
F o r m a l i z i n g t h e J a v a M e m o r y M o d e l

f o r M u l t i t h r e a d e d P r o g r a m

C o r r e c t n e s s a n d O p t i m i z a t i o n

Yue Yang, Ganesh Gopalakrishnan, and
Gary Lindstrom

UUCS-02-011

School of Computing

University of Utah

Salt Lake City, U T 84112, U S A

April 2, 2002

A bstract
Standardized language level support for threads is one of the most important features of Java. However,

defining and understanding the Java M e m o r y Model (J M M) has turned out to be a big challenge. Several

models produced to date are not as easily comparable as first thought. Given the growing interest in multi

threaded Java programming, it is essential to have a sound framework that would allow formal specification

and reasoning about the J M M .

This paper presents the Uniform M e m o r y Model (U M M) , a formal m e m o r y model specification frame

work. Wit h a flexible architecture, it can be easily configured to capture different shared m e m o r y semantics

including both architectural and language level m e m o r y models. Based on guarded commands, U M M is

integrated with a model checking utility, providing strong built-in support for formal verification and pro

g ram analysis. A formal specification of the J M M following the semantics proposed by M a n s o n and P u g h

is presented in U M M . Systematic analysis has revealed interesting properties of the proposed semantics. In

addition, several mistakes from the original specification have been uncovered.

F o r m a l i z i n g t h e J a v a M e m o r y M o d e l f o r M u l t i t h r e a d e d P r o g r a m

C o r r e c t n e s s a n d O p t i m i z a t i o n

Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom
School of Computing, University of Utah
{y yan g | ganesh | gary }@ cs.utah .edu

Abstract

Standardized language level support for threads is one of the most important features of Java. H o w

ever, defining and understanding the Java Memory Model (JMM) has turned out to be a big challenge.

Several models produced to date are not as easily comparable as first thought. Given the growing interest

in multithreaded Java programming, it is essential to have a sound framework that would allow formal

specification and reasoning about the J M M .

This paper presents the Uniform Memory Model (UMM), a formal memory model specification frame

work. With a flexible architecture, it can be easily configured to capture different shared memory se

mantics including both architectural and language level memory models. Based on guarded commands,

U M M is integrated with a model checking utility, providing strong built-in support for formal verification

and program analysis. A formal specification of the J M M following the semantics proposed by Manson

and Pugh is presented in U M M . Systematic analysis has revealed interesting properties of the proposed

semantics. In addition, several mistakes from the original specification have been uncovered.

1 I n t r o d u c t i o n

Java programmers routinely rely on threads for structuring their programming activities, sometimes even

without explicit awareness. As future hardware architectures become more aggressively parallel, multi

threaded Java also provides an appealing platform for high performance application development, especially

for server applications. T he Java M e m o r y Model (JMM), which specifies h o w threads interact with each

other in a concurrent system, is a critical component in the Java threading system. It imposes significant

implications to a broad range of engineering activities such as programming pattern developments, compiler

optimizations, Java virtual machine (J V M) implementations, and architectural designs.

Unfortunately, developing a rigorous and intuitive J M M has turned out to be a big challenge. The

existing J M M is given in Chapter 17 of the Java Language Specification [1]. As summarized by P u g h [2],

it is flawed and very hard to understand. O n the one hand, it is too strong and prohibits m a n y c o m m o n

optimization techniques. O n the other hand, it is too weak and compromises safety guarantees.

T he need for improvements in J M M has stimulated broad research interests. T w o n e w semantics have

been proposed for Java threads, one by M a n s o n and P u g h [3], the other by Maessen, Arvind, and Shen [4].

W e refer these two proposals as J M M M P and J M M c r f respectively in this paper. Th e J M M is currently

under an official revisionary process [5] and will be replaced in the future. There is also an ongoing discussion

in the J M M mailing list [6].

Although [3] and [4] have initiated promising improvements on Java thread semantics, the specification

framework can be enhanced in several ways. O n e area of improvement is towards the support of formal

verification. Being able to provide a concise semantics is only part of the goal. People also need to reason their

programs against the J M M for compliance. Multithreaded programming is notoriously difficult. Developing

efficient and reliable compilation techniques for multithreading is also hard. T he difficulty of being able to

understand and reason about the J M M has become a major obstacle for allowing Java threading to reach

its full potential. Although finding an ultimate solution is not an easy task, integrating formal verification

techniques does provide an encouraging first step towards this goal.

Another problem is that both proposals are somewhat limited to the data structures chosen for their

specific semantics. Since they use totally different notations, it is hard to formally compare the two models.

In addition, none of the proposals can be easily re-configured to support different desired m e m o r y model

requirements. J M M c r f inherits the architecture from its predecessor hardware model [7]. Java m e m o r y

operations have to be divided into fine grained Commit/Reconcile/Fence (CRF) instructions to capture

the precise thread semantics. This translation process adds unnecessary complexities for describing m e m o r y

properties. O n the other hand, the dependency on cache based architecture prohibits it from describing more

relaxed models. J M M m P uses multiset structures to record the history of m e m o r y operations. In stead of

explicitly specifying the intrinsic m e m o r y model properties, e.g., the ordering rules, it resorts to nonintuitive

mechanisms such as splitting a write instruction and using assertions to enforce certain conditions. While this

is sufficient to express the proposed synchronization mechanism, adjusting it to specify different properties

is not trivial.

Similar to any software engineering activities, designing a m e m o r y model involves a repeated process of

fine-tuning and testing. Therefore, a generic specification framework is needed to provide such flexibilities.

In addition, a uniform notation is desired to help people understand the differences a m o n g different models.

In this paper, we present the Uniform M e m o r y Model (U M M) , a formal framework for m e m o r y model

specification. It explicitly specifies the intrinsic m e m o r y model properties and allows one to configure t hem at

ease. It is integrated with a Model Checking tool using Mur^>, facilitating formal analysis of corner cases. To

aid program analysis, it extends the scope of traditional m e m o r y models by including the state information

of thread local variables. This enables source level reasoning about program behaviors. Th e J M M based

on the semantics from J M M m P is formally specified and studied using U M M . Subtle design flaws from the

proposed semantics are revealed by our systematic analysis using idiom-driven test programs.

W e review the related work in the next section. T h e n we discuss the problems of the current J M M specifi

cation. It is followed by an introduction of J M M m P . O ur formal specification of the J M M in U M M , primarily

based on the semantics proposed in J M M m P , is described in Section 5. In Section 6, we discuss interesting

results and compare J M M m P with J M M c r f . W e conclude and explore future research opportunities in

Section 7 . A n equivalence proof between our model and J M M m P is outlined in the Appendix.

2 R e l a t e d W o r k

A memory model describes h o w a m e m o r y system behaves on m e m o r y operations such as reads and writes.
M u c h previous research has concentrated on the processor level m e m o r y models. O n e of the strongest

m e m o r y models for multiprocessor m e m o r y systems is Sequential Consistency [8]. M a n y weaker m e m o r y

models [9] have been proposed to enable optimizations. O n e of t hem is Lazy Release Consistency [10],
where synchronization is performed by releasing and acquiring a lock. W h e n a lock is released, all previous

operations need to be m a d e visible to other processors. W h e n the lock is subsequently acquired by another

processor, that processor needs to reconcile with the shared m e m o r y to get the updated data. Lazy Release
Consistency requires an ordering property called Coherence. Using the definition given by [11], Coherence
requires a total order a m o n g all write instructions at each individual address. Furthermore, this total order
respects the program order from each processor. This requirement is further relaxed by Location Consistency
[12]. T he write operations in Location Consistency are only “partially” ordered if they are issued by the
same processor or if they are synchronized through locks. W i t h the verification capability in U M M , we can

formally compare the J M M with some of these conventional models.

