such as edges.

Oftentimes, if the special hardware is not available, then some of these sensors may be

im plem ented as a software/hardware combination which should be viewed as a distinct

sensor and which ultimately may be replaced by special hardware. Other examples of

sophisticated sensor systems include automatic target recognition (ATR) systems [2] and

the U tah /M IT Dextrous Hand [8]. ATR systems integrate data from three (or more)

sensors: microwave, FLIR, and LADAR. The U tah/M IT Hand includes a tactile sensing

system which is composed of tactile elem ent sensors gathered into tactile pads and

placed on the Hand.

Other principal motivations for logical sensor specification are:

3

* benefits of data abstraction: the specification of a sensor is separated from its
implementation. The m ulti-sensor system is then much more portable in that
the specifications remain the same over a wide range of implementations.
Moreover, alternative mechanisms can be specified to produce the same
sensor information but perhaps with different precision or at different rates.
Thus, several dimensions of sensor granularity can be defined. Further, the
stress on modularity not only contributes to intellectual m anageability [18] but
is also an essential com ponent of the system's reconfigurable nature. The
inherent hierarchical structuring of logical sensors further aids system
development.

* availability of smart sensors: the lowering cost of hardware combined with
developing methodologies for the transformation from high level algorithmic
languages to silicon have made possible a system view in which
hardw are/softw are divisions are transparent. It is now possible to incorporate
fairly complex algorithms directly into hardware. Thus, the substitution of
hardware for software (and vice versa) should be transparent above the
im plem entation level.

2. Related Work
The work most related, in a high level way, to logical sensor specification has been

done in com puter graphics. The need for some device-independent interactive system

has been so widely recognized in the area of graphics that the Graphical Kernel System

(GKS) is now a Draft International Standard, and is under consideration as an American

National Standard. The main idea behind GKS is to provide "a means whereby interactive

graphics applications could be insulated from the peculiarities of the input devices of

particular terminals, and thereby become portable" [16]. This was accomplished by

allowing only a restricted view of an input device; the only aspect of an input device

which could be viewed was the type of its output. Input devices so restricted are called

virtual input devices.

Criticisms of GKS have focused on the need for virtual devices to have visible aspects

other than type alone. This led to the adoption of the logical device concept, which is a

virtual device with an enlarged view whereby other details of importance are visible.

Logical sensors are also proposed as a means by which to insulate the user from the

peculiarities of input devices, which in this case are (generally) physical sensors. Thus,

for example, a sensor system could be designed around camera input, w ithout regard to

the kind of camera being used. However, in addition to providing insulation from the

4

vagaries of physical devices, logical sensor specification is also a means to create and

package "virtual" physical sensors. For example, the kind of data produced by a physical

laser range finder sensor could also be produced by tw o cameras and a stereo program.

This sim ilarity of output result is more important to the user than the fact that one way

of getting it is by using one physical device, and the other way is by using tw o physical

devices and a program. Logical sensor specification allows the user to ignore such

differences of how output is produced, and treat different means of obtaining equivalent

data as logically the same.

Another related graphics interface system is SYNGRAPH [14]. This system autom atically

generates graphical user interfaces. The user expresses the desired interface in a

modified BNF wherein a primitive input device must be declared so that a set of special

features as well as output type are visible. A gram m ar-driven approach is favored

because the syntactic description makes automated analysis of the interface possible.

The need for h igher-level robotics languages has also been articulated by Donner [3] in

his work on the OWL language. However, OWL is not a sensor specification language, but

rather a simple programming language for describing concurrent processes to control a

walking machine.

3. Logical Sensors
We have briefly touched on the role of logical sensors above. We now formally define

logical sensors.

A logical sensor is defined in terms of four parts:

1. A logical sensor name. This is used to uniquely identify the logical sensor.

2. A characteristic o u tp u t vector. This is basically a vector of types which
serves as a description of the output vectors that will be produced by the
logical sensor. Thus, the output of a logical sensor is a set (or stream) of
vectors, each of which is of the type declared by that logical sensor's
characteristic output vector. The type may be any standard type (eg., real,
integer), a user generated type, or a w ell-defined subrange of either. When
an output vector is of the type declared by a characteristic output vector (i.e.,
the cross product of the vector element types), we say that the output vector
is an "instantiation" of that characteristic output vector.

5

3. A se lecto r whose inputs are alternate subnets and an acceptance test name.
The role of the selector is to detect failure of an alternate and switch to a
different alternate. If switching cannot be done, the selector reports failure of
the logical sensor.

4. A lte rn a te Subnets. This is a list of one or more alternate ways in which to
obtain data with the same characteristic output vector. Hence, each alternate
subnet is equivalent, with regard to type, to all other alternate subnets in the
list, and can serve as backups in case of failure. Each alternate subnet in the
list is itself composed of:

* A set of in p u t sources. Each elem ent of the set must either be itself a
logical sensor, or the em pty set (null). Allowing null input permits
physical sensors, which have only an associated program (the device
driver), to be described as a logical sensor, thereby permitting uniformity
of sensor treatm ent.

* A com putation u n it over the input sources. Currently such computation
units are software programs, but in the future, hardware units may also
be used. In some cases, a special "do-nothing" com putation-unit may
be used. We refer to this unit as PASS.

A logical sensor can be viewed as a network composed of sub-netw orks which are

them selves logical sensors. Communication within a network is controlled via the flow of

data from one sub-netw ork to another. Hence, such networks are data flow networks.

Alternatively, we present the following inductive definition of a logical sensor:

A logical sensor is an acceptance test which checks (sequentially and on demand) the

output of either (base case 1):

1. A list of computation units, with specified output type (the characteristic
output vector), which require no input sources.