T o categorize different m e m o r y models, Collier [13] specified the m based on a formal theory of m e m o r y

ordering rules. Architectural testing programs can be executed on a target system to test these orderings.

Using methods similar to Collier’s, Gharachorloo et al. [11] [14] developed a generic framework for specifying

the implementation conditions for different m e m o r y consistency models. T he shortcoming of their approach

is that it is nontrivial for people to infer program behaviors from a c o m p o u n d of ordering constraints.

Park and Dill [15] developed an executable specification framework with formal verification capabilities

for the Relaxed Memory Order (R M O [16]) [17]. W e extended this method to the domain of the J M M in our

previous work on the analysis of J M M crf [18]. After adapting J M M crf to an executable specification, we

exercised the model with a suite of test programs to reveal pivotal properties and verify c o m m o n program

ming idioms. Roychoudhury and Mitra [19] also applied the same technique to verify the existing J M M ,

3

Figure 1: Architecture of the existing Java M e m o r y Model

achieving similar success. However, these previous executable specifications are all restricted to the specific

architectures of their target m e m o r y models. U M M provides a generic abstraction mechanism for capturing

different m e m o r y consistency requirements into a formal executable specification.

3 P r o b l e m s o f t h e E x i s t i n g J M M

T he existing J M M uses a m e m o r y hierarchy illustrated in Figure 1. In this framework, every variable has

a working copy stored in the working memory. Eight actions are defined. As a thread executes a program,
it operates on the working copies of variables via use, assign, lock, and unlock actions as dictated by the
semantics of the program it is executing. Data transfers performed by J V M between the main m e m o r y

and the working m e m o r y are not atomic. A read action initiates the activity of fetching a variable from
main m e m o r y and is completed by a corresponding load action. Similarly, a store action initiates the
activity of writing a variable to main m e m o r y and is committed by a corresponding write action. Th e lock
and unlock actions enforce a synchronization mechanism similar to Lazy Release Consistency. T he current

J M M informally describes sets of rules to impose constraints to the actions. There are m a n y non-obvious

implications that can be deduced by combining different rules. As a result, this framework is hard to

understand and the lack of rigor in specification has led to some flaws as listed below.

• Strong ordering restrictions prohibit standard compiler optimizations.

T he existing J M M requires a total order for operations on each individual variable [20]. Because of

this requirement, important compiler optimization techniques such as fetch elimination are prohibited.
Consider figure 2, where p.x and q.x m a y become the same variable due to aliasing during execution.

The statement k = p.x can not be replaced by k = i by the compiler because a total order a m o n g

operations on the same variable is required. As a result, adding a seemingly innocuous read instruction

j = q.x introduces additional constraints. This is an annoying side effect in a threading system because

people need to be able to add debugging read instructions without changing program behaviors. This

ordering restriction is actually ignored by some commercial J V M implementations.

Initially, p.x = = 0

Thread 1 Thread 2

.x;
;x.

.x;

p
=q

=p

i=
j=

k=

p.x = 1;

q = p;

Problem: k = p.x can not be replaced by k = i

Figure 2: Current J M M prohibits fetch elimination

4

Initially, p = = null

Thread 1 Thread 2

synchronized(this) {

p = n e w Point(1,2);

}

if(p != null) {

r = p.x;

}
Finally,

can result in r = = 0

Figure 3: Current J M M allows premature release of object reference

• The existing JMM prohibits the removal of “redundant” synchronizations.

T he present J M M requires a thread to flush all variables to main m e m o r y before releasing a lock.

Because of this strong requirement on visibility effect, a synchronization block can not be optimized

away even if the lock it owns is thread local.

• Java safety might be compromised.

T he existing J M M does not guarantee an object to be fully initialized by its constructor before the

returned object reference is visible to other threads if there exists a race condition, which might only

occur under some weak m e m o r y architectures such as Alpha. Take Figure 3 as an example, w hen

thread 2 fetches the object field without locking, it might obtain uninitialized data in the statement r

= p.x even if p is not null. Although this loophole is an extremely rare corner case, it does have serious

consequences. Java safety is compromised since it opens the security hole to malicious attacks via race

conditions. In particular, m a n y Java objects, such as a String object, are designed to be immutable. If

default values before initialization can be observed, the object becomes mutable. Furthermore, popular

programming patterns, such as the double-checked locking [21] algorithm, are broken under the existing
J M M due to the same problem.

• Semantics for final variables is omitted.

Being able to declare a variable as a constant is a useful feature in multithreading systems because it

offers more compilation flexibility. Unfortunately, the existing J M M does not mention final variables.

In fact, final variables have to be reloaded every time at a synchronization point.

• Volatile variables are not useful enough.

T he existing J M M requires operations on volatile variables to be Sequentially Consistent. But volatile
variable operations do not affect visibility on normal variable operations. Therefore, volatile and non

volatile operations can be reordered. In traditional languages such as C, volatiles are used in device

drivers for accessing m e m o r y m a p p e d device registers. A volatile modifier tells the compiler that the

variable should be reloaded for each access. In Java, low level device access is no longer a priority.

Volatile variables are mostly used as synchronization flags. Because the existing volatile semantics

does not offer sufficient synchronization constraints on normal variables, it is not intuitive to use in

practice. Consequently, m a n y J V M implementations do not comply with the present specification.

4 S e m a n t i c s P r o p o s e d b y M a n s o n a n d P u g h

In order to fix the problems listed in Section 3, J M M M P is proposed as a replacement semantics for Java

threads. After extensive discussions and debates through the J M M mailing list, some of the thread properties

have emerged as leading candidates to appear in the n e w J M M .

4.1 Desired Properties

• I t should enable the removal of “redundant” synchronizations.

5

Similar to the existing J M M , J M M M P uses a release/acquire process for synchronization. However,

the visibility restrictions are m u c h relaxed. Instead of permanently flushing all variables w h e n a lock

is released, visibility states are only synchronized through the same lock. Consequently, if the lock is
not used by other threads, the synchronization can be removed since it would never cause any visibility

effects.

• I t should relax the total order requirement for operations on the same variable.

J M M M P essentially follows Location Consistency, which only requires a “partial” order a m o n g write in
structions on the same variable established through the same thread or synchronization. Most standard

compiler optimizations such as fetch elimination are enabled.

• It should maintain safety guarantees even under race conditions.

J M M M P guarantees that all final fields can be initialized properly. To design an immutable object, it

is sufficient to declare all its fields as final fields. Variables other than final fields are allowed to be

observed prematurely.

• It should specify reasonable semantics for final variables.

A final field v is only initialized once in the constructor of its containing object. At the end of the

constructor, v is frozen before the reference of the object is returned. If the final variable is improperly
exposed to other threads before it is frozen, v is said to be a pseudo-final field. Another thread would
always observe the initialized value of v unless it is pseudo-final, in which case it can also obtain the

default value.

• It should make volatile variables more useful.

J M M M P proposes two changes to the volatile variable semantics. O n e is weaker and the other is

stronger comparing to the original J M M . First, the ordering requirement for volatile operations is

relaxed to allow non-atomic volatile writes. Second, the release/acquire semantics is added to volatile

variable operations to achieve synchronization effects for normal variables. A write to a volatile field

acts as a release and a read of a volatile field acts as an acquire.

4.2 J M M mp Notations

J M M M P is based on an abstract global system that executes one operation from one thread in each step. A n

operation corresponds to a J V M opcode. Actions occur in a total order which respects the program orders in

each thread. T he only ordering relaxation explicitly allowed is for prescient writes under certain conditions.

4.2.1 D a t a Structures

A write is defined as a unique tuple of (variable, value, Q U ID). J M M M P uses the multiset data structure to
store history information of m e m o r y activities. In particular, the allWrites set is a global set that records
every write events that have occurred. Every thread, monitor, or volatile variable k also maintains two local
sets, overwritten^ and previousk. Th e former stores the obsolete writes that are k n o w n to k. T he latter

keeps all previous writes that are k n o w n to k. W h e n a variable v is created, a write w with the default

value of v is added to the allWrites set and the previous set of each thread. Every time a n e w write is

issued, writes in the thread local previous set become obsolete to that thread and the n e w write is added
to the previous set and the allW rites set. W h e n a read action occurs, the return value is chosen from the

allW rites set. But the writes stored in the overwritten set of the reading thread are not eligible results.

4.2.2 Prescient W r i t e

A write w m a y be performed presciently, i.e., executed early, if (a) w is guaranteed to happen, (b) w can

not be read from the same thread before where w would normally occur, and (c) any premature reads of w
from other threads must not be observable by the thread that issues w via synchronization before where w
would normally occur. To capture the prescient write semantics, a write action is splitted into initWrite and

performWrite. Special assertion is used in performWrite to ensure that the prescient write conditions are met.

6

Prescient reads do not need to be explicitly specified. Eligible reordering of read instructions can be

deduced as long as it does not result in an illegal execution.

4.2.3 Synchronization M e c h a n i s m

T he thread local overwritten and previous sets are synchronized between threads through the release/acquire
process. A release operation passes the local sets from a thread to a monitor. A n acquire operation passes

the local sets from a monitor to a thread. A n y non-synchronized write instruction on the same variable from

another thread is an eligible write for a read request.

4.2.4 N o n - a t o m i c Volatile Writes

Non-atomic volatile writes enable writes on different variables to arrive at different threads in different orders.

To capture the semantics, a volatile write is splitted into two consecutive instructions, initVolatileWrite and

performVolatileWrite. If thread t1 has issued initVolatileWrite but has not completed performVolatileWrite, no

other thread can issue initVolatileWrite on the same variable. During this interval, another thread t2 can

observe either the n e w value or the previous value of the volatile variable. As soon as t2 sees the n e w value,

however, t2 can no longer observe the previous value. W h e n performVolatileWrite is completed, no thread

can see the previous value.

4.2.5 Final Field Semantics

A very tricky issue in final field semantics arises from the fact that Java does not allow array elements to

be declared as final. For example, the implementation of a String class m a y use a final field r to point to

its internal character array. Because the elements pointed by r can not be declared as final, another thread
might be able to observe their default values even if they have been initialized before r is frozen.

J M M M P proposes to add a special guarantee to these elements that are referenced by a final field. The

visible state of such an element must be captured w h e n the final field is frozen and later synchronized to

another thread w h e n these elements are accessed through the final field. Therefore, every final variable

v is treated as a special lock. A special release is performed w h e n v is frozen. Subsequently, an acquire

is performed w h e n v is read to access its sub-fields. Wit h this mechanism, an immutable object can be

implemented by declaring all its fields as final. If any field is a reference to an array or object, it is sufficient

to just declare this reference as final.

Adding this special final field requirement substantially complicates J M M M P because synchronization

information needs to be passed between the constructing thread and every object pointed by a final field.

T he variable structure is extended to a local, which is a tuple of (a, oF, kF) where a is the reference to an
object or a primitive value, o F is the overwritten set caused by freezing the final fields, and k F is a set

recording what variables are k n o w n to have been frozen. Whenever a final object is read, its knownFrozen
set associated with its initializing thread is synchronized to the reference of the final object. This allows any

subsequent access to its sub-field to k n o w if the sub-field has been initialized.

5 S p e c i f y i n g J M M m p U s i n g U M M

In this section we present a formal specification of the Java M e m o r y Model using the U M M framework. The

J M M semantics, except for rules of final fields and control dependency, is based on J M M M P . J M M m P has

two versions. [3] is an evolving specification that describes the full semantics of Java threads and [22] is a

core subset of it. T he one we use in U M M is based on the latest revision of [3] dated as January 11, 2002.

Although w e follow the specific rules outlined by J M M M P , the exact semantics can be easily adjusted to

meet different m e m o r y model requirements. T he equivalence proof of the semantics, except for volatile and

final fields, is given in the Appendix.

5.1 Overview

T he U M M uses an abstract machine to define thread interactions in a shared m e m o r y environment. M e m o r y
instructions are categorized as events, which m a y be completed by carrying out certain actions if and only if

7

Thread j
I------------------------- T
| LIB. LV. |

i j

GIB

î t i i i i i
LK

Figure 4: T he U M M architecture

specific conditions are satisfied. A transition table defines all possible events along with their corresponding
conditions and actions for the abstract machine.

At any given step, any legal event m a y be nondeterministically chosen and atomically completed by
the abstract machine. Th e sequence of permissible actions from various threads constitutes an execution.
A m e m o r y model M is defined by all possible executions allowed by the abstract machine. A n actual

implementation, I m , m a y choose different architectures and optimization techniques as long as the executions

allowed by I m are also permitted by M .

5.2 The Architecture

As shown in Figure 4, each thread k has a local instruction buffer LIBk that stores its pending instructions
in program order. It also maintains a set of local variables in a local variable array LVk. Each element

LVk [v] contains the data value of the local variable v. LIBk and LVk are not directly exposed to other

threads. Thread interactions are communicated through a global instruction buffer GIB, which is visible to
all threads. GIB stores all previously completed write and synchronization instructions. In general, a read

instruction completes w h e n the return value is bound to its target local variable. A write or synchronization

instruction completes w h e n it is added to the global instruction buffer. A multithreaded program terminates

w h e n all instructions from all threads complete.

T he usage of LIB and G I B is motivated by the observation that local ordering rules and global observability
rules are two pivotal properties for understanding thread behaviors. T he former dictates when an instruction
can be issued by a thread and the latter determines what value can be read back. In U M M , these properties

are explicitly specified as conditions in the transition table.

T he local instruction buffers can be used to represent effects caused by both instruction scheduling and

data replication. Therefore, there is no need for intermediate layers such as cache.

Although we can store all necessary bookkeeping information in LV, LIB, and GIB to describe any impor

tant thread properties, a dedicated global lock array LK is also used for clarity. Each element LK[1] is a tuple

(count, owner), where count is the number of recursive lock acquisitions and owner records the thread that
owns the lock I.

5.3 Definitions

Definition 1 Variable
A global variable in UMM refers to a static field of a loaded class, an instance field of an allocated object,
or an element of an allocated array in Java. It can be further categorized as a normal, volatile, or final
variable. A local variable in UMM corresponds to a Java local variable or an operand stack location.