2. A list of computation units, with specified output type, whose input sources
are logical sensors.

Figure 1 gives a pictorial presentation of this notion. The characteristic output vector

declared for this logical sensor is (x-loc:real, y-loc:real, z-loc:real, curvature:integer). We

present tw o examples to clarify the definition of logical sensors, and in particular to show

how the inputs to a logical sensor are defined in terms of other logical sensors and how

the program accepts input from the source logical sensors, performs some com putation

on them and returns as output a set (stream) of vectors of the type defined by the

6

in p u ts fro m o th e r lo g ic a l s e n s o rs

T t H

(2.31, 1.68, 0.93, 1)

I

an 'in s ta n t ia te d '
c h a ra c te r is t ic o u tp u t v e c to r

Figure 1. Graphical View of a Logical Sensor

characteristic output vector. Figure 2 shows the logical sensor specification for a

''Camera'' which happens to have no other logical sensor inputs.

c h a ra c te r is t ic o u tp u t v e c to r

(x - lo c : in t , y - lo c : in t , in te n s ity : in t)

Figure 2. The Logical Sensor Specification of a "Camera''

The specification for a stereo camera range finder called "Range Finder" is given in Figure

3. The program "stereo" takes the output of the two cameras and computes vectors of

the form (x,y,z) for every point on the surface of an object in the field of view. The idea

is that a logical sensor can specify either a device driver program which needs no other

logical sensor input, but rather gets its input directly from the physical device and then

formats it for output in a characteristic form, or a logical sensor can specify that the

d a ta driver
program
for camera

7

camera 1
output

camera2*
output

analysis
program
for range finder

characteristic output vector
(x : real, y : real, z : real)

Figure 3. The Logical Sensor Specification of
"Range_Finder"

output of other logical sensors be routed to a certain program and the result packaged as

indicated. This allows the user to create "packages" of methods which produce

equivalent data, while ignoring the internal configurations of those "packages."

3.1. Form al A spects

Having described how logical sensors are developed and operate, we now define a

logical sensor to be a netw ork composed of one or more sub-networks, where each sub

network is a logical sensor. The computation units of the logical sensor are the nodes of

the network. Currently, the network forms a rooted directed acyclic graph. The graph is

rooted because, taken entirely, it forms a com plete description of a single logical sensor

(versus, for example, being a description of two logical sensors which share sub

networks). We also say that it is rooted because there exists a path between each sub

network and a computation unit of the final logical sensor. Logical sensors may not be

defined in term s of themselves, that is, no recursion is allowed, and hence the graph is

acyclic.

All communication within a network is accomplished via the flow of data from one sub

network to another. No explicit control mechanism, such as the use of shared variables,

alerts, interrupts, etc., is allowed. The use of such control mechanisms would decrease

the degree of modularity and independent operation of sub-networks. Hence trie

8

networks described by the logical sensor specification language are data flow networks,

and have the following properties [12]: .

* A network is composed of independently, and possibly concurrently, operating
sub-networks.

* A network, or some of its sub-networks, may communicate with its
environm ent via possibly-infinite input or output streams.

* Sub-networks are modular.

Since the actual output produced by a sub-netw ork may depend on things like hardware

failures {and because the output produced by the different sub-nets of a logical sensor

are only required to have the same type), the sub-netw orks (and hence the network) are

also indeterminate.

3.2. Logical Sensor S pecification Language

We have shown that a logical sensor has the following properties:

* A logical sensor is a network composed of sub-networks which are
them selves logical sensors.

* A logical sensor may be defined only in terms of other, previously defined,
logical sensors.

* A computation unit is an integral part of the definition of a logical sensor.

* A logical sensor produces output of the type declared by its characteristic
output vector, and the declaration of the characteristic output vector is also
an integral part of the definition of a logical sensor.

It should be noted that there may be alternate input paths to a particular sensor, and

these correspond to the alternate subnets. But even though there may be more than one

path through which a logical sensor produces data, the output will be of the type

declared by the logical sensor's characteristic output vector.

With these points in mind, a language for describing the logical sensor system can be

form ed. We give the syntax below.

g

(lo g ic a l -s e n s o r)

3.2.1. Syntax

(lo g ic a l-s e n s o r-n a m e)

(c h a r a c t e r is t ic -
o u tp u t-v e c to r)

(n a m e - ty p e - l ls t)

(s e le c to r)

(a l t e r n a t e - s u b n e t - l i s t)

(a c c e p ta n c e -te s t-n am e)

(i n p u t - l i s t)

(lo g ic a l - s e n s o r - l i s t)

(c o m p u ta tlo n -u n lt-n a ra e)

— > (lo g ic a l-s e n s o r-n a m e)
(c h a r a c te r is t ic -o u tp u t -v e c t o r)
(s e le c t o r)
(a l t e r n a t e - s u b n e t - l is t)

— > (i d e n t i f i e r)

— > (n a m e - ty p e - l is t)

— > (i d e n t i f i e r) : (ty p e)
{ ; (n a m e - t y p e - l is t) }

— > (a c c e p ta n c e -te s t-n a m e)

— > (c o m p u ta tio n -u n it-n a m e) (i n p u t - l i s t)
{ (a l t e r n a t e - s u b n e t - l i s t) } *

— > (i d e n t i f i e r)

— > (lo g ic a l - s e n s o r - l i s t) I n u l l

— > (lo g ic a l -s e n s o r)
{ (l o g i c a l - s e n s o r - l i s t) } *

— > (i d e n t i f i e r)

3.2.2. Sem antics

Below we present a high level description of the operational semantics (i.e., the

execution effect) for each rule of the grammar:

1. A logical sensor declaration provides an associated name for the logical
sensor used for identification purposes, a characteristic output vector to
declare the type of output for that logical sensor, a selector performs the test
and switch after the acceptance test and the alternate subnet list establishes
the alternative ways of providing the characteristic output vector.

2. A logical sensor name declaration associates a (unique) identifier for the
logical sensor.

3. A characteristic output vector declaration establishes the type of output for
the logical sensor.

10

4. A nam e-type list declaration establishes the precise nature of the output type
as declared by the characteristic output vector. It consists of a cross product
of types, with an associated name.

5. A selector declaration specifies the order in which the alternates in the
alternate subnet list will be tested by the acceptance test.

6. An alternate subnet list declaration establishes a series of input sources,
computation unit name tuples, thus making known which logical sensors and
computation units are part of the definition of the logical sensor being
declared.

7. An input list declaration establishes which legal input sources (either none, or
a series of logical sensors) are to be used as input to the computation unit.