LVi LIB±

I l l M ~

_ ‘_ _ S n

8

Definition 2 Instruction
An instruction i is represented by a tuple (t,pc, op, var, data, local, useLocal, useNew, lock, time) where

t(i) = t:
pc(i) = pc:
op(i) = op:
var(i) = var:
data(i) = data:
local(i) = local:

useLocal(i) = useLocal:

useNew(i) = useNew:
lock(i) = lock:
time(i) = time:

thread that issues the instruction
program counter of the instruction
instruction operation type
variable operated by the instruction
data value in a write instruction
local variable used to store the return value in a read instruction or
local variable to provide the value in a write instruction
tag in a write instruction i indicating whether the write value data(i) needs
to be obtained from the local variable local(i)
tag in a read volatile instruction to support non-atomic volatile writes
lock in a lock or an unlock instruction
global counter incremented each time when a local instruction is added to GIB

5.4 N eed for Local Variable Information

Because traditional m e m o r y models are designed for processor level architectures, aiding software program

analysis is not a c o m m o n priority in those specifications. The y only need to describe h o w data can be shared

between different processors through the main memory. Consequently, a read instruction is usually retired

immediately w h e n the return value is obtained. Following the same style, neither J M M M P nor J M M c r f

keeps the returned values from read operations. However, Java poses a n e w challenge to m e m o r y model

specification with an integrated threading system as part of the programming language. In Java, most

programming activities such as computation, flow control, and method invocation, are carried out using

local variables. Programmers have a clear need for understanding m e m o r y model implications caused by

the nondeterministically returned values in local variables. Therefore, it is desired to extend the scope of

the m e m o r y model by recording the values obtained from read instructions as part of the global state of the

transition system.

Based on this observation, we use local variable arrays to keep track thread local variable information.

Not only does this reduce the gap between program semantics and m e m o r y model semantics, it also provides

a clear delimitation between them. This allows us to define the J M M at the Java byte code level as well as the

source program level, giving Java programmers an end-to-end view of the m e m o r y consistency requirement.

5.5 M em ory Operations

A global variable in Java is represented by object.field, where object is the object reference and field is the field

name. In this paper, the object.field entity is abstracted to a single variable v. W e also follow a convention

that uses a, b, c to represent global variables, r1, r2, r3 to represent local variables, and 1, 2, 3 to represent
primitive values.

A read operation on a global variable corresponds to a Java program instruction r1 = a. It always has
a target local variable to store the returned data. A write operation on a global variable can have two

formats, a = r1 or a = 1 , depending on whether the useLocal tag is set or not. T he data value of the

write instruction is obtained from a local variable in the former case and is provided by the instruction

directly in the latter case. T he format a = r 1 allows one to examine the data flow implications caused by
the non-determinism from m e m o r y behaviors. If all write instructions have useLocal = false and all read
instructions use different local variables, the U M M degenerates to the traditional models that do not keep

local variable information.

T he local variables are not initialized. Java requires them to be assigned before being used. This is

implicitly enforced in U M M by data dependency on local variables.

Since we are defining the m e m o r y model, only m e m o r y operations are identified in our transition system.

Instructions such as r1 = 1 and r1 = r2 + r3 are not included. However, the U M M framework can be easily

upgraded to a full blown program analysis system by adding semantics for computational instructions.

Lock and unlock instructions are injected as dictated by Java synchronized keyword. T h e y are used to

model the mutual exclusion effect as well as the visibility effect.

9

E v e n t Condition Action

readNormal 3i £ L I B t(j) : ready(i) A op(i) = ReadNormal A

(3w £ G I B : /ega/Norma/Write(i, w)) £

 ̂
$

 ̂
m

d
(LI

:=
e(

:
t

)]
/e

i)
e/

/(
d

a

c
=

/o
:

£

S

L
L

writeNormal 3i £ L I B t(j) : ready(i) A op(i) = WriteNormal if (useLoca/(i))

i.data := L V t(j)[/oca/(i)];

end;

G I B := append(GIB,i);

LIBt(i) := de/ete(LIBt(i),i);

lock 3i £ L I B t(j) : ready(i) A op(i) = Lock A

(LK[/ock(i)] .count = 0 v

LK[/ock(i)].owner = t(i))

LK[/ock(i)].count := LK[/ock(i)].count + 1;

LK[/ock(i)].owner := t(i);

G I B := append(GIB,i);

LIBt(i) := de/ete(LIBt(i),i);

unlock 3i £ L I B t(j) : ready(i) A op(i) = Unlock A

(LK[/ock(i)] .count > 0 A

LK[/ock(i)].owner = t(i))

LK[/ock(i)].count := LK[/ock(i)].count — 1;

G I B := append(GIB,w);

LIBt(i) := de/ete(LIBt(i),i);

readVolatile 3i £ L I B t(j) : ready(i) A op(i) = ReadVolatile A

(3w £ G I B :

(/ega/O/dWrite(i, w) v /ega/NewWrite(i, w)))

LVt(i)[/oca/(i)] := data(w);

if (/ega/NewWrite(i, w))

i.useNew := true;

end;

G I B := append(GIB,i);

L I B t(i) : de/ete(LIBt(i) ,i);

writeVolatile 3i £ L I B t(j) : ready(i) A op(i) = WriteVolatile if (useLoca/(i))

i.data := L V t(i)[/oca/(i)];

end;

G I B := append(GIB,i);

L I B t(i) : de/ete(LIBt(i) ,i);

readFinal 3i £ L I B t(j) : ready(i) A op(i) = ReadFinal A

(3w £ G I B : /ega/Fina/Write(i, w))

LVt(i)[/oca/(i)] := data(w);

L I B t(i) : de/ete(LIBt(i) ,i);

writeFinal 3i £ L I B t(j) : ready(i) A op(i) = WriteFinal if (useLoca/(i))

i.data := L V t(i) [/oca/(i)];

end;

G I B := append(GIB,i);

L I B t(i) : de/ete(LIBt(i) ,i);

freeze 3i £ L I B t(j) : ready(i) A op(i) = Freeze G I B := append(GIB,i);

L I B t(i) : de/ete(LIBt(i) ,i);

Table 1: Transition Table

2nd ^ Read Write Lock Unlock Read Write Read Write Freeze

1st ^ Normal Normal Volatile Volatile Final Final

R ead Normal no diffVar no no no no no no no

Write Normal no yes no no no no no no no

Lock no no no no no no no no no

Unlock no yes no no no no no no no

R ead Volatile no no no no no no no no no

Write Volatile no yes no no no no no no no

R ead Final no yes no no no no no no no

Write Final no yes no no no no no no no

Freeze no no no no no no no no no

Table 2: The Bypassing Table (Table BYPASS)

10

Finally, a special Freeze instruction for every final field v is added at the end of the constructor that
initializes v to indicate v has been frozen.

5.6 Initial Conditions

Initially, instructions from each thread are added to the local instruction buffers according to their original

program order. T he useNew fields are set to false. GIB is initially cleared. T h e n for every variable v, a

write instruction winit with the default value of v is added to GIB. A special thread ID tinit is assigned in
Winit. Finally, the count fields in LK are set to 0.

After the abstract machine is set up, it operates according to the transition table specified in Table 1.

T he conditions and actions corresponding to m e m o r y instructions are defined as events in the transition

table. O ur notation based on guarded c o m m a n d s has been widely used in architectural models [23], making

it familiar to m a n y hardware designers.

5.7 Ordering Rules

T he execution of an instruction i is only allowed w h e n either all the previous instructions in the same thread
have been completed or i is permitted to bypass previous pending instructions according to the m e m o r y
model and local data dependency. This is enforced by condition ready, which is required by every event in
the transition table.

Condition ready consults the bypassing table B Y P A S S and guarantees that the execution of an instruction
would not violate the ordering requirements from the m e m o r y model. Th e B Y P A S S table as shown in Table 2

specifies the ordering policy between every pair of instructions. A n entry BYPASS[op1] [op2] indicates whether

an instruction with type op2 can bypass a previous instruction with type opl, where the value yes permits
the bypassing, the value no prohibits it, and the value diffVar allows the bypassing only if the the variables
operated by the two instructions are different and not aliased. J M M m P specifies that within each thread

operations are usually done in their original order. T he exception is that writes m a y be done presciently.
T he straightforward implementation of U M M follows the same guideline by only allowing normal write

instructions to bypass certain previous instructions as shown in Table 2. T he equivalence proof in the

Appendix is based on Table 2. A more relaxed bypassing policy can also be deduced, which is discussed in

Section 5.12.

In addition to the ordering properties set by the m e m o r y model, the data dependency imposed by the

usage of local variables also need to be obeyed. This is expressed in condition localDependent. T he helper
function isW rite(i) returns true if the operation of i is WriteNormal, WriteVolatile, or WriteFinal. Similarly,
isRead(i) returns true if the operation of i is ReadNormal, ReadVolatile, or ReadFinal. These operation types
are defined with respect to the global variables in the instructions. A read operation on a global variable
actually corresponds to a write operation on a local variable.

Condition 1 ready(i)
- 3j £ L I B t(i) : p c (j) < pc(i) A (localDependent(i, j) v
BYPASS[op(j)][op(i)] = no v BYPASS[op(j)][op(i)] = diffVar A v a r (j) = var(i))

Condition 2 localDependent(i, j)
t (j) = t (i) A local(j) = local(i) A
(isW rite(i) A useLocal(i) A isRead(j) v
isW rite (j) A useLocal(j) A isRead(i) v
isRead(i) A isRead(j))

5.8 Observability Rules

A write or a synchronization instruction carries out actions to update the global state of the abstract

machine. T he state is observed by a read instruction that returns the value previously set by an eligible

write instruction. Besides the ordering rules, the criteria of choosing legal return values is another critical

aspect of a m e m o r y model.

11

T he synchronization mechanism used by J M M M P plays an important role in selecting legal return values.

This is formally captured in condition synchronized. Instruction i1 can be synchronized with a previous

instruction i2 via a release/acquire process, where a lock is first released by t(i2) after i2 is issued and later

acquired by t(i1) before i1 is issued. Release can be triggered by an Unlock or a WriteVolatile instruction.

Acquire can be triggered by a Lock or a ReadVolatile instruction.

Condition 3 synchronized(i1, i2)
3l, u £ G I B : (op(l) = Lock A op(u) = Unlock A lock(l) = lock(u) v

op(l) = ReadVolatile A op(u) = WriteVolatile A var(l) = var(u)) A
t(l) = t(i1) A (t(u) = t(i2) v t(i2) = tinit) A
time(i2) < time(u) A time(u) < tim e(l) A tim e(l) < time(i1)

T he synchronization mechanism follows Location Consistency. It requires an ordering relationship as

captured in condition LCOrder, which can be established if two instructions are from the same thread or
if they are synchronized. This ordering relationship is transitive, i.e., i1 and i2 can be synchronized by a

sequence of release/acquire operations across different threads. Therefore, LCOrder is recursively defined.

Condition 4 LCOrder(i1, i2)
((t(i1) = t(i2) v t(i2) = tinit) A pc(i1) > pc(i2) A var(i1) = var(i2)) v
synchronized(i1,i2) v
(3i' £ G I B : tim e(i') > time(i2) A tim e(i') < time(i1) A LCOrder(i1 ,i') A LC Order (i' ,i2))

Condition legalNormalWrite(r, w) defines whether an instruction w is an eligible write for the read

request r . w provides a legal return value only if there does not exist another write w' on the same variable

between r and w such that r is ordered to w' and w' is ordered to w following LCOrder.

Condition 5 legalNormalWrite(r, w)
op(w) = WriteNormal A var(w) = var(r) A
(- 3w' £ G I B : op(w') = WriteNormal A var(w') = var(r) A LCOrder(r,w ') A LC Order (w' ,w))

5.9 N on -A tom ic Volatiles

Conditions legalOldWrite(r, w) and legalNewWrite(r, w) are used to specify the semantics of non-atomic

volatile write operations. Suppose the value last written to a volatile variable is set by a WriteVolatile

instruction w. After another write instruction w' is performed on the same variable, a ReadVolatile instruction
from thread t (w') must always observe the n e w value set by w' but other threads can get the value either
from w' or w. However, once a thread sees the n e w value set by w', that thread can no longer see the

previous value set by w. A special tag useNew in the ReadVolatile instruction is used to indicate whether the

n e w value has been observed by the reading thread. Furthermore, the n e w value set by w' is “committed”
if the writing thread t(w') has completed any other instructions that follow w' in thread t(w').

According to condition legalNewWrite(r,w), any WriteVolatile instruction w can be an legal write if it

is the most recent write for that variable. Condition legalOldWrite(r,w) specifies that w can also be a legal

result if (a) w is the second most recent WriteVolatile instruction on the same variable, (b) the most recent
write has not been “committed” by its writing thread, and (c) the n e w value has not been observed by the

reading thread.

Condition 6 legalNewWrite(r, w)
op(w) = WriteVolatile A var(w) = var(r) A
(- 3w' £ G I B : op(w') = WriteVolatile A var(w') = var(r) A time(w') > time(w))

Condition 7 legalOldWrite(r, w)
op(w) = WriteVolatile A var(w) = var(r) A t(w) = t(r) A

(3i1 £ G I B : op(i1) = WriteVolatile A var(i1) = var(r) A time(i1) > time(w) A
(- 3i2 £ G I B : op(i2) = WriteVolatile A var(i2) = var(r) A time(i2) > time(w) A time(i2) = time(i1)) A

(- 3i3 £ G I B : t(i3) = t(i1) A pc(i3) > pc(i1))) A

(- 3i4 £ G I B : op(i4) = ReadVolatile A t(i4) = t(r) A var(i4) = var(r) A time(i4) > time(w) A useNew(i4))

12

5.10 Final Variable Semantics

In Java, a final field can either be a primitive value or a reference to another object or array. W h e n it is a

reference, the Java language only requires that the reference itself can not be modified in the Java code after

its initialization but the elements it points to do not have the same guarantee. Also, there does not exist a

mechanism in Java to declare array elements as final fields.

As mentioned in Section 4.2.5, J M M m P proposes to add a special requirement for the elements pointed

by a final field to support an immutable object that uses an array as its field. This requirement is that

if an element pointed by a final field is initialized before the final field is initialized, the default value of

this element must not be observable after normal object construction. J M M m P uses a special mechanism to

“synchronize” initialization information from the constructing thread to the final reference and eventually

to the elements contained by the final reference. However, without explicit support for immutability from

the Java language, this mechanism makes the m e m o r y semantics substantially more difficult to understand

because synchronization information needs to be carried by every variable. It is also not clear h o w the exact
semantics can be efficiently implemented by a Java compiler or a J V M since it involves runtime reachability

analysis.

While still investigating this issue and trying to find the most reasonable solution, we implement a

straightforward definition for final fields in the current U M M . It is slightly different from J M M m P in that

it only requires the final field itself to be a constant after being frozen. T h e observability criteria for final

fields is shown in condition legalFinalWrite. T he default value of the final field (when t(w) = tinit) can
only be observed if the final field is not frozen. In addition, the constructing thread can not observe the

default value after the final field is initialized.

Condition 8 legalFinalWrite(r, w)
op(w) = WriteFinal A var(w) = var(r) A
(t (w) = tinit v
(t(w) = tinit A (- 3i1 £ G I B : op(i1) = Freeze A var(i1) = var(r)) A
(- 3i2 £ G I B : op(i2) = WriteFinal A var(i2) = var(r) A t(i2) = t(r))))

5.11 Control Dependency Issues

T he bypassing policy specified in the B Y P A S S table dictates ordering behaviors of the m e m o r y operations on

global variables. Thread local data dependency is formally defined in localDependent. In addition, thread
local control dependency on local variables should also be respected to preserve the meaning of the Java

program. However, h o w to handle control dependency is a tricky issue. A compiler might be able to remove

a branch statement if it can determine the control path through program analysis. A policy needs to be set

regarding what the criteria is to m a k e such a decision.