8. A logical sensor list declaration establishes the set of logical sensors to be
used as input.

9. A com putation unit name declaration establishes the name of the actual
program which will execute on the declared input sources.

10. A acceptance test name declaration establishes the name of the actual
program which will be used to test the alternate subnets.

W e are also currently working on providing more formal semantics for the logical

sensor specification language. Many works provide denotational semantics (i.e., semantic

schemes which associate with each construct in the language an abstract mathem atical

object) for general data flow networks [9, 10, 12]. When such semantics have been given

for the networks represented by logical sensors, we will be able to form ally prove desired

network properties, such as that a network can execute forever [9], We will also be able

to prove that the output of a specified logical sensor has particular properties of interest

(eg., that its type matches that of the characteristic output vector).

11

3.3. Im p lem entation

We currently have tw o im plementations of the logical sensor specification language

running: a C version (called C-LSS) running under UNIX, and a functional language version

(called FUN-LSS). The C version has been described elsewhere [5] and produces a shell

script from the specification. We give details here of the functional language version.

FUN-LSS provides a logical sensor specification interface for the user and maintains a

database of s-expressions which represents the logical sensor definitions (see Figure 5).

user

v

I lo g ic a l sensor s p e c if ic a t io n in te r fa c e I
t_______________________ ________________________ ___ I

V

I lo g ic a l and p h y s ic a l sensor database I
i _ _ ___________ __ _ ____ i

Figure 5 . The L o g ic a l Sensor System In te r fa c e

The operations allowed on logical sensors include:

* C reate: a new logical sensor can be specified by giving all the necessary
information and it is inserted in the database.

* Update: an existing logical sensor may have certain fields changed; in
particular, alternative subnets can be added or deleted, program names and
the corresponding sensor lists can be changed.

* D elete: a logical sensor can be deleted so long as no other logical sensor
depends on it.

* Display: show all parts of a logical sensor or list all logical sensor names.

* Dependencies: show all logical sensor dependencies.

Appendix A gives a sample session with the logical sensor specification interface.

12

Once the logical sensors are specified, they are stored as s-expressions in the database.

In order to actually execute the logical sensor specification, it is necessary to translate

the database expressions into some executable form, e.g., to produce source fo r some

target language, and then either interpret or compile and run that source.

Our approach is displayed in Figure 6.

I lo g ic a l and p h y s ic a l sensor d atabase I
i __ i

I

I T ra n s la to r
v

I a b s tr a c t syn tax tre e s f o r FEL I
i __ i

I

I FEL C om piler
v

• “ “ ““ — •

I FEL Code I
i ___i

Figure 6 . Steps to O b ta in E xecu tab le Code

We have written a translator which converts the s-expressions in the database into

abstract syntax trees for a Function Equation Language (FEL) [11], These are then passed

to the FEL Com piler which produces a function graph which can then be evaluated, using

a combination of graph reduction and dataflow strategies. More on these topics can be

found elsewhere [17]. In that paper we discuss a methodology for configuring systems of

sensors using a functional language. The use of abstraction and of functional language

features leads to a natural and simple approach to this problem. The features of a

particular functional programming environment. Function Equation Language (FEL) running

on the REDIFLOW simulator, are exploited to develop a scheme that avoids com plicated

issues of state restoration and switching protocols. Moreover, the use of reduction

allows us to store that part of the alternate subnet list which is currently backup in a

skeletal form. Thus, a large savings in runtime space requirements may be achieved.

13

4. Fault Tolerance
The Logical Sensor Specification Language has been designed in accordance with the

view that languages should facilitate error determination and recovery. As we have

explained, a logical sensor has a selector which takes possibly many alternate subnets as

input. The selector determines errors, and attempts recovery via switching to another

alternate subnet. Each alternate subnet is an input source - computation unit pair.

Selectors can detect failures which arise from either an input source or the computation

unit. Thus, the selector together with the alternate subnets constitute a failure and

substitution device, that is, a fau lt-to lerance mechanism, and both hardware and software

fault tolerance can be achieved. This is particularly desirable in light of the fact that

"fault tolerance does not necessarily require diagnosing the cause of the fault or even

deciding w hether it arises from the hardware or software" (emphasis added) [15]. In a

m ulti-sensor system, particularly where continuous operation is expected, trying to

determ ine and correct the exact source of a failure may be prohibitively tim e-consum ing.

Substitution choices may be based on either replication or replacem ent. Replication

means that exact duplicates of the failed component have been specified as alternate

subnets. In replacem ent a different unit is substituted. Replacement of software modules

has long been recognized as necessary for software fault-to lerance, w ith the hope, as

Randall states, that using a software module of independent design will facilitate coping

"with the circumstances that caused the main component to fail" [15]. W e feel that

replacem ent of physical sensors should be exploited both with Randall's point in view,

and because extraneous considerations, such as cost, and spatial lim itations as to

placem ent ability are very likely to limit the number of purely back-up physical sensors

which can be involved in a sensor system.

4.1. Recovery Blocks

The recovery block is a means of implementing software fault tolerance [15]. A

recovery block contains a series of alternates which are to be executed in the order

listed. Thus, the first in the series of alternates is the primary alternate. An acceptance

test is used to ensure that the output produced by an alternate is correct or acceptable.

First the primary alternate is executed, and its output scrutinized via the acceptance test.

If it passes, that block is exited, otherwise the next alternate is tried, and so on. If no

alternate passes, control switches to a new recovery block if one (on the same or higher

14

level) is available; otherwise, an error results. v

Similarly, a selector tries, in turn, each alternate subnet in the list, and tests each one's

output via an acceptance test. However, while Randall's scheme requires the use of

complicated error recovery mechanisms (restoring the state, and so on), the use of a

d ata -flo w model makes error-recovery relatively easy. Furthermore, our user interface

computes the dependency relation between logical sensors [17]. This permits the system

to know which other sensors are possibly affected by the failure of a given sensor.