J M M m P identifies some special cases and adds two more read actions, guaranteedRedundantRead and

guaranteedReadOfWrite which can suppress prescient writes to enable redundant load elimination and forward
substitution under specific situations. For example, the need for guaranteedRedundantRead is motivated by

a program shown in Figure 5. In order to allow r2 = a to be replaced by r2 = r1 in Thread 1, which would

subsequently allow the removal of the if statement, r2 = a must be guaranteed to get the previously read
value.

Initially, a = = b = = 0

Thread 1 Thread 2

r1 = a; r3 = b;

r2 = a; a = r3;

if(r1 = = r2)

b = 2;

Finally, can r1 = = r2 = = r3 = = 2?

Figure 5: Motiation for guaranteedRedundantRead

Although we could follow the same style by adding similar events in U M M , we do not believe it is

a good approach to specify a m e m o r y model by enumerating special cases for every optimization need.

13

2nd ^

1st ^

Read Normal Write Normal Lock Unlock Read Volatile Write Volatile

Read Normal yes diffVar yes no yes no

Write Normal diffVar yes yes no yes no

Lock no no no no no no

Unlock yes yes no no no no

Read Volatile no no no no no no

Write Volatile yes yes no no no no

Table 3: T he Relaxed Bypassing Table

Therefore, we propose a clear and uniform policy regarding control dependency: the compiler m a y remove

a control statement only if the control condition can be guaranteed in every possible execution, including
all interleaving results caused by thread interactions. This approach should still provide plenty of flexibility

for compiler optimizations. If desired, global data flow analysis m a y be performed. U M M offers a great

platform for such analysis. O n e can simply replace a branch instruction with an assertion. T h e n the model

checker can be run to verify whether the assertion might be violated due to thread interactions.

5.12 Relaxing Ordering Constraints

Although J M M M p does not explicitly relax ordering rules except for prescient writes, possible reordering

can be inferred. As long as the reordering does not result in any illegal execution, an implementation is free

to do so. In U M M , these effects can be directly described in the B Y P A S S table to provide a more intuitive

view about what is allowed by the m e m o r y model. A high performance threading environment requires

efficient supports from m a n y components, such as compilation techniques, cache protocol designs, m e m o r y

architectures, and processor pipelining. Because more liberal ordering rules provide more optimization

opportunities at each intermediate layer, it is desired to have a clear view about the allowed reordering.

Table 3 outlines the relaxed bypassing policy for m e m o r y instructions except for final variable operations.

It does not cover all possible relaxations but it illustrates some of the obvious ones. A ReadNormal instruction

is allowed to bypass a previous WriteNormal instruction operated on a different variable or a ReadNormal

instruction. Because a presciently performed read instruction would get a value from a subset of the legal

results, its return data is still valid. A Lock instruction can bypass previous normal read/write instructions

and normal read/write instructions can bypass a previous Unlock instruction. This is motivated by the fact

that it is safe to mov e normal instructions into a synchronization block since it still generates legal results.

This relaxation also applies to volatile variable operations which have similar synchronization effects on

normal variables.

5.13 M u r^ Implementation

T he U M M is implemented in Mur^> [24], a description language with a syntax similar to C that enables

one to specify a transition system based on guarded commands. In addition, M u r ^ is also a model checking

system that supports exhaustive state space enumeration. This makes it an ideal tool for verifying our shared

m e m o r y system.

O u r Mur^> program consists of two parts. T he first part implements the formal specification of J M M m P ,

which provides a “black box” that defines Java thread semantics. T he transition table in Table 1 is specified

as Mur^> rules. Ordering rules and observability rules are implemented as Mur^> procedures. T he second part

comprises a suite of test cases. Each test program is defined by specific Mur^> initial state and invariants. It

is executed with the guidance of the transition system to reveal pivotal properties of the underlying model.

O ur system can detect deadlocks and invariant violations. To examine test results, two techniques can be

applied. T he first one uses Mur^> invariants to specify that a particular scenario can never occur. If it does

occur, a violation trace can be generated to help understand the cause. T he second technique uses a special

“thread completion” rule, which is triggered only w h e n all threads are completed, to output all possible final

results. O ur executable specification is a configurable system that enables one to easily set up different test

14

programs, abstract machine parameters, and m e m o r y model properties. Running on a P C with a 900 M H z

Pentium III processor and 256 M B of R A M , most of our test programs terminate in less than 1 second.

6 A n a l y s i s o f J M M m p

B y systematically exercising J M M M P with idiom-driven test programs, w e are able to gain a lot of insights

about the model. Since we have developed formal executable models for both J M M CRF [18] and J M M M P ,

w e are able to perform a comparison analysis by running the same test programs on both models. This can

help us understand subtle differences between them. As an ongoing process of evaluating the Java M e m o r y

Models, we are continuing to develop more comprehensive test programs to cover more interesting properties.

In this section we highlight some of the interesting findings based on our preliminary results.

6.1 Ordering Properties

6.1.1 C o h e r e n c e

J M M M P does not require Coherence. This can be detected by the program shown in Figure 6. If r1 = 2 and

r 2 = 1 is allowed, the two threads have to observe different orders of writes on the same variable a, which
violates Coherence. For a normal variable a, this result is allowed by J M M M P but prohibited by J M M C R F .

Initially, a = = 0

Thread 1 Thread 2

a = 1 ;
r1 = a;

a = 2;

r2 = a;

Finally,

can it result in r1 = = 2 and r2 = = 1?

Figure 6: Coherence Test

6.1.2 W r i t e Atomicity for N o r m a l Variables

J M M M P does not require Write Atomicity. This can be revealed from the test in Figure 7. For a normal

variable a, the result in Figure 7 is allowed by J M M M P but forbidden by J M M C R F . Because the C R F

model uses the shared m e m o r y as the rendezvous point between threads and caches, it has to enforce Write
Atomicity.

Initially, a = = 0

Thread 1 Thread 2

a = 1 ;
r1 = a;

r2 = a;

a = 2;

r3 = a;

r4 = a;

Finally,

can it result in r1 = = 1, r2 = = 2, r3 = = 2, and r4 = = 1?

Figure 7: Write Atomicity Test

6.2 Synchronization Mechanism

J M M M P follows Location Consistency, which does not require Coherence. W h e n thread t issues a read
instruction, any previous unsynchronized writes on the same variable issued by other threads can be observed,

in any order. Therefore, J M M M P is strictly weaker than Lazy Release Consistency. Without synchronization,
thread interleaving m a y result in very surprising results. A n example is shown in Figure 8.

15

Initially, a = = 0

Thread 1 Thread 2

a = 1 ;

a = 2;

a;
a;

a;

h
(M

W
r

r
r

Finally,

can it result in r1 = = r3 = = 1 and r2 = = 2?

Figure 8: Legal Result under Location Consistency

6.3 Constructor Property

T he constructor property is studied by the program in Figure 9. Thread 1 simulates the constructing

thread. It initializes the field before releasing the object reference. Thread 2 simulates another thread trying

to access the object field without synchronization. M e m b a r 1 and M e m b a r 2 are some hypothetic m e m o r y

barriers that prevents instructions from acrossing them, which can be easily implemented in our program

by simply setting some test specific bypassing rules. This program essentially simulates the construction

mechanism used by J M M c r f , where M e m b a r 1 is a special EndCon instruction indicating the completion of

the constructor and M e m b a r 2 is the data dependency enforced by program semantics w h e n accessing fie/d

through reference. If fie/d is a normal variable, this mechanism works under J M M c r f but fails under

J M M m P . In J M M m P the default write to fie/d is still a valid write since there does not exists an ordering

requirement on non-synchronized writes. However, if fie/d is declared as a final variable and the Freeze

instruction is used for M e m b a r 1 , Thread 2 would never observe the default value of fie/d if reference is

initialized.

This illustrates the different strategies used by the two models for preventing premature releases during

object construction. J M M c r f treats all fields uniformly and J M M m P only guarantees fully initialized fields

if they are final or pointed by final fields.

Initially, reference = = fie/d = = 0

Thread 1 Thread 2

fie/d = 1;

M e m b a r 1 ;

reference = 1;

r1 = reference;

M e m b a r 2

r2 = fie/d;

Finally,

can it result in r1 = = 1 and r2 = = 0?

Figure 9: Constructor Test

6.4 Subtle M istakes in J M M Mp

Using our verification approach, several subtle yet critical specification mistakes in J M M m P are revealed.

6.4.1 N o n - A t o m i c Volatile Writes

O n e of the proposed requirements for non-atomic volatile write semantics is that if a thread t has observed

the n e w value of a volatile write, it can no longer observe the previous value. In order to implement this

requirement, a special flag readThisVo/ati/et^w,infot) is initialized to fa/se in initVolatileWrite [3, Figure
14]. W h e n the n e w volatile value is observed in readVolatile, this flag should be set to true to prevent the

previous value from being observed again by the same thread. However, this critical step is missing and

the flag is never set to true in the original proposal. This mistake causes inconsistency between the formal

specification and the intended goal.

16

A design flaw for final variable semantics has also been discovered. This is about a corner case in the

constructor that initializes a final variable. T he scenario is illustrated in Figure 10. After the final field a is
initialized, it is read by a local variable in the same constructor. T he readFinal definition [3, Figure 15] would

allow r to read back the default value of a. This is because at that time a has not been “synchronized” to
be k n o w n to the object that it has been frozen. But the readFinal action only checks that information from

the kF set which is associated with the object reference. This scenario compromises the program correctness

because data dependency is violated.

class foo {
f in a l int a;

public fo o () {
int r ;
a = 1;
r = a;
// can r == 0?

}
}

Figure 10: Flaw in final variable semantics

6.4.2 F inal Semantics

7 C o n c l u s i o n s

As discussed in earlier sections, the importance of a clear and formal J M M specification is being increasingly

realized. In this paper we have presented a uniform specification framework for language level m e m o r y

models. This permits us to conduct formal analysis and pave the w a y towards future studies on compiler

optimization techniques in a multithreaded environment. Comparing to traditional specification frameworks,

U M M has several noticeable advantages.

1. It provides strong support for formal verification. This is accomplished by using an operational ap

proach to describe m e m o r y activities, enabling the transition system to be easily integrated with a

model checking tool. Formal methods can help one to better understand the subtleties of the model by

detecting some corner cases which would be very hard to find through traditional simulation techniques.

Because the specification is executable, the m e m o r y model can be provided to the users as a “black

box” and the users are not necessarily required to understand all the details of the m e m o r y model. In

addition, the mathematical rules in the transition table makes the specification more rigorous, which

eliminates any ambiguities.

2. U M M addresses the special need from a language level m e m o r y model by reducing the gap between

m e m o r y semantics and program semantics. This enables one to study the m e m o r y model implications

in the context of data flow analysis. It offers the programmers, compiler writers, and hardware designers

an end-to-end view of the m e m o r y consistency requirement.

3. T he model is flexible enough to enforce most desired m e m o r y properties. M a n y existing m e m o r y

models are specified in different notations and styles. This is due to the fact that the specification

is often influenced by the actual architecture of its implementation and there lacks a uniform system

that is flexible enough to describe all properties in a shared m e m o r y system. In U M M , any completed

instructions that m a y have any future visibility effects are stored in the global instruction buffer along

with the time stamps of their occurrence. This allows one to plug in different selection algorithms to

observe the state. In a contrast to most processor level m e m o r y models that use a fixed size main

memory, U M M applies a global instruction buffer whose size m a y be increased if necessary, which is

needed to specify relaxed m e m o r y models that require to keep a trace of multiple writes on a variable.

17

T he abstraction mechanism in U M M provides a feasible c o m m o n design interface for any executable

m e m o r y model with all the internal data structures and implementation details encapsulated from the

user. Different ordering rules and observability rules can be carefully developed in order to enable

a user to select from a “m e n u” of m e m o r y properties to assemble a desired formal m e m o r y model

specification.

4. T he architecture of U M M is very simple and intuitive. T he devices applied in U M M , such as instruction

buffers and arrays, are standard data structures that are easy for one to understand. Similar notations

have been used in processor m e m o r y model descriptions [16] [23], making this model intuitive to

hardware designers. S o m e traditional frameworks use multiple copies of the shared m e m o r y modules

to represent non-atomic operations [11]. In U M M , these multiple modules are combined into a single

global buffer which substantially simplifies state transitions.

O u r approach also has some limitations. Based on the Model Checking techniques, it is exposed to the

state explosion problem. Effective abstraction and slicing techniques need to be applied in order to use U M M

to verify commercial multithreaded Java programs. Also, our U M M prototype is still under development.

T he optimal definition for final variables needs to be identified and specified.

A reliable specification framework m a y lead to m a n y interesting future works. Currently people need to

develop the test programs by hand to conduct verifications. To automate this process, programming pattern

annotation and recognition techniques can play an important role.

Traditional compilation techniques can be systematically analyzed for J M M compliance. In addition,

the U M M framework enables one to explore n e w optimization opportunities allowed by the relaxed m e m o r y

consistency requirement.

Architectural m e m o r y models can also be specified in U M M . Under the same framework, m e m o r y model

refinement analysis can be performed to aid the development of efficient J V M implementations.

Finally, we plan to apply U M M to study the various proposals to be put forth by the Java working

group in their currently active discussions regarding Java shared m e m o r y semantics standardization. The

availability of a formal analysis tool during language standardization will provide the ability to evaluate

various proposals and foresee pitfalls.

Acknowledgments

W e sincerely thank all contributors to the J M M mailing list for their insightful and inspiring discussions for

improving the Java M e m o r y Model.

R e f e r e n c e s

[1] James Gosling, Bill Joy, and G u y Steele. The Java Language Specification, chapter 17. Addison-Wesley,
1996.

[2] William Pugh. Fixing the Java M e m o r y Model. In Java Grande, pages 89-98, 1999.

[3] Jeremy M a n s o n and William Pugh. Semantics of multithreaded Java. Technical report, U M I A C S - T R -

2001-09.

[4] Jan-Willem Maessen, Arvind, and Xiaowei Shen. Improving the Java M e m o r y Model using C R F . In

OOPSLA, pages 1-12, October 2000.

[5] Java Specification Request (JSR) 133: Java M e m o r y Model and Thread Specification Revision.

http://jcp.org/jsr/detail/133.jsp.

[6] T he Java M e m o r y Model mailing list.

http://www.cs.umd. edu /'pugh/j ava/memoryModel /archive.

[7] X. Shen, Arvind, and L. Rudolph. Commit-Reconcile & Fences (CRF): A N e w M e m o r y Model for

Architects and Compiler Writers. In the 26th International Symposium On Computer Architecture,
Atlanta, Georgia, M a y 1999.