The general difficulties relating to software acceptance tests, such as how to devise

them, how to make them simpler than the software module being tested, and so on,

remain. It is our view that some acceptance tests will have to be designed by the user,

and that our goal is simply to accommodate the use of the test. Unlike Randall, we

envision the recovery block as a means for both hardware and software fau lt-to lerance,

and hence we also allow the user to specify general hardware acceptance tests. Such

tests may be based, for example, on data link control information, 2 -w a y handshaking and

other protocols. It is important to note that a selector must be specified even if there is

only one subnet in a logical sensor's list of alternate subnets. W ithout at least the

minimal acceptance test of a "tim e-out," a logical sensor could be placed on hold forever

even when alternate ways to obtain the necessary data could have been executed. Given

the minimal acceptance test, the selector will at least be able to signal failure to a higher

level selector which may then institute a recovery. However, we also wish to devise

special schemes for acceptance tests when the basis for substitution is replacement.

While users will often know which logical sensors are functionally equivalent, it is also

likely that not all possible substitutions of logical sensors will be considered. Thus, we

are interested in helping the user expand what is considered functionally equivalent.

Such a tool could also be used to automatically generate logical sensors.

We give an example logical sensor network in Figure 4. This example shows how to

obtain surface point data from possible alternate methods. The characteristic output

vector of Range_Finder is (x:real,y:real,z:real) and is produced by selecting one of the two

alternate subnets and "projecting" the first three elements of their characteristic output

vectors. The preferred subnet is composed of the logical sensor Im ageR ange. This

logical sensor has two alternate subnets which both have the dum m y computational unit

15

(x : r e a l , y : r e a l , z : r e a l)

Range_Finder I S e le c t I

I P ro je c t I P ro je c t I
I 1_2_3 I 1_2_3 I
I ______________ __________ ?

(x : r e a l , y : r e a l , z : r e a l , i : i n t) /
/

Image_Range I S e le c t I

I-

I PASS I PASS |
i ___________________ i

/ \

\

\

\

(x : r e a l , y : r e a l , z : r e a l ,
f o r c e : r e a l)

\

S te re o I S e le c t I

I PASS I PASS I
f I

/

LS I S e le c t I S te re o
|---------- 1 1

I P1 I P2 I
I I I
t _____________i

. \ .

\

(i : i n t , .
j : i n t , .
l e v e l : i n t)

V .

. \ . .

. . A

/ \

S e le c t

I S e le c t I T a c t i le Range

I 3-D I
i __________ i

I

S e le c t I S te re o
--------1 2

(i : i n t , j : i n t ,
f o r c e : r e a l)

• • '

F a s t I I Slow I
S te re o I I S te re o I

_____I I___ __ I _” ■ •
. . / I S e le c t I T a c tile _ P a d

............ / I---------- 1

. / I Combine I
/ ' ----------- '

/ (f o r c e : r e a l) / I \
/ / I — \

Camera I S e le c t I I S e le c t I Camera
! |-------- 1 |-------- 1 2

I D r iv e r I I D r iv e r I
i __________ i i ___________i

I S e le c t I I S e le c t I I S e le c t I
|------1 |------ 1 |------ 1

I D r iv e r I I D r iv e r I I D r iv e r I
i _______ i i ________ i i ________ i

T1 T2 . . . Tn

Figure 4 . L o g ic a l sensor netw ork fo r R ange_F inder.

16

PASS. PASS does not effect the type of the logical sensor. These alternatives will be

selected in turn to produce the characteristic output vector (x:real,y:real,z:real,i:integer). If

both alternates fail (whether due to hardware or software), the Image Range sensor has

failed. The R angeFinder then selects the second subnet to obtain the (x:real,y:real,z:real)

inform ation from the Tactile Range's characteristic output vector. If the Tactile_Range

subsequently fails, then the Range Finder fails. Each subnet uses this m echanism to

provide fault tolerance.

4.2. R am ifications o f F au lt-To lerance Based on a R eplacem ent Schem e

Many difficult issues arise when fault tolerance is based on a replacem ent scheme.

Because the replacem ent scheme is implemented through the use of alternate subnets,

the user can be sure that the type of output will remain constant, regardless of the

particular source subnet. Ideally, however, w e consider that a replacement based scheme

is truly fault to lerant only if the effect of the replacement is within allowable limits, where

the allowable limits are determined by the user. As a simple example, consider a sensor

system of one camera, A, and a back-up camera, of another type, B. Suppose cam era A

has accuracy of + 0.01%, and camera B has accuracy of +0.04%. If the user has

determined that the allowable limit on accuracy is +0.03%, then replacement of cam era A

by camera B will not yield what we call a truly fault tolerant system; if the allowable limit

is +0.05%, the replacem ent does yield a truly fault tolerant system, as it will if the user

has determined that the system should run regardless of the degree of accuracy.

As mentioned above, determining functional equivalence may necessitate seeing more

of a logical sensor than merely its type. This example illustrates this point in that we

have isolated a need to know more about leaf logical sensors (physical sensors).

However, we also mentioned that the above example was simplified. Let us now assume,

in addition, that the user can use a variety of algorithms to obtain the desired final

output. Suppose one of those algorithms incorporates interpolation techniques which

could increase the degree of accuracy over camera B's input. In this case, the user may

be able to use camera B and this algorithm as an alternate subnet and have a truly fault

to lerant system, even if camera B's output is not itself within the allowable accuracy limit.

Thus, when we consider a slightly more complex example, we see a general need for

having features (beside type of output) of logical sensors visible, and a need to propagate

such information through the system.

17

Feature propagation, together with allowable limit information, is needed for

replacem ent based fault-to lerance schemes, and constitutes an acceptance test

mechanism. In addition, such feature propagation has a good potential for use in

autom atic logical sensor system specification/optim ization. For example, consider a

workstation w ith several sensors. Once various logical sensors have been defined and

stored, feature propagation can be used to configure new logical sensors w ith properties

in specified ranges, or to determ ine the best (within the specified, perhaps weighted,

parameters) logical sensor system. Thus, feature propagation is necessary for both fault

tolerance and autom atic generation of logical sensor systems, and it is our view that the

basic scheme will be the same in either case.

5. Features and Their Propagation
Our view is that propagation of features will occur from the leaf nodes to the root of

the network. In sensor systems, the leaf nodes will generally be physical sensors (with

associated drivers). Thus, we first discuss the important features of physical sensors.