18

http://jcp.org/jsr/detail/133.jsp
http://www.cs.umd

[8] Leslie Lamport. H o w to m a k e a multiprocessor computer that correctly executes multiprocess programs.

IEEE Transactions on Computers, C-28(9):690-691, 1979.

[9] S. V. Adve and K. Gharachorloo. Shared m e m o r y consistency models: A tutorial. IEEE Computer,
29(12):66-76, 1996.

10] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy release consistency for software distributed

shared memory. In the 19th International Symposium of Computer Architecture, pages 13-21, M a y 1992.

11] Kourosh Gharachorloo. M e m o r y consistency models for shared-memory multiprocessors. Technical

report, CSL-TR-95-685.

12] G u a n g G a o and Vivek Sarkar. Location consistency - a n e w m e m o r y model and cache consistency

protocol. Technical report, 16, C A P S L , University of Delaware, February, 1998.

13] William W . Collier. Reasoning about Parallel Architectures. Prentice-Hall, 1992.

14] Kourosh Gharachorloo, Sarita V. Adve, A n o o p Gupta, John L. Hennessy, and M a r k D. Hill. Specifying

system requirements for m e m o r y consistency models. Technical report, CSL-TR93-594.

15] D. Dill, S. Park, and A. Nowatzyk. Formal specification of abstract m e m o r y models. In the 1993
Symposium for Research on Integrated Systems, pages 38-52, M arch 1993.

16] D. Weaver and T. Germond. The SPARC Architecture Manual Version 9. Prentice Hall, 1994.

17] Seungjoon Park and David L. Dill. A n executable specification and verifier for Relaxed M e m o r y Order.

IEEE Transactions on Computers, 48(2):227-235, 1999.

18] Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom. Analyzing the C R F Java M e m o r y Model. In

the 8th Asia-Pacific Software Engineering Conference, pages 21-28, 2001.

19] Abhik Roychoudhury and Tulika Mitra. Specifying multithreaded Java semantics for program verifica

tion. In International Conference on Software Engineering, 2002.

20] A. Gontmakher and A. Schuster. Java consistency: Non-operational characterizations for Java m e m o r y

behavior. In the Workshop on Java for High-Performance Computing, Rhodes, June 1999.

21] Philip Bishop and Nigel Warren. Java in Pratice: Design Styles and Idioms for Effective Java, chapter 9.
Addison-Wesley, 1999.

22] Jeremy M a n s o n and William Pugh. Core semantics of multithreaded Java. In ACM Java Grande
Conference, June 2001.

23] R o b Gerth. Introduction to sequential consistency and the lazy caching algorithm. Distributed Com
puting, 1995.

24] David Dill. T he Mur^> verification system. In 8th International Conference on Computer Aided Verifi
cation, pages 390-393, 1996.

19

A p p e n d i x : E q u i v a l e n c e P r o o f

Let the multithreaded Java semantics specified in Section 5 be referred as J M M u m m . W e present the

equivalence proof between J M M u M M and J M M M P based on our straightforward implementation using the

bypassing table shown in Table 2. For the sake of brevity, we only outline the equivalence proof for the core

subset of the m e m o r y model including instructions ReadNormal, WriteNormal, Lock, and Unlock.

J M M u M M and J M M M P are equivalent if and only if the execution traces allowed by both models are the
same. This is proven with two lemmas. W e first demonstrate that both models impose the same ordering

restrictions for issuing instructions within each thread. W e then prove that the legal values resulted from

the ReadNormal instruction in J M M u M M is both sound and complete with respect to J M M M P .

L e m m a 1 Instructions in each thread are issued under the same ordering rules by JMMumm and JMMm p .

Since prescient writes are the only ordering relaxation explicitly allowed by both models, it is sufficient

to prove that the ordering requirement on prescient writes are the same.

1. Soundness of J M M u m m : let w be any WriteNormal instruction allowed by J M M u m m , we show that

it must satisfy the conditions in J M M M P , which is enforced by the assertion w £ previousReadst in
performWrite. There are only two ways to add w to previousReadst.

(a) w is read from the same thread before where w would normally occur.
This can not happen in J M M u m m . Because a write instruction w can not bypass a previous

read instruction r issued by the same thread if they operate on the same variable, r would never
observe a later write instruction from the same thread.

(b) w is added to previousReadst' by another thread t' and then synchronized to thread t (r) before r
is issued.
To m a k e this happen, there must exists an acquire operation in t (r) that happens between where
w is issued and where w would normally occur. This is not allowed in J M M u m m since w is not

allowed to bypass a previous acquire operation.

2. Completeness of J M M u m m : let w be any normal write instruction allowed by J M M M P , we prove it is

also permitted by J M M u M M .

Assume w is prohibited by J M M u m m . According to conditions of the WriteNormal instruction in

the transition table Table 1, w can only be prohibited w h e n ready(w) = false. Therefore, w must

have bypassed a previous instruction prohibited by the B Y P A S S table. T he only reordering that is

forbidden for a normal write instruction is the bypassing of a previous lock instruction or a previous

read instruction operated on the same variable. T he former case is prohibited in J M M M P by the mutual

exclusion requirement of a lock instruction. T he latter case is also forbidden by J M M M P because the

assertion in performWrite would have failed if a readNormal instruction were allowed to obtain a value

from a later write instruction in the same thread.

L e m m a 2 The normal read instructions from both models generate the same legal results.

1. Soundness of J M M u M M : if w is a legal result for a read instruction r under J M M u M M , w is also legal

in J M M m p .

W e prove that w satisfies all requirements according to the definition of the readNormal operation

defined in J M M M P :

readNormal(Variable v) Choose (v,w,g) from allWrites(v)
— uncommittedt — overwrittent

previousReadst + = (v,w,g)
return w

20

(a) The result is from allWrites(v)
This requirement is guaranteed by var(w) = var(r) and op(w) = WriteNormal in condition

/ega/Norma/Write(r, w).

(b) w G uncommitteddt
A s sume w G uncommittedt. To m a k e this happen, w must be a write instruction that follows r

in program order but is observed by r. This is prohibited by J M M u m m because w is not allowed

to bypass r in this situation.

(c) w / overwritten\t
A s sume w G overwritten. w can only be added to overwritten in two ways.

i. A write w', which is on the same variable and from the same thread, is performed with its
corresponding performWrite operation. And w G previoust at that time.

In order to have w exist in previoust w h e n w' is performed, w' must be performed after w is

performed. Therefore, w is not the most recent write, which is illegal according to condition

/ega/Norma/Write(r, w).

ii. w is added to overwrittennt by another thread t' and later acquired by t(r) via synchronization.

w can only be added to overwritten^ by thread t' w h e n t' performs another write w' on

the same variable and w has been added to previoust/ at that time. Furthermore, this must

occur before the release operation issued in t' which is eventually acquired by t. There

fore, LCOrder(w',w) = true and LCOrder(r, w') = true, which is prohibited in function

/ega/Norma/Write(r, w) by J M M u m m .

2. Completeness of J M M u m m : if w is a legal result for a read instruction r in J M M m P , w is also legal in

J M M u m m .

Assume w is prohibited by J M M u m m . According to the conditions for the readNormal event in Table 1,

one of the following reasons must be true.

(a) ready(r) = fa/se

This indicates that there exists at least one pending instruction i in the same thread such that i

precedes r. Because J M M m P does not issue a read instruction out of program order, this scenario

would not occur in J M M m P either.

(b) /ega/Norma/Write(r, w) = fa/se

Condition /ega/Norma/Write(r, w) only fails w h e n w is not the most recent previous write on

the same variable in a path of a sequence of partially ordered writes according to LCOrder. This

is also forbidden by J M M m P .

21