5.1. Features o f Physical Sensors

Our goal here is to determine w hether a set of generally applicable physical sensor

features exists, and then to provide a database to support the propagation mechanism. In

addition, it is possible for the user to extend the set of features. Currently, the system

provides a small set of generally applicable features (see below).

All physical sensors convert physical properties or measurements to some alternative

form , and hence are transducers. Some standard terms for use in considering transducer

performance must be defined [19]. We have selected a set of features defined by W right

which w e feel are generally applicable to physical sensors.

* Error - the difference between the value of a variable indicated by the
instrum ent and the true value at the input.

* Accuracy - the relationship of the output to the true input within certain
probability limits. Accuracy is a function of nonlinearities, hysteresis,
tem perature variation, and drift.

* Repeatability - the closeness of agreem ent within a group of m easurem ents
at the same input conditions.

18

* Drift - the change in output that may occur despite constant input conditions.

* Resolution - the smallest change in input that will result in a significant
change in transducer output.

* Hysteresis - a measure of the effect of history on the transducer.

* Threshold - the minimum change in input required to change the output from
a zero indication. For digital systems this is the input required for 1 bit
change in output.

* Range - the maximum range of input variable over which the transducer can
operate.

Based on this set of physical sensor characteristics, the next step in arriving at a

characterization of logical sensors is to "compose" physical sensor feature information

with com putation unit feature information.

5.2. A lgorithm Features '

There are several difficult issues involved in choosing a scheme whereby features of

algorithms can be "composed" with features of physical sensors such that the overall

logical sensor may be classified. As Bhanu [2] has pointed out: "the design of the

system should be such that each of its components makes maximum use of the input

data characteristics and its goals are in conformity with the end result."

One issue to be resolved is how to represent features and feature composition. One

approach is to record feature information and composition functions separately. Thus, it

would be necessary to classify an algorithm as having a certain degree of accuracy, and,

in addition provide an accuracy function which, given the accuracy of the physical sensor,

produces the overall accuracy for the logical sensor which results from the compostion of

the physical sensor and the algorithm. A major difficulty in resolving such issues is

presented by the great variety of sensor systems, both actual and potential, and the

varying level of awareness of such issues within different sensor user communities. For

example, experienced users of certain types of sensors may have a fairly tight knowledge

of when and why certain algorithms work well, whereas other user communities may be

aware in only a vague way which algorithms work well under which circumstances.

Indeed, even within a sensor user community, algorithm evaluation techniques may not be

standardized, hence yielding a plethora of ways in which properties algorithms may be

19

described. This problem is manifest in Bhanu's survey of the evaluation of autom atic

target recognition (ATR) algorithms [2],

The state of the art in algorithm evaluation techniques effects the choices made

regarding the use of classifying physical sensors w hether we wish to simply catalog

information or maximize criteria. For example, if the user cannot provide inform ation

about the degree of resolution for the algorithms being used, then an overall logical

sensor resolution figure cannot be determined, even if the resolution of ail physical

sensors is known. Also, if such is the case, then the system cannot be used to help the

user maximize the degree of resolution of the final output.

On the other hand, there are some encouraging results reported in the literature; a

systematic study of robotic sensor design for dynamic sensing has recently been

undertaken by Beni et al [1], and more of that kind of work is required if we are to

achieve comprehensive sensor systems.

6. Future Research: Automatic Logical Sensor Generation
We are investigating ways in which to generate logical sensor systems automatically.

W e recognize that, considering the number of unanswered questions we listed above, we

will not be able to establish a fully automatic logical sensor system, and therefore our

proposal is to confine ourselves to an autom atic logical sensor system of limited

generality.

6.1. T u p lin g /M e rg in g Data

We now describe some techniques to allow for dynamic specification and allocation of

logical sensors. Though the kinds of logical sensors which we consider represent only

simple extensions to the existing logical sensor system, this type of work is a first step

towards generally extensible logical sensor systems. The goal here is to show how,

given information about logical sensors which can be configured in the system, new

logical sensors can be automatically defined. There are two techniques under

investigation, tupling and merging data.

20

6.1.1. Tup ling Data

Tupling data is a technique which can be used to automatically generate new logical

sensors in a feature-based sensor system. In such systems, the logical sensors would be

returning information about certain features found in the scene, such as number of edges,

number of holes, tem perature, metallic composition, and so on. The user may then

request that a new logical sensor be established by specifying the name for the new

logical sensor, and giving the names of the input logical sensor(s). The output of the

new logical sensor will be, simply, a set of tuples (one for each object in the scene),

where the tuple is composed of the cartesian product of the features which w ere input

from the source logical sensors. Thus, we are basically packaging together features of

interest so that they will be in one output stream. For example, suppose that the features

"number of edges" and "number of holes" are sufficient to determ ine the presence of

bolts. Then a logical sensor bo lt-detector could be created by tupling the output of the

logical sensors edge-detector and ho le-detector. It should be noted that we assume that

the latter tw o logical sensors produce output of the form (object no., fea tu re l, feature2, ...

feature N). For the sake of simplicity, in this example we assume that logical sensor

edge-detecto r produces output of the form (object no., number of edges) and logical

sensor h o le-detecto r produces output of the form (object no., number of holes). Logical

sensor bo lt-de tecto r will match on object number, and produce tuples of the form (object

no., number of edges, number of holes).

6.1.2. M erg ing Data

Another facility we are investigating dynamically incorporates, in response to a system

demand, a newly defined logical sensor which outputs the merge of 3-dim ensional logical

sensor inputs. The idea is to accom m odate an interactive request to allow the output of

tw o physical sensors to be treated as one, for example, to create a m ultip le -v iew laser

range finder logical sensor from what had been tw o different laser range finder logical

sensors. In this example, a logical sensor m u lti-v iew -laser is created with input logical

sensors of both laser range finders, and merge the inputs to produce output. Thus, the

user can decide, interactively, to get more views w ithout having to reconfigure the entire

system. Also, such a facility obviates the need for having multiple program units where

the only difference is in the number of expected inputs.

21

6.2. Choosing A lgorithm s Based on A p p ropria teness /R e liab ility

Our view is that a feature propagation mechanism is useful for both fau lt-to lerance

checking and logical sensor optimization. Some difficulties are involved in using the

feature propagation mechanism in a logical sensor optimization system. From the

optim ization viewpoint, the task which we wish the logical sensor system to perform is

not m erely to produce output, but to produce output which is optimal. One difficulty is

that w hat makes the output optimal may change from application to application, or from

use to use. Hence, the logical sensor system should produce output of the specified type

which is optim ized according to the user specified optimization criteria.

In light of the above discussed difficulties in developing a feature propagation

mechanism, we are considering optim ization facilities which could also be used in the

absence of a general feature propagation mechanism. Our goal is to help the user

choose algorithms which maximize desired capabilities of a logical sensor system.

Therefore, in addition to providing what may only constitute a catalog of physical sensor

characteristics, we wish to establish a database of algorithms which can be searched to

determ ine how to configure the optimal logical sensor system for the task at hand.

Since, once again, we are forced to consider the level of information detail which the user

can provide in setting up the database, we recognize that this database may or may not

be part of a general feature propagation mechanism. In other words, if the user tell us

only that a certain algorithm works well, for example, then this database will basically

serve merely as an automatic cataloging device. On the other hand, if we can be

provided with numerical estimates of certain parameters for each algorithm, and

composing functions, the database can be used as part of a feature propagation

mechanism. In the latter case, not only can we provide a much closer realization of the

user's goal, but w e may also be able to indicate which performance attributes cannot be

m et by any known configuration of physical sensors and algorithms; in such cases, the

system may actually specify a new or the parameters on an algorithm which would make

the demanded performance possible.

6.3. A u to m atic G eneration of A lgorithm Feature In form ation

Several approaches to the incorporation of algorithm feature information into a logical

sensor specification system have been discussed. As an extension to this idea, we intend

to investigate ways in which to use a logical sensor specification system to generate

22

algorithm feature information. We are looking into the use of models for algorithm

evaluation, together with a database of training data, that is, sample data to be used as a

standard against which algorithms are evaluated. For the ATR (Automatic Target

Recognition) systems, Bhanu states that the models for algorithm evaluation should be

chosen such that each part of the system should be evaluated with respect to its own

figures of m erit but also against its effect on the overall classification (i.e., the overall

goal of the system). In this view, statistical measures of an algorithm's performance such

as edge point measures and structural measures, the ability of an algorithm to make

maximal use of the specific characteristics of FUR images, and the three general

parameters which are used to determ ine the overall performance of an ATR system

(probability of target detection, probability of classification, and false alarm per fram e)

must all be taken into account when evaluating an algorithm. In addition, these

statistical, heuristic and parametric models are to be used in establishing the

requirem ents of the database in term s of data collection and organization, with the end

goal of generating databases of FUR images which are increasingly representative of the

real world. Thus, Bhanu envisions a training data base - algorithm data base interaction

such that the original figures of m erit for algorithms are refined, on the basis of sample

data, to reflect ability to make maximal use of specific characteristics of particular

physical sensor data towards the end of promoting the overall system performance. We

agree with the philosophy that sensor systems should be viewed as the best source of

information on to how to improve themselves, and intend to investigate the use of

training databases, and possible training database - algorithm database interaction

schemes.

7. Conclusion
W e have defined a Logical Sensor Specification Language as a fram ework facilitating

efficient and coherent treatm ent of information provided in m ulti-sensor systems. In

addition to the issues raised when considering the language im plementation itself, various

extensions have been suggested. In particular, we have implemented:

* A Logical Sensor Specification Language compiler.

* General fau lt-to lerance features such as:

1. A mechanism for detecting tw o types of sensor failure.

2. A technique by which switching to an alternate subnet is accomplished.

3. A method for determining when a sensor failure dictates top -leve l
sensor failure.

* A database of physical sensors.

* Autom atic generation of tupling/m erging logical sensors.

In addition, we intend to investigate:

* Formal semantics for the Logical Sensor Specification Language.

* Features and feature propagation, in particular, how to arrive at a classification
scheme for algorithm features and composing functions.

* The establishm ent of an algorithm database for at least optimization purposes.

* Inference schemes by which to determ ine a need for new physical sensors.

* Training databases, and training database - algorithm database interaction
schemes.

23

/

24

[1] Beni, G., S. Hackwood, L.A. Hornak and J.L. Jacket.
Dynamic Sensing for Robots: An Analysis and Implementation.
Robotics Research 2(2):51 —60, Summer, 1983.

[2] Bir Bhanu.
Evaluation of Automatic Target Recognition Algorithms.
In Proceedings of the SPIE W est '83. August, 1983.

[3] Donner, M.D.
The Design of OWL: a language for walking.
ACM SIGPLAN Notices 18(6): 158-165, June, 1983.

[4] Hansen, C., T.C. Henderson, Esther Shilcrat and Wu So Fai.
Logical Sensor Specification.
In Proceedings of SPIE Conference on Intelligent Robots, pages 578-583 . SPIE,

November, 1983.

[5] Henderson, T.C., E. Shilcrat and C. Hansen.
A Fault Tolerant Sensor Schem e.
Com puter Science UUCS 83-003 , University of Utah, November, 1983.

[6] Henderson, Thomas C. and Wu So Fai.
A M ulti-sensor Integration and Data Acquisition System.
In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 274-280 . IEEE, June, 1983.

[7] Henderson, T.C. and Wu So Fai.
Pattern Recognition in a M ulti-sensor Environment.
UUCS 001, University of Utah, July, 1983.

[8] Jacobsen, S., J.E. Wood, D.F. Knutti and K. Biggers.
The U tah /M IT Dextrous Hand.
In M IT/SDF IRR Symposium. August, 1983.

[9] Kahn, G.
The Semantics of a Simple Language for Parallel Programming.
In Proceedings of IFIP, pages 471-475 . 1974.

[10] Kahn, G. and D. MacQueen.
Coroutines and networks of parallel processes.
In Proc. IFIP 77. pages 993-998 . 1977. .

[11] Keller R.M.
FEL Programmer's Guide.
AMPS Technical Memorandum 7, Univ. of Utah; Dept, of Com puter Science, April,

1982.

[12] Keller, R.M.
Denotational Models for Parallel Programs with Indeterminate Operators.
In E.J. Neuhold (editor), Formal Descriptions of Programming Concepts, pages

337-366 . North Holland Publishing Co., 1978.

References

25

[13] Nelson, W.R.
REACTOR: An Expert System for Diagnosis and Treatm ent of Nuclear Accidents.
In Proceedings AAAI-82, pages 296-301 . August, 1982.

[14] Olsen, D.R. and E.P. Dempsey.
SYNGRAPH: A Graphical User Interface Generator.
In SIGGRAPH '83 Conference Proceedings, pages 43 -50 . ACM, July, 1983.

[15] Randell, B.
System Structure for Software Fault Tolerance.
Prentice-Hall, Englewood Cliffs, NJ, 1977, pages 195-219.

[16] Rosenthal, D.S., J.C. Michener, G. Pfaff, R. Kessener and M. Sabin.
The Detailed Semantics of Graphics Input Devices.
Com puter Graphics 16(3):33-38, July, 1982.

[17] Shilcrat, E., P. Panangaden and T.C. Henderson.
Im plem enting M ulti-sensor Systems in a Functional Language.
Technical Report U U C S -84-001 , The University of Utah, February, 1984.

[18] Wirth, N.
On the Compostion of W ell-S tructured Programs.
In E.N. Yourdan (editor), Classics in Software Engineering, pages 153-172. Yourdon

Press, London, 1979.

[19] W right, J.D.
Measurements, Transmission, and Signal Processing.
Van Nostrand Reinhold Company, New York, 1983, pages 80-112.

[20] Wu So Fai.
A M ulti-sensor Integration and Data Acquisition System.
Master's thesis, University of Utah, June, 1983.

v

26

8. Appendix A
The following session demonstrates the logical sensor specification system. Comments

have been added in bold.

[PHOTO: R ecord ing i n i t i a t e d Thu 8 -M a r-8 4 1:19PM]

§ p s l
Extended 20-PSL 3 - 1 , 15 -Ju n -83
1 l is p > (d s k in " s t a r t . s i ")

Welcome to LSS!

A llow ed o p tio n s :

1. C re a te L o g ic a l Sensor
2 . Update L o g ic a l Sensor
3 . D e le te L o g ic a l Sensor
4 . Show L o g ic a l Sensor.
5 . Show Dependency Graph
6 . E x i t LSS

First, d isp lay all th e existing logical sensors. They are e ither
physical sensors or previously defined logical sensors.

E n te r o p tio n number: 4 Show Logical Sensor

E n te r name o f lo g ic a l sensor to be shown, o r L fo r l i s t : 1

D efin ed lo g ic a l sen so rs : CAMERA1 CAMERA2

E n te r name o f lo g ic a l sensor to be shown, o r L fo r l i s t : cam eral

L o g ic a l sensor CAMERA 1 : The tw o logical sensors
A ccep to r: TIMEOUT CAMERA 1 and CAMERA2 are

COV: (I : I N T J : IN T LEVEL: IN T) a lready know n to the
A lte r n a te Subnets: ((DRIVERCAM1 N IL)) system . They are both

physical sensors since
th ey are leaf nodes.

E n te r o p tio n number: 4 Show Logical Sensor

E n te r name o f lo g ic a l sensor to be shown, o r L f o r l i s t : camera2

L o g ic a l sensor CAMERA2 :
A ccep to r: TIMEOUT

COV: (I : I N T J : IN T LEVEL: IN T)
A lte r n a te Subnets: ((DRIVERCAM2 N IL))

N ext, c reate th e logical sensor la s e r-ra n g e -fin d e r as show n in
Figure 4 in th e text.

E n te r o p tio n number: 1 ' C reate Logical Sensor

E n te r name o f lo g ic a l sensor to be c re a te d : la s e r - r a n g e - f in d e r

E n te r name o f accep tance t e s t : tim eo u t

E n te r c h a r a c t e r is t ic o u tp u t v e c to r : (x : r e a l y : r e a l z : r e a l i n t e n s i t y : i n t)

E n te r program name: P1

E n te r th e l i s t o f in p u t lo g ic a l sensors: (c a m e ra l)

Do you want to d e f in e a n o th e r subnet? (yes o r n o): y

E n te r program name: P2

E n te r th e l i s t o f in p u t lo g ic a l sen so rs: (cam era2)

Do you want to d e f in e a n o th e r subnet? (yes o r n o): n

Enter option number: 4 Show Logical Sensor

E n te r name o f lo g ic a l sensor to be shown, o r L fo r l i s t : la s e r - r a n g e - f in d e r

L o g ic a l sensor LASER-RANGE-FINDER :
A ccep to r: TIMEOUT

COV: (X : REAL Y : REAL Z : REAL INTEN SITY:IN T)
A lte r n a te Subnets: ((P1 (CAMERA1)) (P2 (CAMERA2)))

N ext, c reate th e logical sensor s tereo o f Figure 4.

E n te r o p tio n number: 1 C reate Logical Sensor

E n te r name o f lo g ic a l sensor to be c re a te d : s te re o

E n te r name o f accep tance t e s t : tim eo u t

E n te r c h a r a c t e r is t ic o u tp u t v e c to r : (x : r e a l y : r e a l z : r e a l i n t e n s i t y : i n t)

E n te r program name: ~V H it w rong key. Fix later.

. 27

28

E n te r th e l i s t o f in p u t lo g ic a l sensors: (C am era l)

Do you want to d e f in e a n o th e r subnet? (yes o r n o): y

E n te r program name: s lo w -s te re o

E n te r th e l i s t o f in p u t lo g ic a l sensors: (Cam eral Camera2)

Do you want to d e f in e an o th e r subnet? (yes o r n o): n

D isplay th e logical sensors defined to th is point.

E n te r o p tio n number: 4 Show Logical Sensor

E n te r name o f lo g ic a l sensor to be shown, o r L f o r l i s t : 1

D e fin e d lo g ic a l sensors: CAMERA 1 CAMERA2 LASER-RANGE-FINDER STEREO

E n te r name o f lo g ic a l sensor to be shown, o r L f o r l i s t : s te re o

L o g ic a l sensor STEREO :
A c c e p to r: TIMEOUT

COV: (X : REAL Y:REAL Z:REAL IN TEN SITY:IN T)
A lte r n a te Subnets: ((~V (CAMERA 1)) (SLOW-STEREO (CAMERA1 CAMERA2)))

N o te th e A V fo r program name.

C orrect th e typo m ade w hen creating th e logical sensor stereo.
Also, correct the inp u t lis t fo r th e firs t a lternative.

E n te r o p tio n number: 2 U pdate Logical Sensor

E n te r name o f lo g ic a l sensor to be updated , o r L fo r l i s t : s te re o

Add, d e le te o r m od ify an a l te r n a te ? (a , d o r m) : m

A lte rn a te s d e fin e d fo r lo g ic a l sensor STEREO a re :
Number A lte r n a te
1 (~V (CAMERA 1))
2 (SLOW-STEREO (CAMERA1 CAMERA2))

E n te r th e NUMBER o f th e a l t e r n a t e you w ish to m o d ify : 1

E n te r p to m odify program name, i to m odify in p u t l i s t : p

Here is th e a l t e r n a t e you w ish to change: (~V (CAMERA1))
E n te r th e new program name.

E n te r program name: f a s t -s te r e o C orrect th e program nam e.

More changes to t h is sensor? (y o r n)y

Add, d e le te o r m od ify an a lte r n a te ? (a , d o r m) : m

A lte rn a te s d e fin e d f o r lo g ic a l sensor STEREO a re :
Number A lte r n a te
1 (FAST-STEREO (CAMERA1)) S tereo requires 2 cam eras.
2 (SLOW-STEREO (CAMERA1 CAMERA2))

E n te r th e NUMBER o f th e a l t e r n a t e you w ish to m o d ify : 1

E n te r p to m odify program name, i to m odify in p u t l i s t : i

Here is th e a l t e r n a t e you w ish to change: (FAST-STEREO (CAMERA1))
E n te r th e new in p u t l i s t .

E n te r th e l i s t o f in p u t lo g ic a l sensors: (cam era1 cam era2)

More changes to t h is sensor? (y o r n)n

Display th e updated logical sensor.

E n te r o p tio n number: 4 Show Logical Sensor

E n te r name o f lo g ic a l sensor to be shown, o r L fo r l i s t : s te re o

L o g ic a l sensor STEREO :
A ccep to r: TIMEOUT

COV: (X:REAL Y : REAL Z : REAL IN TEN SITY:IN T)
A lte r n a te Subnets: ((FAST-STEREO (CAMERA 1 CAMERA2)) (SLOW-STEREO (CAMERA 1

CAMERA2)))

Create th e logical sensor im ag e -ran g e of Figure 4.

E n te r o p tio n number: 1 C reate Logical Sensor

E n te r name o f lo g ic a l sensor to be c re a te d : im age-range

E n te r name o f accep tance t e s t : tim eo u t

E n te r c h a r a c t e r is t ic o u tp u t v e c to r : (x : r e a l y : r e a l z : r e a l in t e n s i t y : i n t)

29

30

E n te r program name: pass

E n te r th e l i s t o f in p u t lo g ic a l sensors: (s te r e o)

Do you want to d e f in e an o th er subnet? (yes o r n o): n

D isplay th e logical sensor im ag e-ran g e .

Enter option number: 4 Show Logical Sensor

E n te r name o f lo g ic a l sensor to be shown, o r L f o r l i s t : im age-range

L o g ic a l sensor IMAGE-RANGE :
A ccep to r: TIMEOUT

COV: (X:REAL Y : REAL Z : REAL IN TE N S ITY :IN T)
A lte r n a te Subnets: ((PASS (STEREO)))

N ext, w e add an a lternative su b n et to an existing sensor.

E n te r o p tio n number: 2 U pdate Logical Sensor

E n te r name o f lo g ic a l sensor to be u pdated , o r L f o r l i s t : im age-range

Add, d e le te o r m od ify an a lte r n a te ? (a , d o r m) : a

A lte rn a te s d e fin e d fo r lo g ic a l sensor IMAGE-RANGE a re :
Number A lte r n a te
1 (PASS (STEREO))

E n te r th e NUMBER you w ish fo r th e new a l t e r n a t e : 1 The sw itch ing order
can be rearranged.

E n te r program name: pass

E n te r th e l i s t o f in p u t lo g ic a l sensors: la s e r - r a n g e - f in d e r

In p u ts must be a l i s t . What you gave LASER-RANGE-FINDER is no t

E n te r th e l i s t o f in p u t lo g ic a l sensors: (la s e r - r a n g e - f in d e r)

More changes to t h is sensor? (y o r n)n

D isplay th e new version of th e logical sensor.

Enter option number: 4 Display Logical Sensor

31

E n te r name o f lo g ic a l sensor to be shown, o r L f o r l i s t : 1

D e fin e d lo g ic a l sensors: CAMERA 1 CAMERA2 LASER-RANGE-FINDER STEREO
IMAGE-RANGE

E n te r name o f lo g ic a l sensor to be shown, o r L f o r l i s t : im age-range

L o g ic a l sensor IMAGE-RANGE :
A ccep to r: TIMEOUT

COV: (X:REAL Y : REAL Z : REAL IN TEN SITY:IN T)
A lte r n a te Subnets: ((PASS (LASER-RANGE-FINDER)) (PASS (STEREO)))

E n te r o p tio n number: 5

Dependency T a b le :

CAMERA1 0 0 1 1 1
CAMERA2 0 0 1 1 1
LASER-RANGE-FINDER 0 0 0 0 1
STEREO 0 0 0 0 1
IMAGE-RANGE 0 0 0 0 0

Exit th e system . The sensor database is au to m attica ily updated.

E n te r o p tio n number: 6 Exit LSS

Your re q u e s ts have been han d led !

N IL
N IL
2 l is p > (q u i t)
@pop

[PHOTO: R ecord ing te rm in a te d Thu 8 -M a r-8 4 1:29PM]

